Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus

Abstract As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvatio...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 36; no. 5; pp. 1504 - 1523
Main Authors Yang, Shu-Yi, Lin, Wei-Yi, Hsiao, Yi-Min, Chiou, Tzyy-Jen
Format Journal Article
LanguageEnglish
Published US Oxford University Press 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture. This article reviews the molecular mechanisms of phosphorus transport, sensing and signaling; and highlights recent findings about the impact of phosphorus on plant-microbe interactions.
AbstractList As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
Abstract As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture. This article reviews the molecular mechanisms of phosphorus transport, sensing and signaling; and highlights recent findings about the impact of phosphorus on plant-microbe interactions.
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture. This article reviews the molecular mechanisms of phosphorus transport, sensing and signaling; and highlights recent findings about the impact of phosphorus on plant-microbe interactions.
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
Author Chiou, Tzyy-Jen
Hsiao, Yi-Min
Lin, Wei-Yi
Yang, Shu-Yi
Author_xml – sequence: 1
  givenname: Shu-Yi
  orcidid: 0000-0001-9113-049X
  surname: Yang
  fullname: Yang, Shu-Yi
– sequence: 2
  givenname: Wei-Yi
  orcidid: 0000-0003-1040-6007
  surname: Lin
  fullname: Lin, Wei-Yi
– sequence: 3
  givenname: Yi-Min
  orcidid: 0009-0006-9531-4660
  surname: Hsiao
  fullname: Hsiao, Yi-Min
– sequence: 4
  givenname: Tzyy-Jen
  orcidid: 0000-0001-5953-4144
  surname: Chiou
  fullname: Chiou, Tzyy-Jen
  email: tjchiou@gate.sinica.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38163641$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtrGzEQFiElr_baY9AxgWwyeqy8OoVg-oKUXhLoqULWam0lsrSRtIX--8rYDW0h5CA0zHyPYb5jtB9isAi9J3BJQLKr0Rvr_dVj1D2jYg8dkZbRhsru-36tgUPDRUsO0XHODwBAZkQeoEPWEcEEJ0fox1fnbS5VNGMX8BR6m3LRoXdhiUvSIY8xlQucbci1dYHrCGe3DNpvEHHAZWXx6HUoOEwlOVuLcRVzfWnKb9GbQfts3-3-E3T_8cPd_HNz--3Tl_nNbWO4JKVZdDMqadu3XddJS41cCCBSUgPCcCH0wMWi7zkfjBGWGTkQCTOgA2sHKzom2Qm63uqO02Jte1O3SNqrMbm1Tr9U1E79OwlupZbxpyIEBOUcqsLZTiHFp6meRK1d3txWBxunrKgECV0LnFfo6d9mzy5_rloBl1uASTHnZIdnCAG1iU1tY1O72CqB_0cwruji4mZZ51-mnW9pcRpfs_gNxjewJA
CitedBy_id crossref_primary_10_1093_plphys_kiae141
crossref_primary_10_3390_ijms26062681
crossref_primary_10_3390_plants13213046
crossref_primary_10_1016_j_jia_2024_06_012
crossref_primary_10_1093_plcell_koae076
crossref_primary_10_1007_s11103_024_01496_z
crossref_primary_10_1111_pce_15400
crossref_primary_10_1016_j_plantsci_2025_112389
crossref_primary_10_1016_j_jgg_2024_09_018
crossref_primary_10_3390_agronomy15030660
crossref_primary_10_1093_plphys_kiae522
crossref_primary_10_1016_j_plaphy_2025_109744
crossref_primary_10_1016_j_plaphy_2025_109653
crossref_primary_10_1038_s41477_024_01895_6
crossref_primary_10_1111_jipb_13827
crossref_primary_10_1111_nph_20203
crossref_primary_10_1126_science_adw1568
crossref_primary_10_1093_plphys_kiae454
crossref_primary_10_1007_s10265_024_01546_z
crossref_primary_10_1111_nph_20266
crossref_primary_10_1016_j_jksus_2024_103485
crossref_primary_10_1021_acs_jafc_4c09230
crossref_primary_10_3389_fpls_2024_1413755
crossref_primary_10_1016_j_envres_2025_121031
crossref_primary_10_1111_pce_15216
crossref_primary_10_1016_j_plantsci_2025_112415
crossref_primary_10_3390_agronomy14061160
crossref_primary_10_3390_horticulturae10121308
crossref_primary_10_1016_j_plantsci_2024_112377
crossref_primary_10_1093_hr_uhae321
crossref_primary_10_1111_pce_15475
crossref_primary_10_3389_fpls_2024_1347922
crossref_primary_10_1111_pbi_14431
crossref_primary_10_1016_j_plantsci_2024_112211
crossref_primary_10_1017_qpb_2025_1
crossref_primary_10_3390_ijms26041780
crossref_primary_10_1016_j_jssas_2024_10_001
Cites_doi 10.1111/plb.12568
10.1016/j.cub.2022.04.005
10.1146/annurev.arplant.52.1.527
10.1038/s41467-022-29275-8
10.1104/pp.010835
10.1111/j.1469-8137.2012.04227.x
10.1111/tpj.12804
10.7554/eLife.43582
10.1016/S1369-5266(03)00035-9
10.3389/fpls.2016.01198
10.1111/tpj.12669
10.1093/mp/ssn081
10.1046/j.0028-646X.2001.00298.x
10.1104/pp.111.175414
10.1105/tpc.002220
10.1104/pp.106.078063
10.1093/pcp/pcaa074
10.1071/S96047
10.1111/j.1365-3040.2005.01405.x
10.1006/anbo.2001.1440
10.1016/j.pbi.2017.04.015
10.1111/j.1365-313X.2008.03726.x
10.1371/journal.pgen.1001102
10.1093/jxb/ery252
10.1146/annurev-arplant-050213-035949
10.1111/j.1365-313X.2008.03696.x
10.1074/jbc.RA118.005884
10.1104/pp.108.116269
10.1007/s10681-015-1572-3
10.1007/s00425-006-0408-8
10.1111/j.1365-313X.2012.05004.x
10.1111/tpj.13974
10.1073/pnas.1404654111
10.1093/pcp/pcab016
10.1023/A:1005729309569
10.1093/plcell/koab206
10.1104/pp.111.175281
10.1111/tpj.13516
10.1111/j.1365-313X.2012.05058.x
10.1111/nph.19182
10.15252/embj.2021109102
10.1021/acschembio.9b00423
10.1104/pp.114.238410
10.1111/pce.12170
10.1073/pnas.0901778106
10.1104/pp.107.111443
10.1093/plphys/kiac521
10.1111/j.1365-313X.2005.02629.x
10.1038/nature11346
10.1105/tpc.113.120311
10.3390/plants12061224
10.1111/nph.14938
10.1104/pp.18.01379
10.1186/s12870-022-03556-2
10.1111/mpp.12916
10.1016/j.cell.2021.09.030
10.1093/jxb/ert444
10.1111/tpj.15520
10.1105/tpc.11.11.2153
10.1104/pp.111.181669
10.1111/tpj.12962
10.1104/pp.108.134700
10.1016/j.devcel.2015.02.007
10.1111/j.1365-313X.2004.02161.x
10.1093/jxb/erz028
10.1111/nph.15200
10.3389/fpls.2018.01432
10.1111/nph.16020
10.1111/j.1469-8137.2010.03556.x
10.1101/gad.204401
10.1105/tpc.17.00738
10.1111/tpj.16441
10.1104/pp.20.00078
10.1038/nature20610
10.1016/j.molp.2021.07.011
10.1146/annurev.arplant.57.032905.105231
10.1093/pcp/pcy148
10.1016/j.molp.2019.08.002
10.1111/j.1365-313X.2004.02289.x
10.1038/ng2041
10.1111/nph.15541
10.1023/A:1012791706800
10.1105/tpc.113.116012
10.1111/pce.12224
10.1104/pp.112.199786
10.1186/s12870-014-0334-z
10.1038/s41598-019-41718-9
10.1074/jbc.M110066200
10.1038/srep29850
10.1016/j.cub.2021.11.063
10.1105/tpc.113.115998
10.1007/s11033-022-07354-9
10.1038/s41477-019-0384-1
10.1016/j.molp.2019.10.002
10.1111/nph.15688
10.1073/pnas.90.11.5118
10.1093/plcell/koac212
10.1105/tpc.105.038943
10.1038/s41477-022-01231-w
10.1016/j.plipres.2012.07.002
10.1104/pp.109.139139
10.1093/plcell/koab010
10.1105/tpc.113.116251
10.1111/nph.18933
10.1104/pp.114.252338
10.1111/pce.14588
10.1038/s41588-021-00855-6
10.1126/science.aba0196
10.1042/BCJ20200423
10.1111/nph.18057
10.1093/jxb/ert431
10.1073/pnas.93.19.10519
10.1073/pnas.1404680111
10.1111/j.1365-313X.2008.03460.x
10.1146/annurev.arplant.50.1.665
10.1046/j.1365-3040.1998.00295.x
10.1038/ncomms11095
10.1111/nph.15155
10.1093/jxb/eru535
10.1038/ncomms15300
10.1093/plphys/kiac030
10.1105/tpc.18.00656
10.1105/tpc.000745
10.1038/ncomms6928
10.1111/j.1365-313X.2010.04375.x
10.1093/jxb/erm157
10.1038/s41467-022-27976-8
10.1093/jxb/erv210
10.3389/fmicb.2021.744094
10.1016/j.cub.2023.03.005
10.1046/j.1365-313X.1994.6050673.x
10.1016/j.cub.2022.08.032
10.1111/tpj.13423
10.1105/tpc.114.135160
10.1073/pnas.1701952114
10.1038/nature07272
10.1111/febs.14846
10.1021/acschembio.7b00026
10.1038/s41467-020-20681-4
10.1111/j.1365-313X.2008.03582.x
10.1007/s11104-018-3787-2
10.1111/tpj.12120
10.1371/journal.pone.0043530
10.1016/j.cub.2017.08.026
10.1126/science.aal2541
10.1101/cshperspect.a034603
10.1007/s00122-002-1051-9
10.1111/nph.15833
10.1104/pp.010396
10.1104/pp.107.1.207
10.1104/pp.111.175240
10.1007/s11104-018-3706-6
10.1038/s41467-022-31555-2
10.1111/tpj.14611
10.1111/j.1469-8137.2012.04167.x
10.1038/nature21417
10.1105/tpc.110.081067
10.1104/pp.109.147280
10.1016/j.molp.2022.09.005
10.1038/s41467-021-27391-5
10.1046/j.1365-313X.2002.01356.x
10.1016/j.plantsci.2019.05.018
10.7554/eLife.32077
10.1104/pp.20.01008
10.1042/BJ20070102
10.3389/fpls.2011.00083
10.1104/pp.18.00234
10.1104/pp.19.01549
10.1111/j.1365-313X.2007.03363.x
10.1046/j.1469-8137.2003.00695.x
10.1104/pp.15.00975
10.1104/pp.97.3.1087
10.1104/pp.106.093971
10.1104/pp.106.079707
10.1038/s41477-018-0334-3
10.1016/j.devcel.2017.05.009
10.1105/tpc.112.096636
10.7554/eLife.87956.3
10.3389/fpls.2017.00509
10.1093/pcp/pci011
10.1111/j.1469-8137.2011.04002.x
10.1104/pp.020007
10.1104/pp.109.149872
10.1111/j.1365-3040.2006.01568.x
10.1093/jxb/eru149
10.1073/pnas.1514598112
10.1074/jbc.M109.030247
10.1105/tpc.105.036640
10.1105/tpc.108.064980
10.1038/ncomms2512
10.1104/pp.19.01209
10.1105/tpc.114.135335
10.1038/ng2079
10.1104/pp.19.01101
10.1105/tpc.114.123208
10.1104/pp.119.1.241
10.1111/j.1365-3040.2007.01734.x
10.1046/j.1365-313x.2000.00893.x
10.1074/jbc.M116.746784
10.1038/nature07271
10.1016/j.molp.2021.09.011
10.1104/pp.107.101691
10.1186/s12870-018-1331-4
10.1016/S1011-1344(01)00144-0
10.1104/pp.110.171736
10.1016/j.cub.2005.10.016
10.1104/pp.110.164640
10.1111/j.1365-3040.1996.tb00386.x
10.1038/embor.2009.105
10.1126/science.aad9858
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/plcell/koad326
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 1523
ExternalDocumentID PMC11062440
38163641
10_1093_plcell_koad326
10.1093/plcell/koad326
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Science and Technology Council in Taiwan
  grantid: MOST 110-2311-B-001 -021 -MY3
– fundername: Taiwan International Graduate Program
– fundername: Academia Sinica
  grantid: AS-GCS-112-L03
– fundername: ;
– fundername: ;
  grantid: AS-GCS-112-L03
– fundername: ;
  grantid: MOST 110-2311-B-001 -021 -MY3; NSTC 112-2311-B-001 -040 -MY3; MOST 111-2311-B-002 -005 -MY3; MOST 111-2313-B-002 -009 -MY3
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
53G
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABDFA
ABEJV
ABGNP
ABIME
ABJNI
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ABZEO
ACBTR
ACFRR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ACVCV
ACZBC
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADYHW
ADYWZ
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFNX
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGCDD
AGMDO
AGUYK
AHMBA
AHXOZ
AICQM
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GTFYD
GX1
H13
HCIFZ
HGD
HMCUK
HTVGU
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
M0K
M1P
M2P
M2Q
M7P
MV1
MVM
N9A
NEJ
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TOX
TR2
U5U
UBC
UKHRP
UKR
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YR2
YSK
ZCA
ZCG
ZCN
~KM
AAYXX
AGORE
AHGBF
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c491t-b872925d58889e2c9b601992c06c466af46bdd44fcc6e3c9f190702f35fe68393
IEDL.DBID TOX
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 18:34:27 EDT 2025
Fri Jul 11 05:46:25 EDT 2025
Fri Aug 01 03:41:30 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Tue Jul 01 03:50:00 EDT 2025
Wed Apr 02 07:04:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-b872925d58889e2c9b601992c06c466af46bdd44fcc6e3c9f190702f35fe68393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Shu-Yi Yang, Wei-Yi Lin and Yi-Min Hsiao contributed equally.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (https://academic.oup.com/plcell/pages/General-Instructions) is: Tzyy-Jen Chiou (tjchiou@gate.sinica.edu.tw).
Conflict of interest statement. None declared.
ORCID 0000-0003-1040-6007
0009-0006-9531-4660
0000-0001-9113-049X
0000-0001-5953-4144
OpenAccessLink https://dx.doi.org/10.1093/plcell/koad326
PMID 38163641
PQID 2909085044
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11062440
proquest_miscellaneous_2909085044
pubmed_primary_38163641
crossref_primary_10_1093_plcell_koad326
crossref_citationtrail_10_1093_plcell_koad326
oup_primary_10_1093_plcell_koad326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: England
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Castrillo (2024050115254790200_koad326-B16) 2017; 543
Dindas (2024050115254790200_koad326-B40) 2022; 32
Riemer (2024050115254790200_koad326-B147) 2021; 14
Wang (2024050115254790200_koad326-B189) 2018; 9
Tang (2024050115254790200_koad326-B166) 2001; 88
Song (2024050115254790200_koad326-B162) 2014; 37
Sakakibara (2024050115254790200_koad326-B153) 2006; 57
Bouain (2024050115254790200_koad326-B12) 2022; 32
Chiou (2024050115254790200_koad326-B27) 2006; 18
Dong (2024050115254790200_koad326-B43) 2019; 9
Chen (2024050115254790200_koad326-B19) 2011; 189
Okazaki (2024050115254790200_koad326-B125) 2013; 4
Wang (2024050115254790200_koad326-B188) 2014; 111
Wang (2024050115254790200_koad326-B190) 2022; 191
Wu (2024050115254790200_koad326-B196) 2019; 70
Chen (2024050115254790200_koad326-B22) 2015; 27
Wang (2024050115254790200_koad326-B187) 2006; 29
Delhaize (2024050115254790200_koad326-B34) 1995; 107
Zhong (2024050115254790200_koad326-B206) 2018; 219
Yang (2024050115254790200_koad326-B203) 2020; 182
Burleigh (2024050115254790200_koad326-B13) 1999; 119
Xing (2024050115254790200_koad326-B198) 2022; 22
Fabiańska (2024050115254790200_koad326-B45) 2019; 286
Lynch (2024050115254790200_koad326-B105) 2011; 156
Neelam (2024050115254790200_koad326-B120) 2017; 8
Robles-Aguilar (2024050115254790200_koad326-B148) 2019; 434
Liao (2024050115254790200_koad326-B87) 2022; 34
Hamburger (2024050115254790200_koad326-B58) 2002; 14
Poirier (2024050115254790200_koad326-B135) 1991; 97
Rubio (2024050115254790200_koad326-B150) 2001; 15
Wang (2024050115254790200_koad326-B186) 2014; 37
Franco-Zorrilla (2024050115254790200_koad326-B46) 2007; 39
Fujii (2024050115254790200_koad326-B47) 2005; 15
Yang (2024050115254790200_koad326-B202) 2017; 68
Gonzalez (2024050115254790200_koad326-B52) 2005; 17
Liu (2024050115254790200_koad326-B97) 2016; 7
Kettenburg (2024050115254790200_koad326-B78) 2023; 46
Yahya (2024050115254790200_koad326-B200) 2021; 12
Aung (2024050115254790200_koad326-B3) 2006; 141
Chiang (2024050115254790200_koad326-B25) 2023; 240
Hu (2024050115254790200_koad326-B64) 2019; 5
Wild (2024050115254790200_koad326-B194) 2016; 352
Pang (2024050115254790200_koad326-B128) 2018; 219
Stegmann (2024050115254790200_koad326-B163) 2017; 355
Bates (2024050115254790200_koad326-B10) 2001; 236
Guo (2024050115254790200_koad326-B56) 2022; 13
Lin (2024050115254790200_koad326-B91) 2014; 65
Vance (2024050115254790200_koad326-B175) 2003; 157
Zhou (2024050115254790200_koad326-B208) 2008; 146
Ding (2024050115254790200_koad326-B41) 2020; 13
Jia (2024050115254790200_koad326-B70) 2011; 156
Sun (2024050115254790200_koad326-B164) 2018; 177
Martín (2024050115254790200_koad326-B107) 2000; 24
Whitfield (2024050115254790200_koad326-B193) 2020; 477
Guo (2024050115254790200_koad326-B55) 2022; 15
Baker (2024050115254790200_koad326-B5) 2015; 66
Chien (2024050115254790200_koad326-B26) 2018; 59
Gutierrez-Alanis (2024050115254790200_koad326-B57) 2017; 41
Lapis-Gaza (2024050115254790200_koad326-B85) 2014; 14
Versaw (2024050115254790200_koad326-B177) 2017; 39
Mora-Macias (2024050115254790200_koad326-B112) 2017; 114
Dasgupta (2024050115254790200_koad326-B33) 2014; 165
Nakamura (2024050115254790200_koad326-B117) 2013; 52
Müller (2024050115254790200_koad326-B115) 2015; 33
Shin (2024050115254790200_koad326-B159) 2006; 45
Liu (2024050115254790200_koad326-B98) 2020; 102
Kohlen (2024050115254790200_koad326-B81) 2011; 155
Shi (2024050115254790200_koad326-B158) 2021; 184
Devaiah (2024050115254790200_koad326-B39) 2007; 145
Campos-Soriano (2024050115254790200_koad326-B15) 2020; 21
Liu (2024050115254790200_koad326-B92) 1997; 33
Puga (2024050115254790200_koad326-B139) 2014; 111
Chiu (2024050115254790200_koad326-B28) 2019; 11
Naumann (2024050115254790200_koad326-B119) 2019; 179
Lin (2024050115254790200_koad326-B88) 2008; 147
Karthikeyan (2024050115254790200_koad326-B76) 2007; 225
Paries (2024050115254790200_koad326-B132) 2023; 239
Park (2024050115254790200_koad326-B133) 2014; 26
Gamuyao (2024050115254790200_koad326-B48) 2012; 488
Chabert (2024050115254790200_koad326-B17) 2023; 12
Vetal (2024050115254790200_koad326-B179) 2023; 116
Balzergue (2024050115254790200_koad326-B6) 2017; 8
Ryan (2024050115254790200_koad326-B151) 2001; 52
Lei (2024050115254790200_koad326-B86) 2011; 156
Ai (2024050115254790200_koad326-B1) 2009; 57
Gomez-Roldan (2024050115254790200_koad326-B51) 2008; 455
Arpat (2024050115254790200_koad326-B2) 2012; 71
Cho (2024050115254790200_koad326-B29) 2023; 33
Che (2024050115254790200_koad326-B18) 2020; 61
Xiao (2024050115254790200_koad326-B197) 2022; 8
Qin (2024050115254790200_koad326-B140) 2012; 159
Ayadi (2024050115254790200_koad326-B4) 2015; 167
Nilsson (2024050115254790200_koad326-B123) 2007; 30
Devaiah (2024050115254790200_koad326-B37) 2007; 143
Nussaume (2024050115254790200_koad326-B124) 2011; 2
Nguyen (2024050115254790200_koad326-B121) 2021; 185
Das (2024050115254790200_koad326-B32) 2022; 13
Nielsen (2024050115254790200_koad326-B122) 1998; 21
Wang (2024050115254790200_koad326-B185) 2019; 439
Ouyang (2024050115254790200_koad326-B127) 2016; 6
Chen (2024050115254790200_koad326-B21) 2019; 221
Valverde (2024050115254790200_koad326-B173) 2002; 153
Liu (2024050115254790200_koad326-B95) 2009; 57
Reis (2024050115254790200_koad326-B143) 2020; 183
Sahu (2024050115254790200_koad326-B152) 2020; 184
Ma (2024050115254790200_koad326-B106) 2021; 53
Bayle (2024050115254790200_koad326-B11) 2011; 23
Plaxton (2024050115254790200_koad326-B134) 2011; 156
Jiang (2024050115254790200_koad326-B72) 2019; 222
Lu (2024050115254790200_koad326-B102) 2020; 184
Chen (2024050115254790200_koad326-B24) 2007; 405
Härtel (2024050115254790200_koad326-B59) 2001; 61
Hürlimann (2024050115254790200_koad326-B67) 2009; 10
Wen (2024050115254790200_koad326-B192) 2019; 223
Hirose (2024050115254790200_koad326-B61) 2007; 59
Zhou (2024050115254790200_koad326-B207) 2021; 12
Wang (2024050115254790200_koad326-B184) 2021; 33
Reis (2024050115254790200_koad326-B142) 2021; 33
Guan (2024050115254790200_koad326-B54) 2022; 13
Ticconi (2024050115254790200_koad326-B171) 2009; 106
Bustos (2024050115254790200_koad326-B14) 2010; 6
Bari (2024050115254790200_koad326-B7) 2006; 141
Ruan (2024050115254790200_koad326-B149) 2018; 30
Dai (2024050115254790200_koad326-B30) 2022; 188
Huen (2024050115254790200_koad326-B66) 2017; 19
Wang (2024050115254790200_koad326-B183) 2020; 183
Gu (2024050115254790200_koad326-B53) 2022; 234
Liu (2024050115254790200_koad326-B94) 2015; 112
Secco (2024050115254790200_koad326-B157) 2012; 193
Heuer (2024050115254790200_koad326-B60) 2017; 90
Huang (2024050115254790200_koad326-B65) 2013; 25
Khan (2024050115254790200_koad326-B79) 2014; 65
Zhu (2024050115254790200_koad326-B210) 2012; 7
Dong (2024050115254790200_koad326-B42) 2019; 12
Svistoonoff (2024050115254790200_koad326-B165) 2007; 39
Wege (2024050115254790200_koad326-B191) 2016; 170
Yamaji (2024050115254790200_koad326-B201) 2017; 541
Taylor (2024050115254790200_koad326-B168) 1993; 90
van de Wiel (2024050115254790200_koad326-B174) 2016; 207
Kuo (2024050115254790200_koad326-B82) 2018; 95
Devaiah (2024050115254790200_koad326-B38) 2009; 2
Gaude (2024050115254790200_koad326-B49) 2008; 56
Karthikeyan (2024050115254790200_koad326-B75) 2002; 130
Kisko (2024050115254790200_koad326-B80) 2018; 7
Sanchez-Calderon (2024050115254790200_koad326-B154) 2005; 46
Prathap (2024050115254790200_koad326-B138) 2022; 49
Młodzińska (2024050115254790200_koad326-B111) 2016; 7
Vogiatzaki (2024050115254790200_koad326-B180) 2017; 27
Bariola (2024050115254790200_koad326-B8) 1994; 6
Potapenko (2024050115254790200_koad326-B137) 2018; 293
Raghothama (2024050115254790200_koad326-B141) 1999; 50
Umehara (2024050115254790200_koad326-B172) 2008; 455
Holford (2024050115254790200_koad326-B62) 1997; 35
Daram (2024050115254790200_koad326-B31) 1999; 11
Gerasimaite (2024050115254790200_koad326-B50) 2017; 12
Reymond (2024050115254790200_koad326-B145) 2006; 29
Oldroyd (2024050115254790200_koad326-B126) 2020; 368
Isidra-Arellano (2024050115254790200_koad326-B68) 2021; 62
Jia (2024050115254790200_koad326-B71) 2018; 69
Medici (2024050115254790200_koad326-B108) 2019; 31
Zhu (2024050115254790200_koad326-B209) 2019; 8
Hsieh (2024050115254790200_koad326-B63) 2009; 151
Sawaki (2024050115254790200_koad326-B155) 2009; 150
Pontigo (2024050115254790200_koad326-B136) 2023; 12
Jabnoune (2024050115254790200_koad326-B69) 2013; 25
Naumann (2024050115254790200_koad326-B118) 2022; 32
Nagy (2024050115254790200_koad326-B116) 2009; 284
Zimmerli (2024050115254790200_koad326-B212) 2012; 72
Remy (2024050115254790200_koad326-B144) 2012; 195
Lin (2024050115254790200_koad326-B90) 2013; 25
Yue (2024050115254790200_koad326-B204) 2017; 90
Chen (2024050115254790200_koad326-B20) 2011; 157
Jiang (2024050115254790200_koad326-B73) 2019; 286
Zhang (2024050115254790200_koad326-B205) 2015; 82
Lv (2024050115254790200_koad326-B104) 2014; 26
Desai (2024050115254790200_koad326-B35) 2014; 80
Pant (2024050115254790200_koad326-B131) 2009; 150
Miyaji (2024050115254790200_koad326-B110) 2015; 6
Bates (2024050115254790200_koad326-B9) 1996; 19
Ried (2024050115254790200_koad326-B146) 2021; 12
Wang (2024050115254790200_koad326-B181) 2012; 196
Silva-Navas (2024050115254790200_koad326-B161) 2019; 224
Liu (2024050115254790200_koad326-B93) 2005; 41
Lota (2024050115254790200_koad326-B101) 2013; 74
Duan (2024050115254790200_koad326-B44) 2008; 54
Kelly (2024050115254790200_koad326-B77) 2002; 266
Muchhal (2024050115254790200_koad326-B113) 1996; 93
Laha (2024050115254790200_koad326-B84) 2019; 14
Mudge (2024050115254790200_koad326-B114) 2002; 31
Thibaud (2024050115254790200_koad326-B169) 2010; 64
Pant (2024050115254790200_koad326-B129) 2008; 53
Laha (2024050115254790200_koad326-B83) 2015; 27
Xu (2024050115254790200_koad326-B199) 2019; 5
Chen (2024050115254790200_koad326-B23) 2009; 21
Luan (2024050115254790200_koad326-B103) 2022; 15
Tang (2024050115254790200_koad326-B167) 2022; 41
Ticconi (2024050115254790200_koad326-B170) 2001; 127
Lin (2024050115254790200_koad326-B89) 2018; 217
Liu (2024050115254790200_koad326-B96) 2012; 24
Varadarajan (2024050115254790200_koad326-B176) 2002; 129
Zhuang (2024050115254790200_koad326-B211) 2021; 108
Desfougères (2024050115254790200_koad326-B36) 2016; 291
López-
References_xml – volume: 19
  start-page: 643
  issue: 4
  year: 2017
  ident: 2024050115254790200_koad326-B66
  article-title: Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis
  publication-title: Plant Biology
  doi: 10.1111/plb.12568
– volume: 32
  start-page: 2189
  issue: 10
  year: 2022
  ident: 2024050115254790200_koad326-B118
  article-title: Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2022.04.005
– volume: 52
  start-page: 527
  issue: 1
  year: 2001
  ident: 2024050115254790200_koad326-B151
  article-title: Function and mechanism of organic anion exudation from plant roots
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.52.1.527
– volume: 13
  start-page: 1581
  issue: 1
  year: 2022
  ident: 2024050115254790200_koad326-B54
  article-title: Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2—PHR2 complex
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29275-8
– volume: 129
  start-page: 1232
  issue: 3
  year: 2002
  ident: 2024050115254790200_koad326-B176
  article-title: Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation
  publication-title: Plant Physiol
  doi: 10.1104/pp.010835
– volume: 196
  start-page: 139
  issue: 1
  year: 2012
  ident: 2024050115254790200_koad326-B181
  article-title: Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04227.x
– volume: 82
  start-page: 556
  issue: 4
  year: 2015
  ident: 2024050115254790200_koad326-B205
  article-title: Involvement of OsPht1; 4 in phosphate acquisition and mobilization facilitates embryo development in rice
  publication-title: Plant J
  doi: 10.1111/tpj.12804
– volume: 8
  start-page: e43582
  year: 2019
  ident: 2024050115254790200_koad326-B209
  article-title: Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis
  publication-title: Elife
  doi: 10.7554/eLife.43582
– volume: 6
  start-page: 280
  issue: 3
  year: 2003
  ident: 2024050115254790200_koad326-B100
  article-title: The role of nutrient availability in regulating root architecture
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(03)00035-9
– volume: 7
  start-page: 1198
  year: 2016
  ident: 2024050115254790200_koad326-B111
  article-title: Phosphate uptake and allocation—a closer look at Arabidopsis thaliana L. and Oryza sativa L
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01198
– volume: 80
  start-page: 642
  issue: 4
  year: 2014
  ident: 2024050115254790200_koad326-B35
  article-title: Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants
  publication-title: Plant J.
  doi: 10.1111/tpj.12669
– volume: 2
  start-page: 43
  issue: 1
  year: 2009
  ident: 2024050115254790200_koad326-B38
  article-title: Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1093/mp/ssn081
– volume: 153
  start-page: 43
  issue: 1
  year: 2002
  ident: 2024050115254790200_koad326-B173
  article-title: Phosphorus and the regulation of nodulation in the actinorhizal symbiosis, between Discaria trinervis (Rhamnaceae) and Frankia BCU110501
  publication-title: New Phytol
  doi: 10.1046/j.0028-646X.2001.00298.x
– volume: 156
  start-page: 1041
  issue: 3
  year: 2011
  ident: 2024050115254790200_koad326-B105
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175414
– volume: 14
  start-page: 1751
  issue: 8
  year: 2002
  ident: 2024050115254790200_koad326-B178
  article-title: A chloroplast phosphate transporter, PHT2; 1, influences allocation of phosphate within the plant and phosphate-starvation responses
  publication-title: Plant Cell
  doi: 10.1105/tpc.002220
– volume: 141
  start-page: 1000
  issue: 3
  year: 2006
  ident: 2024050115254790200_koad326-B3
  article-title: Pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.078063
– volume: 61
  start-page: 1387
  issue: 8
  year: 2020
  ident: 2024050115254790200_koad326-B18
  article-title: Node-localized transporters of phosphorus essential for seed development in rice
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcaa074
– volume: 35
  start-page: 227
  issue: 2
  year: 1997
  ident: 2024050115254790200_koad326-B62
  article-title: Soil phosphorus: its measurement, and its uptake by plants
  publication-title: Soil Res
  doi: 10.1071/S96047
– volume: 29
  start-page: 115
  issue: 1
  year: 2006
  ident: 2024050115254790200_koad326-B145
  article-title: Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01405.x
– volume: 88
  start-page: 131
  issue: 1
  year: 2001
  ident: 2024050115254790200_koad326-B166
  article-title: Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L
  publication-title: Ann Bot
  doi: 10.1006/anbo.2001.1440
– volume: 39
  start-page: 25
  year: 2017
  ident: 2024050115254790200_koad326-B177
  article-title: Intracellular transport and compartmentation of phosphate in plants
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2017.04.015
– volume: 57
  start-page: 798
  issue: 5
  year: 2009
  ident: 2024050115254790200_koad326-B1
  article-title: Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6 have different functions and kinetic properties in uptake and translocation
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03726.x
– volume: 6
  start-page: e1001102
  issue: 9
  year: 2010
  ident: 2024050115254790200_koad326-B14
  article-title: A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001102
– volume: 69
  start-page: 4961
  issue: 20
  year: 2018
  ident: 2024050115254790200_koad326-B71
  article-title: Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ery252
– volume: 65
  start-page: 95
  issue: 1
  year: 2014
  ident: 2024050115254790200_koad326-B99
  article-title: Phosphate nutrition: improving low-phosphate tolerance in crops
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-050213-035949
– volume: 57
  start-page: 389
  issue: 3
  year: 2009
  ident: 2024050115254790200_koad326-B95
  article-title: Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03696.x
– volume: 293
  start-page: 19101
  issue: 49
  year: 2018
  ident: 2024050115254790200_koad326-B137
  article-title: 5-Diphosphoinositol pentakisphosphate (5-IP7) regulates phosphate release from acidocalcisomes and yeast vacuoles
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.005884
– volume: 147
  start-page: 732
  issue: 2
  year: 2008
  ident: 2024050115254790200_koad326-B88
  article-title: Regulatory network of MicroRNA399 and PHO2 by systemic signaling
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.116269
– volume: 207
  start-page: 1
  issue: 1
  year: 2016
  ident: 2024050115254790200_koad326-B174
  article-title: Improving phosphorus use efficiency in agriculture: opportunities for breeding
  publication-title: Euphytica
  doi: 10.1007/s10681-015-1572-3
– volume: 225
  start-page: 907
  issue: 4
  year: 2007
  ident: 2024050115254790200_koad326-B76
  article-title: Phosphate starvation responses are mediated by sugar signaling in Arabidopsis
  publication-title: Planta
  doi: 10.1007/s00425-006-0408-8
– volume: 71
  start-page: 479
  issue: 3
  year: 2012
  ident: 2024050115254790200_koad326-B2
  article-title: Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.05004.x
– volume: 95
  start-page: 613
  issue: 4
  year: 2018
  ident: 2024050115254790200_koad326-B82
  article-title: Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis
  publication-title: Plant J.
  doi: 10.1111/tpj.13974
– volume: 111
  start-page: 14947
  issue: 41
  year: 2014
  ident: 2024050115254790200_koad326-B139
  article-title: SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1404654111
– volume: 62
  start-page: 392
  issue: 3
  year: 2021
  ident: 2024050115254790200_koad326-B68
  article-title: The phosphate starvation response system: its role in the regulation of plant–microbe interactions
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcab016
– volume: 33
  start-page: 867
  issue: 5
  year: 1997
  ident: 2024050115254790200_koad326-B92
  article-title: Differential expression of TPS11, a phosphate starvation induced gene in tomato
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1005729309569
– volume: 33
  start-page: 3470
  issue: 11
  year: 2021
  ident: 2024050115254790200_koad326-B184
  article-title: Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab206
– volume: 156
  start-page: 1006
  issue: 3
  year: 2011
  ident: 2024050115254790200_koad326-B134
  article-title: Metabolic adaptations of phosphate-starved plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175281
– volume: 90
  start-page: 1040
  issue: 6
  year: 2017
  ident: 2024050115254790200_koad326-B204
  article-title: OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters
  publication-title: Plant J
  doi: 10.1111/tpj.13516
– volume: 72
  start-page: 199
  issue: 2
  year: 2012
  ident: 2024050115254790200_koad326-B212
  article-title: PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.05058.x
– volume: 240
  start-page: 802
  issue: 2
  year: 2023
  ident: 2024050115254790200_koad326-B25
  article-title: Dose-dependent long-distance movement of microRNA399 duplex regulates phosphate homeostasis in Arabidopsis
  publication-title: New Phytol
  doi: 10.1111/nph.19182
– volume: 41
  start-page: e109102
  issue: 6
  year: 2022
  ident: 2024050115254790200_koad326-B167
  article-title: Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation
  publication-title: EMBO J
  doi: 10.15252/embj.2021109102
– volume: 14
  start-page: 2127
  issue: 10
  year: 2019
  ident: 2024050115254790200_koad326-B84
  article-title: Arabidopsis ITPK1 and ITPK2 have an evolutionarily conserved phytic acid kinase activity
  publication-title: ACS Chem Biol.
  doi: 10.1021/acschembio.9b00423
– volume: 165
  start-page: 715
  issue: 2
  year: 2014
  ident: 2024050115254790200_koad326-B33
  article-title: Expression of sucrose transporter cDNAs specifically in companion cells enhances phloem loading and long-distance transport of sucrose but leads to an inhibition of growth and the perception of a phosphate limitation
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.238410
– volume: 37
  start-page: 462
  issue: 2
  year: 2014
  ident: 2024050115254790200_koad326-B162
  article-title: Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12170
– volume: 106
  start-page: 14174
  issue: 33
  year: 2009
  ident: 2024050115254790200_koad326-B171
  article-title: ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0901778106
– volume: 146
  start-page: 1673
  issue: 4
  year: 2008
  ident: 2024050115254790200_koad326-B208
  article-title: OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.111443
– volume: 191
  start-page: 1324
  issue: 2
  year: 2022
  ident: 2024050115254790200_koad326-B190
  article-title: PHOSPHATE RESPONSE 1 family members act distinctly to regulate transcriptional responses to phosphate starvation
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiac521
– volume: 45
  start-page: 712
  issue: 5
  year: 2006
  ident: 2024050115254790200_koad326-B159
  article-title: Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02629.x
– volume: 488
  start-page: 535
  issue: 7412
  year: 2012
  ident: 2024050115254790200_koad326-B48
  article-title: The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency
  publication-title: Nature
  doi: 10.1038/nature11346
– volume: 26
  start-page: 454
  issue: 1
  year: 2014
  ident: 2024050115254790200_koad326-B133
  article-title: NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.120311
– volume: 12
  start-page: 1224
  issue: 6
  year: 2023
  ident: 2024050115254790200_koad326-B136
  article-title: Biochemical and molecular responses underlying the contrasting phosphorus use efficiency in Ryegrass cultivars
  publication-title: Plants
  doi: 10.3390/plants12061224
– volume: 217
  start-page: 1712
  issue: 4
  year: 2018
  ident: 2024050115254790200_koad326-B89
  article-title: Evolution of microRNA827 targeting in the plant kingdom
  publication-title: New Phytol
  doi: 10.1111/nph.14938
– volume: 179
  start-page: 460
  issue: 2
  year: 2019
  ident: 2024050115254790200_koad326-B119
  article-title: The local phosphate deficiency response activates endoplasmic reticulum stress-dependent autophagy
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.01379
– volume: 22
  start-page: 161
  issue: 1
  year: 2022
  ident: 2024050115254790200_koad326-B198
  article-title: GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-022-03556-2
– volume: 21
  start-page: 555
  issue: 4
  year: 2020
  ident: 2024050115254790200_koad326-B15
  article-title: Phosphate excess increases susceptibility to pathogen infection in rice
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12916
– volume: 184
  start-page: 5527
  issue: 22
  year: 2021
  ident: 2024050115254790200_koad326-B158
  article-title: A phosphate starvation response-centered network regulates mycorrhizal symbiosis
  publication-title: Cell
  doi: 10.1016/j.cell.2021.09.030
– volume: 65
  start-page: 871
  issue: 3
  year: 2014
  ident: 2024050115254790200_koad326-B79
  article-title: Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert444
– volume: 108
  start-page: 1422
  issue: 5
  year: 2021
  ident: 2024050115254790200_koad326-B211
  article-title: Phosphate starvation responsive GmSPX5 mediates nodule growth through interaction with GmNF-YC4 in soybean (Glycine max)
  publication-title: Plant J
  doi: 10.1111/tpj.15520
– volume: 11
  start-page: 2153
  issue: 11
  year: 1999
  ident: 2024050115254790200_koad326-B31
  article-title: Pht2; 1 encodes a low-affinity phosphate transporter from Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.11.2153
– volume: 157
  start-page: 269
  issue: 1
  year: 2011
  ident: 2024050115254790200_koad326-B20
  article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.181669
– volume: 84
  start-page: 99
  issue: 1
  year: 2015
  ident: 2024050115254790200_koad326-B74
  article-title: The Arabidopsis thylakoid transporter PHT4; 1 influences phosphate availability for ATP synthesis and plant growth
  publication-title: Plant J
  doi: 10.1111/tpj.12962
– volume: 150
  start-page: 281
  issue: 1
  year: 2009
  ident: 2024050115254790200_koad326-B155
  article-title: STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.134700
– volume: 33
  start-page: 216
  issue: 2
  year: 2015
  ident: 2024050115254790200_koad326-B115
  article-title: Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2015.02.007
– volume: 39
  start-page: 629
  issue: 4
  year: 2004
  ident: 2024050115254790200_koad326-B160
  article-title: Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low- and high-phosphate environments
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02161.x
– volume: 70
  start-page: 2227
  issue: 8
  year: 2019
  ident: 2024050115254790200_koad326-B196
  article-title: Integration of nutrient, energy, light, and hormone signalling via TOR in plants
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erz028
– volume: 219
  start-page: 518
  issue: 2
  year: 2018
  ident: 2024050115254790200_koad326-B128
  article-title: The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply
  publication-title: New Phytol
  doi: 10.1111/nph.15200
– volume: 9
  start-page: 1432
  year: 2018
  ident: 2024050115254790200_koad326-B189
  article-title: Functional characterization of Arabidopsis PHL4 in plant response to phosphate starvation
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01432
– volume: 224
  start-page: 242
  issue: 1
  year: 2019
  ident: 2024050115254790200_koad326-B161
  article-title: Role of cis-zeatin in root responses to phosphate starvation
  publication-title: New Phytol
  doi: 10.1111/nph.16020
– volume: 189
  start-page: 1157
  issue: 4
  year: 2011
  ident: 2024050115254790200_koad326-B19
  article-title: Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03556.x
– volume: 15
  start-page: 2122
  issue: 16
  year: 2001
  ident: 2024050115254790200_koad326-B150
  article-title: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae
  publication-title: Genes Dev
  doi: 10.1101/gad.204401
– volume: 30
  start-page: 853
  issue: 4
  year: 2018
  ident: 2024050115254790200_koad326-B149
  article-title: An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00738
– volume: 116
  start-page: 1477
  issue: 5
  year: 2023
  ident: 2024050115254790200_koad326-B179
  article-title: The Arabidopsis PHOSPHATE 1 exporter undergoes constitutive internalization via clathrin-mediated endocytosis
  publication-title: Plant J
  doi: 10.1111/tpj.16441
– volume: 183
  start-page: 250
  issue: 1
  year: 2020
  ident: 2024050115254790200_koad326-B183
  article-title: CASEIN KINASE2-dependent phosphorylation of PHOSPHATE2 fine-tunes phosphate homeostasis in rice
  publication-title: Plant Physiol
  doi: 10.1104/pp.20.00078
– volume: 541
  start-page: 92
  issue: 7635
  year: 2017
  ident: 2024050115254790200_koad326-B201
  article-title: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node
  publication-title: Nature
  doi: 10.1038/nature20610
– volume: 14
  start-page: 1864
  issue: 11
  year: 2021
  ident: 2024050115254790200_koad326-B147
  article-title: ITPK1 is an InsP6/ADP phosphotransferase that controls phosphate signaling in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2021.07.011
– volume: 57
  start-page: 431
  issue: 1
  year: 2006
  ident: 2024050115254790200_koad326-B153
  article-title: Cytokinins: activity, biosynthesis, and translocation
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.57.032905.105231
– volume: 59
  start-page: 1714
  issue: 9
  year: 2018
  ident: 2024050115254790200_koad326-B26
  article-title: Sensing and signaling of phosphate starvation: from local to long distance
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcy148
– volume: 12
  start-page: 1463
  issue: 11
  year: 2019
  ident: 2024050115254790200_koad326-B42
  article-title: Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2019.08.002
– volume: 41
  start-page: 257
  issue: 2
  year: 2005
  ident: 2024050115254790200_koad326-B93
  article-title: Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02289.x
– volume: 39
  start-page: 792
  issue: 6
  year: 2007
  ident: 2024050115254790200_koad326-B165
  article-title: Root tip contact with low-phosphate media reprograms plant root architecture
  publication-title: Nat Genet
  doi: 10.1038/ng2041
– volume: 221
  start-page: 2013
  issue: 4
  year: 2019
  ident: 2024050115254790200_koad326-B21
  article-title: A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean
  publication-title: New Phytol
  doi: 10.1111/nph.15541
– volume: 236
  start-page: 243
  issue: 2
  year: 2001
  ident: 2024050115254790200_koad326-B10
  article-title: Root hairs confer a competitive advantage under low phosphorus availability
  publication-title: Plant Soil
  doi: 10.1023/A:1012791706800
– volume: 25
  start-page: 4061
  issue: 10
  year: 2013
  ident: 2024050115254790200_koad326-B90
  article-title: NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.116012
– volume: 37
  start-page: 1159
  year: 2014
  ident: 2024050115254790200_koad326-B186
  article-title: Phosphate transporters OsPHT1; 9 and OsPHT1; 10 are involved in phosphate uptake in rice
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12224
– volume: 159
  start-page: 1634
  issue: 4
  year: 2012
  ident: 2024050115254790200_koad326-B140
  article-title: The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.199786
– volume: 14
  start-page: 334
  issue: 1
  year: 2014
  ident: 2024050115254790200_koad326-B85
  article-title: Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1; 8 and PHT1; 9 are involved in root-to-shoot translocation of orthophosphate
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-014-0334-z
– volume: 9
  start-page: 5408
  issue: 1
  year: 2019
  ident: 2024050115254790200_koad326-B43
  article-title: The rice phosphate transporter protein OsPT8 regulates disease resistance and plant growth
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41718-9
– volume: 266
  start-page: 1166
  issue: 2
  year: 2002
  ident: 2024050115254790200_koad326-B77
  article-title: DGD2, an arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110066200
– volume: 6
  start-page: 29850
  issue: 1
  year: 2016
  ident: 2024050115254790200_koad326-B127
  article-title: Knock out of the PHOSPHATE 2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat
  publication-title: Sci Rep
  doi: 10.1038/srep29850
– volume: 32
  start-page: 488
  issue: 2
  year: 2022
  ident: 2024050115254790200_koad326-B40
  article-title: Direct inhibition of phosphate transport by immune signaling in Arabidopsis
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2021.11.063
– volume: 25
  start-page: 4044
  issue: 10
  year: 2013
  ident: 2024050115254790200_koad326-B65
  article-title: Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomic in Arabidopsis roots
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.115998
– volume: 49
  start-page: 8071
  issue: 8
  year: 2022
  ident: 2024050115254790200_koad326-B138
  article-title: Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-022-07354-9
– volume: 5
  start-page: 401
  issue: 4
  year: 2019
  ident: 2024050115254790200_koad326-B64
  article-title: Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants
  publication-title: Nat Plants
  doi: 10.1038/s41477-019-0384-1
– volume: 13
  start-page: 99
  issue: 1
  year: 2020
  ident: 2024050115254790200_koad326-B41
  article-title: Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2019.10.002
– volume: 222
  start-page: 1223
  issue: 3
  year: 2019
  ident: 2024050115254790200_koad326-B72
  article-title: Towards a more physiological representation of vegetation phosphorus processes in land surface models
  publication-title: New Phytol
  doi: 10.1111/nph.15688
– volume: 90
  start-page: 5118
  issue: 11
  year: 1993
  ident: 2024050115254790200_koad326-B168
  article-title: RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.90.11.5118
– volume: 34
  start-page: 4045
  issue: 10
  year: 2022
  ident: 2024050115254790200_koad326-B87
  article-title: SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato
  publication-title: Plant Cell
  doi: 10.1093/plcell/koac212
– volume: 18
  start-page: 412
  issue: 2
  year: 2006
  ident: 2024050115254790200_koad326-B27
  article-title: Regulation of phosphate homeostasis by microRNA in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.038943
– volume: 8
  start-page: 1074
  issue: 9
  year: 2022
  ident: 2024050115254790200_koad326-B197
  article-title: SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis
  publication-title: Nat Plants
  doi: 10.1038/s41477-022-01231-w
– volume: 52
  start-page: 43
  issue: 1
  year: 2013
  ident: 2024050115254790200_koad326-B117
  article-title: Phosphate starvation and membrane lipid remodeling in seed plants
  publication-title: Prog Lipid Res
  doi: 10.1016/j.plipres.2012.07.002
– volume: 150
  start-page: 1541
  issue: 3
  year: 2009
  ident: 2024050115254790200_koad326-B131
  article-title: Identification of nutrient-responsive Arabidopsis and rapeseed MicroRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.139139
– volume: 33
  start-page: 1381
  issue: 4
  year: 2021
  ident: 2024050115254790200_koad326-B142
  article-title: An antisense noncoding RNA enhances translation via localised structural rearrangements of its cognate mRNA
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab010
– volume: 25
  start-page: 4166
  issue: 10
  year: 2013
  ident: 2024050115254790200_koad326-B69
  article-title: A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.116251
– volume: 239
  start-page: 29
  issue: 1
  year: 2023
  ident: 2024050115254790200_koad326-B132
  article-title: The good, the bad, and the phosphate: regulation of beneficial and detrimental plant-microbe interactions by the plant phosphate status
  publication-title: New Phytol
  doi: 10.1111/nph.18933
– volume: 167
  start-page: 1511
  issue: 4
  year: 2015
  ident: 2024050115254790200_koad326-B4
  article-title: Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.252338
– volume: 46
  start-page: 2187
  issue: 7
  year: 2023
  ident: 2024050115254790200_koad326-B78
  article-title: PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is prevalent in upland rice and enhances root growth and hastens low phosphate signaling in wheat
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.14588
– volume: 53
  start-page: 906
  issue: 6
  year: 2021
  ident: 2024050115254790200_koad326-B106
  article-title: A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals
  publication-title: Nat Genet
  doi: 10.1038/s41588-021-00855-6
– volume: 368
  start-page: eaba0196
  issue: 6486
  year: 2020
  ident: 2024050115254790200_koad326-B126
  article-title: A plant's diet, surviving in a variable nutrient environment
  publication-title: Science
  doi: 10.1126/science.aba0196
– volume: 477
  start-page: 2621
  issue: 14
  year: 2020
  ident: 2024050115254790200_koad326-B193
  article-title: An ATP-responsive metabolic cassette comprised of inositol tris/tetrakisphosphate kinase 1 (ITPK1) and inositol pentakisphosphate 2-kinase (IPK1) buffers diphosphosphoinositol phosphate levels
  publication-title: Biochem J
  doi: 10.1042/BCJ20200423
– volume: 234
  start-page: 1249
  issue: 4
  year: 2022
  ident: 2024050115254790200_koad326-B53
  article-title: A crucial role for a node-localized transporter, HvSPDT, in loading phosphorus into barley grains
  publication-title: New Phytol
  doi: 10.1111/nph.18057
– volume: 65
  start-page: 1817
  issue: 7
  year: 2014
  ident: 2024050115254790200_koad326-B91
  article-title: Long-distance call from phosphate: systemic regulation of phosphate starvation responses
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert431
– volume: 93
  start-page: 10519
  issue: 19
  year: 1996
  ident: 2024050115254790200_koad326-B113
  article-title: Phosphate transporters from the higher plant Arabidopsis thaliana
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.19.10519
– volume: 111
  start-page: 14953
  issue: 41
  year: 2014
  ident: 2024050115254790200_koad326-B188
  article-title: Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1404680111
– volume: 54
  start-page: 965
  issue: 6
  year: 2008
  ident: 2024050115254790200_koad326-B44
  article-title: Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03460.x
– volume: 50
  start-page: 665
  issue: 1
  year: 1999
  ident: 2024050115254790200_koad326-B141
  article-title: Phosphate acquisition
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.50.1.665
– volume: 21
  start-page: 443
  issue: 5
  year: 1998
  ident: 2024050115254790200_koad326-B122
  article-title: The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1998.00295.x
– volume: 7
  start-page: 11095
  issue: 1
  year: 2016
  ident: 2024050115254790200_koad326-B97
  article-title: Identification of plant vacuolar transporters mediating phosphate storage
  publication-title: Nat Commun
  doi: 10.1038/ncomms11095
– volume: 219
  start-page: 135
  issue: 1
  year: 2018
  ident: 2024050115254790200_koad326-B206
  article-title: Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2
  publication-title: New Phytol
  doi: 10.1111/nph.15155
– volume: 66
  start-page: 1907
  issue: 7
  year: 2015
  ident: 2024050115254790200_koad326-B130
  article-title: The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru535
– volume: 8
  start-page: 15300
  issue: 1
  year: 2017
  ident: 2024050115254790200_koad326-B6
  article-title: Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation
  publication-title: Nat Commun
  doi: 10.1038/ncomms15300
– volume: 188
  start-page: 2272
  issue: 4
  year: 2022
  ident: 2024050115254790200_koad326-B30
  article-title: The rice phosphate transporter OsPHT1; 7 plays a dual role in phosphorus redistribution and anther development
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiac030
– volume: 31
  start-page: 1171
  issue: 5
  year: 2019
  ident: 2024050115254790200_koad326-B108
  article-title: Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00656
– volume: 14
  start-page: 889
  issue: 4
  year: 2002
  ident: 2024050115254790200_koad326-B58
  article-title: Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem
  publication-title: Plant Cell
  doi: 10.1105/tpc.000745
– volume: 6
  start-page: 11
  issue: 1
  year: 2015
  ident: 2024050115254790200_koad326-B110
  article-title: AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis
  publication-title: Nat Commun
  doi: 10.1038/ncomms6928
– volume: 64
  start-page: 775
  issue: 5
  year: 2010
  ident: 2024050115254790200_koad326-B169
  article-title: Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04375.x
– volume: 59
  start-page: 75
  issue: 1
  year: 2007
  ident: 2024050115254790200_koad326-B61
  article-title: Regulation of cytokinin biosynthesis, compartmentalization and translocation
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm157
– volume: 13
  start-page: 447
  issue: 1
  year: 2022
  ident: 2024050115254790200_koad326-B32
  article-title: PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-27976-8
– volume: 66
  start-page: 3523
  issue: 12
  year: 2015
  ident: 2024050115254790200_koad326-B5
  article-title: Replace, reuse, recycle: improving the sustainable use of phosphorus by plants
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv210
– volume: 12
  start-page: 744094
  year: 2021
  ident: 2024050115254790200_koad326-B200
  article-title: Differential root exudation and architecture for improved growth of wheat mediated by phosphate solubilizing bacteria
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.744094
– volume: 33
  start-page: 1778
  issue: 9
  year: 2023
  ident: 2024050115254790200_koad326-B29
  article-title: ARSK1 activates TORC1 signaling to adjust growth to phosphate availability in Arabidopsis
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2023.03.005
– volume: 6
  start-page: 673
  issue: 5
  year: 1994
  ident: 2024050115254790200_koad326-B8
  article-title: The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1994.6050673.x
– volume: 32
  start-page: 4493
  issue: 20
  year: 2022
  ident: 2024050115254790200_koad326-B12
  article-title: Plant growth stimulation by high CO2 depends on phosphorus homeostasis in chloroplasts
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2022.08.032
– volume: 90
  start-page: 868
  issue: 5
  year: 2017
  ident: 2024050115254790200_koad326-B60
  article-title: Improving phosphorus use efficiency: a complex trait with emerging opportunities
  publication-title: Plant J
  doi: 10.1111/tpj.13423
– volume: 27
  start-page: 1082
  issue: 4
  year: 2015
  ident: 2024050115254790200_koad326-B83
  article-title: VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis
  publication-title: Plant Cell.
  doi: 10.1105/tpc.114.135160
– volume: 114
  start-page: E3563
  issue: 17
  year: 2017
  ident: 2024050115254790200_koad326-B112
  article-title: Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1701952114
– volume: 455
  start-page: 195
  issue: 7210
  year: 2008
  ident: 2024050115254790200_koad326-B172
  article-title: Inhibition of shoot branching by new terpenoid plant hormones
  publication-title: Nature
  doi: 10.1038/nature07272
– volume: 286
  start-page: 2809
  issue: 14
  year: 2019
  ident: 2024050115254790200_koad326-B73
  article-title: Structural basis for the target DNA recognition and binding by the MYB domain of phosphate starvation response 1
  publication-title: FEBS J
  doi: 10.1111/febs.14846
– volume: 12
  start-page: 648
  issue: 3
  year: 2017
  ident: 2024050115254790200_koad326-B50
  article-title: Inositol pyrophosphate specificity of the SPX-dependent polyphosphate polymerase VTC
  publication-title: ACS Chem Biol.
  doi: 10.1021/acschembio.7b00026
– volume: 12
  start-page: 384
  issue: 1
  year: 2021
  ident: 2024050115254790200_koad326-B146
  article-title: Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20681-4
– volume: 56
  start-page: 28
  issue: 1
  year: 2008
  ident: 2024050115254790200_koad326-B49
  article-title: Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03582.x
– volume: 434
  start-page: 65
  issue: 1-2
  year: 2019
  ident: 2024050115254790200_koad326-B148
  article-title: The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3787-2
– volume: 74
  start-page: 280
  issue: 2
  year: 2013
  ident: 2024050115254790200_koad326-B101
  article-title: The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus
  publication-title: Plant J
  doi: 10.1111/tpj.12120
– volume: 7
  start-page: e43530
  issue: 8
  year: 2012
  ident: 2024050115254790200_koad326-B210
  article-title: The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043530
– volume: 27
  start-page: 2893
  issue: 19
  year: 2017
  ident: 2024050115254790200_koad326-B180
  article-title: PHO1 exports phosphate from the chalazal seed coat to the embryo in developing Arabidopsis seeds
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2017.08.026
– volume: 355
  start-page: 287
  issue: 6322
  year: 2017
  ident: 2024050115254790200_koad326-B163
  article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling
  publication-title: Science
  doi: 10.1126/science.aal2541
– volume: 11
  start-page: a034603
  issue: 6
  year: 2019
  ident: 2024050115254790200_koad326-B28
  article-title: Mechanisms and impact of symbiotic phosphate acquisition
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a034603
– volume: 105
  start-page: 890
  issue: 6
  year: 2002
  ident: 2024050115254790200_koad326-B195
  article-title: Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-002-1051-9
– volume: 223
  start-page: 882
  issue: 2
  year: 2019
  ident: 2024050115254790200_koad326-B192
  article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species
  publication-title: New Phytol
  doi: 10.1111/nph.15833
– volume: 127
  start-page: 963
  issue: 3
  year: 2001
  ident: 2024050115254790200_koad326-B170
  article-title: Attenuation of phosphate starvation responses by phosphite in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.010396
– volume: 169
  start-page: 2822
  issue: 4
  year: 2015
  ident: 2024050115254790200_koad326-B182
  article-title: Rice SPX-major facility superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice
  publication-title: Plant Physiol
– volume: 107
  start-page: 207
  issue: 1
  year: 1995
  ident: 2024050115254790200_koad326-B34
  article-title: Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.1.207
– volume: 156
  start-page: 1164
  issue: 3
  year: 2011
  ident: 2024050115254790200_koad326-B70
  article-title: The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175240
– volume: 439
  start-page: 91
  issue: 1-2
  year: 2019
  ident: 2024050115254790200_koad326-B185
  article-title: Mapping and cloning of quantitative trait loci for phosphorus efficiency in crops: opportunities and challenges
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3706-6
– volume: 13
  start-page: 3796
  issue: 1
  year: 2022
  ident: 2024050115254790200_koad326-B56
  article-title: A natural uORF variant confers phosphorus acquisition diversity in soybean
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-31555-2
– volume: 102
  start-page: 53
  issue: 1
  year: 2020
  ident: 2024050115254790200_koad326-B98
  article-title: Mutation of the chloroplast-localized phosphate transporter OsPHT2; 1 reduces flavonoid accumulation and UV tolerance in rice
  publication-title: Plant J
  doi: 10.1111/tpj.14611
– volume: 195
  start-page: 356
  issue: 2
  year: 2012
  ident: 2024050115254790200_koad326-B144
  article-title: The Pht1; 9 and Pht1; 8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04167.x
– volume: 543
  start-page: 513
  issue: 7646
  year: 2017
  ident: 2024050115254790200_koad326-B16
  article-title: Root microbiota drive direct integration of phosphate stress and immunity
  publication-title: Nature
  doi: 10.1038/nature21417
– volume: 23
  start-page: 1523
  issue: 4
  year: 2011
  ident: 2024050115254790200_koad326-B11
  article-title: Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.081067
– volume: 151
  start-page: 2120
  issue: 4
  year: 2009
  ident: 2024050115254790200_koad326-B63
  article-title: Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.147280
– volume: 15
  start-page: 1590
  issue: 10
  year: 2022
  ident: 2024050115254790200_koad326-B103
  article-title: A SPX domain vacuolar transporter links phosphate sensing to homeostasis in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2022.09.005
– volume: 12
  start-page: 7040
  issue: 1
  year: 2021
  ident: 2024050115254790200_koad326-B207
  article-title: Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27391-5
– volume: 31
  start-page: 341
  issue: 3
  year: 2002
  ident: 2024050115254790200_koad326-B114
  article-title: Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2002.01356.x
– volume: 286
  start-page: 57
  year: 2019
  ident: 2024050115254790200_koad326-B45
  article-title: Intracellular phosphate homeostasis—a short way from metabolism to signaling
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2019.05.018
– volume: 7
  start-page: e32077
  year: 2018
  ident: 2024050115254790200_koad326-B80
  article-title: LPCAT1 controls phosphate homeostasis in a zinc-dependent manner
  publication-title: Elife
  doi: 10.7554/eLife.32077
– volume: 184
  start-page: 2064
  issue: 4
  year: 2020
  ident: 2024050115254790200_koad326-B152
  article-title: Spatial profiles of phosphate in roots indicate developmental control of uptake, recycling, and sequestration
  publication-title: Plant Physiol
  doi: 10.1104/pp.20.01008
– volume: 405
  start-page: 191
  issue: 1
  year: 2007
  ident: 2024050115254790200_koad326-B24
  article-title: BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis
  publication-title: Biochem J
  doi: 10.1042/BJ20070102
– volume: 2
  start-page: 83
  year: 2011
  ident: 2024050115254790200_koad326-B124
  article-title: Phosphate import in plants: focus on the PHT1 transporters
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2011.00083
– volume: 177
  start-page: 90
  issue: 1
  year: 2018
  ident: 2024050115254790200_koad326-B164
  article-title: Large crown root number improves topsoil foraging and phosphorus acquisition
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.00234
– volume: 183
  start-page: 1145
  issue: 3
  year: 2020
  ident: 2024050115254790200_koad326-B143
  article-title: Modulation of shoot phosphate level and growth by PHOSPHATE1 upstream open reading frame
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01549
– volume: 53
  start-page: 731
  issue: 5
  year: 2008
  ident: 2024050115254790200_koad326-B129
  article-title: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03363.x
– volume: 157
  start-page: 423
  issue: 3
  year: 2003
  ident: 2024050115254790200_koad326-B175
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00695.x
– volume: 170
  start-page: 385
  issue: 1
  year: 2016
  ident: 2024050115254790200_koad326-B191
  article-title: The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00975
– volume: 97
  start-page: 1087
  issue: 3
  year: 1991
  ident: 2024050115254790200_koad326-B135
  article-title: Mutant of Arabidopsis deficient in xylem loading of phosphate
  publication-title: Plant Physiol
  doi: 10.1104/pp.97.3.1087
– volume: 143
  start-page: 1789
  issue: 4
  year: 2007
  ident: 2024050115254790200_koad326-B37
  article-title: WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.093971
– volume: 141
  start-page: 988
  issue: 3
  year: 2006
  ident: 2024050115254790200_koad326-B7
  article-title: PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.079707
– volume: 5
  start-page: 84
  issue: 1
  year: 2019
  ident: 2024050115254790200_koad326-B199
  article-title: Identification of vacuolar phosphate efflux transporters in land plants
  publication-title: Nat Plants
  doi: 10.1038/s41477-018-0334-3
– volume: 41
  start-page: 555
  issue: 5
  year: 2017
  ident: 2024050115254790200_koad326-B57
  article-title: Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2017.05.009
– volume: 24
  start-page: 2168
  issue: 5
  year: 2012
  ident: 2024050115254790200_koad326-B96
  article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.096636
– volume: 12
  start-page: RP87956
  year: 2023
  ident: 2024050115254790200_koad326-B17
  article-title: Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP8 and the SPX domain of Pho81
  publication-title: Elife
  doi: 10.7554/eLife.87956.3
– volume: 8
  start-page: 509
  year: 2017
  ident: 2024050115254790200_koad326-B120
  article-title: Novel alleles of phosphorus-starvation tolerance 1 gene (PSTOL1) from Oryza rufipogon confers high phosphorus uptake efficiency
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00509
– volume: 46
  start-page: 174
  issue: 1
  year: 2005
  ident: 2024050115254790200_koad326-B154
  article-title: Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pci011
– volume: 193
  start-page: 842
  issue: 4
  year: 2012
  ident: 2024050115254790200_koad326-B157
  article-title: The emerging importance of the SPX domain-containing proteins in phosphate homeostasis
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2011.04002.x
– volume: 130
  start-page: 221
  issue: 1
  year: 2002
  ident: 2024050115254790200_koad326-B75
  article-title: Regulated expression of Arabidopsis phosphate transporters
  publication-title: Plant Physiol
  doi: 10.1104/pp.020007
– volume: 152
  start-page: 1693
  issue: 3
  year: 2010
  ident: 2024050115254790200_koad326-B156
  article-title: Characterization of the rice PHO1 gene family reveals a key role for OsPHO1; 2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.149872
– volume: 29
  start-page: 1924
  issue: 10
  year: 2006
  ident: 2024050115254790200_koad326-B187
  article-title: Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2006.01568.x
– volume: 68
  start-page: 3045
  issue: 12
  year: 2017
  ident: 2024050115254790200_koad326-B202
  article-title: Role of vacuoles in phosphorus storage and remobilization
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru149
– volume: 112
  start-page: E6571
  issue: 47
  year: 2015
  ident: 2024050115254790200_koad326-B94
  article-title: A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1514598112
– volume: 284
  start-page: 33614
  issue: 48
  year: 2009
  ident: 2024050115254790200_koad326-B116
  article-title: The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.030247
– volume: 17
  start-page: 3500
  issue: 12
  year: 2005
  ident: 2024050115254790200_koad326-B52
  article-title: PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.036640
– volume: 21
  start-page: 3554
  issue: 11
  year: 2009
  ident: 2024050115254790200_koad326-B23
  article-title: The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.064980
– volume: 4
  start-page: 1510
  issue: 1
  year: 2013
  ident: 2024050115254790200_koad326-B125
  article-title: A new class of plant lipid is essential for protection against phosphorus depletion
  publication-title: Nat Commun
  doi: 10.1038/ncomms2512
– volume: 184
  start-page: 236
  issue: 1
  year: 2020
  ident: 2024050115254790200_koad326-B102
  article-title: Spatial divergence of PHR-PHT1 modules maintains phosphorus homeostasis in soybean nodules
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01209
– volume: 27
  start-page: 711
  issue: 3
  year: 2015
  ident: 2024050115254790200_koad326-B22
  article-title: The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.135335
– volume: 39
  start-page: 1033
  issue: 8
  year: 2007
  ident: 2024050115254790200_koad326-B46
  article-title: Target mimicry provides a new mechanism for regulation of microRNA activity
  publication-title: Nat Genet
  doi: 10.1038/ng2079
– volume: 182
  start-page: 393
  issue: 1
  year: 2020
  ident: 2024050115254790200_koad326-B203
  article-title: Upstream open reading frame and phosphate-regulated expression of rice OsNLA1 controls phosphate transport and reproduction
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01101
– volume: 26
  start-page: 1586
  issue: 4
  year: 2014
  ident: 2024050115254790200_koad326-B104
  article-title: SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.123208
– volume: 119
  start-page: 241
  issue: 1
  year: 1999
  ident: 2024050115254790200_koad326-B13
  article-title: The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots
  publication-title: Plant Physiol
  doi: 10.1104/pp.119.1.241
– volume: 30
  start-page: 1499
  issue: 12
  year: 2007
  ident: 2024050115254790200_koad326-B123
  article-title: Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2007.01734.x
– volume: 24
  start-page: 559
  issue: 5
  year: 2000
  ident: 2024050115254790200_koad326-B107
  article-title: Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2000.00893.x
– volume: 291
  start-page: 22262
  issue: 42
  year: 2016
  ident: 2024050115254790200_koad326-B36
  article-title: Vtc5, a novel subunit of the vacuolar transporter chaperone complex, regulates polyphosphate synthesis and phosphate homeostasis in yeast
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.746784
– volume: 185
  start-page: 196
  issue: 1
  year: 2021
  ident: 2024050115254790200_koad326-B121
  article-title: PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula
  publication-title: Plant Physiol
– volume: 455
  start-page: 189
  issue: 7210
  year: 2008
  ident: 2024050115254790200_koad326-B51
  article-title: Strigolactone inhibition of shoot branching
  publication-title: Nature
  doi: 10.1038/nature07271
– volume: 15
  start-page: 138
  issue: 1
  year: 2022
  ident: 2024050115254790200_koad326-B55
  article-title: A reciprocal inhibitory module for Pi and iron signaling
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2021.09.011
– volume: 145
  start-page: 147
  issue: 1
  year: 2007
  ident: 2024050115254790200_koad326-B39
  article-title: Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.101691
– volume: 18
  start-page: 115
  issue: 1
  year: 2018
  ident: 2024050115254790200_koad326-B109
  article-title: A PSTOL-like gene, controls a number of agronomically important traits in wheat
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-018-1331-4
– volume: 61
  start-page: 46
  issue: 1-2
  year: 2001
  ident: 2024050115254790200_koad326-B59
  article-title: Galactolipids not associated with the photosynthetic apparatus in phosphate-deprived plants
  publication-title: J Photochem Photobiol B: Biol
  doi: 10.1016/S1011-1344(01)00144-0
– volume: 156
  start-page: 1116
  issue: 3
  year: 2011
  ident: 2024050115254790200_koad326-B86
  article-title: Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.171736
– volume: 15
  start-page: 2038
  issue: 22
  year: 2005
  ident: 2024050115254790200_koad326-B47
  article-title: A miRNA involved in phosphate-starvation response in Arabidopsis
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.10.016
– volume: 155
  start-page: 974
  issue: 2
  year: 2011
  ident: 2024050115254790200_koad326-B81
  article-title: Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.164640
– volume: 19
  start-page: 529
  issue: 5
  year: 1996
  ident: 2024050115254790200_koad326-B9
  article-title: Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability
  publication-title: Plant, Cell Environ
  doi: 10.1111/j.1365-3040.1996.tb00386.x
– volume: 10
  start-page: 1003
  issue: 9
  year: 2009
  ident: 2024050115254790200_koad326-B67
  article-title: The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity
  publication-title: EMBO Rep
  doi: 10.1038/embor.2009.105
– volume: 352
  start-page: 986
  issue: 6288
  year: 2016
  ident: 2024050115254790200_koad326-B194
  article-title: Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains
  publication-title: Science
  doi: 10.1126/science.aad9858
SSID ssj0001719
Score 2.6153855
SecondaryResourceType review_article
Snippet Abstract As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often...
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1504
SubjectTerms Biological Transport
Nutrients - metabolism
Phosphates - metabolism
Phosphorus - metabolism
Plant Roots - metabolism
Plants - metabolism
Review
Signal Transduction
Title Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus
URI https://www.ncbi.nlm.nih.gov/pubmed/38163641
https://www.proquest.com/docview/2909085044
https://pubmed.ncbi.nlm.nih.gov/PMC11062440
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60CHoRra_6KKsIXhqaZDeb7FGLpShVhBZ6MiSbjS2WpDTtwX_vbJOGtih6yGknYZhJdr7JzH4DcOu5sTJprIyQeZigUB4ZQjMOCRZazKGIyBcV_O4L7_TZ08AZFGTR2Q8lfEGbk7H-h938TIMIsQbuthiBNUt-73VQ7rmWuxjhYen-OD3du6Rn3Lx9LfysHWlbQZabDZIrEad9APsFVCT3uW8PYUslVdh5SBHOfVVht7Uc1XYE7138tjWKUxkZJWS-emCFzJb05Q2S6W715KNBcInozo1AH0YnaUwQBpLJGK1MEk3PjwqRyTDN8JrOs2Potx97rY5RDE4wJBPWzAg9hMy2EzmY3gplSxFi2iWELU0uGedBzHgYRYzFUnJFpYgRFbimHVMnVhwREz2BSoI6nwHh0lGey6II8w6m3DCQkfDQgyFjjlCmWQNjaU9fFqzierjF2M-r29TP7e8X9q_BXSk_yfk0fpW8Qff8KXS99J6PNtdLQaLSeebbwhSajo-xGpzm3iyfpYullDOrBt6an0sBzbm9vpKMhgvubURLHBGRef4f7S5gz0YMlPdHXkJlNp2rK8Qws7AO289vXn3xEn8Du3Lztg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Milestones+in+understanding+transport%2C+sensing%2C+and+signaling+of+the+plant+nutrient+phosphorus&rft.jtitle=The+Plant+cell&rft.au=Yang%2C+Shu-Yi&rft.au=Lin%2C+Wei-Yi&rft.au=Hsiao%2C+Yi-Min&rft.au=Chiou%2C+Tzyy-Jen&rft.date=2024-05-01&rft.issn=1532-298X&rft.eissn=1532-298X&rft.volume=36&rft.issue=5&rft.spage=1504&rft_id=info:doi/10.1093%2Fplcell%2Fkoad326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon