Large-scale constrained clustering for rationalizing pickup and delivery operations

The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by the desire of a shipping carrier to reduce its fixed costs, the problem is to construct a set of compact work areas for regional pickup and del...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part B: methodological Vol. 43; no. 5; pp. 542 - 561
Main Authors Bard, Jonathan F., Jarrah, Ahmad I.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2009
Elsevier
SeriesTransportation Research Part B: Methodological
Subjects
Online AccessGet full text
ISSN0191-2615
1879-2367
DOI10.1016/j.trb.2008.10.003

Cover

Loading…
Abstract The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by the desire of a shipping carrier to reduce its fixed costs, the problem is to construct a set of compact work areas for regional pickup and delivery operations. In general terms, the objective is to find the minimum number of clusters (homogeneous vehicles) that satisfy volume, time and contiguity constraints. The problem is placed in context by formulating it as a mixed-integer goal program. Because practical instances contain anywhere from 6000 to 50,000 data points and can only be described in probabilistic terms, it is not possible to obtain provably optimal solutions to the proposed model. Instead, a novel solution methodology is developed that makes use of metaheuristic and mathematical programming techniques. In the preprocessing phase, a fraction of the data points are aggregated to reduce the problem size. This is shown to substantially decrease the computational burden without compromising solution quality. In the main step, an efficient adaptive search procedure is used to form the clusters. Randomness is introduced at each inner iteration to ensure a full exploration of the feasible region, and an incremental slicing scheme is used to overcome local optimality. In metaheuristic terms, these two refinements are equivalent to diversification and intensification search strategies. To improve the results, a set covering problem is solved in the final phase. The individual clusters obtained from the heuristic provide the structure for this model. To test the methodology, six data sets provided by the sponsoring company were analyzed. All runs for the first two phases took less than 4 min, and in all but one case produced a tangible improvement over the current service area configurations. The set covering solution provided further improvement, which collectively averaged 11.2%.
AbstractList The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by the desire of a shipping carrier to reduce its fixed costs, the problem is to construct a set of compact work areas for regional pickup and delivery operations. In general terms, the objective is to find the minimum number of clusters (homogeneous vehicles) that satisfy volume, time and contiguity constraints. The problem is placed in context by formulating it as a mixed-integer goal program. Because practical instances contain anywhere from 6000 to 50,000 data points and can only be described in probabilistic terms, it is not possible to obtain provably optimal solutions to the proposed model. Instead, a novel solution methodology is developed that makes use of metaheuristic and mathematical programming techniques. In the preprocessing phase, a fraction of the data points are aggregated to reduce the problem size. This is shown to substantially decrease the computational burden without compromising solution quality. In the main step, an efficient adaptive search procedure is used to form the clusters. Randomness is introduced at each inner iteration to ensure a full exploration of the feasible region, and an incremental slicing scheme is used to overcome local optimality. In metaheuristic terms, these two refinements are equivalent to diversification and intensification search strategies. To improve the results, a set covering problem is solved in the final phase. The individual clusters obtained from the heuristic provide the structure for this model. To test the methodology, six data sets provided by the sponsoring company were analyzed. All runs for the first two phases took less than 4 min, and in all but one case produced a tangible improvement over the current service area configurations. The set covering solution provided further improvement, which collectively averaged 11.2%.
The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by the desire of a shipping carrier to reduce its fixed costs, the problem is to construct a set of compact work areas for regional pickup and delivery operations. In general terms, the objective is to find the minimum number of clusters (homogeneous vehicles) that satisfy volume, time and contiguity constraints. The problem is placed in context by formulating it as a mixed-integer goal program. Because practical instances contain anywhere from 6000 to 50,000 data points and can only be described in probabilistic terms, it is not possible to obtain provably optimal solutions to the proposed model. Instead, a novel solution methodology is developed that makes use of metaheuristic and mathematical programming techniques. In the preprocessing phase, a fraction of the data points are aggregated to reduce the problem size. This is shown to substantially decrease the computational burden without compromising solution quality. In the main step, an efficient adaptive search procedure is used to form the clusters. Randomness is introduced at each inner iteration to ensure a full exploration of the feasible region, and an incremental slicing scheme is used to overcome local optimality. In metaheuristic terms, these two refinements are equivalent to diversification and intensification search strategies. To improve the results, a set covering problem is solved in the final phase. The individual clusters obtained from the heuristic provide the structure for this model. To test the methodology, six data sets provided by the sponsoring company were analyzed. All runs for the first two phases took less than 4min, and in all but one case produced a tangible improvement over the current service area configurations. The set covering solution provided further improvement, which collectively averaged 11.2%.
Author Bard, Jonathan F.
Jarrah, Ahmad I.
Author_xml – sequence: 1
  givenname: Jonathan F.
  surname: Bard
  fullname: Bard, Jonathan F.
  email: jbard@mail.utexas.edu
  organization: Graduate Program in Operations Research and Industrial Engineering, The University of Texas, Austin, TX 78712-0292, United States
– sequence: 2
  givenname: Ahmad I.
  surname: Jarrah
  fullname: Jarrah, Ahmad I.
  email: jarrah@gwu.edu
  organization: Department of Decision Sciences, Funger 415, School of Business, The George Washington University, Washington, DC 20052, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21384559$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeetransb/v_3a43_3ay_3a2009_3ai_3a5_3ap_3a542-561.htm$$DView record in RePEc
BookMark eNp9UU1PxCAUJEYT19Uf4K0Xj12hlFLiyRg_s4kH9UwoPFbWShuom6y_XmrVg4c9DC-8zEzyZo7Qvu88IHRK8IJgUp2vF0NoFgXGdfovMKZ7aEZqLvKCVnwfzTARJC8qwg7RUYxrnBglJjP0tFRhBXnUqoVMdz4OQTkPJtPtRxwgOL_KbBeyoAbXedW6z3HTO_320WfKm8xA6zYQtlnXw0SKx-jAqjbCyc-co5eb6-eru3z5eHt_dbnMdSnIkBvOWVNQQ1lJShCUN7ygNdGcK9EwjoUtrK4rxYy1VGDbCGPrWlirgBFjOJ2jh8k3QA9a9sG9q7CVAJCO8LGRG0lVSdOzTUjZiDRcAkvox1kWklVEvg7vyexsMuvVGIZNDtrFP9OC0LpkTCQen3g6dDEGsFK74fvuMblWEizHQuRapkLkWMi4SnEnJfmn_DXfpbmYNJBy3DgIMmoHXoNxAfQgTed2qL8AXPqmxA
CODEN TRBMDY
CitedBy_id crossref_primary_10_1016_j_ijdrr_2021_102193
crossref_primary_10_1179_1942787515Y_0000000023
crossref_primary_10_1007_s00170_013_5354_6
crossref_primary_10_3390_su14020819
crossref_primary_10_1016_j_trb_2017_11_003
crossref_primary_10_1080_19427867_2022_2148368
crossref_primary_10_1016_j_seps_2012_07_001
crossref_primary_10_1057_jors_2010_123
crossref_primary_10_1134_S1064226924700086
crossref_primary_10_1111_itor_12893
crossref_primary_10_1109_TITS_2024_3385029
crossref_primary_10_1287_trsc_2014_0524
crossref_primary_10_1057_jors_2014_50
crossref_primary_10_1007_s10732_010_9129_z
crossref_primary_10_1016_j_trb_2014_02_001
crossref_primary_10_1007_s10479_017_2742_6
crossref_primary_10_1016_j_ejor_2010_01_045
crossref_primary_10_1080_0740817X_2012_665202
crossref_primary_10_1007_s10479_016_2338_6
crossref_primary_10_1016_j_strusafe_2018_10_002
crossref_primary_10_1007_s10479_020_03631_7
crossref_primary_10_1016_j_ins_2022_01_032
crossref_primary_10_1109_TNNLS_2022_3212593
crossref_primary_10_1287_opre_2018_1746
crossref_primary_10_1016_j_cie_2017_01_022
crossref_primary_10_1155_2022_6400318
crossref_primary_10_1080_00207543_2016_1231431
crossref_primary_10_1016_j_omega_2021_102430
crossref_primary_10_1109_MITS_2020_3014444
crossref_primary_10_1111_mice_12461
crossref_primary_10_1016_j_trb_2021_01_004
crossref_primary_10_1016_j_ejor_2018_08_043
crossref_primary_10_1016_j_apm_2013_05_029
crossref_primary_10_1016_j_cor_2024_106845
crossref_primary_10_1016_j_cor_2011_11_016
crossref_primary_10_1016_j_jpubtr_2022_100021
crossref_primary_10_1016_j_omega_2020_102283
crossref_primary_10_1007_s10479_018_3078_6
crossref_primary_10_1016_j_omega_2012_09_001
crossref_primary_10_1016_j_trb_2019_09_015
crossref_primary_10_1016_j_ejor_2023_01_016
crossref_primary_10_1371_journal_pone_0262499
crossref_primary_10_1016_j_trc_2013_03_007
crossref_primary_10_1016_j_cor_2012_03_014
crossref_primary_10_1016_j_omega_2022_102687
crossref_primary_10_3390_su11185025
crossref_primary_10_1016_j_cor_2018_07_013
crossref_primary_10_1016_j_tre_2011_11_003
Cites_doi 10.1287/ijoc.7.1.10
10.1287/trsc.1030.0056
10.1023/B:ANOR.0000019091.54417.ca
10.1109/TIT.1979.1056067
10.1016/S0377-2217(00)00320-9
10.1016/S0305-0548(03)00039-X
10.1016/S0031-3203(99)00216-2
10.1057/palgrave.jors.2602135
10.1016/0167-8655(95)00122-0
10.1016/S0167-6377(98)00006-6
10.1016/0191-2615(89)90029-5
10.1016/j.trb.2007.04.010
10.1016/0191-2615(84)90027-4
10.1016/0166-218X(90)90094-S
10.1016/0191-2615(92)90032-R
10.1016/j.ejor.2003.06.046
10.1016/j.cor.2005.05.027
10.1016/j.cor.2004.11.011
10.1007/BF01581107
10.1137/0403036
10.1287/mnsc.47.10.1396.10265
10.1016/j.ejor.2006.02.030
10.1007/BF01585164
10.1007/s10898-004-2706-7
10.1016/j.ejor.2005.09.032
10.1007/BF02614317
ContentType Journal Article
Copyright 2008 Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/j.trb.2008.10.003
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Applied Sciences
EISSN 1879-2367
EndPage 561
ExternalDocumentID eeetransb_v_3a43_3ay_3a2009_3ai_3a5_3ap_3a542_561_htm
21384559
10_1016_j_trb_2008_10_003
S0191261508001203
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABDMP
ABFNM
ABLJU
ABMAC
ABMMH
ABPPZ
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHRSL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPCBC
SSB
SSD
SSO
SSS
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
08R
0R
1
8P
AAPBV
ABFLS
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
STF
X
X2L
ID FETCH-LOGICAL-c491t-d775b23d35414e937b72381c77a9b5709f2fc86a5dff390fb9df889ffae51dd73
IEDL.DBID AIKHN
ISSN 0191-2615
IngestDate Wed Aug 18 03:51:25 EDT 2021
Mon Jul 21 09:17:45 EDT 2025
Tue Jul 01 03:50:06 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Fri Feb 23 02:27:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Case study
Set covering
Pickup and delivery operations
Clustering
Randomized heuristic
Cluster analysis
Costs
Travel time
Methodology
Service
Aggregation
Randomization
Pickup and delivery
Problem solving
Heuristic approach
Transport
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-d775b23d35414e937b72381c77a9b5709f2fc86a5dff390fb9df889ffae51dd73
PageCount 20
ParticipantIDs repec_primary_eeetransb_v_3a43_3ay_3a2009_3ai_3a5_3ap_3a542_561_htm
pascalfrancis_primary_21384559
crossref_citationtrail_10_1016_j_trb_2008_10_003
crossref_primary_10_1016_j_trb_2008_10_003
elsevier_sciencedirect_doi_10_1016_j_trb_2008_10_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationSeriesTitle Transportation Research Part B: Methodological
PublicationTitle Transportation research. Part B: methodological
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Brucker (bib4) 1978; vol. 157
Garey, Johnson (bib9) 1979
Ouyang (bib27) 2007; 41
Negreiros, Palhano (bib25) 2006; 33
Sherali, Smith (bib30) 2001; 47
Ferreira, Martin, de Souza, Weismantel, Wolsey (bib8) 1998; 81
Hansen, Mladenovic (bib13) 2001; 34
Mehrotra, Trick (bib23) 1998; 22
Chiou, Lan (bib5) 2001; 135
Johnson, Mehrotra, Nemhauser (bib14) 1993; 62
Osman, Ahmadi (bib26) 2007; 58
Hansen, Jaumard (bib12) 1997; 79
Bräysy, Gendreau (bib3) 2005; 39
Erdoğan, Tansel (bib7) 2007; 34
Bard, Purnomo (bib2) 2005; 164
Daganzo (bib6) 1984; 18
Kohl, Karisch (bib16) 2004; 127
Al-Sultan, Maroof Khan (bib1) 1996; 17
Sherali, Adams (bib28) 1990; 3
Sherali, Desai (bib29) 2003; 32
Kaufman, Roussweuw (bib15) 1990
Koskosidis, Powell (bib18) 1992; 26
Loiola, de Abreu, Boaventura-Netto, Hahn, Querido (bib20) 2007; 176
Martello, Toth (bib22) 1990; 28
Kontoravdis, Bard (bib17) 1995; 7
Gersho (bib10) 1979; 25
Laporte, Chapleau, Landry, Mercure (bib19) 1989; 23
Mourgaya, Vanderbeck (bib24) 2007; 183
Lorena, Elf (bib21) 2004; 31
Wolsey (bib32) 1998
Mehrotra (10.1016/j.trb.2008.10.003_bib23) 1998; 22
Koskosidis (10.1016/j.trb.2008.10.003_bib18) 1992; 26
Garey (10.1016/j.trb.2008.10.003_bib9) 1979
Kohl (10.1016/j.trb.2008.10.003_bib16) 2004; 127
Mourgaya (10.1016/j.trb.2008.10.003_bib24) 2007; 183
Osman (10.1016/j.trb.2008.10.003_bib26) 2007; 58
Erdoğan (10.1016/j.trb.2008.10.003_bib7) 2007; 34
Al-Sultan (10.1016/j.trb.2008.10.003_bib1) 1996; 17
Bräysy (10.1016/j.trb.2008.10.003_bib3) 2005; 39
Chiou (10.1016/j.trb.2008.10.003_bib5) 2001; 135
Martello (10.1016/j.trb.2008.10.003_bib22) 1990; 28
Sherali (10.1016/j.trb.2008.10.003_bib30) 2001; 47
Sherali (10.1016/j.trb.2008.10.003_bib29) 2003; 32
Kontoravdis (10.1016/j.trb.2008.10.003_bib17) 1995; 7
Bard (10.1016/j.trb.2008.10.003_bib2) 2005; 164
Brucker (10.1016/j.trb.2008.10.003_bib4) 1978; vol. 157
Hansen (10.1016/j.trb.2008.10.003_bib12) 1997; 79
Lorena (10.1016/j.trb.2008.10.003_bib21) 2004; 31
Daganzo (10.1016/j.trb.2008.10.003_bib6) 1984; 18
Gersho (10.1016/j.trb.2008.10.003_bib10) 1979; 25
Sherali (10.1016/j.trb.2008.10.003_bib28) 1990; 3
Wolsey (10.1016/j.trb.2008.10.003_bib32) 1998
Laporte (10.1016/j.trb.2008.10.003_bib19) 1989; 23
Kaufman (10.1016/j.trb.2008.10.003_bib15) 1990
Negreiros (10.1016/j.trb.2008.10.003_bib25) 2006; 33
Loiola (10.1016/j.trb.2008.10.003_bib20) 2007; 176
Johnson (10.1016/j.trb.2008.10.003_bib14) 1993; 62
Ouyang (10.1016/j.trb.2008.10.003_bib27) 2007; 41
Ferreira (10.1016/j.trb.2008.10.003_bib8) 1998; 81
Hansen (10.1016/j.trb.2008.10.003_bib13) 2001; 34
References_xml – volume: 62
  start-page: 133
  year: 1993
  end-page: 151
  ident: bib14
  article-title: Min-cut clustering
  publication-title: Mathematical Programming
– volume: 22
  start-page: 1
  year: 1998
  end-page: 12
  ident: bib23
  article-title: Cliques and clustering: a combinatorial approach
  publication-title: Operations Research Letters
– volume: 18
  start-page: 135
  year: 1984
  end-page: 145
  ident: bib6
  article-title: The length of tours in zones of different shapes
  publication-title: Transportation Research Part B
– volume: 32
  start-page: 281
  year: 2003
  end-page: 306
  ident: bib29
  article-title: A global optimization RLT-based approach for solving the hard clustering problem
  publication-title: Journal of Global Optimization
– volume: 3
  start-page: 411
  year: 1990
  end-page: 430
  ident: bib28
  article-title: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems
  publication-title: SIAM Journal on Discrete Mathematics
– volume: 39
  start-page: 104
  year: 2005
  end-page: 118
  ident: bib3
  article-title: Vehicle routing problem with time windows, part I: route construction and local search algorithms
  publication-title: Transportation Science
– volume: 183
  start-page: 1028
  year: 2007
  end-page: 1041
  ident: bib24
  article-title: Column generation based heuristic for tactical planning in multi-period vehicle routing
  publication-title: European Journal of Operational Research
– volume: 127
  start-page: 223
  year: 2004
  end-page: 257
  ident: bib16
  article-title: Airline crew rostering: problem types, modeling, and optimization
  publication-title: Annals of Operations Research
– volume: 34
  start-page: 1085
  year: 2007
  end-page: 1106
  ident: bib7
  article-title: A branch-and-cut algorithm for quadratic assignment problems based on linearizations
  publication-title: Computers & Operations Research
– volume: 17
  start-page: 295
  year: 1996
  end-page: 308
  ident: bib1
  article-title: Computational experience on four algorithms for the hard clustering problem
  publication-title: Pattern Recognition Letters
– volume: 26
  start-page: 365
  year: 1992
  end-page: 379
  ident: bib18
  article-title: Clustering algorithms for consolidation of customer orders into vehicle shipments
  publication-title: Transportation Research Part B
– volume: 34
  start-page: 405
  year: 2001
  end-page: 413
  ident: bib13
  article-title: J-Means: a new local search heuristic for minimum sum-of-squares clustering
  publication-title: Pattern Recognition
– volume: 135
  start-page: 413
  year: 2001
  end-page: 427
  ident: bib5
  article-title: Genetic clustering algorithms
  publication-title: European Journal of Operational Research
– volume: 25
  start-page: 373
  year: 1979
  end-page: 380
  ident: bib10
  article-title: Asymptotically optimal block quantization
  publication-title: IEEE Transactions on Information Theory, IT-
– year: 1998
  ident: bib32
  article-title: Integer Programming
– volume: 33
  start-page: 1639
  year: 2006
  end-page: 1663
  ident: bib25
  article-title: The capacitated centred clustering problem
  publication-title: Computers & Operations Research
– volume: 58
  start-page: 100
  year: 2007
  end-page: 114
  ident: bib26
  article-title: Guided construction search metaheuristics for the capacitated
  publication-title: Journal of the Operational Research Society
– volume: 7
  start-page: 10
  year: 1995
  end-page: 23
  ident: bib17
  article-title: A GRASP for the vehicle routing problem with time windows
  publication-title: ORSA Journal on Computing
– volume: 31
  start-page: 863
  year: 2004
  end-page: 876
  ident: bib21
  article-title: A column generation approach to capacitated
  publication-title: Computers and Operations Research
– volume: 28
  start-page: 59
  year: 1990
  end-page: 70
  ident: bib22
  article-title: Lower bounds and reduction procedures for the bin packing problem
  publication-title: Discrete Applied Mathematics
– volume: vol. 157
  year: 1978
  ident: bib4
  publication-title: On the complexity of clustering problem
– volume: 81
  start-page: 229
  year: 1998
  end-page: 256
  ident: bib8
  article-title: The node capacitated graph partitioning problem: a computational study
  publication-title: Mathematical Programming
– volume: 176
  start-page: 657
  year: 2007
  end-page: 690
  ident: bib20
  article-title: A survey for the quadratic assignment problem
  publication-title: European Journal of Operational Research
– year: 1990
  ident: bib15
  article-title: Finding Groups in Data: An Introductory to Cluster Analysis
– volume: 41
  start-page: 1079
  year: 2007
  end-page: 1093
  ident: bib27
  article-title: Design of vehicle routing zones for large-scale distribution systems
  publication-title: Transportation Research Part B
– volume: 47
  start-page: 1396
  year: 2001
  end-page: 1407
  ident: bib30
  article-title: Improving discrete model representations via symmetry considerations
  publication-title: Management Science
– volume: 164
  start-page: 510
  year: 2005
  end-page: 534
  ident: bib2
  article-title: Preference scheduling for nurses using column generation
  publication-title: European Journal of Operational Research
– year: 1979
  ident: bib9
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– volume: 79
  start-page: 191
  year: 1997
  end-page: 215
  ident: bib12
  article-title: Cluster analysis and mathematical programming
  publication-title: Mathematical Programming
– volume: 23
  start-page: 271
  year: 1989
  end-page: 280
  ident: bib19
  article-title: An algorithm for the design of mailbox collection routes in urban areas
  publication-title: Transportation Research Part B
– year: 1990
  ident: 10.1016/j.trb.2008.10.003_bib15
– volume: 7
  start-page: 10
  issue: 1
  year: 1995
  ident: 10.1016/j.trb.2008.10.003_bib17
  article-title: A GRASP for the vehicle routing problem with time windows
  publication-title: ORSA Journal on Computing
  doi: 10.1287/ijoc.7.1.10
– volume: 39
  start-page: 104
  issue: 1
  year: 2005
  ident: 10.1016/j.trb.2008.10.003_bib3
  article-title: Vehicle routing problem with time windows, part I: route construction and local search algorithms
  publication-title: Transportation Science
  doi: 10.1287/trsc.1030.0056
– volume: 127
  start-page: 223
  issue: 1
  year: 2004
  ident: 10.1016/j.trb.2008.10.003_bib16
  article-title: Airline crew rostering: problem types, modeling, and optimization
  publication-title: Annals of Operations Research
  doi: 10.1023/B:ANOR.0000019091.54417.ca
– volume: 25
  start-page: 373
  issue: 4
  year: 1979
  ident: 10.1016/j.trb.2008.10.003_bib10
  article-title: Asymptotically optimal block quantization
  publication-title: IEEE Transactions on Information Theory, IT-
  doi: 10.1109/TIT.1979.1056067
– volume: 135
  start-page: 413
  issue: 2
  year: 2001
  ident: 10.1016/j.trb.2008.10.003_bib5
  article-title: Genetic clustering algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(00)00320-9
– volume: 31
  start-page: 863
  issue: 6
  year: 2004
  ident: 10.1016/j.trb.2008.10.003_bib21
  article-title: A column generation approach to capacitated p-median problems
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(03)00039-X
– volume: 34
  start-page: 405
  issue: 2
  year: 2001
  ident: 10.1016/j.trb.2008.10.003_bib13
  article-title: J-Means: a new local search heuristic for minimum sum-of-squares clustering
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(99)00216-2
– volume: 58
  start-page: 100
  issue: 1
  year: 2007
  ident: 10.1016/j.trb.2008.10.003_bib26
  article-title: Guided construction search metaheuristics for the capacitated p-median problem with single source constraint
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2602135
– volume: 17
  start-page: 295
  issue: 3
  year: 1996
  ident: 10.1016/j.trb.2008.10.003_bib1
  article-title: Computational experience on four algorithms for the hard clustering problem
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(95)00122-0
– volume: 22
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.trb.2008.10.003_bib23
  article-title: Cliques and clustering: a combinatorial approach
  publication-title: Operations Research Letters
  doi: 10.1016/S0167-6377(98)00006-6
– year: 1979
  ident: 10.1016/j.trb.2008.10.003_bib9
– volume: 23
  start-page: 271
  issue: 4
  year: 1989
  ident: 10.1016/j.trb.2008.10.003_bib19
  article-title: An algorithm for the design of mailbox collection routes in urban areas
  publication-title: Transportation Research Part B
  doi: 10.1016/0191-2615(89)90029-5
– volume: 41
  start-page: 1079
  issue: 10
  year: 2007
  ident: 10.1016/j.trb.2008.10.003_bib27
  article-title: Design of vehicle routing zones for large-scale distribution systems
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2007.04.010
– volume: 18
  start-page: 135
  issue: 2
  year: 1984
  ident: 10.1016/j.trb.2008.10.003_bib6
  article-title: The length of tours in zones of different shapes
  publication-title: Transportation Research Part B
  doi: 10.1016/0191-2615(84)90027-4
– volume: 28
  start-page: 59
  issue: 1
  year: 1990
  ident: 10.1016/j.trb.2008.10.003_bib22
  article-title: Lower bounds and reduction procedures for the bin packing problem
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(90)90094-S
– volume: 26
  start-page: 365
  issue: 5
  year: 1992
  ident: 10.1016/j.trb.2008.10.003_bib18
  article-title: Clustering algorithms for consolidation of customer orders into vehicle shipments
  publication-title: Transportation Research Part B
  doi: 10.1016/0191-2615(92)90032-R
– volume: 164
  start-page: 510
  issue: 2
  year: 2005
  ident: 10.1016/j.trb.2008.10.003_bib2
  article-title: Preference scheduling for nurses using column generation
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2003.06.046
– year: 1998
  ident: 10.1016/j.trb.2008.10.003_bib32
– volume: 34
  start-page: 1085
  issue: 4
  year: 2007
  ident: 10.1016/j.trb.2008.10.003_bib7
  article-title: A branch-and-cut algorithm for quadratic assignment problems based on linearizations
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.05.027
– volume: vol. 157
  year: 1978
  ident: 10.1016/j.trb.2008.10.003_bib4
– volume: 33
  start-page: 1639
  issue: 6
  year: 2006
  ident: 10.1016/j.trb.2008.10.003_bib25
  article-title: The capacitated centred clustering problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2004.11.011
– volume: 81
  start-page: 229
  issue: 2
  year: 1998
  ident: 10.1016/j.trb.2008.10.003_bib8
  article-title: The node capacitated graph partitioning problem: a computational study
  publication-title: Mathematical Programming
  doi: 10.1007/BF01581107
– volume: 3
  start-page: 411
  issue: 3
  year: 1990
  ident: 10.1016/j.trb.2008.10.003_bib28
  article-title: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems
  publication-title: SIAM Journal on Discrete Mathematics
  doi: 10.1137/0403036
– volume: 47
  start-page: 1396
  issue: 10
  year: 2001
  ident: 10.1016/j.trb.2008.10.003_bib30
  article-title: Improving discrete model representations via symmetry considerations
  publication-title: Management Science
  doi: 10.1287/mnsc.47.10.1396.10265
– volume: 183
  start-page: 1028
  issue: 3
  year: 2007
  ident: 10.1016/j.trb.2008.10.003_bib24
  article-title: Column generation based heuristic for tactical planning in multi-period vehicle routing
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.02.030
– volume: 62
  start-page: 133
  issue: 1
  year: 1993
  ident: 10.1016/j.trb.2008.10.003_bib14
  article-title: Min-cut clustering
  publication-title: Mathematical Programming
  doi: 10.1007/BF01585164
– volume: 32
  start-page: 281
  issue: 2
  year: 2003
  ident: 10.1016/j.trb.2008.10.003_bib29
  article-title: A global optimization RLT-based approach for solving the hard clustering problem
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-004-2706-7
– volume: 176
  start-page: 657
  issue: 2
  year: 2007
  ident: 10.1016/j.trb.2008.10.003_bib20
  article-title: A survey for the quadratic assignment problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.09.032
– volume: 79
  start-page: 191
  issue: 2
  year: 1997
  ident: 10.1016/j.trb.2008.10.003_bib12
  article-title: Cluster analysis and mathematical programming
  publication-title: Mathematical Programming
  doi: 10.1007/BF02614317
SSID ssj0003401
Score 2.145992
Snippet The paper presents a three-phase procedure for clustering a large number of data points subject to both configuration and resource constraints. Motivated by...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 542
SubjectTerms Applied sciences
Case study
Clustering
Clustering Randomized heuristic Pickup and delivery operations Set covering Case study
Exact sciences and technology
Ground, air and sea transportation, marine construction
Pickup and delivery operations
Randomized heuristic
Set covering
Transportation planning, management and economics
Title Large-scale constrained clustering for rationalizing pickup and delivery operations
URI https://dx.doi.org/10.1016/j.trb.2008.10.003
http://econpapers.repec.org/article/eeetransb/v_3a43_3ay_3a2009_3ai_3a5_3ap_3a542-561.htm
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wMghKCAWB4rHzghmV3HeR6rhWpLUS-lUm-WnyJl2Ua7WaRy4Lczkzir9kAPHBwrjp04Y2v82R5_A_BeyxCSRFhO3Go81ULzMss190TG5qUkr9ZkbXGWLy7SL5fZ5R7Mh7MwZFYZdX-v0zttHVOmUZrTpq6n5whORNLxmXcnQOU-HCSyyssRHBydnC7OdgpZprPollBwKjBsbnZmXu3a9BaVnY2X_Nfw9LjRGxRa6L1dIJJd-8bbW0PR8VN4EjEkO-qr-Qz2_OoQHgxHjDeH8OgWy-BzOP9K1t6cXuyZJTxIbiG8Y3a5JZoEzMQQurJ1XBesf1NKU9sf24bplWPOL8l644ZdN77PtHkBF8efv80XPPpS4DatRMtdUWQmkU6S22-PmMSQtzFhi0JXJitmVUiCLXOduRBkNQumcqEsqxC0z4RzhXwJo9X1yr8CphETFbY0mpjhEU4ZUTicROYInTKbezuG2SBCZSPROP3YUg0WZVcKpd47wBQdO-kYPuyKND3Lxn2Z06Fd1J2uonAUuK_Y5E4b7j6UCFmmOLEaw7xr1N0D731LgMGoX0rqVOLlBgPtJ2FUY8gwNBSniUIgqr63P1__X-3ewMN-n4rWd97CqF1v_TuEO62ZwP7HP2ISOzXefTo9-Qvccv7F
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a3WEghGAwUWDDB05IUevY-TpOFVPHSi_bpN0sf4pA10VtOmn763kvH9V2YIcdnEiOnTjPlv2z_fz7AXzTIoQ45jYibrVIaq6jPEl15ImMzQtBqtbkbTFPp5fy51VytQOT_iwMuVV2fX_bpze9dRcz6qw5qspydI7ghMcNn3lzAlS8gF1ip5ID2D0-PZvOtx2ykONOlpBHlKHf3GzcvOqVaT0qGx8v8b_h6XWl12i00KpdIJJd-crbB0PRyVt402FIdtwW8x3s-OU-7PVHjNf78OoBy-B7OJ-Rt3dEL_bMEh4kWQjvmF1siCYBEzGErmzVrQuW9xRTlfbvpmJ66ZjzC_LeuGM3lW8TrT_A5cmPi8k06rQUIisLXkcuyxITCydI9tsjJjGkNsZtlunCJNm4CHGweaoTF4IoxsEULuR5EYL2CXcuEwcwWN4s_UdgGjFRZnOjiRke4ZThmcNJZIrQKbGpt0MY9yZUtiMapx9bqN6j7I9Cq7cCmLxhJx3C922WqmXZeCqx7OtFPWoqCkeBp7IdParD7YdiLnKJE6shTJpK3T7w3tcEGIy6VUJLgZc7DLSfhLcSQ4KhoruMFQJR9bu-_vS80n2FvenFr5manc7PPsPLds-K1nq-wKBebfwhQp_aHHVN-x_nN_-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+constrained+clustering+for+rationalizing+pickup+and+delivery+operations&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Bard%2C+Jonathan+F.&rft.au=Jarrah%2C+Ahmad+I.&rft.date=2009-06-01&rft.pub=Elsevier+Ltd&rft.issn=0191-2615&rft.eissn=1879-2367&rft.volume=43&rft.issue=5&rft.spage=542&rft.epage=561&rft_id=info:doi/10.1016%2Fj.trb.2008.10.003&rft.externalDocID=S0191261508001203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon