Simulation of arterial hemodynamics after partial prosthetic replacement of the aorta
Background. Replacing parts of the aorta with a noncompliant vascular prosthesis results in marked alterations of the aortic input impedance and influences arterial hemodynamics. We propose a mathematical model of circulation that can predict hemodynamic changes after simulation of vascular grafting...
Saved in:
Published in | The Annals of thoracic surgery Vol. 67; no. 3; pp. 676 - 682 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
01.03.1999
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background. Replacing parts of the aorta with a noncompliant vascular prosthesis results in marked alterations of the aortic input impedance and influences arterial hemodynamics. We propose a mathematical model of circulation that can predict hemodynamic changes after simulation of vascular grafting.
Methods. A new mathematical model of the human arterial system was developed on a 75-MHz Pentium personal computer using Matlab software. The human arterial tree was delineated according to a 128-branch design encompassing bifurcations and physical properties of the arterial wall. A digitized aortic flow wave was chosen as the input signal to the system. After determination of the modules of elasticity of native vascular tissue and standard prostheses in technical experiments, replacement of any part of the aorta with a prosthesis was simulated by increasing the elasticity in the parts desired.
Results. During control conditions, the model displayed a physiologic distribution of flow and pressure waves throughout the arterial system. Simulated replacement of the aorta resulted in an increase in pressure amplitude and a partial loss of the aortic “Windkessel” function. Calculation of the aortic input impedance showed an increase in the characteristic impedance, whereas the peripheral resistance remained unaltered.
Conclusions. This mathematical model of the arterial circulation is useful for simulating hemodynamic changes after implantation of vascular grafts. The results of the model analysis are consistent with those in previous experimental work. |
---|---|
AbstractList | Replacing parts of the aorta with a non-compliant vascular prosthesis results in marked alterations of the aortic input impedance and influences arterial hemodynamics. We propose a mathematical model of circulation that can predict hemodynamic changes after simulation of vascular grafting.
A new mathematical model of the human arterial system was developed on a 75-MHz Pentium personal computer using Matlab software. The human arterial tree was delineated according to a 128-branch design encompassing bifurcations and physical properties of the arterial wall. A digitized aortic flow wave was chosen as the input signal to the system. After determination of the modules of elasticity of native vascular tissue and standard prostheses in technical experiments, replacement of any part of the aorta with a prosthesis was simulated by increasing the elasticity in the parts desired.
During control conditions, the model displayed a physiologic distribution of flow and pressure waves throughout the arterial system. Simulated replacement of the aorta resulted in an increase in pressure amplitude and a partial loss of the aortic "Windkessel" function. Calculation of the aortic input impedance showed an increase in the characteristic impedance, whereas the peripheral resistance remained unaltered.
This mathematical model of the arterial circulation is useful for simulating hemodynamic changes after implantation of vascular grafts. The results of the model analysis are consistent with those in previous experimental work. BACKGROUNDReplacing parts of the aorta with a non-compliant vascular prosthesis results in marked alterations of the aortic input impedance and influences arterial hemodynamics. We propose a mathematical model of circulation that can predict hemodynamic changes after simulation of vascular grafting.METHODSA new mathematical model of the human arterial system was developed on a 75-MHz Pentium personal computer using Matlab software. The human arterial tree was delineated according to a 128-branch design encompassing bifurcations and physical properties of the arterial wall. A digitized aortic flow wave was chosen as the input signal to the system. After determination of the modules of elasticity of native vascular tissue and standard prostheses in technical experiments, replacement of any part of the aorta with a prosthesis was simulated by increasing the elasticity in the parts desired.RESULTSDuring control conditions, the model displayed a physiologic distribution of flow and pressure waves throughout the arterial system. Simulated replacement of the aorta resulted in an increase in pressure amplitude and a partial loss of the aortic "Windkessel" function. Calculation of the aortic input impedance showed an increase in the characteristic impedance, whereas the peripheral resistance remained unaltered.CONCLUSIONSThis mathematical model of the arterial circulation is useful for simulating hemodynamic changes after implantation of vascular grafts. The results of the model analysis are consistent with those in previous experimental work. Background. Replacing parts of the aorta with a noncompliant vascular prosthesis results in marked alterations of the aortic input impedance and influences arterial hemodynamics. We propose a mathematical model of circulation that can predict hemodynamic changes after simulation of vascular grafting. Methods. A new mathematical model of the human arterial system was developed on a 75-MHz Pentium personal computer using Matlab software. The human arterial tree was delineated according to a 128-branch design encompassing bifurcations and physical properties of the arterial wall. A digitized aortic flow wave was chosen as the input signal to the system. After determination of the modules of elasticity of native vascular tissue and standard prostheses in technical experiments, replacement of any part of the aorta with a prosthesis was simulated by increasing the elasticity in the parts desired. Results. During control conditions, the model displayed a physiologic distribution of flow and pressure waves throughout the arterial system. Simulated replacement of the aorta resulted in an increase in pressure amplitude and a partial loss of the aortic “Windkessel” function. Calculation of the aortic input impedance showed an increase in the characteristic impedance, whereas the peripheral resistance remained unaltered. Conclusions. This mathematical model of the arterial circulation is useful for simulating hemodynamic changes after implantation of vascular grafts. The results of the model analysis are consistent with those in previous experimental work. |
Author | Vahl, Christian-Friedrich Bauernschmitt, Robert Schwarzhaupt, Andreas Lange, Rüdiger Kiencke, Uwe Schulz, Stephan Hagl, Siegfried |
Author_xml | – sequence: 1 givenname: Robert surname: Bauernschmitt fullname: Bauernschmitt, Robert organization: Institute for Industrial Information Technique, University of Karlsruhe, Karlsruhe, Germany – sequence: 2 givenname: Stephan surname: Schulz fullname: Schulz, Stephan organization: Institute for Industrial Information Technique, University of Karlsruhe, Karlsruhe, Germany – sequence: 3 givenname: Andreas surname: Schwarzhaupt fullname: Schwarzhaupt, Andreas organization: Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany – sequence: 4 givenname: Uwe surname: Kiencke fullname: Kiencke, Uwe organization: Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany – sequence: 5 givenname: Christian-Friedrich surname: Vahl fullname: Vahl, Christian-Friedrich organization: Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany – sequence: 6 givenname: Rüdiger surname: Lange fullname: Lange, Rüdiger organization: Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany – sequence: 7 givenname: Siegfried surname: Hagl fullname: Hagl, Siegfried organization: Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1750636$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/10215210$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKBDEQRYOM6Pj4BKUXIrpoTTrdyWQlIr5AcKGzDtXpChPpx5hkBP_etDOoO1dJ3TpVubl7ZNIPPRJyxOgFo0xcvlBKeV4qWZ0pdZ6KUuRii0xZVRW5KCo1IdMfZJfshfCWyiK1d8guGy8Fo1Myf3HdqoXohj4bbAY-onfQZgvshuazh86ZkIFNarZMzbG19EOIC4zOZB6XLRjssI_jdFIzGHyEA7JtoQ14uDn3yfzu9vXmIX96vn-8uX7KTalYzBvGZlQoVpdlwalEChVLzq1VNXBWJsFS5LIGqaC2DReUNmil5SZ9gMsZ3yen673J0_sKQ9SdCwbbFnocVkELJalkjCWwWoMmmQ8erV5614H_1IzqMU_9nacew9JK6e88tUhzx5sHVnWHzZ-pdYAJONkAEAy01kNvXPjlZEUFH_dcrTFMaXw49DoYh73Bxnk0UTeD-8fJF_gGk6A |
CODEN | ATHSAK |
CitedBy_id | crossref_primary_10_1007_s12265_016_9699_8 crossref_primary_10_1016_j_bpa_2011_08_006 crossref_primary_10_1016_j_jbiomech_2020_110010 crossref_primary_10_1371_journal_pone_0230208 crossref_primary_10_1016_j_ijcard_2013_07_165 crossref_primary_10_1002_jmri_28359 crossref_primary_10_1007_s00398_014_1104_9 crossref_primary_10_1007_s10334_020_00829_5 crossref_primary_10_1371_journal_pone_0103588 crossref_primary_10_1103_PhysRevE_67_041911 crossref_primary_10_1111_j_1540_8175_2007_00417_x crossref_primary_10_1186_s13019_020_01288_8 crossref_primary_10_1016_j_jtcvs_2020_05_031 crossref_primary_10_1016_j_jtcvs_2019_02_127 crossref_primary_10_1053_ejvs_2002_1917 crossref_primary_10_1067_mtc_2003_104 crossref_primary_10_1016_j_athoracsur_2009_03_069 crossref_primary_10_1016_j_athoracsur_2010_09_023 crossref_primary_10_1016_j_jtcvs_2004_06_014 crossref_primary_10_1007_s00380_013_0381_7 crossref_primary_10_1016_j_jtcvs_2020_05_113 |
Cites_doi | 10.1161/01.RES.45.1.126 10.1093/cvr/20.1.26 10.1007/BF02368323 10.1253/jcj.49.232 10.1016/0735-1097(92)90198-V 10.1016/S0022-5223(19)36872-2 10.1016/0003-4975(95)00068-V 10.1016/0010-4825(96)00017-0 10.1161/01.RES.48.3.334 10.1007/BF02441895 |
ContentType | Journal Article |
Copyright | 1999 The Society of Thoracic Surgeons 1999 INIST-CNRS |
Copyright_xml | – notice: 1999 The Society of Thoracic Surgeons – notice: 1999 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/S0003-4975(99)00046-6 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1552-6259 |
EndPage | 682 |
ExternalDocumentID | 10_1016_S0003_4975_99_00046_6 10215210 1750636 S0003497599000466 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K .1- .55 .FO .GJ 0R~ 1B1 1P~ 1~5 23M 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M AAEDT AAEDW AAEJM AAIAV AALRI AAQFI AAQQT AAQXK AAXUO ABJNI ABLJU ABMAC ABOCM ACGFO ACGFS ACIUM ACRZS ADBBV ADMUD ADPAM AENEX AEVXI AFCTW AFFNX AFRHN AFTJW AGHFR AGZHU AHPSJ AI. AITUG AJJEV AJUYK ALMA_UNASSIGNED_HOLDINGS ALXNB AMRAJ ASPBG AVWKF AZFZN BAWUL BELOY C5W CS3 DIK E3Z EBS EFJIC EJD F5P FDB FEDTE FGOYB GBLVA GX1 HVGLF HZ~ IH2 IHE J1W J5H K-O KOM L7B M41 MO0 N9A NQ- O9- OA- OK1 OL. OVD P2P P6G PC. R2- RIG ROL RPZ SES SSZ TEORI TR2 UDS UNMZH UV1 VH1 W8F X7M XH2 XPP Z5R ZA5 ZGI ZXP 08R AAUGY IQODW AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c491t-d1180691b442307e0a51259ff9ba3147e0f0e37ba79abfd3600def7f3c1023783 |
ISSN | 0003-4975 |
IngestDate | Fri Aug 16 12:09:21 EDT 2024 Fri Aug 23 01:11:18 EDT 2024 Sat Sep 28 08:40:03 EDT 2024 Sun Oct 29 17:08:14 EDT 2023 Fri Feb 23 02:25:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Aortic input impedance-aortic prosthesis-simulation-mathematical model Computer science Human Postoperative Computer simulation Prosthesis Surgery Aorta Hemodynamics Technique Mathematical simulation Artery |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c491t-d1180691b442307e0a51259ff9ba3147e0f0e37ba79abfd3600def7f3c1023783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 10215210 |
PQID | 69707111 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_69707111 crossref_primary_10_1016_S0003_4975_99_00046_6 pubmed_primary_10215210 pascalfrancis_primary_1750636 elsevier_sciencedirect_doi_10_1016_S0003_4975_99_00046_6 |
PublicationCentury | 1900 |
PublicationDate | 1999-03-01 |
PublicationDateYYYYMMDD | 1999-03-01 |
PublicationDate_xml | – month: 03 year: 1999 text: 1999-03-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: Netherlands |
PublicationTitle | The Annals of thoracic surgery |
PublicationTitleAlternate | Ann Thorac Surg |
PublicationYear | 1999 |
Publisher | Elsevier Inc Elsevier Science |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science |
References | Kelly, Fitchett (BIB6) 1992; 20 Bauernschmitt, Schulz, Albers (BIB14) 1997; 2 Kinely, Marble (BIB2) 1980; 21 Avolio (BIB9) 1980; 18 Liu, Brin, Yin (BIB17) 1986; 251 Morita, Kuboyama, Asou (BIB3) 1991; 102 Urschel, Covell, Sonnenblick, Ross, Braunwald (BIB1) 1968; 11 Murgo, Westerhof, Giolma, Altobelli (BIB10) 1981; 48 Dujardin, Stone, Paul, Pieper (BIB13) 1980; 238 Capello, Gnudi, Lamberti (BIB18) 1995; 23 Pouler, Covell, Ross (BIB11) 1979; 45 Appleyard, Sauvage (BIB12) 1986; 20 Schulz, Bauernschmitt, Albers (BIB15) 1997; 33 Burnette (BIB8) 1996; 26 Stergiopulos, Meister, Westerhof (BIB16) 1995; 269 Maeta, Hori (BIB5) 1985; 49 Karamanoglu, Gallagher, Avolio, O’Rourke (BIB7) 1994; 267 Kim, Hinkamp, Jacobs, Lichtenberg, Posniak, Pifarré (BIB4) 1995; 59 10543538 - Ann Thorac Surg. 1999 Oct;68(4):1441-2 Kelly (10.1016/S0003-4975(99)00046-6_BIB6) 1992; 20 Burnette (10.1016/S0003-4975(99)00046-6_BIB8) 1996; 26 Bauernschmitt (10.1016/S0003-4975(99)00046-6_BIB14) 1997; 2 Schulz (10.1016/S0003-4975(99)00046-6_BIB15) 1997; 33 Appleyard (10.1016/S0003-4975(99)00046-6_BIB12) 1986; 20 Stergiopulos (10.1016/S0003-4975(99)00046-6_BIB16) 1995; 269 Urschel (10.1016/S0003-4975(99)00046-6_BIB1) 1968; 11 Liu (10.1016/S0003-4975(99)00046-6_BIB17) 1986; 251 Morita (10.1016/S0003-4975(99)00046-6_BIB3) 1991; 102 Avolio (10.1016/S0003-4975(99)00046-6_BIB9) 1980; 18 Pouler (10.1016/S0003-4975(99)00046-6_BIB11) 1979; 45 Maeta (10.1016/S0003-4975(99)00046-6_BIB5) 1985; 49 Capello (10.1016/S0003-4975(99)00046-6_BIB18) 1995; 23 Dujardin (10.1016/S0003-4975(99)00046-6_BIB13) 1980; 238 Karamanoglu (10.1016/S0003-4975(99)00046-6_BIB7) 1994; 267 Kinely (10.1016/S0003-4975(99)00046-6_BIB2) 1980; 21 Kim (10.1016/S0003-4975(99)00046-6_BIB4) 1995; 59 Murgo (10.1016/S0003-4975(99)00046-6_BIB10) 1981; 48 |
References_xml | – volume: 48 start-page: 334 year: 1981 end-page: 343 ident: BIB10 article-title: Effects of exercise on aortic input impedance and pressure wave forms in normal humans publication-title: Circ Res contributor: fullname: Altobelli – volume: 251 start-page: H588 year: 1986 end-page: H600 ident: BIB17 article-title: Estimation of total arterial compliance. An improved method and evaluation of current methods publication-title: Am J Physiol contributor: fullname: Yin – volume: 59 start-page: 981 year: 1995 end-page: 989 ident: BIB4 article-title: Effect of an inelastic aortic synthetic vascular graft on exercise hemodynamics publication-title: Ann Thorac Surg contributor: fullname: Pifarré – volume: 18 start-page: 709 year: 1980 end-page: 718 ident: BIB9 article-title: Multi-branched model of the human arterial system publication-title: Med Biol Eng Comput contributor: fullname: Avolio – volume: 11 start-page: 319 year: 1968 end-page: 328 ident: BIB1 article-title: Effect of decreased aortic compliance on performance of the left ventricle publication-title: Am J Physiol contributor: fullname: Braunwald – volume: 269 start-page: H1490 year: 1995 end-page: H1495 ident: BIB16 article-title: Scatter in input impedance spectrum may result from the elastic nonlinearity of the arterial wall publication-title: Am J Physiol contributor: fullname: Westerhof – volume: 102 start-page: 774 year: 1991 end-page: 783 ident: BIB3 article-title: The effect of extraanatomic bypass on aortic input impedance studied in open chest dogs. Should the vascular prosthesis be compliant to unload the left ventricle? publication-title: J Thorac Cardiovasc Surg contributor: fullname: Asou – volume: 26 start-page: 363 year: 1996 end-page: 369 ident: BIB8 article-title: Computer simulation of human blood flow and vascular resistance publication-title: Comput Biol Med contributor: fullname: Burnette – volume: 267 start-page: H1681 year: 1994 end-page: H1688 ident: BIB7 article-title: Functional origin of reflected pressure waves in a multibranched model of the human arterial system publication-title: Am J Physiol contributor: fullname: O’Rourke – volume: 33 start-page: 406 year: 1997 end-page: 411 ident: BIB15 article-title: A mathematical high time resolution model of the arterial system under extracorporeal circulation publication-title: Biomed Sci Instrum contributor: fullname: Albers – volume: 20 start-page: 952 year: 1992 end-page: 963 ident: BIB6 article-title: Noninvasive determination of aortic input impedance and external left ventricular power output publication-title: J Am Coll Cardiol contributor: fullname: Fitchett – volume: 238 start-page: H902 year: 1980 end-page: H908 ident: BIB13 article-title: Response of systemic arterial input impedance to volume expansion and hemorrhage publication-title: Am J Physiol contributor: fullname: Pieper – volume: 2 start-page: 236 year: 1997 end-page: 243 ident: BIB14 article-title: Arterial hemodynamics during extracorporeal circulation—a high time resolution mathematical model publication-title: Cardiovasc Eng contributor: fullname: Albers – volume: 45 start-page: 126 year: 1979 end-page: 135 ident: BIB11 article-title: Effect of alteration in aortic input impedance on the force-velocity-length relationship in the intact canine heart publication-title: Circ Res contributor: fullname: Ross – volume: 20 start-page: 26 year: 1986 end-page: 35 ident: BIB12 article-title: Haemodynamic consequences of arterial replacement with a synthetic graft publication-title: Cardiovasc Res contributor: fullname: Sauvage – volume: 23 start-page: 164 year: 1995 end-page: 177 ident: BIB18 article-title: Identification of the three-element windkessel model incorporating a pressure-dependent compliance publication-title: Ann Biomed Eng contributor: fullname: Lamberti – volume: 49 start-page: 232 year: 1985 end-page: 237 ident: BIB5 article-title: Effects of a lack of aortic “Windkessel” properties on the left ventricle publication-title: Jpn Circ J contributor: fullname: Hori – volume: 21 start-page: 163 year: 1980 end-page: 170 ident: BIB2 article-title: Compliance publication-title: J Cardiovasc Surg (Torino) contributor: fullname: Marble – volume: 21 start-page: 163 year: 1980 ident: 10.1016/S0003-4975(99)00046-6_BIB2 article-title: Compliance publication-title: J Cardiovasc Surg (Torino) contributor: fullname: Kinely – volume: 45 start-page: 126 year: 1979 ident: 10.1016/S0003-4975(99)00046-6_BIB11 article-title: Effect of alteration in aortic input impedance on the force-velocity-length relationship in the intact canine heart publication-title: Circ Res doi: 10.1161/01.RES.45.1.126 contributor: fullname: Pouler – volume: 20 start-page: 26 year: 1986 ident: 10.1016/S0003-4975(99)00046-6_BIB12 article-title: Haemodynamic consequences of arterial replacement with a synthetic graft publication-title: Cardiovasc Res doi: 10.1093/cvr/20.1.26 contributor: fullname: Appleyard – volume: 11 start-page: 319 year: 1968 ident: 10.1016/S0003-4975(99)00046-6_BIB1 article-title: Effect of decreased aortic compliance on performance of the left ventricle publication-title: Am J Physiol contributor: fullname: Urschel – volume: 251 start-page: H588 year: 1986 ident: 10.1016/S0003-4975(99)00046-6_BIB17 article-title: Estimation of total arterial compliance. An improved method and evaluation of current methods publication-title: Am J Physiol contributor: fullname: Liu – volume: 267 start-page: H1681 year: 1994 ident: 10.1016/S0003-4975(99)00046-6_BIB7 article-title: Functional origin of reflected pressure waves in a multibranched model of the human arterial system publication-title: Am J Physiol contributor: fullname: Karamanoglu – volume: 23 start-page: 164 year: 1995 ident: 10.1016/S0003-4975(99)00046-6_BIB18 article-title: Identification of the three-element windkessel model incorporating a pressure-dependent compliance publication-title: Ann Biomed Eng doi: 10.1007/BF02368323 contributor: fullname: Capello – volume: 49 start-page: 232 year: 1985 ident: 10.1016/S0003-4975(99)00046-6_BIB5 article-title: Effects of a lack of aortic “Windkessel” properties on the left ventricle publication-title: Jpn Circ J doi: 10.1253/jcj.49.232 contributor: fullname: Maeta – volume: 20 start-page: 952 year: 1992 ident: 10.1016/S0003-4975(99)00046-6_BIB6 article-title: Noninvasive determination of aortic input impedance and external left ventricular power output publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(92)90198-V contributor: fullname: Kelly – volume: 269 start-page: H1490 year: 1995 ident: 10.1016/S0003-4975(99)00046-6_BIB16 article-title: Scatter in input impedance spectrum may result from the elastic nonlinearity of the arterial wall publication-title: Am J Physiol contributor: fullname: Stergiopulos – volume: 2 start-page: 236 year: 1997 ident: 10.1016/S0003-4975(99)00046-6_BIB14 article-title: Arterial hemodynamics during extracorporeal circulation—a high time resolution mathematical model publication-title: Cardiovasc Eng contributor: fullname: Bauernschmitt – volume: 102 start-page: 774 year: 1991 ident: 10.1016/S0003-4975(99)00046-6_BIB3 article-title: The effect of extraanatomic bypass on aortic input impedance studied in open chest dogs. Should the vascular prosthesis be compliant to unload the left ventricle? publication-title: J Thorac Cardiovasc Surg doi: 10.1016/S0022-5223(19)36872-2 contributor: fullname: Morita – volume: 59 start-page: 981 year: 1995 ident: 10.1016/S0003-4975(99)00046-6_BIB4 article-title: Effect of an inelastic aortic synthetic vascular graft on exercise hemodynamics publication-title: Ann Thorac Surg doi: 10.1016/0003-4975(95)00068-V contributor: fullname: Kim – volume: 238 start-page: H902 year: 1980 ident: 10.1016/S0003-4975(99)00046-6_BIB13 article-title: Response of systemic arterial input impedance to volume expansion and hemorrhage publication-title: Am J Physiol contributor: fullname: Dujardin – volume: 26 start-page: 363 year: 1996 ident: 10.1016/S0003-4975(99)00046-6_BIB8 article-title: Computer simulation of human blood flow and vascular resistance publication-title: Comput Biol Med doi: 10.1016/0010-4825(96)00017-0 contributor: fullname: Burnette – volume: 48 start-page: 334 year: 1981 ident: 10.1016/S0003-4975(99)00046-6_BIB10 article-title: Effects of exercise on aortic input impedance and pressure wave forms in normal humans publication-title: Circ Res doi: 10.1161/01.RES.48.3.334 contributor: fullname: Murgo – volume: 18 start-page: 709 year: 1980 ident: 10.1016/S0003-4975(99)00046-6_BIB9 article-title: Multi-branched model of the human arterial system publication-title: Med Biol Eng Comput doi: 10.1007/BF02441895 contributor: fullname: Avolio – volume: 33 start-page: 406 year: 1997 ident: 10.1016/S0003-4975(99)00046-6_BIB15 article-title: A mathematical high time resolution model of the arterial system under extracorporeal circulation publication-title: Biomed Sci Instrum contributor: fullname: Schulz |
SSID | ssj0002155 |
Score | 1.7383072 |
Snippet | Background. Replacing parts of the aorta with a noncompliant vascular prosthesis results in marked alterations of the aortic input impedance and influences... Replacing parts of the aorta with a non-compliant vascular prosthesis results in marked alterations of the aortic input impedance and influences arterial... BACKGROUNDReplacing parts of the aorta with a non-compliant vascular prosthesis results in marked alterations of the aortic input impedance and influences... |
SourceID | proquest crossref pubmed pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 676 |
SubjectTerms | Aorta - physiology Aorta - surgery Aortic input impedance-aortic prosthesis-simulation-mathematical model Arteries - physiology Biological and medical sciences Blood Flow Velocity Blood Pressure Blood Vessel Prosthesis Blood Vessel Prosthesis Implantation Computer Simulation Elasticity Hemodynamics Humans Medical sciences Models, Cardiovascular Prosthesis Design Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgery of the heart |
Title | Simulation of arterial hemodynamics after partial prosthetic replacement of the aorta |
URI | https://dx.doi.org/10.1016/S0003-4975(99)00046-6 https://www.ncbi.nlm.nih.gov/pubmed/10215210 https://search.proquest.com/docview/69707111 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKckFCCMSrwIIPrASHLHna9REhYIUEl26l3iLbsdWVaFq1iVbqP-HfMmMncRZYAXuJKieuI8-X8Tf2PAh5naok0SqPcV9DRrnNWSSs5hG3WlcJ1o92zuNfv7GzRf5lWSwnkx8jr6W2Uaf68Me4kptIFdpArhgl-x-SHf4UGuA3yBeuIGG4_pOM5xfrrvqWO85H78wLF9u43lS-0vy-KwK-xd4YdIVBHivjEzc7f6zeGQAJqEQuPqarrmTzkGK5WQFeNHTdj2Kp3S5oa3Y1mMnr7qjJu2uHM55V-_0wuJQFOMKNS7k7rGS7bQbnShlOl1DreN-hxaUJ2xM-pUE23p4Y4mauuHWiJYa17fx5tulUb5FGaI2NdbMv1dFhMBspWsbZaM1mvoDRb8uB35mYD8OdoHl5kgoXMxv9koLbLepzn7GHF8I_xG6R2ynoMFSen5fBewiYUtEXY8THQ3DYuzDcGyHedkNdR3vubuUePkbrq6hcb-Y4unN-n9zr7BT63oPuAZmY-iFZBMDRjaU94OgYcNQBjnaAowFwdAQ47A2t1AHuEVl8-nj-4Szq6nJEOhdJE1WYNpCJROU5hhGYWAJrLIS1QsksyaHBxibjSnIhla0y4NSVsdxmGvOE8Fn2mBzVm9o8JVQKOVO6MJqxNFexnumKCwU2hSg0U1xPyWk_beXWp18pg18izHOJ81wKUbp5LtmUzPrJLTsO6blhCZj4W9fjK8IIAwKrZhncf9ULpwQdjAdrsjabdl8ywYGpJ8mUPPEyG70r1o1O4mc3f63n5E74rl6Qo2bXmmMgwo166SD5E7wvsFI |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+arterial+hemodynamics+after+partial+prosthetic+replacement+of+the+aorta&rft.jtitle=The+Annals+of+thoracic+surgery&rft.au=Bauernschmitt%2C+Robert&rft.au=Schulz%2C+Stephan&rft.au=Schwarzhaupt%2C+Andreas&rft.au=Kiencke%2C+Uwe&rft.date=1999-03-01&rft.pub=Elsevier+Inc&rft.issn=0003-4975&rft.eissn=1552-6259&rft.volume=67&rft.issue=3&rft.spage=676&rft.epage=682&rft_id=info:doi/10.1016%2FS0003-4975%2899%2900046-6&rft.externalDocID=S0003497599000466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4975&client=summon |