Accelerated crystallization of zeolites via hydroxyl free radicals

In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH⁻) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,AI–O–Si,AI bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,AI–O...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 351; no. 6278; pp. 1188 - 1191
Main Authors Feng, Guodong, Cheng, Peng, Yan, Wenfu, Boronat, Mercedes, Li, Xu, Su, Ji-Hu, Wang, Jianyu, Li, Yi, Corma, Avelino, Xu, Ruren, Yu, Jihong
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 11.03.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH⁻) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,AI–O–Si,AI bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,AI–O–Si,AI bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites—such as Na–A, Na–X, NaZ–21, and silicalite-1—can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent.
AbstractList In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent.In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent.
Zeolite synthesis normally proceeds under basic conditions that allow the oxide bridges between aluminum and silicon atoms to break and reform. Feng et al. show that the formation of hydroxyl radicals, either by irradiation with ultraviolet light or with the Fenton reagent, can speed up the formation of the crystallized zeolite by about a factor of 2. Science, this issue p. 1188 In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH-) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (*OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites--such as Na-A, Na-X, NaZ-21, and silicalite-1--can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent.
In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH⁻) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,AI–O–Si,AI bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,AI–O–Si,AI bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites—such as Na–A, Na–X, NaZ–21, and silicalite-1—can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent.
In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent.
Zeolite synthesis normally proceeds under basic conditions that allow the oxide bridges between aluminum and silicon atoms to break and reform. Feng et al. show that the formation of hydroxyl radicals, either by irradiation with ultraviolet light or with the Fenton reagent, can speed up the formation of the crystallized zeolite by about a factor of 2. Science , this issue p. 1188 Hydroxyl radicals generated with ultraviolet light or Fenton reagents can approximately double the rate of zeolite synthesis. In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH – ) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al–O–Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al–O–Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites—such as Na–A, Na–X, NaZ–21, and silicalite-1—can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton’s reagent.
Author Xu, Ruren
Li, Xu
Corma, Avelino
Yu, Jihong
Feng, Guodong
Cheng, Peng
Wang, Jianyu
Yan, Wenfu
Su, Ji-Hu
Li, Yi
Boronat, Mercedes
Author_xml – sequence: 1
  givenname: Guodong
  surname: Feng
  fullname: Feng, Guodong
– sequence: 2
  givenname: Peng
  surname: Cheng
  fullname: Cheng, Peng
– sequence: 3
  givenname: Wenfu
  surname: Yan
  fullname: Yan, Wenfu
– sequence: 4
  givenname: Mercedes
  surname: Boronat
  fullname: Boronat, Mercedes
– sequence: 5
  givenname: Xu
  surname: Li
  fullname: Li, Xu
– sequence: 6
  givenname: Ji-Hu
  surname: Su
  fullname: Su, Ji-Hu
– sequence: 7
  givenname: Jianyu
  surname: Wang
  fullname: Wang, Jianyu
– sequence: 8
  givenname: Yi
  surname: Li
  fullname: Li, Yi
– sequence: 9
  givenname: Avelino
  surname: Corma
  fullname: Corma, Avelino
– sequence: 10
  givenname: Ruren
  surname: Xu
  fullname: Xu, Ruren
– sequence: 11
  givenname: Jihong
  surname: Yu
  fullname: Yu, Jihong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26965626$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtv2zAUhYnAQeM85k4tBGTpooQPkRRH10jbAAGyJLNwRV6hNGQxJekizq8vY7spkKHTGe53Lg6-UzKbwoSEfGT0ijGurpP1OFm8AhiYlOaIzBk1sjacihmZUypU3VItT8hpSitKy82ID-SEK6Ok4mpOvi6sxREjZHSVjduUYRz9C2QfpioM1QuG0WdM1W8P1c-ti-F5O1ZDRKwiOG9hTOfkeCiBF4c8I4_fbh6WP-q7---3y8VdbRvDcm21ZoNVQrUKGy1NS_vGqaHRCpyUnPVouOsFOK4pgHAt5Q4pWOpkLyn04ox82f99iuHXBlPu1j6V8SNMGDapY1rzVohW6IJevkNXYROnsm5H8cIZWqjPB2rTr9F1T9GvIW67v3YKcL0HbAwpRRzeEEa7V__dwX938F8a8l3D-ryTmSP48T-9T_veKuUQ_y1pdCNYa8QfGBaWTQ
CODEN SCIEAS
CitedBy_id crossref_primary_10_1016_j_jelechem_2023_117828
crossref_primary_10_1016_j_jssc_2022_123016
crossref_primary_10_1016_j_micromeso_2017_02_030
crossref_primary_10_1016_j_cattod_2018_12_045
crossref_primary_10_1038_srep31840
crossref_primary_10_1016_j_nantod_2024_102244
crossref_primary_10_1038_s41467_022_29107_9
crossref_primary_10_1073_pnas_1819382116
crossref_primary_10_1051_matecconf_201823802003
crossref_primary_10_6023_A22100442
crossref_primary_10_1016_j_apcatb_2020_119480
crossref_primary_10_1016_j_micromeso_2022_111922
crossref_primary_10_1039_D0SC04603E
crossref_primary_10_1016_j_jwpe_2020_101799
crossref_primary_10_1016_j_wasman_2025_02_026
crossref_primary_10_1002_chem_201805972
crossref_primary_10_1002_ange_202009648
crossref_primary_10_1021_acsnano_1c10663
crossref_primary_10_1016_j_fuel_2025_135120
crossref_primary_10_1016_j_matlet_2016_08_001
crossref_primary_10_1016_j_jclepro_2022_134671
crossref_primary_10_1039_C9CY01338E
crossref_primary_10_1016_j_cej_2021_132757
crossref_primary_10_1002_anie_202103766
crossref_primary_10_1021_acs_iecr_1c03875
crossref_primary_10_1016_j_fuel_2024_133221
crossref_primary_10_1002_anie_201603182
crossref_primary_10_1016_j_apcata_2022_118963
crossref_primary_10_1016_j_fuel_2022_126141
crossref_primary_10_1016_j_cej_2018_08_201
crossref_primary_10_1002_ange_202005715
crossref_primary_10_3389_fmats_2019_00106
crossref_primary_10_1016_j_watres_2021_117600
crossref_primary_10_1002_smll_201805504
crossref_primary_10_1007_s40242_017_7131_9
crossref_primary_10_1021_acs_jpclett_3c02268
crossref_primary_10_1002_anie_202200406
crossref_primary_10_1021_acs_chemmater_2c03551
crossref_primary_10_1039_C7TA01364G
crossref_primary_10_1039_D0NJ03346D
crossref_primary_10_1016_j_jphotochem_2017_09_015
crossref_primary_10_1016_j_chempr_2018_03_002
crossref_primary_10_1002_chem_202302931
crossref_primary_10_1016_j_ces_2022_118072
crossref_primary_10_1021_acs_est_0c04694
crossref_primary_10_1016_j_foodchem_2024_140241
crossref_primary_10_2139_ssrn_4053386
crossref_primary_10_1016_j_apcatb_2023_123217
crossref_primary_10_1016_j_inoche_2023_110576
crossref_primary_10_1021_acs_jpcc_4c03406
crossref_primary_10_1016_j_foodres_2024_114372
crossref_primary_10_1002_jctb_5501
crossref_primary_10_3390_catal15020188
crossref_primary_10_1016_j_micromeso_2019_02_017
crossref_primary_10_1073_pnas_2316352121
crossref_primary_10_1016_j_cej_2019_122759
crossref_primary_10_1016_j_cjche_2020_02_027
crossref_primary_10_1039_C7TA01583F
crossref_primary_10_1016_j_jcrysgro_2018_11_004
crossref_primary_10_1016_j_memsci_2024_123629
crossref_primary_10_3390_min10050391
crossref_primary_10_2139_ssrn_4199439
crossref_primary_10_1016_j_ces_2024_120123
crossref_primary_10_1016_j_cej_2021_131682
crossref_primary_10_1039_D3DT03770C
crossref_primary_10_1016_j_microc_2024_110726
crossref_primary_10_1039_D3RE00112A
crossref_primary_10_1016_j_foodchem_2024_141441
crossref_primary_10_1016_j_jhazmat_2024_136856
crossref_primary_10_1016_j_seppur_2024_127144
crossref_primary_10_1039_C8RA07880G
crossref_primary_10_1016_j_micromeso_2017_10_029
crossref_primary_10_1039_C6CC08892A
crossref_primary_10_1039_C9CY01329F
crossref_primary_10_1016_j_micromeso_2021_111652
crossref_primary_10_1016_j_micromeso_2022_112368
crossref_primary_10_1016_j_micromeso_2022_112260
crossref_primary_10_1039_D2SC06010H
crossref_primary_10_1016_j_cej_2021_129813
crossref_primary_10_1590_s1678_86212023000300683
crossref_primary_10_1016_j_enconman_2020_113717
crossref_primary_10_1016_j_cej_2016_08_096
crossref_primary_10_1016_j_chemosphere_2020_127316
crossref_primary_10_1016_j_chemosphere_2020_128648
crossref_primary_10_1002_adfm_201802088
crossref_primary_10_1002_smll_201904210
crossref_primary_10_1093_pnasnexus_pgae015
crossref_primary_10_2139_ssrn_4161505
crossref_primary_10_1016_j_watres_2019_04_045
crossref_primary_10_1016_j_jclepro_2021_128632
crossref_primary_10_1021_acssensors_4c02378
crossref_primary_10_1039_D4RE00556B
crossref_primary_10_1016_j_micromeso_2020_110633
crossref_primary_10_1016_j_ijhydene_2024_04_313
crossref_primary_10_1039_D0CE01858A
crossref_primary_10_1016_j_electacta_2017_06_097
crossref_primary_10_1039_D2GC00082B
crossref_primary_10_1016_j_jcis_2020_05_086
crossref_primary_10_1039_D1QI01492G
crossref_primary_10_1039_D4CY00841C
crossref_primary_10_1021_acsnano_8b02625
crossref_primary_10_1039_D2TC05447G
crossref_primary_10_1016_j_chempr_2017_10_009
crossref_primary_10_1039_C8TA07879C
crossref_primary_10_1021_acs_chemrev_2c00140
crossref_primary_10_1002_ange_202011821
crossref_primary_10_1021_acs_cgd_1c01382
crossref_primary_10_1038_s41467_021_25561_z
crossref_primary_10_1016_j_micromeso_2022_111858
crossref_primary_10_1016_j_seppur_2020_116516
crossref_primary_10_1021_acs_iecr_9b05751
crossref_primary_10_1016_j_apcata_2024_119730
crossref_primary_10_1039_D4CS00148F
crossref_primary_10_1021_jacs_8b10235
crossref_primary_10_1016_j_gee_2021_03_006
crossref_primary_10_1039_C8QI00939B
crossref_primary_10_1016_j_micromeso_2022_111970
crossref_primary_10_1021_acssuschemeng_0c09240
crossref_primary_10_1007_s11356_023_29512_7
crossref_primary_10_1016_j_apsusc_2022_152655
crossref_primary_10_1016_j_cej_2019_123267
crossref_primary_10_1039_C9NJ03560E
crossref_primary_10_1021_jacs_3c04031
crossref_primary_10_1002_adma_202110653
crossref_primary_10_1016_j_cej_2023_145200
crossref_primary_10_1016_j_eti_2021_101415
crossref_primary_10_1016_j_micromeso_2023_112485
crossref_primary_10_1002_anie_202009648
crossref_primary_10_1038_s41467_024_45106_4
crossref_primary_10_1039_C7TA05649D
crossref_primary_10_1016_j_jece_2024_115263
crossref_primary_10_1021_acs_iecr_3c02395
crossref_primary_10_1007_s10934_023_01550_z
crossref_primary_10_1039_C8RA08511K
crossref_primary_10_1016_j_cej_2021_131598
crossref_primary_10_1021_acs_chemrev_3c00801
crossref_primary_10_1007_s10853_020_05659_3
crossref_primary_10_1093_nsr_nwac045
crossref_primary_10_1002_adsu_202400496
crossref_primary_10_1002_ange_202401060
crossref_primary_10_1039_D3CS01026K
crossref_primary_10_1016_j_jcat_2022_12_022
crossref_primary_10_1016_j_apmate_2022_100058
crossref_primary_10_1021_acs_est_8b02403
crossref_primary_10_1021_acsami_4c01774
crossref_primary_10_1016_j_apcatb_2024_124820
crossref_primary_10_1038_s41598_019_51460_x
crossref_primary_10_1039_C8TA09921A
crossref_primary_10_1016_j_cej_2023_143136
crossref_primary_10_1016_j_chemosphere_2019_124739
crossref_primary_10_1002_cssc_201800047
crossref_primary_10_1016_j_cej_2024_151733
crossref_primary_10_1021_jacs_3c00258
crossref_primary_10_1002_anie_201906559
crossref_primary_10_1002_anie_202401060
crossref_primary_10_1016_j_psep_2022_03_076
crossref_primary_10_1007_s12274_022_5237_y
crossref_primary_10_1002_anie_202005715
crossref_primary_10_1002_adma_201800718
crossref_primary_10_1021_acs_est_3c03406
crossref_primary_10_1002_ange_201906559
crossref_primary_10_1007_s11665_024_09781_0
crossref_primary_10_1039_D2SC06389A
crossref_primary_10_1039_D2GC00869F
crossref_primary_10_1039_D4TA08473J
crossref_primary_10_1007_s11144_021_02105_6
crossref_primary_10_1002_ange_202103766
crossref_primary_10_1039_C7CC05552H
crossref_primary_10_1002_anie_202011821
crossref_primary_10_1039_C7TB01064H
crossref_primary_10_1007_s12274_021_3838_5
crossref_primary_10_1016_j_jhazmat_2019_120758
crossref_primary_10_1016_j_micromeso_2019_109679
crossref_primary_10_1021_acs_chemmater_3c00552
crossref_primary_10_1002_advs_202204079
crossref_primary_10_1016_j_biteb_2024_101867
crossref_primary_10_1016_j_electacta_2019_03_114
crossref_primary_10_1039_C7CY00283A
crossref_primary_10_1021_acsmaterialslett_3c01511
crossref_primary_10_1016_j_jclepro_2021_128682
crossref_primary_10_1016_j_jmrt_2022_02_013
crossref_primary_10_1016_j_micromeso_2020_110437
crossref_primary_10_1002_aenm_202400766
crossref_primary_10_1007_s41981_022_00217_1
crossref_primary_10_1016_j_cej_2017_05_113
crossref_primary_10_1016_j_micromeso_2021_111248
crossref_primary_10_1016_j_molp_2019_08_001
crossref_primary_10_1021_acs_langmuir_2c01860
crossref_primary_10_1039_C8TA08930B
crossref_primary_10_1002_cctc_202000116
crossref_primary_10_1016_j_micromeso_2022_112071
crossref_primary_10_1002_adma_201803966
crossref_primary_10_1016_S1872_5813_20_30068_2
crossref_primary_10_1016_j_cattod_2018_05_018
crossref_primary_10_1016_j_ultsonch_2019_104703
crossref_primary_10_2139_ssrn_3990725
crossref_primary_10_1021_jacs_0c03941
crossref_primary_10_1016_j_colsurfa_2020_124803
crossref_primary_10_1016_j_watres_2023_120735
crossref_primary_10_1016_j_cej_2025_160714
crossref_primary_10_1016_j_solidstatesciences_2019_03_016
crossref_primary_10_3390_cryst10090813
crossref_primary_10_1002_pc_24490
crossref_primary_10_1021_jacs_0c05913
crossref_primary_10_1016_j_apcata_2020_117907
crossref_primary_10_1016_j_jhazmat_2018_07_007
crossref_primary_10_1039_C8TB00328A
crossref_primary_10_1016_j_ultsonch_2022_105909
crossref_primary_10_3390_catal9030257
crossref_primary_10_1016_j_micromeso_2022_111771
crossref_primary_10_1039_D4RE00115J
crossref_primary_10_1038_s41578_021_00347_3
crossref_primary_10_1016_j_mtcomm_2024_110418
crossref_primary_10_1021_acs_est_2c03595
crossref_primary_10_1039_D2SC02823A
crossref_primary_10_1021_acsanm_2c05085
crossref_primary_10_1021_acs_chemrev_2c00076
crossref_primary_10_1016_j_scitotenv_2021_148685
crossref_primary_10_1016_j_jenvman_2024_120342
crossref_primary_10_1016_j_msec_2019_110430
crossref_primary_10_1016_j_jclepro_2021_127248
crossref_primary_10_1016_j_watres_2023_120826
crossref_primary_10_1016_j_jece_2024_112511
crossref_primary_10_3390_nano13162296
crossref_primary_10_1007_s11144_018_1465_2
crossref_primary_10_1039_C8CY00550H
crossref_primary_10_1039_C8SC01434E
crossref_primary_10_1002_anie_202002886
crossref_primary_10_1016_j_ces_2023_119123
crossref_primary_10_1109_TIM_2019_2910921
crossref_primary_10_1016_j_jcat_2019_07_028
crossref_primary_10_1002_smll_202207385
crossref_primary_10_1039_C6CS00917D
crossref_primary_10_1007_s10853_018_3178_3
crossref_primary_10_1016_j_surfin_2024_105614
crossref_primary_10_1021_acscatal_4c00323
crossref_primary_10_1016_j_micromeso_2019_109640
crossref_primary_10_1016_j_apcatb_2021_120946
crossref_primary_10_1016_j_chempr_2024_10_025
crossref_primary_10_1016_j_cej_2017_06_059
crossref_primary_10_1039_D2CC00190J
crossref_primary_10_1002_chem_202000244
crossref_primary_10_1016_j_cej_2022_137551
crossref_primary_10_1038_s41467_021_21076_9
crossref_primary_10_1109_TED_2021_3077207
crossref_primary_10_1016_j_jece_2022_107479
crossref_primary_10_1021_acs_jpcc_4c03138
crossref_primary_10_1016_j_micromeso_2017_04_035
crossref_primary_10_1039_C8EW00641E
crossref_primary_10_1021_acs_iecr_1c02134
crossref_primary_10_1021_acs_iecr_1c03586
crossref_primary_10_1016_j_micromeso_2020_110780
crossref_primary_10_1039_C8CC09225G
crossref_primary_10_1039_D1DT01440D
crossref_primary_10_1021_acs_est_8b00499
crossref_primary_10_1021_jacs_4c11726
crossref_primary_10_1016_j_cattod_2018_02_058
crossref_primary_10_1021_jacs_9b04569
crossref_primary_10_1016_j_conbuildmat_2019_05_050
crossref_primary_10_1007_s11270_023_06601_4
crossref_primary_10_1039_C7CE01827D
crossref_primary_10_2139_ssrn_4199440
crossref_primary_10_1016_j_matchemphys_2019_122322
crossref_primary_10_1021_acs_jpcc_0c04315
crossref_primary_10_1021_jacs_8b00093
crossref_primary_10_1021_acs_langmuir_2c02070
crossref_primary_10_1016_j_memsci_2023_122208
crossref_primary_10_1002_ange_201603182
crossref_primary_10_1016_j_jallcom_2024_178090
crossref_primary_10_1016_j_cej_2019_121918
crossref_primary_10_1021_acssuschemeng_4c06579
crossref_primary_10_1016_j_fuel_2023_130715
crossref_primary_10_1360_SSC_2024_0256
crossref_primary_10_1007_s12274_023_5938_x
crossref_primary_10_1021_acscatal_0c04651
crossref_primary_10_1002_ppap_201900265
crossref_primary_10_1039_C8QI00441B
crossref_primary_10_1039_C7SC02956J
crossref_primary_10_1021_acsomega_1c00801
crossref_primary_10_1002_ange_202200406
crossref_primary_10_1039_C8NR07337F
crossref_primary_10_1038_s41467_023_43040_5
crossref_primary_10_1016_j_micromeso_2020_110247
crossref_primary_10_1039_C8RA09752F
crossref_primary_10_1021_acs_nanolett_3c01532
crossref_primary_10_1016_j_cej_2017_02_058
crossref_primary_10_1039_C9CY02419K
crossref_primary_10_1002_ange_202002886
crossref_primary_10_1016_j_cclet_2017_04_010
crossref_primary_10_1039_C9RA04842A
crossref_primary_10_1126_sciadv_1603171
crossref_primary_10_1002_ange_201805759
crossref_primary_10_1021_acsnano_4c15900
crossref_primary_10_1016_j_fuel_2024_131892
crossref_primary_10_1039_D2TC04730F
crossref_primary_10_1016_j_micromeso_2021_110983
crossref_primary_10_1021_acs_inorgchem_2c01571
crossref_primary_10_1016_j_cattod_2024_114703
crossref_primary_10_1021_acs_estlett_8b00402
crossref_primary_10_1080_02603594_2022_2138864
crossref_primary_10_1016_j_watres_2017_08_033
crossref_primary_10_1134_S1070427222070059
crossref_primary_10_1016_j_jssc_2022_123832
crossref_primary_10_1039_D2TA04485D
crossref_primary_10_1021_acs_est_0c00218
crossref_primary_10_6023_A22100420
crossref_primary_10_1088_1742_6596_2539_1_012053
crossref_primary_10_1016_j_seppur_2024_128047
crossref_primary_10_1016_j_micromeso_2020_110451
crossref_primary_10_1038_s41467_021_27640_7
crossref_primary_10_1016_j_watres_2020_115517
crossref_primary_10_1063_1_5119333
crossref_primary_10_1016_j_micromeso_2017_05_036
crossref_primary_10_1002_solr_202000638
crossref_primary_10_1021_acsnano_1c08605
crossref_primary_10_1039_D1CS00395J
crossref_primary_10_1002_adma_202301166
crossref_primary_10_1002_anie_201805759
crossref_primary_10_1016_j_matchemphys_2022_126235
crossref_primary_10_1149_2_0701805jes
crossref_primary_10_1021_acsami_1c15226
crossref_primary_10_1021_acsami_2c19243
crossref_primary_10_1007_s12015_022_10421_0
crossref_primary_10_1021_acs_chemmater_9b04741
crossref_primary_10_1021_acs_chemmater_1c00779
crossref_primary_10_1038_srep39561
crossref_primary_10_1016_j_jcrysgro_2018_04_013
crossref_primary_10_1021_jacsau_4c01115
crossref_primary_10_1021_jacs_3c14487
crossref_primary_10_1021_acssuschemeng_8b01552
crossref_primary_10_1039_C9SC06143F
crossref_primary_10_1016_j_cej_2017_12_132
crossref_primary_10_1002_chem_202000448
crossref_primary_10_1021_acs_chemmater_6b03688
crossref_primary_10_1021_acs_jpcc_0c02578
crossref_primary_10_1016_j_micromeso_2023_112744
crossref_primary_10_1039_D1QI01540K
crossref_primary_10_1002_chem_201801185
crossref_primary_10_1016_j_micromeso_2022_112321
crossref_primary_10_1021_acs_chemrev_2c00315
crossref_primary_10_1016_j_inoche_2019_107462
crossref_primary_10_1016_S1872_2067_24_60160_9
crossref_primary_10_1007_s10934_022_01227_z
crossref_primary_10_3390_catal12030301
Cites_doi 10.1016/0022-3093(91)90130-X
10.1063/1.464913
10.1002/9783527630295
10.1002/anie.200702986
10.1021/cr0682047
10.1126/science.1250984
10.1021/cr020060i
10.1063/1.460447
10.1016/j.micromeso.2005.02.016
10.1093/oso/9780198502418.001.0001
10.1016/S0022-3093(87)80047-9
10.1021/cr500010r
10.1016/B978-008044288-4/50028-5
10.1016/0016-7037(96)00101-9
10.1021/ct700248k
10.1021/ja304907c
10.1021/jp010752v
10.1016/S0891-5849(87)80033-3
10.1039/c3cc42732c
ContentType Journal Article
Copyright Copyright © 2016 American Association for the Advancement of Science
Copyright © 2016, American Association for the Advancement of Science.
Copyright © 2016, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2016 American Association for the Advancement of Science
– notice: Copyright © 2016, American Association for the Advancement of Science.
– notice: Copyright © 2016, American Association for the Advancement of Science
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aaf1559
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1191
ExternalDocumentID 3980404061
26965626
10_1126_science_aaf1559
24743189
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c491t-c771fc63686e475980b4d6f476ad5521be92db3ad270aa3d802de0ac0d5b50ab3
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 11:16:42 EDT 2025
Fri Jul 25 09:44:18 EDT 2025
Mon Jul 21 06:04:44 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Tue Jul 01 00:37:14 EDT 2025
Thu Jul 03 22:17:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6278
Language English
License http://www.sciencemag.org/about/science-licenses-journal-article-reuse
Copyright © 2016, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c491t-c771fc63686e475980b4d6f476ad5521be92db3ad270aa3d802de0ac0d5b50ab3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10251/105837
PMID 26965626
PQID 1772228390
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_1772833837
proquest_journals_1772228390
pubmed_primary_26965626
crossref_primary_10_1126_science_aaf1559
crossref_citationtrail_10_1126_science_aaf1559
jstor_primary_24743189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-11
PublicationDateYYYYMMDD 2016-03-11
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_21_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_22_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_23_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_17_2
  doi: 10.1016/0022-3093(91)90130-X
– ident: e_1_3_2_21_2
  doi: 10.1063/1.464913
– ident: e_1_3_2_3_2
  doi: 10.1002/9783527630295
– ident: e_1_3_2_18_2
  doi: 10.1002/anie.200702986
– ident: e_1_3_2_12_2
  doi: 10.1021/cr0682047
– ident: e_1_3_2_14_2
– ident: e_1_3_2_20_2
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1250984
– ident: e_1_3_2_4_2
  doi: 10.1021/cr020060i
– ident: e_1_3_2_22_2
  doi: 10.1063/1.460447
– ident: e_1_3_2_5_2
  doi: 10.1016/j.micromeso.2005.02.016
– ident: e_1_3_2_10_2
  doi: 10.1093/oso/9780198502418.001.0001
– ident: e_1_3_2_15_2
  doi: 10.1016/S0022-3093(87)80047-9
– ident: e_1_3_2_2_2
  doi: 10.1021/cr500010r
– ident: e_1_3_2_11_2
  doi: 10.1016/B978-008044288-4/50028-5
– ident: e_1_3_2_8_2
  doi: 10.1016/0016-7037(96)00101-9
– ident: e_1_3_2_23_2
  doi: 10.1021/ct700248k
– ident: e_1_3_2_7_2
– ident: e_1_3_2_16_2
  doi: 10.1021/ja304907c
– ident: e_1_3_2_9_2
  doi: 10.1021/jp010752v
– ident: e_1_3_2_13_2
  doi: 10.1016/S0891-5849(87)80033-3
– ident: e_1_3_2_19_2
  doi: 10.1039/c3cc42732c
SSID ssj0009593
Score 2.6312685
Snippet In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH⁻) catalyze the depolymerization of the aluminosilicate gel by breaking the...
Zeolite synthesis normally proceeds under basic conditions that allow the oxide bridges between aluminum and silicon atoms to break and reform. Feng et al....
In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking...
Zeolite synthesis normally proceeds under basic conditions that allow the oxide bridges between aluminum and silicon atoms to break and reform. Feng et al....
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1188
SubjectTerms Aluminum
Anions
Crystallization
Fentons reagent
Free radicals
Hydroxyl radicals
Irradiation
Minerals
Ultraviolet radiation
Zeolites
Title Accelerated crystallization of zeolites via hydroxyl free radicals
URI https://www.jstor.org/stable/24743189
https://www.ncbi.nlm.nih.gov/pubmed/26965626
https://www.proquest.com/docview/1772228390
https://www.proquest.com/docview/1772833837
Volume 351
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jLoIv4q6ujq4SwYeV0iFN2jR9nFHXRVB82MX1qeRWFIaOzEyF2b_in_WkSTvdZQdWX0pJ01D6nZxL8uUchN4kmSFKQHTCVZXHqWY2VsSymKdE61RQJQp3UPjzF352kX66zC5Hoz8D1lKzVhN9deu5kv9BFdoAV3dK9h-Q7QeFBrgHfOEKCMP1ThhPtQar4ZI9mEgvN-DozefhXKVzAq-sI7fZVfT7p4x-bIxjrMyjamlttJTt_sxq6Jt20xx8zn4fZ4BeT0icetpAxyIIrw2WFOAftQrkYwMxb7CMLYMgtH-128bvfgH2m62rpl8acFkVpOeRON6NsdcWJxLu2FlBeQaFG_Ide3PjdSxx5SEpYUMlzLJkIG2c-ro-QatCECQGFtrlpLtd-w_qVdqJlJXbc90aum5z_4b961mJbTxEeRkGKMMA99A-hRgElOj-dPZ-drozp3PIHDU4k9V9wzWnx_Ned0c0rWdz_gg9DCEJnnr5OkAjWx-i-75I6eYQHQSAV_gk5Ch_-xjNBqKHb4geXlS4Ez0Mooc70cNO9HAnek_QxemH83dncSjHEeu0SNaxzvOk0pxxwa3LEimISg2v0pxLk4EXqGxBjWLS0JxIyYwg1FgiNTGZyohU7Ajt1YvaPkOYE1YYnklhC5UWqnKVa1mlaCYSbYlmYzTp_lepQ656VzJlXu7AaIxO-hd--TQtu7setQD0_WjqvGgBD447RMowyVdlAsi7DFEFGaPX_WNQwW5fTdZ20fg-ol3qGaOnHsnt4LyAiIny53f_wBfowXYqHaO99bKxL8HzXatXQQL_An2Osi8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+crystallization+of+zeolites+via+hydroxyl+free+radicals&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Feng%2C+Guodong&rft.au=Cheng%2C+Peng&rft.au=Yan%2C+Wenfu&rft.au=Boronat%2C+Mercedes&rft.date=2016-03-11&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=351&rft.issue=6278&rft.spage=1188&rft.epage=1191&rft_id=info:doi/10.1126%2Fscience.aaf1559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aaf1559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon