Large-scale constrained clustering for rationalizing pickup and delivery operations
The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by the desire of a shipping carrier to reduce its fixed costs, the problem is to construct a set of compact work areas for regional pickup and del...
Saved in:
Published in | Transportation research. Part B: methodological Vol. 43; no. 5; pp. 542 - 561 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.06.2009
Elsevier |
Series | Transportation Research Part B: Methodological |
Subjects | |
Online Access | Get full text |
ISSN | 0191-2615 1879-2367 |
DOI | 10.1016/j.trb.2008.10.003 |
Cover
Loading…
Abstract | The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by the desire of a shipping carrier to reduce its fixed costs, the problem is to construct a set of compact work areas for regional pickup and delivery operations. In general terms, the objective is to find the minimum number of clusters (homogeneous vehicles) that satisfy volume, time and contiguity constraints. The problem is placed in context by formulating it as a mixed-integer goal program. Because practical instances contain anywhere from 6000 to 50,000 data points and can only be described in probabilistic terms, it is not possible to obtain provably optimal solutions to the proposed model. Instead, a novel solution methodology is developed that makes use of metaheuristic and mathematical programming techniques.
In the preprocessing phase, a fraction of the data points are aggregated to reduce the problem size. This is shown to substantially decrease the computational burden without compromising solution quality. In the main step, an efficient adaptive search procedure is used to form the clusters. Randomness is introduced at each inner iteration to ensure a full exploration of the feasible region, and an incremental slicing scheme is used to overcome local optimality. In metaheuristic terms, these two refinements are equivalent to diversification and intensification search strategies. To improve the results, a set covering problem is solved in the final phase. The individual clusters obtained from the heuristic provide the structure for this model.
To test the methodology, six data sets provided by the sponsoring company were analyzed. All runs for the first two phases took less than 4
min, and in all but one case produced a tangible improvement over the current service area configurations. The set covering solution provided further improvement, which collectively averaged 11.2%. |
---|---|
AbstractList | The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by the desire of a shipping carrier to reduce its fixed costs, the problem is to construct a set of compact work areas for regional pickup and delivery operations. In general terms, the objective is to find the minimum number of clusters (homogeneous vehicles) that satisfy volume, time and contiguity constraints. The problem is placed in context by formulating it as a mixed-integer goal program. Because practical instances contain anywhere from 6000 to 50,000 data points and can only be described in probabilistic terms, it is not possible to obtain provably optimal solutions to the proposed model. Instead, a novel solution methodology is developed that makes use of metaheuristic and mathematical programming techniques.
In the preprocessing phase, a fraction of the data points are aggregated to reduce the problem size. This is shown to substantially decrease the computational burden without compromising solution quality. In the main step, an efficient adaptive search procedure is used to form the clusters. Randomness is introduced at each inner iteration to ensure a full exploration of the feasible region, and an incremental slicing scheme is used to overcome local optimality. In metaheuristic terms, these two refinements are equivalent to diversification and intensification search strategies. To improve the results, a set covering problem is solved in the final phase. The individual clusters obtained from the heuristic provide the structure for this model.
To test the methodology, six data sets provided by the sponsoring company were analyzed. All runs for the first two phases took less than 4
min, and in all but one case produced a tangible improvement over the current service area configurations. The set covering solution provided further improvement, which collectively averaged 11.2%. The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by the desire of a shipping carrier to reduce its fixed costs, the problem is to construct a set of compact work areas for regional pickup and delivery operations. In general terms, the objective is to find the minimum number of clusters (homogeneous vehicles) that satisfy volume, time and contiguity constraints. The problem is placed in context by formulating it as a mixed-integer goal program. Because practical instances contain anywhere from 6000 to 50,000 data points and can only be described in probabilistic terms, it is not possible to obtain provably optimal solutions to the proposed model. Instead, a novel solution methodology is developed that makes use of metaheuristic and mathematical programming techniques. In the preprocessing phase, a fraction of the data points are aggregated to reduce the problem size. This is shown to substantially decrease the computational burden without compromising solution quality. In the main step, an efficient adaptive search procedure is used to form the clusters. Randomness is introduced at each inner iteration to ensure a full exploration of the feasible region, and an incremental slicing scheme is used to overcome local optimality. In metaheuristic terms, these two refinements are equivalent to diversification and intensification search strategies. To improve the results, a set covering problem is solved in the final phase. The individual clusters obtained from the heuristic provide the structure for this model. To test the methodology, six data sets provided by the sponsoring company were analyzed. All runs for the first two phases took less than 4min, and in all but one case produced a tangible improvement over the current service area configurations. The set covering solution provided further improvement, which collectively averaged 11.2%. |
Author | Bard, Jonathan F. Jarrah, Ahmad I. |
Author_xml | – sequence: 1 givenname: Jonathan F. surname: Bard fullname: Bard, Jonathan F. email: jbard@mail.utexas.edu organization: Graduate Program in Operations Research and Industrial Engineering, The University of Texas, Austin, TX 78712-0292, United States – sequence: 2 givenname: Ahmad I. surname: Jarrah fullname: Jarrah, Ahmad I. email: jarrah@gwu.edu organization: Department of Decision Sciences, Funger 415, School of Business, The George Washington University, Washington, DC 20052, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21384559$$DView record in Pascal Francis http://econpapers.repec.org/article/eeetransb/v_3a43_3ay_3a2009_3ai_3a5_3ap_3a542-561.htm$$DView record in RePEc |
BookMark | eNp9UU1PxCAUJEYT19Uf4K0Xj12hlFLiyRg_s4kH9UwoPFbWShuom6y_XmrVg4c9DC-8zEzyZo7Qvu88IHRK8IJgUp2vF0NoFgXGdfovMKZ7aEZqLvKCVnwfzTARJC8qwg7RUYxrnBglJjP0tFRhBXnUqoVMdz4OQTkPJtPtRxwgOL_KbBeyoAbXedW6z3HTO_320WfKm8xA6zYQtlnXw0SKx-jAqjbCyc-co5eb6-eru3z5eHt_dbnMdSnIkBvOWVNQQ1lJShCUN7ygNdGcK9EwjoUtrK4rxYy1VGDbCGPrWlirgBFjOJ2jh8k3QA9a9sG9q7CVAJCO8LGRG0lVSdOzTUjZiDRcAkvox1kWklVEvg7vyexsMuvVGIZNDtrFP9OC0LpkTCQen3g6dDEGsFK74fvuMblWEizHQuRapkLkWMi4SnEnJfmn_DXfpbmYNJBy3DgIMmoHXoNxAfQgTed2qL8AXPqmxA |
CODEN | TRBMDY |
CitedBy_id | crossref_primary_10_1016_j_ijdrr_2021_102193 crossref_primary_10_1179_1942787515Y_0000000023 crossref_primary_10_1007_s00170_013_5354_6 crossref_primary_10_3390_su14020819 crossref_primary_10_1016_j_trb_2017_11_003 crossref_primary_10_1080_19427867_2022_2148368 crossref_primary_10_1016_j_seps_2012_07_001 crossref_primary_10_1057_jors_2010_123 crossref_primary_10_1134_S1064226924700086 crossref_primary_10_1111_itor_12893 crossref_primary_10_1109_TITS_2024_3385029 crossref_primary_10_1287_trsc_2014_0524 crossref_primary_10_1057_jors_2014_50 crossref_primary_10_1007_s10732_010_9129_z crossref_primary_10_1016_j_trb_2014_02_001 crossref_primary_10_1007_s10479_017_2742_6 crossref_primary_10_1016_j_ejor_2010_01_045 crossref_primary_10_1080_0740817X_2012_665202 crossref_primary_10_1007_s10479_016_2338_6 crossref_primary_10_1016_j_strusafe_2018_10_002 crossref_primary_10_1007_s10479_020_03631_7 crossref_primary_10_1016_j_ins_2022_01_032 crossref_primary_10_1109_TNNLS_2022_3212593 crossref_primary_10_1287_opre_2018_1746 crossref_primary_10_1016_j_cie_2017_01_022 crossref_primary_10_1155_2022_6400318 crossref_primary_10_1080_00207543_2016_1231431 crossref_primary_10_1016_j_omega_2021_102430 crossref_primary_10_1109_MITS_2020_3014444 crossref_primary_10_1111_mice_12461 crossref_primary_10_1016_j_trb_2021_01_004 crossref_primary_10_1016_j_ejor_2018_08_043 crossref_primary_10_1016_j_apm_2013_05_029 crossref_primary_10_1016_j_cor_2024_106845 crossref_primary_10_1016_j_cor_2011_11_016 crossref_primary_10_1016_j_jpubtr_2022_100021 crossref_primary_10_1016_j_omega_2020_102283 crossref_primary_10_1007_s10479_018_3078_6 crossref_primary_10_1016_j_omega_2012_09_001 crossref_primary_10_1016_j_trb_2019_09_015 crossref_primary_10_1016_j_ejor_2023_01_016 crossref_primary_10_1371_journal_pone_0262499 crossref_primary_10_1016_j_trc_2013_03_007 crossref_primary_10_1016_j_cor_2012_03_014 crossref_primary_10_1016_j_omega_2022_102687 crossref_primary_10_3390_su11185025 crossref_primary_10_1016_j_cor_2018_07_013 crossref_primary_10_1016_j_tre_2011_11_003 |
Cites_doi | 10.1287/ijoc.7.1.10 10.1287/trsc.1030.0056 10.1023/B:ANOR.0000019091.54417.ca 10.1109/TIT.1979.1056067 10.1016/S0377-2217(00)00320-9 10.1016/S0305-0548(03)00039-X 10.1016/S0031-3203(99)00216-2 10.1057/palgrave.jors.2602135 10.1016/0167-8655(95)00122-0 10.1016/S0167-6377(98)00006-6 10.1016/0191-2615(89)90029-5 10.1016/j.trb.2007.04.010 10.1016/0191-2615(84)90027-4 10.1016/0166-218X(90)90094-S 10.1016/0191-2615(92)90032-R 10.1016/j.ejor.2003.06.046 10.1016/j.cor.2005.05.027 10.1016/j.cor.2004.11.011 10.1007/BF01581107 10.1137/0403036 10.1287/mnsc.47.10.1396.10265 10.1016/j.ejor.2006.02.030 10.1007/BF01585164 10.1007/s10898-004-2706-7 10.1016/j.ejor.2005.09.032 10.1007/BF02614317 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Ltd 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 Elsevier Ltd – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW DKI X2L |
DOI | 10.1016/j.trb.2008.10.003 |
DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Applied Sciences |
EISSN | 1879-2367 |
EndPage | 561 |
ExternalDocumentID | eeetransb_v_3a43_3ay_3a2009_3ai_3a5_3ap_3a542_561_htm 21384559 10_1016_j_trb_2008_10_003 S0191261508001203 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABDMP ABFNM ABLJU ABMAC ABMMH ABPPZ ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHRSL AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPCBC SSB SSD SSO SSS SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 08R 0R 1 8P AAPBV ABFLS ABPTK ADALY DKI G- HZ IPNFZ K M MS STF X X2L |
ID | FETCH-LOGICAL-c491t-d775b23d35414e937b72381c77a9b5709f2fc86a5dff390fb9df889ffae51dd73 |
IEDL.DBID | AIKHN |
ISSN | 0191-2615 |
IngestDate | Wed Aug 18 03:51:25 EDT 2021 Mon Jul 21 09:17:45 EDT 2025 Tue Jul 01 03:50:06 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Fri Feb 23 02:27:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Case study Set covering Pickup and delivery operations Clustering Randomized heuristic Cluster analysis Costs Travel time Methodology Service Aggregation Randomization Pickup and delivery Problem solving Heuristic approach Transport |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-d775b23d35414e937b72381c77a9b5709f2fc86a5dff390fb9df889ffae51dd73 |
PageCount | 20 |
ParticipantIDs | repec_primary_eeetransb_v_3a43_3ay_3a2009_3ai_3a5_3ap_3a542_561_htm pascalfrancis_primary_21384559 crossref_citationtrail_10_1016_j_trb_2008_10_003 crossref_primary_10_1016_j_trb_2008_10_003 elsevier_sciencedirect_doi_10_1016_j_trb_2008_10_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationSeriesTitle | Transportation Research Part B: Methodological |
PublicationTitle | Transportation research. Part B: methodological |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Brucker (bib4) 1978; vol. 157 Garey, Johnson (bib9) 1979 Ouyang (bib27) 2007; 41 Negreiros, Palhano (bib25) 2006; 33 Sherali, Smith (bib30) 2001; 47 Ferreira, Martin, de Souza, Weismantel, Wolsey (bib8) 1998; 81 Hansen, Mladenovic (bib13) 2001; 34 Mehrotra, Trick (bib23) 1998; 22 Chiou, Lan (bib5) 2001; 135 Johnson, Mehrotra, Nemhauser (bib14) 1993; 62 Osman, Ahmadi (bib26) 2007; 58 Hansen, Jaumard (bib12) 1997; 79 Bräysy, Gendreau (bib3) 2005; 39 Erdoğan, Tansel (bib7) 2007; 34 Bard, Purnomo (bib2) 2005; 164 Daganzo (bib6) 1984; 18 Kohl, Karisch (bib16) 2004; 127 Al-Sultan, Maroof Khan (bib1) 1996; 17 Sherali, Adams (bib28) 1990; 3 Sherali, Desai (bib29) 2003; 32 Kaufman, Roussweuw (bib15) 1990 Koskosidis, Powell (bib18) 1992; 26 Loiola, de Abreu, Boaventura-Netto, Hahn, Querido (bib20) 2007; 176 Martello, Toth (bib22) 1990; 28 Kontoravdis, Bard (bib17) 1995; 7 Gersho (bib10) 1979; 25 Laporte, Chapleau, Landry, Mercure (bib19) 1989; 23 Mourgaya, Vanderbeck (bib24) 2007; 183 Lorena, Elf (bib21) 2004; 31 Wolsey (bib32) 1998 Mehrotra (10.1016/j.trb.2008.10.003_bib23) 1998; 22 Koskosidis (10.1016/j.trb.2008.10.003_bib18) 1992; 26 Garey (10.1016/j.trb.2008.10.003_bib9) 1979 Kohl (10.1016/j.trb.2008.10.003_bib16) 2004; 127 Mourgaya (10.1016/j.trb.2008.10.003_bib24) 2007; 183 Osman (10.1016/j.trb.2008.10.003_bib26) 2007; 58 Erdoğan (10.1016/j.trb.2008.10.003_bib7) 2007; 34 Al-Sultan (10.1016/j.trb.2008.10.003_bib1) 1996; 17 Bräysy (10.1016/j.trb.2008.10.003_bib3) 2005; 39 Chiou (10.1016/j.trb.2008.10.003_bib5) 2001; 135 Martello (10.1016/j.trb.2008.10.003_bib22) 1990; 28 Sherali (10.1016/j.trb.2008.10.003_bib30) 2001; 47 Sherali (10.1016/j.trb.2008.10.003_bib29) 2003; 32 Kontoravdis (10.1016/j.trb.2008.10.003_bib17) 1995; 7 Bard (10.1016/j.trb.2008.10.003_bib2) 2005; 164 Brucker (10.1016/j.trb.2008.10.003_bib4) 1978; vol. 157 Hansen (10.1016/j.trb.2008.10.003_bib12) 1997; 79 Lorena (10.1016/j.trb.2008.10.003_bib21) 2004; 31 Daganzo (10.1016/j.trb.2008.10.003_bib6) 1984; 18 Gersho (10.1016/j.trb.2008.10.003_bib10) 1979; 25 Sherali (10.1016/j.trb.2008.10.003_bib28) 1990; 3 Wolsey (10.1016/j.trb.2008.10.003_bib32) 1998 Laporte (10.1016/j.trb.2008.10.003_bib19) 1989; 23 Kaufman (10.1016/j.trb.2008.10.003_bib15) 1990 Negreiros (10.1016/j.trb.2008.10.003_bib25) 2006; 33 Loiola (10.1016/j.trb.2008.10.003_bib20) 2007; 176 Johnson (10.1016/j.trb.2008.10.003_bib14) 1993; 62 Ouyang (10.1016/j.trb.2008.10.003_bib27) 2007; 41 Ferreira (10.1016/j.trb.2008.10.003_bib8) 1998; 81 Hansen (10.1016/j.trb.2008.10.003_bib13) 2001; 34 |
References_xml | – volume: 62 start-page: 133 year: 1993 end-page: 151 ident: bib14 article-title: Min-cut clustering publication-title: Mathematical Programming – volume: 22 start-page: 1 year: 1998 end-page: 12 ident: bib23 article-title: Cliques and clustering: a combinatorial approach publication-title: Operations Research Letters – volume: 18 start-page: 135 year: 1984 end-page: 145 ident: bib6 article-title: The length of tours in zones of different shapes publication-title: Transportation Research Part B – volume: 32 start-page: 281 year: 2003 end-page: 306 ident: bib29 article-title: A global optimization RLT-based approach for solving the hard clustering problem publication-title: Journal of Global Optimization – volume: 3 start-page: 411 year: 1990 end-page: 430 ident: bib28 article-title: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems publication-title: SIAM Journal on Discrete Mathematics – volume: 39 start-page: 104 year: 2005 end-page: 118 ident: bib3 article-title: Vehicle routing problem with time windows, part I: route construction and local search algorithms publication-title: Transportation Science – volume: 183 start-page: 1028 year: 2007 end-page: 1041 ident: bib24 article-title: Column generation based heuristic for tactical planning in multi-period vehicle routing publication-title: European Journal of Operational Research – volume: 127 start-page: 223 year: 2004 end-page: 257 ident: bib16 article-title: Airline crew rostering: problem types, modeling, and optimization publication-title: Annals of Operations Research – volume: 34 start-page: 1085 year: 2007 end-page: 1106 ident: bib7 article-title: A branch-and-cut algorithm for quadratic assignment problems based on linearizations publication-title: Computers & Operations Research – volume: 17 start-page: 295 year: 1996 end-page: 308 ident: bib1 article-title: Computational experience on four algorithms for the hard clustering problem publication-title: Pattern Recognition Letters – volume: 26 start-page: 365 year: 1992 end-page: 379 ident: bib18 article-title: Clustering algorithms for consolidation of customer orders into vehicle shipments publication-title: Transportation Research Part B – volume: 34 start-page: 405 year: 2001 end-page: 413 ident: bib13 article-title: J-Means: a new local search heuristic for minimum sum-of-squares clustering publication-title: Pattern Recognition – volume: 135 start-page: 413 year: 2001 end-page: 427 ident: bib5 article-title: Genetic clustering algorithms publication-title: European Journal of Operational Research – volume: 25 start-page: 373 year: 1979 end-page: 380 ident: bib10 article-title: Asymptotically optimal block quantization publication-title: IEEE Transactions on Information Theory, IT- – year: 1998 ident: bib32 article-title: Integer Programming – volume: 33 start-page: 1639 year: 2006 end-page: 1663 ident: bib25 article-title: The capacitated centred clustering problem publication-title: Computers & Operations Research – volume: 58 start-page: 100 year: 2007 end-page: 114 ident: bib26 article-title: Guided construction search metaheuristics for the capacitated publication-title: Journal of the Operational Research Society – volume: 7 start-page: 10 year: 1995 end-page: 23 ident: bib17 article-title: A GRASP for the vehicle routing problem with time windows publication-title: ORSA Journal on Computing – volume: 31 start-page: 863 year: 2004 end-page: 876 ident: bib21 article-title: A column generation approach to capacitated publication-title: Computers and Operations Research – volume: 28 start-page: 59 year: 1990 end-page: 70 ident: bib22 article-title: Lower bounds and reduction procedures for the bin packing problem publication-title: Discrete Applied Mathematics – volume: vol. 157 year: 1978 ident: bib4 publication-title: On the complexity of clustering problem – volume: 81 start-page: 229 year: 1998 end-page: 256 ident: bib8 article-title: The node capacitated graph partitioning problem: a computational study publication-title: Mathematical Programming – volume: 176 start-page: 657 year: 2007 end-page: 690 ident: bib20 article-title: A survey for the quadratic assignment problem publication-title: European Journal of Operational Research – year: 1990 ident: bib15 article-title: Finding Groups in Data: An Introductory to Cluster Analysis – volume: 41 start-page: 1079 year: 2007 end-page: 1093 ident: bib27 article-title: Design of vehicle routing zones for large-scale distribution systems publication-title: Transportation Research Part B – volume: 47 start-page: 1396 year: 2001 end-page: 1407 ident: bib30 article-title: Improving discrete model representations via symmetry considerations publication-title: Management Science – volume: 164 start-page: 510 year: 2005 end-page: 534 ident: bib2 article-title: Preference scheduling for nurses using column generation publication-title: European Journal of Operational Research – year: 1979 ident: bib9 article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness – volume: 79 start-page: 191 year: 1997 end-page: 215 ident: bib12 article-title: Cluster analysis and mathematical programming publication-title: Mathematical Programming – volume: 23 start-page: 271 year: 1989 end-page: 280 ident: bib19 article-title: An algorithm for the design of mailbox collection routes in urban areas publication-title: Transportation Research Part B – year: 1990 ident: 10.1016/j.trb.2008.10.003_bib15 – volume: 7 start-page: 10 issue: 1 year: 1995 ident: 10.1016/j.trb.2008.10.003_bib17 article-title: A GRASP for the vehicle routing problem with time windows publication-title: ORSA Journal on Computing doi: 10.1287/ijoc.7.1.10 – volume: 39 start-page: 104 issue: 1 year: 2005 ident: 10.1016/j.trb.2008.10.003_bib3 article-title: Vehicle routing problem with time windows, part I: route construction and local search algorithms publication-title: Transportation Science doi: 10.1287/trsc.1030.0056 – volume: 127 start-page: 223 issue: 1 year: 2004 ident: 10.1016/j.trb.2008.10.003_bib16 article-title: Airline crew rostering: problem types, modeling, and optimization publication-title: Annals of Operations Research doi: 10.1023/B:ANOR.0000019091.54417.ca – volume: 25 start-page: 373 issue: 4 year: 1979 ident: 10.1016/j.trb.2008.10.003_bib10 article-title: Asymptotically optimal block quantization publication-title: IEEE Transactions on Information Theory, IT- doi: 10.1109/TIT.1979.1056067 – volume: 135 start-page: 413 issue: 2 year: 2001 ident: 10.1016/j.trb.2008.10.003_bib5 article-title: Genetic clustering algorithms publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(00)00320-9 – volume: 31 start-page: 863 issue: 6 year: 2004 ident: 10.1016/j.trb.2008.10.003_bib21 article-title: A column generation approach to capacitated p-median problems publication-title: Computers and Operations Research doi: 10.1016/S0305-0548(03)00039-X – volume: 34 start-page: 405 issue: 2 year: 2001 ident: 10.1016/j.trb.2008.10.003_bib13 article-title: J-Means: a new local search heuristic for minimum sum-of-squares clustering publication-title: Pattern Recognition doi: 10.1016/S0031-3203(99)00216-2 – volume: 58 start-page: 100 issue: 1 year: 2007 ident: 10.1016/j.trb.2008.10.003_bib26 article-title: Guided construction search metaheuristics for the capacitated p-median problem with single source constraint publication-title: Journal of the Operational Research Society doi: 10.1057/palgrave.jors.2602135 – volume: 17 start-page: 295 issue: 3 year: 1996 ident: 10.1016/j.trb.2008.10.003_bib1 article-title: Computational experience on four algorithms for the hard clustering problem publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(95)00122-0 – volume: 22 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.trb.2008.10.003_bib23 article-title: Cliques and clustering: a combinatorial approach publication-title: Operations Research Letters doi: 10.1016/S0167-6377(98)00006-6 – year: 1979 ident: 10.1016/j.trb.2008.10.003_bib9 – volume: 23 start-page: 271 issue: 4 year: 1989 ident: 10.1016/j.trb.2008.10.003_bib19 article-title: An algorithm for the design of mailbox collection routes in urban areas publication-title: Transportation Research Part B doi: 10.1016/0191-2615(89)90029-5 – volume: 41 start-page: 1079 issue: 10 year: 2007 ident: 10.1016/j.trb.2008.10.003_bib27 article-title: Design of vehicle routing zones for large-scale distribution systems publication-title: Transportation Research Part B doi: 10.1016/j.trb.2007.04.010 – volume: 18 start-page: 135 issue: 2 year: 1984 ident: 10.1016/j.trb.2008.10.003_bib6 article-title: The length of tours in zones of different shapes publication-title: Transportation Research Part B doi: 10.1016/0191-2615(84)90027-4 – volume: 28 start-page: 59 issue: 1 year: 1990 ident: 10.1016/j.trb.2008.10.003_bib22 article-title: Lower bounds and reduction procedures for the bin packing problem publication-title: Discrete Applied Mathematics doi: 10.1016/0166-218X(90)90094-S – volume: 26 start-page: 365 issue: 5 year: 1992 ident: 10.1016/j.trb.2008.10.003_bib18 article-title: Clustering algorithms for consolidation of customer orders into vehicle shipments publication-title: Transportation Research Part B doi: 10.1016/0191-2615(92)90032-R – volume: 164 start-page: 510 issue: 2 year: 2005 ident: 10.1016/j.trb.2008.10.003_bib2 article-title: Preference scheduling for nurses using column generation publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2003.06.046 – year: 1998 ident: 10.1016/j.trb.2008.10.003_bib32 – volume: 34 start-page: 1085 issue: 4 year: 2007 ident: 10.1016/j.trb.2008.10.003_bib7 article-title: A branch-and-cut algorithm for quadratic assignment problems based on linearizations publication-title: Computers & Operations Research doi: 10.1016/j.cor.2005.05.027 – volume: vol. 157 year: 1978 ident: 10.1016/j.trb.2008.10.003_bib4 – volume: 33 start-page: 1639 issue: 6 year: 2006 ident: 10.1016/j.trb.2008.10.003_bib25 article-title: The capacitated centred clustering problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2004.11.011 – volume: 81 start-page: 229 issue: 2 year: 1998 ident: 10.1016/j.trb.2008.10.003_bib8 article-title: The node capacitated graph partitioning problem: a computational study publication-title: Mathematical Programming doi: 10.1007/BF01581107 – volume: 3 start-page: 411 issue: 3 year: 1990 ident: 10.1016/j.trb.2008.10.003_bib28 article-title: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems publication-title: SIAM Journal on Discrete Mathematics doi: 10.1137/0403036 – volume: 47 start-page: 1396 issue: 10 year: 2001 ident: 10.1016/j.trb.2008.10.003_bib30 article-title: Improving discrete model representations via symmetry considerations publication-title: Management Science doi: 10.1287/mnsc.47.10.1396.10265 – volume: 183 start-page: 1028 issue: 3 year: 2007 ident: 10.1016/j.trb.2008.10.003_bib24 article-title: Column generation based heuristic for tactical planning in multi-period vehicle routing publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.02.030 – volume: 62 start-page: 133 issue: 1 year: 1993 ident: 10.1016/j.trb.2008.10.003_bib14 article-title: Min-cut clustering publication-title: Mathematical Programming doi: 10.1007/BF01585164 – volume: 32 start-page: 281 issue: 2 year: 2003 ident: 10.1016/j.trb.2008.10.003_bib29 article-title: A global optimization RLT-based approach for solving the hard clustering problem publication-title: Journal of Global Optimization doi: 10.1007/s10898-004-2706-7 – volume: 176 start-page: 657 issue: 2 year: 2007 ident: 10.1016/j.trb.2008.10.003_bib20 article-title: A survey for the quadratic assignment problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.09.032 – volume: 79 start-page: 191 issue: 2 year: 1997 ident: 10.1016/j.trb.2008.10.003_bib12 article-title: Cluster analysis and mathematical programming publication-title: Mathematical Programming doi: 10.1007/BF02614317 |
SSID | ssj0003401 |
Score | 2.145992 |
Snippet | The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by... |
SourceID | repec pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 542 |
SubjectTerms | Applied sciences Case study Clustering Clustering Randomized heuristic Pickup and delivery operations Set covering Case study Exact sciences and technology Ground, air and sea transportation, marine construction Pickup and delivery operations Randomized heuristic Set covering Transportation planning, management and economics |
Title | Large-scale constrained clustering for rationalizing pickup and delivery operations |
URI | https://dx.doi.org/10.1016/j.trb.2008.10.003 http://econpapers.repec.org/article/eeetransb/v_3a43_3ay_3a2009_3ai_3a5_3ap_3a542-561.htm |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wMghKCAWB4rHzghmV3HeR6rhWpLUS-lUm-WnyJl2Ua7WaRy4Lczkzir9kAPHBwrjp04Y2v82R5_A_BeyxCSRFhO3Go81ULzMss190TG5qUkr9ZkbXGWLy7SL5fZ5R7Mh7MwZFYZdX-v0zttHVOmUZrTpq6n5whORNLxmXcnQOU-HCSyyssRHBydnC7OdgpZprPollBwKjBsbnZmXu3a9BaVnY2X_Nfw9LjRGxRa6L1dIJJd-8bbW0PR8VN4EjEkO-qr-Qz2_OoQHgxHjDeH8OgWy-BzOP9K1t6cXuyZJTxIbiG8Y3a5JZoEzMQQurJ1XBesf1NKU9sf24bplWPOL8l644ZdN77PtHkBF8efv80XPPpS4DatRMtdUWQmkU6S22-PmMSQtzFhi0JXJitmVUiCLXOduRBkNQumcqEsqxC0z4RzhXwJo9X1yr8CphETFbY0mpjhEU4ZUTicROYInTKbezuG2SBCZSPROP3YUg0WZVcKpd47wBQdO-kYPuyKND3Lxn2Z06Fd1J2uonAUuK_Y5E4b7j6UCFmmOLEaw7xr1N0D731LgMGoX0rqVOLlBgPtJ2FUY8gwNBSniUIgqr63P1__X-3ewMN-n4rWd97CqF1v_TuEO62ZwP7HP2ISOzXefTo9-Qvccv7F |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a3WEghGAwUWDDB05IUevY-TpOFVPHSi_bpN0sf4pA10VtOmn763kvH9V2YIcdnEiOnTjPlv2z_fz7AXzTIoQ45jYibrVIaq6jPEl15ImMzQtBqtbkbTFPp5fy51VytQOT_iwMuVV2fX_bpze9dRcz6qw5qspydI7ghMcNn3lzAlS8gF1ip5ID2D0-PZvOtx2ykONOlpBHlKHf3GzcvOqVaT0qGx8v8b_h6XWl12i00KpdIJJd-crbB0PRyVt402FIdtwW8x3s-OU-7PVHjNf78OoBy-B7OJ-Rt3dEL_bMEh4kWQjvmF1siCYBEzGErmzVrQuW9xRTlfbvpmJ66ZjzC_LeuGM3lW8TrT_A5cmPi8k06rQUIisLXkcuyxITCydI9tsjJjGkNsZtlunCJNm4CHGweaoTF4IoxsEULuR5EYL2CXcuEwcwWN4s_UdgGjFRZnOjiRke4ZThmcNJZIrQKbGpt0MY9yZUtiMapx9bqN6j7I9Cq7cCmLxhJx3C922WqmXZeCqx7OtFPWoqCkeBp7IdParD7YdiLnKJE6shTJpK3T7w3tcEGIy6VUJLgZc7DLSfhLcSQ4KhoruMFQJR9bu-_vS80n2FvenFr5manc7PPsPLds-K1nq-wKBebfwhQp_aHHVN-x_nN_-0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+constrained+clustering+for+rationalizing+pickup+and+delivery+operations&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Bard%2C+Jonathan+F.&rft.au=Jarrah%2C+Ahmad+I.&rft.date=2009-06-01&rft.pub=Elsevier+Ltd&rft.issn=0191-2615&rft.eissn=1879-2367&rft.volume=43&rft.issue=5&rft.spage=542&rft.epage=561&rft_id=info:doi/10.1016%2Fj.trb.2008.10.003&rft.externalDocID=S0191261508001203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon |