Accelerated crystallization of zeolites via hydroxyl free radicals
In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH⁻) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,AI–O–Si,AI bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,AI–O...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 351; no. 6278; pp. 1188 - 1191 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
11.03.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH⁻) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,AI–O–Si,AI bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,AI–O–Si,AI bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites—such as Na–A, Na–X, NaZ–21, and silicalite-1—can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. |
---|---|
AbstractList | In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent.In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. Zeolite synthesis normally proceeds under basic conditions that allow the oxide bridges between aluminum and silicon atoms to break and reform. Feng et al. show that the formation of hydroxyl radicals, either by irradiation with ultraviolet light or with the Fenton reagent, can speed up the formation of the crystallized zeolite by about a factor of 2. Science, this issue p. 1188 In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH-) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (*OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites--such as Na-A, Na-X, NaZ-21, and silicalite-1--can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH⁻) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,AI–O–Si,AI bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,AI–O–Si,AI bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites—such as Na–A, Na–X, NaZ–21, and silicalite-1—can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. Zeolite synthesis normally proceeds under basic conditions that allow the oxide bridges between aluminum and silicon atoms to break and reform. Feng et al. show that the formation of hydroxyl radicals, either by irradiation with ultraviolet light or with the Fenton reagent, can speed up the formation of the crystallized zeolite by about a factor of 2. Science , this issue p. 1188 Hydroxyl radicals generated with ultraviolet light or Fenton reagents can approximately double the rate of zeolite synthesis. In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH – ) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al–O–Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al–O–Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites—such as Na–A, Na–X, NaZ–21, and silicalite-1—can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton’s reagent. |
Author | Xu, Ruren Li, Xu Corma, Avelino Yu, Jihong Feng, Guodong Cheng, Peng Wang, Jianyu Yan, Wenfu Su, Ji-Hu Li, Yi Boronat, Mercedes |
Author_xml | – sequence: 1 givenname: Guodong surname: Feng fullname: Feng, Guodong – sequence: 2 givenname: Peng surname: Cheng fullname: Cheng, Peng – sequence: 3 givenname: Wenfu surname: Yan fullname: Yan, Wenfu – sequence: 4 givenname: Mercedes surname: Boronat fullname: Boronat, Mercedes – sequence: 5 givenname: Xu surname: Li fullname: Li, Xu – sequence: 6 givenname: Ji-Hu surname: Su fullname: Su, Ji-Hu – sequence: 7 givenname: Jianyu surname: Wang fullname: Wang, Jianyu – sequence: 8 givenname: Yi surname: Li fullname: Li, Yi – sequence: 9 givenname: Avelino surname: Corma fullname: Corma, Avelino – sequence: 10 givenname: Ruren surname: Xu fullname: Xu, Ruren – sequence: 11 givenname: Jihong surname: Yu fullname: Yu, Jihong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26965626$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kDtv2zAUhYnAQeM85k4tBGTpooQPkRRH10jbAAGyJLNwRV6hNGQxJekizq8vY7spkKHTGe53Lg6-UzKbwoSEfGT0ijGurpP1OFm8AhiYlOaIzBk1sjacihmZUypU3VItT8hpSitKy82ID-SEK6Ok4mpOvi6sxREjZHSVjduUYRz9C2QfpioM1QuG0WdM1W8P1c-ti-F5O1ZDRKwiOG9hTOfkeCiBF4c8I4_fbh6WP-q7---3y8VdbRvDcm21ZoNVQrUKGy1NS_vGqaHRCpyUnPVouOsFOK4pgHAt5Q4pWOpkLyn04ox82f99iuHXBlPu1j6V8SNMGDapY1rzVohW6IJevkNXYROnsm5H8cIZWqjPB2rTr9F1T9GvIW67v3YKcL0HbAwpRRzeEEa7V__dwX938F8a8l3D-ryTmSP48T-9T_veKuUQ_y1pdCNYa8QfGBaWTQ |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2023_117828 crossref_primary_10_1016_j_jssc_2022_123016 crossref_primary_10_1016_j_micromeso_2017_02_030 crossref_primary_10_1016_j_cattod_2018_12_045 crossref_primary_10_1038_srep31840 crossref_primary_10_1016_j_nantod_2024_102244 crossref_primary_10_1038_s41467_022_29107_9 crossref_primary_10_1073_pnas_1819382116 crossref_primary_10_1051_matecconf_201823802003 crossref_primary_10_6023_A22100442 crossref_primary_10_1016_j_apcatb_2020_119480 crossref_primary_10_1016_j_micromeso_2022_111922 crossref_primary_10_1039_D0SC04603E crossref_primary_10_1016_j_jwpe_2020_101799 crossref_primary_10_1016_j_wasman_2025_02_026 crossref_primary_10_1002_chem_201805972 crossref_primary_10_1002_ange_202009648 crossref_primary_10_1021_acsnano_1c10663 crossref_primary_10_1016_j_fuel_2025_135120 crossref_primary_10_1016_j_matlet_2016_08_001 crossref_primary_10_1016_j_jclepro_2022_134671 crossref_primary_10_1039_C9CY01338E crossref_primary_10_1016_j_cej_2021_132757 crossref_primary_10_1002_anie_202103766 crossref_primary_10_1021_acs_iecr_1c03875 crossref_primary_10_1016_j_fuel_2024_133221 crossref_primary_10_1002_anie_201603182 crossref_primary_10_1016_j_apcata_2022_118963 crossref_primary_10_1016_j_fuel_2022_126141 crossref_primary_10_1016_j_cej_2018_08_201 crossref_primary_10_1002_ange_202005715 crossref_primary_10_3389_fmats_2019_00106 crossref_primary_10_1016_j_watres_2021_117600 crossref_primary_10_1002_smll_201805504 crossref_primary_10_1007_s40242_017_7131_9 crossref_primary_10_1021_acs_jpclett_3c02268 crossref_primary_10_1002_anie_202200406 crossref_primary_10_1021_acs_chemmater_2c03551 crossref_primary_10_1039_C7TA01364G crossref_primary_10_1039_D0NJ03346D crossref_primary_10_1016_j_jphotochem_2017_09_015 crossref_primary_10_1016_j_chempr_2018_03_002 crossref_primary_10_1002_chem_202302931 crossref_primary_10_1016_j_ces_2022_118072 crossref_primary_10_1021_acs_est_0c04694 crossref_primary_10_1016_j_foodchem_2024_140241 crossref_primary_10_2139_ssrn_4053386 crossref_primary_10_1016_j_apcatb_2023_123217 crossref_primary_10_1016_j_inoche_2023_110576 crossref_primary_10_1021_acs_jpcc_4c03406 crossref_primary_10_1016_j_foodres_2024_114372 crossref_primary_10_1002_jctb_5501 crossref_primary_10_3390_catal15020188 crossref_primary_10_1016_j_micromeso_2019_02_017 crossref_primary_10_1073_pnas_2316352121 crossref_primary_10_1016_j_cej_2019_122759 crossref_primary_10_1016_j_cjche_2020_02_027 crossref_primary_10_1039_C7TA01583F crossref_primary_10_1016_j_jcrysgro_2018_11_004 crossref_primary_10_1016_j_memsci_2024_123629 crossref_primary_10_3390_min10050391 crossref_primary_10_2139_ssrn_4199439 crossref_primary_10_1016_j_ces_2024_120123 crossref_primary_10_1016_j_cej_2021_131682 crossref_primary_10_1039_D3DT03770C crossref_primary_10_1016_j_microc_2024_110726 crossref_primary_10_1039_D3RE00112A crossref_primary_10_1016_j_foodchem_2024_141441 crossref_primary_10_1016_j_jhazmat_2024_136856 crossref_primary_10_1016_j_seppur_2024_127144 crossref_primary_10_1039_C8RA07880G crossref_primary_10_1016_j_micromeso_2017_10_029 crossref_primary_10_1039_C6CC08892A crossref_primary_10_1039_C9CY01329F crossref_primary_10_1016_j_micromeso_2021_111652 crossref_primary_10_1016_j_micromeso_2022_112368 crossref_primary_10_1016_j_micromeso_2022_112260 crossref_primary_10_1039_D2SC06010H crossref_primary_10_1016_j_cej_2021_129813 crossref_primary_10_1590_s1678_86212023000300683 crossref_primary_10_1016_j_enconman_2020_113717 crossref_primary_10_1016_j_cej_2016_08_096 crossref_primary_10_1016_j_chemosphere_2020_127316 crossref_primary_10_1016_j_chemosphere_2020_128648 crossref_primary_10_1002_adfm_201802088 crossref_primary_10_1002_smll_201904210 crossref_primary_10_1093_pnasnexus_pgae015 crossref_primary_10_2139_ssrn_4161505 crossref_primary_10_1016_j_watres_2019_04_045 crossref_primary_10_1016_j_jclepro_2021_128632 crossref_primary_10_1021_acssensors_4c02378 crossref_primary_10_1039_D4RE00556B crossref_primary_10_1016_j_micromeso_2020_110633 crossref_primary_10_1016_j_ijhydene_2024_04_313 crossref_primary_10_1039_D0CE01858A crossref_primary_10_1016_j_electacta_2017_06_097 crossref_primary_10_1039_D2GC00082B crossref_primary_10_1016_j_jcis_2020_05_086 crossref_primary_10_1039_D1QI01492G crossref_primary_10_1039_D4CY00841C crossref_primary_10_1021_acsnano_8b02625 crossref_primary_10_1039_D2TC05447G crossref_primary_10_1016_j_chempr_2017_10_009 crossref_primary_10_1039_C8TA07879C crossref_primary_10_1021_acs_chemrev_2c00140 crossref_primary_10_1002_ange_202011821 crossref_primary_10_1021_acs_cgd_1c01382 crossref_primary_10_1038_s41467_021_25561_z crossref_primary_10_1016_j_micromeso_2022_111858 crossref_primary_10_1016_j_seppur_2020_116516 crossref_primary_10_1021_acs_iecr_9b05751 crossref_primary_10_1016_j_apcata_2024_119730 crossref_primary_10_1039_D4CS00148F crossref_primary_10_1021_jacs_8b10235 crossref_primary_10_1016_j_gee_2021_03_006 crossref_primary_10_1039_C8QI00939B crossref_primary_10_1016_j_micromeso_2022_111970 crossref_primary_10_1021_acssuschemeng_0c09240 crossref_primary_10_1007_s11356_023_29512_7 crossref_primary_10_1016_j_apsusc_2022_152655 crossref_primary_10_1016_j_cej_2019_123267 crossref_primary_10_1039_C9NJ03560E crossref_primary_10_1021_jacs_3c04031 crossref_primary_10_1002_adma_202110653 crossref_primary_10_1016_j_cej_2023_145200 crossref_primary_10_1016_j_eti_2021_101415 crossref_primary_10_1016_j_micromeso_2023_112485 crossref_primary_10_1002_anie_202009648 crossref_primary_10_1038_s41467_024_45106_4 crossref_primary_10_1039_C7TA05649D crossref_primary_10_1016_j_jece_2024_115263 crossref_primary_10_1021_acs_iecr_3c02395 crossref_primary_10_1007_s10934_023_01550_z crossref_primary_10_1039_C8RA08511K crossref_primary_10_1016_j_cej_2021_131598 crossref_primary_10_1021_acs_chemrev_3c00801 crossref_primary_10_1007_s10853_020_05659_3 crossref_primary_10_1093_nsr_nwac045 crossref_primary_10_1002_adsu_202400496 crossref_primary_10_1002_ange_202401060 crossref_primary_10_1039_D3CS01026K crossref_primary_10_1016_j_jcat_2022_12_022 crossref_primary_10_1016_j_apmate_2022_100058 crossref_primary_10_1021_acs_est_8b02403 crossref_primary_10_1021_acsami_4c01774 crossref_primary_10_1016_j_apcatb_2024_124820 crossref_primary_10_1038_s41598_019_51460_x crossref_primary_10_1039_C8TA09921A crossref_primary_10_1016_j_cej_2023_143136 crossref_primary_10_1016_j_chemosphere_2019_124739 crossref_primary_10_1002_cssc_201800047 crossref_primary_10_1016_j_cej_2024_151733 crossref_primary_10_1021_jacs_3c00258 crossref_primary_10_1002_anie_201906559 crossref_primary_10_1002_anie_202401060 crossref_primary_10_1016_j_psep_2022_03_076 crossref_primary_10_1007_s12274_022_5237_y crossref_primary_10_1002_anie_202005715 crossref_primary_10_1002_adma_201800718 crossref_primary_10_1021_acs_est_3c03406 crossref_primary_10_1002_ange_201906559 crossref_primary_10_1007_s11665_024_09781_0 crossref_primary_10_1039_D2SC06389A crossref_primary_10_1039_D2GC00869F crossref_primary_10_1039_D4TA08473J crossref_primary_10_1007_s11144_021_02105_6 crossref_primary_10_1002_ange_202103766 crossref_primary_10_1039_C7CC05552H crossref_primary_10_1002_anie_202011821 crossref_primary_10_1039_C7TB01064H crossref_primary_10_1007_s12274_021_3838_5 crossref_primary_10_1016_j_jhazmat_2019_120758 crossref_primary_10_1016_j_micromeso_2019_109679 crossref_primary_10_1021_acs_chemmater_3c00552 crossref_primary_10_1002_advs_202204079 crossref_primary_10_1016_j_biteb_2024_101867 crossref_primary_10_1016_j_electacta_2019_03_114 crossref_primary_10_1039_C7CY00283A crossref_primary_10_1021_acsmaterialslett_3c01511 crossref_primary_10_1016_j_jclepro_2021_128682 crossref_primary_10_1016_j_jmrt_2022_02_013 crossref_primary_10_1016_j_micromeso_2020_110437 crossref_primary_10_1002_aenm_202400766 crossref_primary_10_1007_s41981_022_00217_1 crossref_primary_10_1016_j_cej_2017_05_113 crossref_primary_10_1016_j_micromeso_2021_111248 crossref_primary_10_1016_j_molp_2019_08_001 crossref_primary_10_1021_acs_langmuir_2c01860 crossref_primary_10_1039_C8TA08930B crossref_primary_10_1002_cctc_202000116 crossref_primary_10_1016_j_micromeso_2022_112071 crossref_primary_10_1002_adma_201803966 crossref_primary_10_1016_S1872_5813_20_30068_2 crossref_primary_10_1016_j_cattod_2018_05_018 crossref_primary_10_1016_j_ultsonch_2019_104703 crossref_primary_10_2139_ssrn_3990725 crossref_primary_10_1021_jacs_0c03941 crossref_primary_10_1016_j_colsurfa_2020_124803 crossref_primary_10_1016_j_watres_2023_120735 crossref_primary_10_1016_j_cej_2025_160714 crossref_primary_10_1016_j_solidstatesciences_2019_03_016 crossref_primary_10_3390_cryst10090813 crossref_primary_10_1002_pc_24490 crossref_primary_10_1021_jacs_0c05913 crossref_primary_10_1016_j_apcata_2020_117907 crossref_primary_10_1016_j_jhazmat_2018_07_007 crossref_primary_10_1039_C8TB00328A crossref_primary_10_1016_j_ultsonch_2022_105909 crossref_primary_10_3390_catal9030257 crossref_primary_10_1016_j_micromeso_2022_111771 crossref_primary_10_1039_D4RE00115J crossref_primary_10_1038_s41578_021_00347_3 crossref_primary_10_1016_j_mtcomm_2024_110418 crossref_primary_10_1021_acs_est_2c03595 crossref_primary_10_1039_D2SC02823A crossref_primary_10_1021_acsanm_2c05085 crossref_primary_10_1021_acs_chemrev_2c00076 crossref_primary_10_1016_j_scitotenv_2021_148685 crossref_primary_10_1016_j_jenvman_2024_120342 crossref_primary_10_1016_j_msec_2019_110430 crossref_primary_10_1016_j_jclepro_2021_127248 crossref_primary_10_1016_j_watres_2023_120826 crossref_primary_10_1016_j_jece_2024_112511 crossref_primary_10_3390_nano13162296 crossref_primary_10_1007_s11144_018_1465_2 crossref_primary_10_1039_C8CY00550H crossref_primary_10_1039_C8SC01434E crossref_primary_10_1002_anie_202002886 crossref_primary_10_1016_j_ces_2023_119123 crossref_primary_10_1109_TIM_2019_2910921 crossref_primary_10_1016_j_jcat_2019_07_028 crossref_primary_10_1002_smll_202207385 crossref_primary_10_1039_C6CS00917D crossref_primary_10_1007_s10853_018_3178_3 crossref_primary_10_1016_j_surfin_2024_105614 crossref_primary_10_1021_acscatal_4c00323 crossref_primary_10_1016_j_micromeso_2019_109640 crossref_primary_10_1016_j_apcatb_2021_120946 crossref_primary_10_1016_j_chempr_2024_10_025 crossref_primary_10_1016_j_cej_2017_06_059 crossref_primary_10_1039_D2CC00190J crossref_primary_10_1002_chem_202000244 crossref_primary_10_1016_j_cej_2022_137551 crossref_primary_10_1038_s41467_021_21076_9 crossref_primary_10_1109_TED_2021_3077207 crossref_primary_10_1016_j_jece_2022_107479 crossref_primary_10_1021_acs_jpcc_4c03138 crossref_primary_10_1016_j_micromeso_2017_04_035 crossref_primary_10_1039_C8EW00641E crossref_primary_10_1021_acs_iecr_1c02134 crossref_primary_10_1021_acs_iecr_1c03586 crossref_primary_10_1016_j_micromeso_2020_110780 crossref_primary_10_1039_C8CC09225G crossref_primary_10_1039_D1DT01440D crossref_primary_10_1021_acs_est_8b00499 crossref_primary_10_1021_jacs_4c11726 crossref_primary_10_1016_j_cattod_2018_02_058 crossref_primary_10_1021_jacs_9b04569 crossref_primary_10_1016_j_conbuildmat_2019_05_050 crossref_primary_10_1007_s11270_023_06601_4 crossref_primary_10_1039_C7CE01827D crossref_primary_10_2139_ssrn_4199440 crossref_primary_10_1016_j_matchemphys_2019_122322 crossref_primary_10_1021_acs_jpcc_0c04315 crossref_primary_10_1021_jacs_8b00093 crossref_primary_10_1021_acs_langmuir_2c02070 crossref_primary_10_1016_j_memsci_2023_122208 crossref_primary_10_1002_ange_201603182 crossref_primary_10_1016_j_jallcom_2024_178090 crossref_primary_10_1016_j_cej_2019_121918 crossref_primary_10_1021_acssuschemeng_4c06579 crossref_primary_10_1016_j_fuel_2023_130715 crossref_primary_10_1360_SSC_2024_0256 crossref_primary_10_1007_s12274_023_5938_x crossref_primary_10_1021_acscatal_0c04651 crossref_primary_10_1002_ppap_201900265 crossref_primary_10_1039_C8QI00441B crossref_primary_10_1039_C7SC02956J crossref_primary_10_1021_acsomega_1c00801 crossref_primary_10_1002_ange_202200406 crossref_primary_10_1039_C8NR07337F crossref_primary_10_1038_s41467_023_43040_5 crossref_primary_10_1016_j_micromeso_2020_110247 crossref_primary_10_1039_C8RA09752F crossref_primary_10_1021_acs_nanolett_3c01532 crossref_primary_10_1016_j_cej_2017_02_058 crossref_primary_10_1039_C9CY02419K crossref_primary_10_1002_ange_202002886 crossref_primary_10_1016_j_cclet_2017_04_010 crossref_primary_10_1039_C9RA04842A crossref_primary_10_1126_sciadv_1603171 crossref_primary_10_1002_ange_201805759 crossref_primary_10_1021_acsnano_4c15900 crossref_primary_10_1016_j_fuel_2024_131892 crossref_primary_10_1039_D2TC04730F crossref_primary_10_1016_j_micromeso_2021_110983 crossref_primary_10_1021_acs_inorgchem_2c01571 crossref_primary_10_1016_j_cattod_2024_114703 crossref_primary_10_1021_acs_estlett_8b00402 crossref_primary_10_1080_02603594_2022_2138864 crossref_primary_10_1016_j_watres_2017_08_033 crossref_primary_10_1134_S1070427222070059 crossref_primary_10_1016_j_jssc_2022_123832 crossref_primary_10_1039_D2TA04485D crossref_primary_10_1021_acs_est_0c00218 crossref_primary_10_6023_A22100420 crossref_primary_10_1088_1742_6596_2539_1_012053 crossref_primary_10_1016_j_seppur_2024_128047 crossref_primary_10_1016_j_micromeso_2020_110451 crossref_primary_10_1038_s41467_021_27640_7 crossref_primary_10_1016_j_watres_2020_115517 crossref_primary_10_1063_1_5119333 crossref_primary_10_1016_j_micromeso_2017_05_036 crossref_primary_10_1002_solr_202000638 crossref_primary_10_1021_acsnano_1c08605 crossref_primary_10_1039_D1CS00395J crossref_primary_10_1002_adma_202301166 crossref_primary_10_1002_anie_201805759 crossref_primary_10_1016_j_matchemphys_2022_126235 crossref_primary_10_1149_2_0701805jes crossref_primary_10_1021_acsami_1c15226 crossref_primary_10_1021_acsami_2c19243 crossref_primary_10_1007_s12015_022_10421_0 crossref_primary_10_1021_acs_chemmater_9b04741 crossref_primary_10_1021_acs_chemmater_1c00779 crossref_primary_10_1038_srep39561 crossref_primary_10_1016_j_jcrysgro_2018_04_013 crossref_primary_10_1021_jacsau_4c01115 crossref_primary_10_1021_jacs_3c14487 crossref_primary_10_1021_acssuschemeng_8b01552 crossref_primary_10_1039_C9SC06143F crossref_primary_10_1016_j_cej_2017_12_132 crossref_primary_10_1002_chem_202000448 crossref_primary_10_1021_acs_chemmater_6b03688 crossref_primary_10_1021_acs_jpcc_0c02578 crossref_primary_10_1016_j_micromeso_2023_112744 crossref_primary_10_1039_D1QI01540K crossref_primary_10_1002_chem_201801185 crossref_primary_10_1016_j_micromeso_2022_112321 crossref_primary_10_1021_acs_chemrev_2c00315 crossref_primary_10_1016_j_inoche_2019_107462 crossref_primary_10_1016_S1872_2067_24_60160_9 crossref_primary_10_1007_s10934_022_01227_z crossref_primary_10_3390_catal12030301 |
Cites_doi | 10.1016/0022-3093(91)90130-X 10.1063/1.464913 10.1002/9783527630295 10.1002/anie.200702986 10.1021/cr0682047 10.1126/science.1250984 10.1021/cr020060i 10.1063/1.460447 10.1016/j.micromeso.2005.02.016 10.1093/oso/9780198502418.001.0001 10.1016/S0022-3093(87)80047-9 10.1021/cr500010r 10.1016/B978-008044288-4/50028-5 10.1016/0016-7037(96)00101-9 10.1021/ct700248k 10.1021/ja304907c 10.1021/jp010752v 10.1016/S0891-5849(87)80033-3 10.1039/c3cc42732c |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Association for the Advancement of Science Copyright © 2016, American Association for the Advancement of Science. Copyright © 2016, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2016 American Association for the Advancement of Science – notice: Copyright © 2016, American Association for the Advancement of Science. – notice: Copyright © 2016, American Association for the Advancement of Science |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aaf1559 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1191 |
ExternalDocumentID | 3980404061 26965626 10_1126_science_aaf1559 24743189 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c491t-c771fc63686e475980b4d6f476ad5521be92db3ad270aa3d802de0ac0d5b50ab3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 11:16:42 EDT 2025 Fri Jul 25 09:44:18 EDT 2025 Mon Jul 21 06:04:44 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 Tue Jul 01 00:37:14 EDT 2025 Thu Jul 03 22:17:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6278 |
Language | English |
License | http://www.sciencemag.org/about/science-licenses-journal-article-reuse Copyright © 2016, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c491t-c771fc63686e475980b4d6f476ad5521be92db3ad270aa3d802de0ac0d5b50ab3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10251/105837 |
PMID | 26965626 |
PQID | 1772228390 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1772833837 proquest_journals_1772228390 pubmed_primary_26965626 crossref_primary_10_1126_science_aaf1559 crossref_citationtrail_10_1126_science_aaf1559 jstor_primary_24743189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-11 |
PublicationDateYYYYMMDD | 2016-03-11 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_20_2 e_1_3_2_10_2 e_1_3_2_21_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_22_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_23_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 |
References_xml | – ident: e_1_3_2_17_2 doi: 10.1016/0022-3093(91)90130-X – ident: e_1_3_2_21_2 doi: 10.1063/1.464913 – ident: e_1_3_2_3_2 doi: 10.1002/9783527630295 – ident: e_1_3_2_18_2 doi: 10.1002/anie.200702986 – ident: e_1_3_2_12_2 doi: 10.1021/cr0682047 – ident: e_1_3_2_14_2 – ident: e_1_3_2_20_2 – ident: e_1_3_2_6_2 doi: 10.1126/science.1250984 – ident: e_1_3_2_4_2 doi: 10.1021/cr020060i – ident: e_1_3_2_22_2 doi: 10.1063/1.460447 – ident: e_1_3_2_5_2 doi: 10.1016/j.micromeso.2005.02.016 – ident: e_1_3_2_10_2 doi: 10.1093/oso/9780198502418.001.0001 – ident: e_1_3_2_15_2 doi: 10.1016/S0022-3093(87)80047-9 – ident: e_1_3_2_2_2 doi: 10.1021/cr500010r – ident: e_1_3_2_11_2 doi: 10.1016/B978-008044288-4/50028-5 – ident: e_1_3_2_8_2 doi: 10.1016/0016-7037(96)00101-9 – ident: e_1_3_2_23_2 doi: 10.1021/ct700248k – ident: e_1_3_2_7_2 – ident: e_1_3_2_16_2 doi: 10.1021/ja304907c – ident: e_1_3_2_9_2 doi: 10.1021/jp010752v – ident: e_1_3_2_13_2 doi: 10.1016/S0891-5849(87)80033-3 – ident: e_1_3_2_19_2 doi: 10.1039/c3cc42732c |
SSID | ssj0009593 |
Score | 2.6312685 |
Snippet | In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH⁻) catalyze the depolymerization of the aluminosilicate gel by breaking the... Zeolite synthesis normally proceeds under basic conditions that allow the oxide bridges between aluminum and silicon atoms to break and reform. Feng et al.... In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking... Zeolite synthesis normally proceeds under basic conditions that allow the oxide bridges between aluminum and silicon atoms to break and reform. Feng et al.... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1188 |
SubjectTerms | Aluminum Anions Crystallization Fentons reagent Free radicals Hydroxyl radicals Irradiation Minerals Ultraviolet radiation Zeolites |
Title | Accelerated crystallization of zeolites via hydroxyl free radicals |
URI | https://www.jstor.org/stable/24743189 https://www.ncbi.nlm.nih.gov/pubmed/26965626 https://www.proquest.com/docview/1772228390 https://www.proquest.com/docview/1772833837 |
Volume | 351 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jLoIv4q6ujq4SwYeV0iFN2jR9nFHXRVB82MX1qeRWFIaOzEyF2b_in_WkSTvdZQdWX0pJ01D6nZxL8uUchN4kmSFKQHTCVZXHqWY2VsSymKdE61RQJQp3UPjzF352kX66zC5Hoz8D1lKzVhN9deu5kv9BFdoAV3dK9h-Q7QeFBrgHfOEKCMP1ThhPtQar4ZI9mEgvN-DozefhXKVzAq-sI7fZVfT7p4x-bIxjrMyjamlttJTt_sxq6Jt20xx8zn4fZ4BeT0icetpAxyIIrw2WFOAftQrkYwMxb7CMLYMgtH-128bvfgH2m62rpl8acFkVpOeRON6NsdcWJxLu2FlBeQaFG_Ide3PjdSxx5SEpYUMlzLJkIG2c-ro-QatCECQGFtrlpLtd-w_qVdqJlJXbc90aum5z_4b961mJbTxEeRkGKMMA99A-hRgElOj-dPZ-drozp3PIHDU4k9V9wzWnx_Ned0c0rWdz_gg9DCEJnnr5OkAjWx-i-75I6eYQHQSAV_gk5Ch_-xjNBqKHb4geXlS4Ez0Mooc70cNO9HAnek_QxemH83dncSjHEeu0SNaxzvOk0pxxwa3LEimISg2v0pxLk4EXqGxBjWLS0JxIyYwg1FgiNTGZyohU7Ajt1YvaPkOYE1YYnklhC5UWqnKVa1mlaCYSbYlmYzTp_lepQ656VzJlXu7AaIxO-hd--TQtu7setQD0_WjqvGgBD447RMowyVdlAsi7DFEFGaPX_WNQwW5fTdZ20fg-ol3qGaOnHsnt4LyAiIny53f_wBfowXYqHaO99bKxL8HzXatXQQL_An2Osi8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+crystallization+of+zeolites+via+hydroxyl+free+radicals&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Feng%2C+Guodong&rft.au=Cheng%2C+Peng&rft.au=Yan%2C+Wenfu&rft.au=Boronat%2C+Mercedes&rft.date=2016-03-11&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=351&rft.issue=6278&rft.spage=1188&rft.epage=1191&rft_id=info:doi/10.1126%2Fscience.aaf1559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aaf1559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |