Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus
Abstract As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvatio...
Saved in:
Published in | The Plant cell Vol. 36; no. 5; pp. 1504 - 1523 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
This article reviews the molecular mechanisms of phosphorus transport, sensing and signaling; and highlights recent findings about the impact of phosphorus on plant-microbe interactions. |
---|---|
AbstractList | As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture. Abstract As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture. This article reviews the molecular mechanisms of phosphorus transport, sensing and signaling; and highlights recent findings about the impact of phosphorus on plant-microbe interactions. As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture. This article reviews the molecular mechanisms of phosphorus transport, sensing and signaling; and highlights recent findings about the impact of phosphorus on plant-microbe interactions. As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture. |
Author | Chiou, Tzyy-Jen Hsiao, Yi-Min Lin, Wei-Yi Yang, Shu-Yi |
Author_xml | – sequence: 1 givenname: Shu-Yi orcidid: 0000-0001-9113-049X surname: Yang fullname: Yang, Shu-Yi – sequence: 2 givenname: Wei-Yi orcidid: 0000-0003-1040-6007 surname: Lin fullname: Lin, Wei-Yi – sequence: 3 givenname: Yi-Min orcidid: 0009-0006-9531-4660 surname: Hsiao fullname: Hsiao, Yi-Min – sequence: 4 givenname: Tzyy-Jen orcidid: 0000-0001-5953-4144 surname: Chiou fullname: Chiou, Tzyy-Jen email: tjchiou@gate.sinica.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38163641$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUtrGzEQFiElr_baY9AxgWwyeqy8OoVg-oKUXhLoqULWam0lsrSRtIX--8rYDW0h5CA0zHyPYb5jtB9isAi9J3BJQLKr0Rvr_dVj1D2jYg8dkZbRhsru-36tgUPDRUsO0XHODwBAZkQeoEPWEcEEJ0fox1fnbS5VNGMX8BR6m3LRoXdhiUvSIY8xlQucbci1dYHrCGe3DNpvEHHAZWXx6HUoOEwlOVuLcRVzfWnKb9GbQfts3-3-E3T_8cPd_HNz--3Tl_nNbWO4JKVZdDMqadu3XddJS41cCCBSUgPCcCH0wMWi7zkfjBGWGTkQCTOgA2sHKzom2Qm63uqO02Jte1O3SNqrMbm1Tr9U1E79OwlupZbxpyIEBOUcqsLZTiHFp6meRK1d3txWBxunrKgECV0LnFfo6d9mzy5_rloBl1uASTHnZIdnCAG1iU1tY1O72CqB_0cwruji4mZZ51-mnW9pcRpfs_gNxjewJA |
CitedBy_id | crossref_primary_10_1093_plphys_kiae141 crossref_primary_10_3390_ijms26062681 crossref_primary_10_3390_plants13213046 crossref_primary_10_1016_j_jia_2024_06_012 crossref_primary_10_1093_plcell_koae076 crossref_primary_10_1007_s11103_024_01496_z crossref_primary_10_1111_pce_15400 crossref_primary_10_1016_j_plantsci_2025_112389 crossref_primary_10_1016_j_jgg_2024_09_018 crossref_primary_10_3390_agronomy15030660 crossref_primary_10_1093_plphys_kiae522 crossref_primary_10_1016_j_plaphy_2025_109744 crossref_primary_10_1016_j_plaphy_2025_109653 crossref_primary_10_1038_s41477_024_01895_6 crossref_primary_10_1111_jipb_13827 crossref_primary_10_1111_nph_20203 crossref_primary_10_1126_science_adw1568 crossref_primary_10_1093_plphys_kiae454 crossref_primary_10_1007_s10265_024_01546_z crossref_primary_10_1111_nph_20266 crossref_primary_10_1016_j_jksus_2024_103485 crossref_primary_10_1021_acs_jafc_4c09230 crossref_primary_10_3389_fpls_2024_1413755 crossref_primary_10_1016_j_envres_2025_121031 crossref_primary_10_1111_pce_15216 crossref_primary_10_1016_j_plantsci_2025_112415 crossref_primary_10_3390_agronomy14061160 crossref_primary_10_3390_horticulturae10121308 crossref_primary_10_1016_j_plantsci_2024_112377 crossref_primary_10_1093_hr_uhae321 crossref_primary_10_1111_pce_15475 crossref_primary_10_3389_fpls_2024_1347922 crossref_primary_10_1111_pbi_14431 crossref_primary_10_1016_j_plantsci_2024_112211 crossref_primary_10_1017_qpb_2025_1 crossref_primary_10_3390_ijms26041780 crossref_primary_10_1016_j_jssas_2024_10_001 |
Cites_doi | 10.1111/plb.12568 10.1016/j.cub.2022.04.005 10.1146/annurev.arplant.52.1.527 10.1038/s41467-022-29275-8 10.1104/pp.010835 10.1111/j.1469-8137.2012.04227.x 10.1111/tpj.12804 10.7554/eLife.43582 10.1016/S1369-5266(03)00035-9 10.3389/fpls.2016.01198 10.1111/tpj.12669 10.1093/mp/ssn081 10.1046/j.0028-646X.2001.00298.x 10.1104/pp.111.175414 10.1105/tpc.002220 10.1104/pp.106.078063 10.1093/pcp/pcaa074 10.1071/S96047 10.1111/j.1365-3040.2005.01405.x 10.1006/anbo.2001.1440 10.1016/j.pbi.2017.04.015 10.1111/j.1365-313X.2008.03726.x 10.1371/journal.pgen.1001102 10.1093/jxb/ery252 10.1146/annurev-arplant-050213-035949 10.1111/j.1365-313X.2008.03696.x 10.1074/jbc.RA118.005884 10.1104/pp.108.116269 10.1007/s10681-015-1572-3 10.1007/s00425-006-0408-8 10.1111/j.1365-313X.2012.05004.x 10.1111/tpj.13974 10.1073/pnas.1404654111 10.1093/pcp/pcab016 10.1023/A:1005729309569 10.1093/plcell/koab206 10.1104/pp.111.175281 10.1111/tpj.13516 10.1111/j.1365-313X.2012.05058.x 10.1111/nph.19182 10.15252/embj.2021109102 10.1021/acschembio.9b00423 10.1104/pp.114.238410 10.1111/pce.12170 10.1073/pnas.0901778106 10.1104/pp.107.111443 10.1093/plphys/kiac521 10.1111/j.1365-313X.2005.02629.x 10.1038/nature11346 10.1105/tpc.113.120311 10.3390/plants12061224 10.1111/nph.14938 10.1104/pp.18.01379 10.1186/s12870-022-03556-2 10.1111/mpp.12916 10.1016/j.cell.2021.09.030 10.1093/jxb/ert444 10.1111/tpj.15520 10.1105/tpc.11.11.2153 10.1104/pp.111.181669 10.1111/tpj.12962 10.1104/pp.108.134700 10.1016/j.devcel.2015.02.007 10.1111/j.1365-313X.2004.02161.x 10.1093/jxb/erz028 10.1111/nph.15200 10.3389/fpls.2018.01432 10.1111/nph.16020 10.1111/j.1469-8137.2010.03556.x 10.1101/gad.204401 10.1105/tpc.17.00738 10.1111/tpj.16441 10.1104/pp.20.00078 10.1038/nature20610 10.1016/j.molp.2021.07.011 10.1146/annurev.arplant.57.032905.105231 10.1093/pcp/pcy148 10.1016/j.molp.2019.08.002 10.1111/j.1365-313X.2004.02289.x 10.1038/ng2041 10.1111/nph.15541 10.1023/A:1012791706800 10.1105/tpc.113.116012 10.1111/pce.12224 10.1104/pp.112.199786 10.1186/s12870-014-0334-z 10.1038/s41598-019-41718-9 10.1074/jbc.M110066200 10.1038/srep29850 10.1016/j.cub.2021.11.063 10.1105/tpc.113.115998 10.1007/s11033-022-07354-9 10.1038/s41477-019-0384-1 10.1016/j.molp.2019.10.002 10.1111/nph.15688 10.1073/pnas.90.11.5118 10.1093/plcell/koac212 10.1105/tpc.105.038943 10.1038/s41477-022-01231-w 10.1016/j.plipres.2012.07.002 10.1104/pp.109.139139 10.1093/plcell/koab010 10.1105/tpc.113.116251 10.1111/nph.18933 10.1104/pp.114.252338 10.1111/pce.14588 10.1038/s41588-021-00855-6 10.1126/science.aba0196 10.1042/BCJ20200423 10.1111/nph.18057 10.1093/jxb/ert431 10.1073/pnas.93.19.10519 10.1073/pnas.1404680111 10.1111/j.1365-313X.2008.03460.x 10.1146/annurev.arplant.50.1.665 10.1046/j.1365-3040.1998.00295.x 10.1038/ncomms11095 10.1111/nph.15155 10.1093/jxb/eru535 10.1038/ncomms15300 10.1093/plphys/kiac030 10.1105/tpc.18.00656 10.1105/tpc.000745 10.1038/ncomms6928 10.1111/j.1365-313X.2010.04375.x 10.1093/jxb/erm157 10.1038/s41467-022-27976-8 10.1093/jxb/erv210 10.3389/fmicb.2021.744094 10.1016/j.cub.2023.03.005 10.1046/j.1365-313X.1994.6050673.x 10.1016/j.cub.2022.08.032 10.1111/tpj.13423 10.1105/tpc.114.135160 10.1073/pnas.1701952114 10.1038/nature07272 10.1111/febs.14846 10.1021/acschembio.7b00026 10.1038/s41467-020-20681-4 10.1111/j.1365-313X.2008.03582.x 10.1007/s11104-018-3787-2 10.1111/tpj.12120 10.1371/journal.pone.0043530 10.1016/j.cub.2017.08.026 10.1126/science.aal2541 10.1101/cshperspect.a034603 10.1007/s00122-002-1051-9 10.1111/nph.15833 10.1104/pp.010396 10.1104/pp.107.1.207 10.1104/pp.111.175240 10.1007/s11104-018-3706-6 10.1038/s41467-022-31555-2 10.1111/tpj.14611 10.1111/j.1469-8137.2012.04167.x 10.1038/nature21417 10.1105/tpc.110.081067 10.1104/pp.109.147280 10.1016/j.molp.2022.09.005 10.1038/s41467-021-27391-5 10.1046/j.1365-313X.2002.01356.x 10.1016/j.plantsci.2019.05.018 10.7554/eLife.32077 10.1104/pp.20.01008 10.1042/BJ20070102 10.3389/fpls.2011.00083 10.1104/pp.18.00234 10.1104/pp.19.01549 10.1111/j.1365-313X.2007.03363.x 10.1046/j.1469-8137.2003.00695.x 10.1104/pp.15.00975 10.1104/pp.97.3.1087 10.1104/pp.106.093971 10.1104/pp.106.079707 10.1038/s41477-018-0334-3 10.1016/j.devcel.2017.05.009 10.1105/tpc.112.096636 10.7554/eLife.87956.3 10.3389/fpls.2017.00509 10.1093/pcp/pci011 10.1111/j.1469-8137.2011.04002.x 10.1104/pp.020007 10.1104/pp.109.149872 10.1111/j.1365-3040.2006.01568.x 10.1093/jxb/eru149 10.1073/pnas.1514598112 10.1074/jbc.M109.030247 10.1105/tpc.105.036640 10.1105/tpc.108.064980 10.1038/ncomms2512 10.1104/pp.19.01209 10.1105/tpc.114.135335 10.1038/ng2079 10.1104/pp.19.01101 10.1105/tpc.114.123208 10.1104/pp.119.1.241 10.1111/j.1365-3040.2007.01734.x 10.1046/j.1365-313x.2000.00893.x 10.1074/jbc.M116.746784 10.1038/nature07271 10.1016/j.molp.2021.09.011 10.1104/pp.107.101691 10.1186/s12870-018-1331-4 10.1016/S1011-1344(01)00144-0 10.1104/pp.110.171736 10.1016/j.cub.2005.10.016 10.1104/pp.110.164640 10.1111/j.1365-3040.1996.tb00386.x 10.1038/embor.2009.105 10.1126/science.aad9858 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/plcell/koad326 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 1523 |
ExternalDocumentID | PMC11062440 38163641 10_1093_plcell_koad326 10.1093/plcell/koad326 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Science and Technology Council in Taiwan grantid: MOST 110-2311-B-001 -021 -MY3 – fundername: Taiwan International Graduate Program – fundername: Academia Sinica grantid: AS-GCS-112-L03 – fundername: ; – fundername: ; grantid: AS-GCS-112-L03 – fundername: ; grantid: MOST 110-2311-B-001 -021 -MY3; NSTC 112-2311-B-001 -040 -MY3; MOST 111-2311-B-002 -005 -MY3; MOST 111-2313-B-002 -009 -MY3 |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 53G 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAWDT AAXTN AAYJJ ABBHK ABDFA ABEJV ABGNP ABIME ABJNI ABMNT ABPIB ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ABZEO ACBTR ACFRR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ACUTJ ACVCV ACZBC ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADYHW ADYWZ AEEJZ AENEX AEUPB AEUYN AFAZZ AFFNX AFFZL AFGWE AFKRA AFRAH AFYAG AGCDD AGMDO AGUYK AHMBA AHXOZ AICQM AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD APJGH AQDSO AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI C1A CBGCD CCPQU CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM FRP FYUFA GNUQQ GTFYD GX1 H13 HCIFZ HGD HMCUK HTVGU H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 M0K M1P M2P M2Q M7P MV1 MVM N9A NEJ NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P PHGZT PQQKQ PROAC PSQYO Q2X RHI ROX RPB RWL RXW S0X SA0 TAE TCN TN5 TOX TR2 U5U UBC UKHRP UKR W8F WH7 WHG WOQ XOL XSW Y6R YBU YR2 YSK ZCA ZCG ZCN ~KM AAYXX AGORE AHGBF AJBYB CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c491t-b872925d58889e2c9b601992c06c466af46bdd44fcc6e3c9f190702f35fe68393 |
IEDL.DBID | TOX |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 18:34:27 EDT 2025 Fri Jul 11 05:46:25 EDT 2025 Fri Aug 01 03:41:30 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Tue Jul 01 03:50:00 EDT 2025 Wed Apr 02 07:04:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-b872925d58889e2c9b601992c06c466af46bdd44fcc6e3c9f190702f35fe68393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Shu-Yi Yang, Wei-Yi Lin and Yi-Min Hsiao contributed equally. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (https://academic.oup.com/plcell/pages/General-Instructions) is: Tzyy-Jen Chiou (tjchiou@gate.sinica.edu.tw). Conflict of interest statement. None declared. |
ORCID | 0000-0003-1040-6007 0009-0006-9531-4660 0000-0001-9113-049X 0000-0001-5953-4144 |
OpenAccessLink | https://dx.doi.org/10.1093/plcell/koad326 |
PMID | 38163641 |
PQID | 2909085044 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11062440 proquest_miscellaneous_2909085044 pubmed_primary_38163641 crossref_primary_10_1093_plcell_koad326 crossref_citationtrail_10_1093_plcell_koad326 oup_primary_10_1093_plcell_koad326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | US |
PublicationPlace_xml | – name: US – name: England |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Castrillo (2024050115254790200_koad326-B16) 2017; 543 Dindas (2024050115254790200_koad326-B40) 2022; 32 Riemer (2024050115254790200_koad326-B147) 2021; 14 Wang (2024050115254790200_koad326-B189) 2018; 9 Tang (2024050115254790200_koad326-B166) 2001; 88 Song (2024050115254790200_koad326-B162) 2014; 37 Sakakibara (2024050115254790200_koad326-B153) 2006; 57 Bouain (2024050115254790200_koad326-B12) 2022; 32 Chiou (2024050115254790200_koad326-B27) 2006; 18 Dong (2024050115254790200_koad326-B43) 2019; 9 Chen (2024050115254790200_koad326-B19) 2011; 189 Okazaki (2024050115254790200_koad326-B125) 2013; 4 Wang (2024050115254790200_koad326-B188) 2014; 111 Wang (2024050115254790200_koad326-B190) 2022; 191 Wu (2024050115254790200_koad326-B196) 2019; 70 Chen (2024050115254790200_koad326-B22) 2015; 27 Wang (2024050115254790200_koad326-B187) 2006; 29 Delhaize (2024050115254790200_koad326-B34) 1995; 107 Zhong (2024050115254790200_koad326-B206) 2018; 219 Yang (2024050115254790200_koad326-B203) 2020; 182 Burleigh (2024050115254790200_koad326-B13) 1999; 119 Xing (2024050115254790200_koad326-B198) 2022; 22 Fabiańska (2024050115254790200_koad326-B45) 2019; 286 Lynch (2024050115254790200_koad326-B105) 2011; 156 Neelam (2024050115254790200_koad326-B120) 2017; 8 Robles-Aguilar (2024050115254790200_koad326-B148) 2019; 434 Liao (2024050115254790200_koad326-B87) 2022; 34 Hamburger (2024050115254790200_koad326-B58) 2002; 14 Poirier (2024050115254790200_koad326-B135) 1991; 97 Rubio (2024050115254790200_koad326-B150) 2001; 15 Wang (2024050115254790200_koad326-B186) 2014; 37 Franco-Zorrilla (2024050115254790200_koad326-B46) 2007; 39 Fujii (2024050115254790200_koad326-B47) 2005; 15 Yang (2024050115254790200_koad326-B202) 2017; 68 Gonzalez (2024050115254790200_koad326-B52) 2005; 17 Liu (2024050115254790200_koad326-B97) 2016; 7 Kettenburg (2024050115254790200_koad326-B78) 2023; 46 Yahya (2024050115254790200_koad326-B200) 2021; 12 Aung (2024050115254790200_koad326-B3) 2006; 141 Chiang (2024050115254790200_koad326-B25) 2023; 240 Hu (2024050115254790200_koad326-B64) 2019; 5 Wild (2024050115254790200_koad326-B194) 2016; 352 Pang (2024050115254790200_koad326-B128) 2018; 219 Stegmann (2024050115254790200_koad326-B163) 2017; 355 Bates (2024050115254790200_koad326-B10) 2001; 236 Guo (2024050115254790200_koad326-B56) 2022; 13 Lin (2024050115254790200_koad326-B91) 2014; 65 Vance (2024050115254790200_koad326-B175) 2003; 157 Zhou (2024050115254790200_koad326-B208) 2008; 146 Ding (2024050115254790200_koad326-B41) 2020; 13 Jia (2024050115254790200_koad326-B70) 2011; 156 Sun (2024050115254790200_koad326-B164) 2018; 177 Martín (2024050115254790200_koad326-B107) 2000; 24 Whitfield (2024050115254790200_koad326-B193) 2020; 477 Guo (2024050115254790200_koad326-B55) 2022; 15 Baker (2024050115254790200_koad326-B5) 2015; 66 Chien (2024050115254790200_koad326-B26) 2018; 59 Gutierrez-Alanis (2024050115254790200_koad326-B57) 2017; 41 Lapis-Gaza (2024050115254790200_koad326-B85) 2014; 14 Versaw (2024050115254790200_koad326-B177) 2017; 39 Mora-Macias (2024050115254790200_koad326-B112) 2017; 114 Dasgupta (2024050115254790200_koad326-B33) 2014; 165 Nakamura (2024050115254790200_koad326-B117) 2013; 52 Müller (2024050115254790200_koad326-B115) 2015; 33 Shin (2024050115254790200_koad326-B159) 2006; 45 Liu (2024050115254790200_koad326-B98) 2020; 102 Kohlen (2024050115254790200_koad326-B81) 2011; 155 Shi (2024050115254790200_koad326-B158) 2021; 184 Devaiah (2024050115254790200_koad326-B39) 2007; 145 Campos-Soriano (2024050115254790200_koad326-B15) 2020; 21 Liu (2024050115254790200_koad326-B92) 1997; 33 Puga (2024050115254790200_koad326-B139) 2014; 111 Chiu (2024050115254790200_koad326-B28) 2019; 11 Naumann (2024050115254790200_koad326-B119) 2019; 179 Lin (2024050115254790200_koad326-B88) 2008; 147 Karthikeyan (2024050115254790200_koad326-B76) 2007; 225 Paries (2024050115254790200_koad326-B132) 2023; 239 Park (2024050115254790200_koad326-B133) 2014; 26 Gamuyao (2024050115254790200_koad326-B48) 2012; 488 Chabert (2024050115254790200_koad326-B17) 2023; 12 Vetal (2024050115254790200_koad326-B179) 2023; 116 Balzergue (2024050115254790200_koad326-B6) 2017; 8 Ryan (2024050115254790200_koad326-B151) 2001; 52 Lei (2024050115254790200_koad326-B86) 2011; 156 Ai (2024050115254790200_koad326-B1) 2009; 57 Gomez-Roldan (2024050115254790200_koad326-B51) 2008; 455 Arpat (2024050115254790200_koad326-B2) 2012; 71 Cho (2024050115254790200_koad326-B29) 2023; 33 Che (2024050115254790200_koad326-B18) 2020; 61 Xiao (2024050115254790200_koad326-B197) 2022; 8 Qin (2024050115254790200_koad326-B140) 2012; 159 Ayadi (2024050115254790200_koad326-B4) 2015; 167 Nilsson (2024050115254790200_koad326-B123) 2007; 30 Devaiah (2024050115254790200_koad326-B37) 2007; 143 Nussaume (2024050115254790200_koad326-B124) 2011; 2 Nguyen (2024050115254790200_koad326-B121) 2021; 185 Das (2024050115254790200_koad326-B32) 2022; 13 Nielsen (2024050115254790200_koad326-B122) 1998; 21 Wang (2024050115254790200_koad326-B185) 2019; 439 Ouyang (2024050115254790200_koad326-B127) 2016; 6 Chen (2024050115254790200_koad326-B21) 2019; 221 Valverde (2024050115254790200_koad326-B173) 2002; 153 Liu (2024050115254790200_koad326-B95) 2009; 57 Reis (2024050115254790200_koad326-B143) 2020; 183 Sahu (2024050115254790200_koad326-B152) 2020; 184 Ma (2024050115254790200_koad326-B106) 2021; 53 Bayle (2024050115254790200_koad326-B11) 2011; 23 Plaxton (2024050115254790200_koad326-B134) 2011; 156 Jiang (2024050115254790200_koad326-B72) 2019; 222 Lu (2024050115254790200_koad326-B102) 2020; 184 Chen (2024050115254790200_koad326-B24) 2007; 405 Härtel (2024050115254790200_koad326-B59) 2001; 61 Hürlimann (2024050115254790200_koad326-B67) 2009; 10 Wen (2024050115254790200_koad326-B192) 2019; 223 Hirose (2024050115254790200_koad326-B61) 2007; 59 Zhou (2024050115254790200_koad326-B207) 2021; 12 Wang (2024050115254790200_koad326-B184) 2021; 33 Reis (2024050115254790200_koad326-B142) 2021; 33 Guan (2024050115254790200_koad326-B54) 2022; 13 Ticconi (2024050115254790200_koad326-B171) 2009; 106 Bustos (2024050115254790200_koad326-B14) 2010; 6 Bari (2024050115254790200_koad326-B7) 2006; 141 Ruan (2024050115254790200_koad326-B149) 2018; 30 Dai (2024050115254790200_koad326-B30) 2022; 188 Huen (2024050115254790200_koad326-B66) 2017; 19 Wang (2024050115254790200_koad326-B183) 2020; 183 Gu (2024050115254790200_koad326-B53) 2022; 234 Liu (2024050115254790200_koad326-B94) 2015; 112 Secco (2024050115254790200_koad326-B157) 2012; 193 Heuer (2024050115254790200_koad326-B60) 2017; 90 Huang (2024050115254790200_koad326-B65) 2013; 25 Khan (2024050115254790200_koad326-B79) 2014; 65 Zhu (2024050115254790200_koad326-B210) 2012; 7 Dong (2024050115254790200_koad326-B42) 2019; 12 Svistoonoff (2024050115254790200_koad326-B165) 2007; 39 Wege (2024050115254790200_koad326-B191) 2016; 170 Yamaji (2024050115254790200_koad326-B201) 2017; 541 Taylor (2024050115254790200_koad326-B168) 1993; 90 van de Wiel (2024050115254790200_koad326-B174) 2016; 207 Kuo (2024050115254790200_koad326-B82) 2018; 95 Devaiah (2024050115254790200_koad326-B38) 2009; 2 Gaude (2024050115254790200_koad326-B49) 2008; 56 Karthikeyan (2024050115254790200_koad326-B75) 2002; 130 Kisko (2024050115254790200_koad326-B80) 2018; 7 Sanchez-Calderon (2024050115254790200_koad326-B154) 2005; 46 Prathap (2024050115254790200_koad326-B138) 2022; 49 Młodzińska (2024050115254790200_koad326-B111) 2016; 7 Vogiatzaki (2024050115254790200_koad326-B180) 2017; 27 Bariola (2024050115254790200_koad326-B8) 1994; 6 Potapenko (2024050115254790200_koad326-B137) 2018; 293 Raghothama (2024050115254790200_koad326-B141) 1999; 50 Umehara (2024050115254790200_koad326-B172) 2008; 455 Holford (2024050115254790200_koad326-B62) 1997; 35 Daram (2024050115254790200_koad326-B31) 1999; 11 Gerasimaite (2024050115254790200_koad326-B50) 2017; 12 Reymond (2024050115254790200_koad326-B145) 2006; 29 Oldroyd (2024050115254790200_koad326-B126) 2020; 368 Isidra-Arellano (2024050115254790200_koad326-B68) 2021; 62 Jia (2024050115254790200_koad326-B71) 2018; 69 Medici (2024050115254790200_koad326-B108) 2019; 31 Zhu (2024050115254790200_koad326-B209) 2019; 8 Hsieh (2024050115254790200_koad326-B63) 2009; 151 Sawaki (2024050115254790200_koad326-B155) 2009; 150 Pontigo (2024050115254790200_koad326-B136) 2023; 12 Jabnoune (2024050115254790200_koad326-B69) 2013; 25 Naumann (2024050115254790200_koad326-B118) 2022; 32 Nagy (2024050115254790200_koad326-B116) 2009; 284 Zimmerli (2024050115254790200_koad326-B212) 2012; 72 Remy (2024050115254790200_koad326-B144) 2012; 195 Lin (2024050115254790200_koad326-B90) 2013; 25 Yue (2024050115254790200_koad326-B204) 2017; 90 Chen (2024050115254790200_koad326-B20) 2011; 157 Jiang (2024050115254790200_koad326-B73) 2019; 286 Zhang (2024050115254790200_koad326-B205) 2015; 82 Lv (2024050115254790200_koad326-B104) 2014; 26 Desai (2024050115254790200_koad326-B35) 2014; 80 Pant (2024050115254790200_koad326-B131) 2009; 150 Miyaji (2024050115254790200_koad326-B110) 2015; 6 Bates (2024050115254790200_koad326-B9) 1996; 19 Ried (2024050115254790200_koad326-B146) 2021; 12 Wang (2024050115254790200_koad326-B181) 2012; 196 Silva-Navas (2024050115254790200_koad326-B161) 2019; 224 Liu (2024050115254790200_koad326-B93) 2005; 41 Lota (2024050115254790200_koad326-B101) 2013; 74 Duan (2024050115254790200_koad326-B44) 2008; 54 Kelly (2024050115254790200_koad326-B77) 2002; 266 Muchhal (2024050115254790200_koad326-B113) 1996; 93 Laha (2024050115254790200_koad326-B84) 2019; 14 Mudge (2024050115254790200_koad326-B114) 2002; 31 Thibaud (2024050115254790200_koad326-B169) 2010; 64 Pant (2024050115254790200_koad326-B129) 2008; 53 Laha (2024050115254790200_koad326-B83) 2015; 27 Xu (2024050115254790200_koad326-B199) 2019; 5 Chen (2024050115254790200_koad326-B23) 2009; 21 Luan (2024050115254790200_koad326-B103) 2022; 15 Tang (2024050115254790200_koad326-B167) 2022; 41 Ticconi (2024050115254790200_koad326-B170) 2001; 127 Lin (2024050115254790200_koad326-B89) 2018; 217 Liu (2024050115254790200_koad326-B96) 2012; 24 Varadarajan (2024050115254790200_koad326-B176) 2002; 129 Zhuang (2024050115254790200_koad326-B211) 2021; 108 Desfougères (2024050115254790200_koad326-B36) 2016; 291 López- |
References_xml | – volume: 19 start-page: 643 issue: 4 year: 2017 ident: 2024050115254790200_koad326-B66 article-title: Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis publication-title: Plant Biology doi: 10.1111/plb.12568 – volume: 32 start-page: 2189 issue: 10 year: 2022 ident: 2024050115254790200_koad326-B118 article-title: Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development publication-title: Curr Biol doi: 10.1016/j.cub.2022.04.005 – volume: 52 start-page: 527 issue: 1 year: 2001 ident: 2024050115254790200_koad326-B151 article-title: Function and mechanism of organic anion exudation from plant roots publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.52.1.527 – volume: 13 start-page: 1581 issue: 1 year: 2022 ident: 2024050115254790200_koad326-B54 article-title: Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2—PHR2 complex publication-title: Nat Commun doi: 10.1038/s41467-022-29275-8 – volume: 129 start-page: 1232 issue: 3 year: 2002 ident: 2024050115254790200_koad326-B176 article-title: Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation publication-title: Plant Physiol doi: 10.1104/pp.010835 – volume: 196 start-page: 139 issue: 1 year: 2012 ident: 2024050115254790200_koad326-B181 article-title: Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04227.x – volume: 82 start-page: 556 issue: 4 year: 2015 ident: 2024050115254790200_koad326-B205 article-title: Involvement of OsPht1; 4 in phosphate acquisition and mobilization facilitates embryo development in rice publication-title: Plant J doi: 10.1111/tpj.12804 – volume: 8 start-page: e43582 year: 2019 ident: 2024050115254790200_koad326-B209 article-title: Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis publication-title: Elife doi: 10.7554/eLife.43582 – volume: 6 start-page: 280 issue: 3 year: 2003 ident: 2024050115254790200_koad326-B100 article-title: The role of nutrient availability in regulating root architecture publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(03)00035-9 – volume: 7 start-page: 1198 year: 2016 ident: 2024050115254790200_koad326-B111 article-title: Phosphate uptake and allocation—a closer look at Arabidopsis thaliana L. and Oryza sativa L publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01198 – volume: 80 start-page: 642 issue: 4 year: 2014 ident: 2024050115254790200_koad326-B35 article-title: Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants publication-title: Plant J. doi: 10.1111/tpj.12669 – volume: 2 start-page: 43 issue: 1 year: 2009 ident: 2024050115254790200_koad326-B38 article-title: Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis publication-title: Mol Plant doi: 10.1093/mp/ssn081 – volume: 153 start-page: 43 issue: 1 year: 2002 ident: 2024050115254790200_koad326-B173 article-title: Phosphorus and the regulation of nodulation in the actinorhizal symbiosis, between Discaria trinervis (Rhamnaceae) and Frankia BCU110501 publication-title: New Phytol doi: 10.1046/j.0028-646X.2001.00298.x – volume: 156 start-page: 1041 issue: 3 year: 2011 ident: 2024050115254790200_koad326-B105 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiol doi: 10.1104/pp.111.175414 – volume: 14 start-page: 1751 issue: 8 year: 2002 ident: 2024050115254790200_koad326-B178 article-title: A chloroplast phosphate transporter, PHT2; 1, influences allocation of phosphate within the plant and phosphate-starvation responses publication-title: Plant Cell doi: 10.1105/tpc.002220 – volume: 141 start-page: 1000 issue: 3 year: 2006 ident: 2024050115254790200_koad326-B3 article-title: Pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene publication-title: Plant Physiol doi: 10.1104/pp.106.078063 – volume: 61 start-page: 1387 issue: 8 year: 2020 ident: 2024050115254790200_koad326-B18 article-title: Node-localized transporters of phosphorus essential for seed development in rice publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcaa074 – volume: 35 start-page: 227 issue: 2 year: 1997 ident: 2024050115254790200_koad326-B62 article-title: Soil phosphorus: its measurement, and its uptake by plants publication-title: Soil Res doi: 10.1071/S96047 – volume: 29 start-page: 115 issue: 1 year: 2006 ident: 2024050115254790200_koad326-B145 article-title: Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2005.01405.x – volume: 88 start-page: 131 issue: 1 year: 2001 ident: 2024050115254790200_koad326-B166 article-title: Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L publication-title: Ann Bot doi: 10.1006/anbo.2001.1440 – volume: 39 start-page: 25 year: 2017 ident: 2024050115254790200_koad326-B177 article-title: Intracellular transport and compartmentation of phosphate in plants publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2017.04.015 – volume: 57 start-page: 798 issue: 5 year: 2009 ident: 2024050115254790200_koad326-B1 article-title: Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6 have different functions and kinetic properties in uptake and translocation publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03726.x – volume: 6 start-page: e1001102 issue: 9 year: 2010 ident: 2024050115254790200_koad326-B14 article-title: A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001102 – volume: 69 start-page: 4961 issue: 20 year: 2018 ident: 2024050115254790200_koad326-B71 article-title: Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil publication-title: J Exp Bot doi: 10.1093/jxb/ery252 – volume: 65 start-page: 95 issue: 1 year: 2014 ident: 2024050115254790200_koad326-B99 article-title: Phosphate nutrition: improving low-phosphate tolerance in crops publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050213-035949 – volume: 57 start-page: 389 issue: 3 year: 2009 ident: 2024050115254790200_koad326-B95 article-title: Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03696.x – volume: 293 start-page: 19101 issue: 49 year: 2018 ident: 2024050115254790200_koad326-B137 article-title: 5-Diphosphoinositol pentakisphosphate (5-IP7) regulates phosphate release from acidocalcisomes and yeast vacuoles publication-title: J Biol Chem doi: 10.1074/jbc.RA118.005884 – volume: 147 start-page: 732 issue: 2 year: 2008 ident: 2024050115254790200_koad326-B88 article-title: Regulatory network of MicroRNA399 and PHO2 by systemic signaling publication-title: Plant Physiol doi: 10.1104/pp.108.116269 – volume: 207 start-page: 1 issue: 1 year: 2016 ident: 2024050115254790200_koad326-B174 article-title: Improving phosphorus use efficiency in agriculture: opportunities for breeding publication-title: Euphytica doi: 10.1007/s10681-015-1572-3 – volume: 225 start-page: 907 issue: 4 year: 2007 ident: 2024050115254790200_koad326-B76 article-title: Phosphate starvation responses are mediated by sugar signaling in Arabidopsis publication-title: Planta doi: 10.1007/s00425-006-0408-8 – volume: 71 start-page: 479 issue: 3 year: 2012 ident: 2024050115254790200_koad326-B2 article-title: Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate publication-title: Plant J doi: 10.1111/j.1365-313X.2012.05004.x – volume: 95 start-page: 613 issue: 4 year: 2018 ident: 2024050115254790200_koad326-B82 article-title: Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis publication-title: Plant J. doi: 10.1111/tpj.13974 – volume: 111 start-page: 14947 issue: 41 year: 2014 ident: 2024050115254790200_koad326-B139 article-title: SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1404654111 – volume: 62 start-page: 392 issue: 3 year: 2021 ident: 2024050115254790200_koad326-B68 article-title: The phosphate starvation response system: its role in the regulation of plant–microbe interactions publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcab016 – volume: 33 start-page: 867 issue: 5 year: 1997 ident: 2024050115254790200_koad326-B92 article-title: Differential expression of TPS11, a phosphate starvation induced gene in tomato publication-title: Plant Mol Biol doi: 10.1023/A:1005729309569 – volume: 33 start-page: 3470 issue: 11 year: 2021 ident: 2024050115254790200_koad326-B184 article-title: Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation publication-title: Plant Cell doi: 10.1093/plcell/koab206 – volume: 156 start-page: 1006 issue: 3 year: 2011 ident: 2024050115254790200_koad326-B134 article-title: Metabolic adaptations of phosphate-starved plants publication-title: Plant Physiol doi: 10.1104/pp.111.175281 – volume: 90 start-page: 1040 issue: 6 year: 2017 ident: 2024050115254790200_koad326-B204 article-title: OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters publication-title: Plant J doi: 10.1111/tpj.13516 – volume: 72 start-page: 199 issue: 2 year: 2012 ident: 2024050115254790200_koad326-B212 article-title: PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2012.05058.x – volume: 240 start-page: 802 issue: 2 year: 2023 ident: 2024050115254790200_koad326-B25 article-title: Dose-dependent long-distance movement of microRNA399 duplex regulates phosphate homeostasis in Arabidopsis publication-title: New Phytol doi: 10.1111/nph.19182 – volume: 41 start-page: e109102 issue: 6 year: 2022 ident: 2024050115254790200_koad326-B167 article-title: Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation publication-title: EMBO J doi: 10.15252/embj.2021109102 – volume: 14 start-page: 2127 issue: 10 year: 2019 ident: 2024050115254790200_koad326-B84 article-title: Arabidopsis ITPK1 and ITPK2 have an evolutionarily conserved phytic acid kinase activity publication-title: ACS Chem Biol. doi: 10.1021/acschembio.9b00423 – volume: 165 start-page: 715 issue: 2 year: 2014 ident: 2024050115254790200_koad326-B33 article-title: Expression of sucrose transporter cDNAs specifically in companion cells enhances phloem loading and long-distance transport of sucrose but leads to an inhibition of growth and the perception of a phosphate limitation publication-title: Plant Physiol doi: 10.1104/pp.114.238410 – volume: 37 start-page: 462 issue: 2 year: 2014 ident: 2024050115254790200_koad326-B162 article-title: Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean publication-title: Plant Cell Environ doi: 10.1111/pce.12170 – volume: 106 start-page: 14174 issue: 33 year: 2009 ident: 2024050115254790200_koad326-B171 article-title: ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0901778106 – volume: 146 start-page: 1673 issue: 4 year: 2008 ident: 2024050115254790200_koad326-B208 article-title: OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants publication-title: Plant Physiol doi: 10.1104/pp.107.111443 – volume: 191 start-page: 1324 issue: 2 year: 2022 ident: 2024050115254790200_koad326-B190 article-title: PHOSPHATE RESPONSE 1 family members act distinctly to regulate transcriptional responses to phosphate starvation publication-title: Plant Physiol doi: 10.1093/plphys/kiac521 – volume: 45 start-page: 712 issue: 5 year: 2006 ident: 2024050115254790200_koad326-B159 article-title: Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02629.x – volume: 488 start-page: 535 issue: 7412 year: 2012 ident: 2024050115254790200_koad326-B48 article-title: The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency publication-title: Nature doi: 10.1038/nature11346 – volume: 26 start-page: 454 issue: 1 year: 2014 ident: 2024050115254790200_koad326-B133 article-title: NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis publication-title: Plant Cell doi: 10.1105/tpc.113.120311 – volume: 12 start-page: 1224 issue: 6 year: 2023 ident: 2024050115254790200_koad326-B136 article-title: Biochemical and molecular responses underlying the contrasting phosphorus use efficiency in Ryegrass cultivars publication-title: Plants doi: 10.3390/plants12061224 – volume: 217 start-page: 1712 issue: 4 year: 2018 ident: 2024050115254790200_koad326-B89 article-title: Evolution of microRNA827 targeting in the plant kingdom publication-title: New Phytol doi: 10.1111/nph.14938 – volume: 179 start-page: 460 issue: 2 year: 2019 ident: 2024050115254790200_koad326-B119 article-title: The local phosphate deficiency response activates endoplasmic reticulum stress-dependent autophagy publication-title: Plant Physiol doi: 10.1104/pp.18.01379 – volume: 22 start-page: 161 issue: 1 year: 2022 ident: 2024050115254790200_koad326-B198 article-title: GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean publication-title: BMC Plant Biol doi: 10.1186/s12870-022-03556-2 – volume: 21 start-page: 555 issue: 4 year: 2020 ident: 2024050115254790200_koad326-B15 article-title: Phosphate excess increases susceptibility to pathogen infection in rice publication-title: Mol Plant Pathol doi: 10.1111/mpp.12916 – volume: 184 start-page: 5527 issue: 22 year: 2021 ident: 2024050115254790200_koad326-B158 article-title: A phosphate starvation response-centered network regulates mycorrhizal symbiosis publication-title: Cell doi: 10.1016/j.cell.2021.09.030 – volume: 65 start-page: 871 issue: 3 year: 2014 ident: 2024050115254790200_koad326-B79 article-title: Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis publication-title: J Exp Bot doi: 10.1093/jxb/ert444 – volume: 108 start-page: 1422 issue: 5 year: 2021 ident: 2024050115254790200_koad326-B211 article-title: Phosphate starvation responsive GmSPX5 mediates nodule growth through interaction with GmNF-YC4 in soybean (Glycine max) publication-title: Plant J doi: 10.1111/tpj.15520 – volume: 11 start-page: 2153 issue: 11 year: 1999 ident: 2024050115254790200_koad326-B31 article-title: Pht2; 1 encodes a low-affinity phosphate transporter from Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.11.11.2153 – volume: 157 start-page: 269 issue: 1 year: 2011 ident: 2024050115254790200_koad326-B20 article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice publication-title: Plant Physiol doi: 10.1104/pp.111.181669 – volume: 84 start-page: 99 issue: 1 year: 2015 ident: 2024050115254790200_koad326-B74 article-title: The Arabidopsis thylakoid transporter PHT4; 1 influences phosphate availability for ATP synthesis and plant growth publication-title: Plant J doi: 10.1111/tpj.12962 – volume: 150 start-page: 281 issue: 1 year: 2009 ident: 2024050115254790200_koad326-B155 article-title: STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities publication-title: Plant Physiol doi: 10.1104/pp.108.134700 – volume: 33 start-page: 216 issue: 2 year: 2015 ident: 2024050115254790200_koad326-B115 article-title: Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability publication-title: Dev Cell doi: 10.1016/j.devcel.2015.02.007 – volume: 39 start-page: 629 issue: 4 year: 2004 ident: 2024050115254790200_koad326-B160 article-title: Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low- and high-phosphate environments publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02161.x – volume: 70 start-page: 2227 issue: 8 year: 2019 ident: 2024050115254790200_koad326-B196 article-title: Integration of nutrient, energy, light, and hormone signalling via TOR in plants publication-title: J Exp Bot doi: 10.1093/jxb/erz028 – volume: 219 start-page: 518 issue: 2 year: 2018 ident: 2024050115254790200_koad326-B128 article-title: The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply publication-title: New Phytol doi: 10.1111/nph.15200 – volume: 9 start-page: 1432 year: 2018 ident: 2024050115254790200_koad326-B189 article-title: Functional characterization of Arabidopsis PHL4 in plant response to phosphate starvation publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01432 – volume: 224 start-page: 242 issue: 1 year: 2019 ident: 2024050115254790200_koad326-B161 article-title: Role of cis-zeatin in root responses to phosphate starvation publication-title: New Phytol doi: 10.1111/nph.16020 – volume: 189 start-page: 1157 issue: 4 year: 2011 ident: 2024050115254790200_koad326-B19 article-title: Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03556.x – volume: 15 start-page: 2122 issue: 16 year: 2001 ident: 2024050115254790200_koad326-B150 article-title: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae publication-title: Genes Dev doi: 10.1101/gad.204401 – volume: 30 start-page: 853 issue: 4 year: 2018 ident: 2024050115254790200_koad326-B149 article-title: An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice publication-title: Plant Cell doi: 10.1105/tpc.17.00738 – volume: 116 start-page: 1477 issue: 5 year: 2023 ident: 2024050115254790200_koad326-B179 article-title: The Arabidopsis PHOSPHATE 1 exporter undergoes constitutive internalization via clathrin-mediated endocytosis publication-title: Plant J doi: 10.1111/tpj.16441 – volume: 183 start-page: 250 issue: 1 year: 2020 ident: 2024050115254790200_koad326-B183 article-title: CASEIN KINASE2-dependent phosphorylation of PHOSPHATE2 fine-tunes phosphate homeostasis in rice publication-title: Plant Physiol doi: 10.1104/pp.20.00078 – volume: 541 start-page: 92 issue: 7635 year: 2017 ident: 2024050115254790200_koad326-B201 article-title: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node publication-title: Nature doi: 10.1038/nature20610 – volume: 14 start-page: 1864 issue: 11 year: 2021 ident: 2024050115254790200_koad326-B147 article-title: ITPK1 is an InsP6/ADP phosphotransferase that controls phosphate signaling in Arabidopsis publication-title: Mol Plant doi: 10.1016/j.molp.2021.07.011 – volume: 57 start-page: 431 issue: 1 year: 2006 ident: 2024050115254790200_koad326-B153 article-title: Cytokinins: activity, biosynthesis, and translocation publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.57.032905.105231 – volume: 59 start-page: 1714 issue: 9 year: 2018 ident: 2024050115254790200_koad326-B26 article-title: Sensing and signaling of phosphate starvation: from local to long distance publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcy148 – volume: 12 start-page: 1463 issue: 11 year: 2019 ident: 2024050115254790200_koad326-B42 article-title: Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis publication-title: Mol Plant doi: 10.1016/j.molp.2019.08.002 – volume: 41 start-page: 257 issue: 2 year: 2005 ident: 2024050115254790200_koad326-B93 article-title: Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02289.x – volume: 39 start-page: 792 issue: 6 year: 2007 ident: 2024050115254790200_koad326-B165 article-title: Root tip contact with low-phosphate media reprograms plant root architecture publication-title: Nat Genet doi: 10.1038/ng2041 – volume: 221 start-page: 2013 issue: 4 year: 2019 ident: 2024050115254790200_koad326-B21 article-title: A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean publication-title: New Phytol doi: 10.1111/nph.15541 – volume: 236 start-page: 243 issue: 2 year: 2001 ident: 2024050115254790200_koad326-B10 article-title: Root hairs confer a competitive advantage under low phosphorus availability publication-title: Plant Soil doi: 10.1023/A:1012791706800 – volume: 25 start-page: 4061 issue: 10 year: 2013 ident: 2024050115254790200_koad326-B90 article-title: NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.116012 – volume: 37 start-page: 1159 year: 2014 ident: 2024050115254790200_koad326-B186 article-title: Phosphate transporters OsPHT1; 9 and OsPHT1; 10 are involved in phosphate uptake in rice publication-title: Plant Cell Environ doi: 10.1111/pce.12224 – volume: 159 start-page: 1634 issue: 4 year: 2012 ident: 2024050115254790200_koad326-B140 article-title: The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean publication-title: Plant Physiol doi: 10.1104/pp.112.199786 – volume: 14 start-page: 334 issue: 1 year: 2014 ident: 2024050115254790200_koad326-B85 article-title: Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1; 8 and PHT1; 9 are involved in root-to-shoot translocation of orthophosphate publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0334-z – volume: 9 start-page: 5408 issue: 1 year: 2019 ident: 2024050115254790200_koad326-B43 article-title: The rice phosphate transporter protein OsPT8 regulates disease resistance and plant growth publication-title: Sci Rep doi: 10.1038/s41598-019-41718-9 – volume: 266 start-page: 1166 issue: 2 year: 2002 ident: 2024050115254790200_koad326-B77 article-title: DGD2, an arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions publication-title: J Biol Chem doi: 10.1074/jbc.M110066200 – volume: 6 start-page: 29850 issue: 1 year: 2016 ident: 2024050115254790200_koad326-B127 article-title: Knock out of the PHOSPHATE 2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat publication-title: Sci Rep doi: 10.1038/srep29850 – volume: 32 start-page: 488 issue: 2 year: 2022 ident: 2024050115254790200_koad326-B40 article-title: Direct inhibition of phosphate transport by immune signaling in Arabidopsis publication-title: Curr Biol doi: 10.1016/j.cub.2021.11.063 – volume: 25 start-page: 4044 issue: 10 year: 2013 ident: 2024050115254790200_koad326-B65 article-title: Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomic in Arabidopsis roots publication-title: Plant Cell doi: 10.1105/tpc.113.115998 – volume: 49 start-page: 8071 issue: 8 year: 2022 ident: 2024050115254790200_koad326-B138 article-title: Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants publication-title: Mol Biol Rep doi: 10.1007/s11033-022-07354-9 – volume: 5 start-page: 401 issue: 4 year: 2019 ident: 2024050115254790200_koad326-B64 article-title: Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants publication-title: Nat Plants doi: 10.1038/s41477-019-0384-1 – volume: 13 start-page: 99 issue: 1 year: 2020 ident: 2024050115254790200_koad326-B41 article-title: Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis publication-title: Mol Plant doi: 10.1016/j.molp.2019.10.002 – volume: 222 start-page: 1223 issue: 3 year: 2019 ident: 2024050115254790200_koad326-B72 article-title: Towards a more physiological representation of vegetation phosphorus processes in land surface models publication-title: New Phytol doi: 10.1111/nph.15688 – volume: 90 start-page: 5118 issue: 11 year: 1993 ident: 2024050115254790200_koad326-B168 article-title: RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.90.11.5118 – volume: 34 start-page: 4045 issue: 10 year: 2022 ident: 2024050115254790200_koad326-B87 article-title: SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato publication-title: Plant Cell doi: 10.1093/plcell/koac212 – volume: 18 start-page: 412 issue: 2 year: 2006 ident: 2024050115254790200_koad326-B27 article-title: Regulation of phosphate homeostasis by microRNA in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.105.038943 – volume: 8 start-page: 1074 issue: 9 year: 2022 ident: 2024050115254790200_koad326-B197 article-title: SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis publication-title: Nat Plants doi: 10.1038/s41477-022-01231-w – volume: 52 start-page: 43 issue: 1 year: 2013 ident: 2024050115254790200_koad326-B117 article-title: Phosphate starvation and membrane lipid remodeling in seed plants publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2012.07.002 – volume: 150 start-page: 1541 issue: 3 year: 2009 ident: 2024050115254790200_koad326-B131 article-title: Identification of nutrient-responsive Arabidopsis and rapeseed MicroRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing publication-title: Plant Physiol doi: 10.1104/pp.109.139139 – volume: 33 start-page: 1381 issue: 4 year: 2021 ident: 2024050115254790200_koad326-B142 article-title: An antisense noncoding RNA enhances translation via localised structural rearrangements of its cognate mRNA publication-title: Plant Cell doi: 10.1093/plcell/koab010 – volume: 25 start-page: 4166 issue: 10 year: 2013 ident: 2024050115254790200_koad326-B69 article-title: A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness publication-title: Plant Cell doi: 10.1105/tpc.113.116251 – volume: 239 start-page: 29 issue: 1 year: 2023 ident: 2024050115254790200_koad326-B132 article-title: The good, the bad, and the phosphate: regulation of beneficial and detrimental plant-microbe interactions by the plant phosphate status publication-title: New Phytol doi: 10.1111/nph.18933 – volume: 167 start-page: 1511 issue: 4 year: 2015 ident: 2024050115254790200_koad326-B4 article-title: Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling publication-title: Plant Physiol doi: 10.1104/pp.114.252338 – volume: 46 start-page: 2187 issue: 7 year: 2023 ident: 2024050115254790200_koad326-B78 article-title: PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is prevalent in upland rice and enhances root growth and hastens low phosphate signaling in wheat publication-title: Plant Cell Environ doi: 10.1111/pce.14588 – volume: 53 start-page: 906 issue: 6 year: 2021 ident: 2024050115254790200_koad326-B106 article-title: A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals publication-title: Nat Genet doi: 10.1038/s41588-021-00855-6 – volume: 368 start-page: eaba0196 issue: 6486 year: 2020 ident: 2024050115254790200_koad326-B126 article-title: A plant's diet, surviving in a variable nutrient environment publication-title: Science doi: 10.1126/science.aba0196 – volume: 477 start-page: 2621 issue: 14 year: 2020 ident: 2024050115254790200_koad326-B193 article-title: An ATP-responsive metabolic cassette comprised of inositol tris/tetrakisphosphate kinase 1 (ITPK1) and inositol pentakisphosphate 2-kinase (IPK1) buffers diphosphosphoinositol phosphate levels publication-title: Biochem J doi: 10.1042/BCJ20200423 – volume: 234 start-page: 1249 issue: 4 year: 2022 ident: 2024050115254790200_koad326-B53 article-title: A crucial role for a node-localized transporter, HvSPDT, in loading phosphorus into barley grains publication-title: New Phytol doi: 10.1111/nph.18057 – volume: 65 start-page: 1817 issue: 7 year: 2014 ident: 2024050115254790200_koad326-B91 article-title: Long-distance call from phosphate: systemic regulation of phosphate starvation responses publication-title: J Exp Bot doi: 10.1093/jxb/ert431 – volume: 93 start-page: 10519 issue: 19 year: 1996 ident: 2024050115254790200_koad326-B113 article-title: Phosphate transporters from the higher plant Arabidopsis thaliana publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.19.10519 – volume: 111 start-page: 14953 issue: 41 year: 2014 ident: 2024050115254790200_koad326-B188 article-title: Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1404680111 – volume: 54 start-page: 965 issue: 6 year: 2008 ident: 2024050115254790200_koad326-B44 article-title: Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03460.x – volume: 50 start-page: 665 issue: 1 year: 1999 ident: 2024050115254790200_koad326-B141 article-title: Phosphate acquisition publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.50.1.665 – volume: 21 start-page: 443 issue: 5 year: 1998 ident: 2024050115254790200_koad326-B122 article-title: The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1998.00295.x – volume: 7 start-page: 11095 issue: 1 year: 2016 ident: 2024050115254790200_koad326-B97 article-title: Identification of plant vacuolar transporters mediating phosphate storage publication-title: Nat Commun doi: 10.1038/ncomms11095 – volume: 219 start-page: 135 issue: 1 year: 2018 ident: 2024050115254790200_koad326-B206 article-title: Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2 publication-title: New Phytol doi: 10.1111/nph.15155 – volume: 66 start-page: 1907 issue: 7 year: 2015 ident: 2024050115254790200_koad326-B130 article-title: The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation publication-title: J Exp Bot doi: 10.1093/jxb/eru535 – volume: 8 start-page: 15300 issue: 1 year: 2017 ident: 2024050115254790200_koad326-B6 article-title: Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation publication-title: Nat Commun doi: 10.1038/ncomms15300 – volume: 188 start-page: 2272 issue: 4 year: 2022 ident: 2024050115254790200_koad326-B30 article-title: The rice phosphate transporter OsPHT1; 7 plays a dual role in phosphorus redistribution and anther development publication-title: Plant Physiol doi: 10.1093/plphys/kiac030 – volume: 31 start-page: 1171 issue: 5 year: 2019 ident: 2024050115254790200_koad326-B108 article-title: Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants publication-title: Plant Cell doi: 10.1105/tpc.18.00656 – volume: 14 start-page: 889 issue: 4 year: 2002 ident: 2024050115254790200_koad326-B58 article-title: Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem publication-title: Plant Cell doi: 10.1105/tpc.000745 – volume: 6 start-page: 11 issue: 1 year: 2015 ident: 2024050115254790200_koad326-B110 article-title: AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis publication-title: Nat Commun doi: 10.1038/ncomms6928 – volume: 64 start-page: 775 issue: 5 year: 2010 ident: 2024050115254790200_koad326-B169 article-title: Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04375.x – volume: 59 start-page: 75 issue: 1 year: 2007 ident: 2024050115254790200_koad326-B61 article-title: Regulation of cytokinin biosynthesis, compartmentalization and translocation publication-title: J Exp Bot doi: 10.1093/jxb/erm157 – volume: 13 start-page: 447 issue: 1 year: 2022 ident: 2024050115254790200_koad326-B32 article-title: PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis publication-title: Nat Commun doi: 10.1038/s41467-022-27976-8 – volume: 66 start-page: 3523 issue: 12 year: 2015 ident: 2024050115254790200_koad326-B5 article-title: Replace, reuse, recycle: improving the sustainable use of phosphorus by plants publication-title: J Exp Bot doi: 10.1093/jxb/erv210 – volume: 12 start-page: 744094 year: 2021 ident: 2024050115254790200_koad326-B200 article-title: Differential root exudation and architecture for improved growth of wheat mediated by phosphate solubilizing bacteria publication-title: Front Microbiol doi: 10.3389/fmicb.2021.744094 – volume: 33 start-page: 1778 issue: 9 year: 2023 ident: 2024050115254790200_koad326-B29 article-title: ARSK1 activates TORC1 signaling to adjust growth to phosphate availability in Arabidopsis publication-title: Curr Biol doi: 10.1016/j.cub.2023.03.005 – volume: 6 start-page: 673 issue: 5 year: 1994 ident: 2024050115254790200_koad326-B8 article-title: The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation publication-title: Plant J doi: 10.1046/j.1365-313X.1994.6050673.x – volume: 32 start-page: 4493 issue: 20 year: 2022 ident: 2024050115254790200_koad326-B12 article-title: Plant growth stimulation by high CO2 depends on phosphorus homeostasis in chloroplasts publication-title: Curr Biol doi: 10.1016/j.cub.2022.08.032 – volume: 90 start-page: 868 issue: 5 year: 2017 ident: 2024050115254790200_koad326-B60 article-title: Improving phosphorus use efficiency: a complex trait with emerging opportunities publication-title: Plant J doi: 10.1111/tpj.13423 – volume: 27 start-page: 1082 issue: 4 year: 2015 ident: 2024050115254790200_koad326-B83 article-title: VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis publication-title: Plant Cell. doi: 10.1105/tpc.114.135160 – volume: 114 start-page: E3563 issue: 17 year: 2017 ident: 2024050115254790200_koad326-B112 article-title: Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1701952114 – volume: 455 start-page: 195 issue: 7210 year: 2008 ident: 2024050115254790200_koad326-B172 article-title: Inhibition of shoot branching by new terpenoid plant hormones publication-title: Nature doi: 10.1038/nature07272 – volume: 286 start-page: 2809 issue: 14 year: 2019 ident: 2024050115254790200_koad326-B73 article-title: Structural basis for the target DNA recognition and binding by the MYB domain of phosphate starvation response 1 publication-title: FEBS J doi: 10.1111/febs.14846 – volume: 12 start-page: 648 issue: 3 year: 2017 ident: 2024050115254790200_koad326-B50 article-title: Inositol pyrophosphate specificity of the SPX-dependent polyphosphate polymerase VTC publication-title: ACS Chem Biol. doi: 10.1021/acschembio.7b00026 – volume: 12 start-page: 384 issue: 1 year: 2021 ident: 2024050115254790200_koad326-B146 article-title: Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis publication-title: Nat Commun doi: 10.1038/s41467-020-20681-4 – volume: 56 start-page: 28 issue: 1 year: 2008 ident: 2024050115254790200_koad326-B49 article-title: Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03582.x – volume: 434 start-page: 65 issue: 1-2 year: 2019 ident: 2024050115254790200_koad326-B148 article-title: The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source publication-title: Plant Soil doi: 10.1007/s11104-018-3787-2 – volume: 74 start-page: 280 issue: 2 year: 2013 ident: 2024050115254790200_koad326-B101 article-title: The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus publication-title: Plant J doi: 10.1111/tpj.12120 – volume: 7 start-page: e43530 issue: 8 year: 2012 ident: 2024050115254790200_koad326-B210 article-title: The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana publication-title: PLoS One doi: 10.1371/journal.pone.0043530 – volume: 27 start-page: 2893 issue: 19 year: 2017 ident: 2024050115254790200_koad326-B180 article-title: PHO1 exports phosphate from the chalazal seed coat to the embryo in developing Arabidopsis seeds publication-title: Curr Biol doi: 10.1016/j.cub.2017.08.026 – volume: 355 start-page: 287 issue: 6322 year: 2017 ident: 2024050115254790200_koad326-B163 article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling publication-title: Science doi: 10.1126/science.aal2541 – volume: 11 start-page: a034603 issue: 6 year: 2019 ident: 2024050115254790200_koad326-B28 article-title: Mechanisms and impact of symbiotic phosphate acquisition publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a034603 – volume: 105 start-page: 890 issue: 6 year: 2002 ident: 2024050115254790200_koad326-B195 article-title: Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil publication-title: Theor Appl Genet doi: 10.1007/s00122-002-1051-9 – volume: 223 start-page: 882 issue: 2 year: 2019 ident: 2024050115254790200_koad326-B192 article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species publication-title: New Phytol doi: 10.1111/nph.15833 – volume: 127 start-page: 963 issue: 3 year: 2001 ident: 2024050115254790200_koad326-B170 article-title: Attenuation of phosphate starvation responses by phosphite in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.010396 – volume: 169 start-page: 2822 issue: 4 year: 2015 ident: 2024050115254790200_koad326-B182 article-title: Rice SPX-major facility superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice publication-title: Plant Physiol – volume: 107 start-page: 207 issue: 1 year: 1995 ident: 2024050115254790200_koad326-B34 article-title: Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana publication-title: Plant Physiol doi: 10.1104/pp.107.1.207 – volume: 156 start-page: 1164 issue: 3 year: 2011 ident: 2024050115254790200_koad326-B70 article-title: The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice publication-title: Plant Physiol doi: 10.1104/pp.111.175240 – volume: 439 start-page: 91 issue: 1-2 year: 2019 ident: 2024050115254790200_koad326-B185 article-title: Mapping and cloning of quantitative trait loci for phosphorus efficiency in crops: opportunities and challenges publication-title: Plant Soil doi: 10.1007/s11104-018-3706-6 – volume: 13 start-page: 3796 issue: 1 year: 2022 ident: 2024050115254790200_koad326-B56 article-title: A natural uORF variant confers phosphorus acquisition diversity in soybean publication-title: Nat Commun doi: 10.1038/s41467-022-31555-2 – volume: 102 start-page: 53 issue: 1 year: 2020 ident: 2024050115254790200_koad326-B98 article-title: Mutation of the chloroplast-localized phosphate transporter OsPHT2; 1 reduces flavonoid accumulation and UV tolerance in rice publication-title: Plant J doi: 10.1111/tpj.14611 – volume: 195 start-page: 356 issue: 2 year: 2012 ident: 2024050115254790200_koad326-B144 article-title: The Pht1; 9 and Pht1; 8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04167.x – volume: 543 start-page: 513 issue: 7646 year: 2017 ident: 2024050115254790200_koad326-B16 article-title: Root microbiota drive direct integration of phosphate stress and immunity publication-title: Nature doi: 10.1038/nature21417 – volume: 23 start-page: 1523 issue: 4 year: 2011 ident: 2024050115254790200_koad326-B11 article-title: Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation publication-title: Plant Cell doi: 10.1105/tpc.110.081067 – volume: 151 start-page: 2120 issue: 4 year: 2009 ident: 2024050115254790200_koad326-B63 article-title: Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing publication-title: Plant Physiol doi: 10.1104/pp.109.147280 – volume: 15 start-page: 1590 issue: 10 year: 2022 ident: 2024050115254790200_koad326-B103 article-title: A SPX domain vacuolar transporter links phosphate sensing to homeostasis in Arabidopsis publication-title: Mol Plant doi: 10.1016/j.molp.2022.09.005 – volume: 12 start-page: 7040 issue: 1 year: 2021 ident: 2024050115254790200_koad326-B207 article-title: Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure publication-title: Nat Commun doi: 10.1038/s41467-021-27391-5 – volume: 31 start-page: 341 issue: 3 year: 2002 ident: 2024050115254790200_koad326-B114 article-title: Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01356.x – volume: 286 start-page: 57 year: 2019 ident: 2024050115254790200_koad326-B45 article-title: Intracellular phosphate homeostasis—a short way from metabolism to signaling publication-title: Plant Sci doi: 10.1016/j.plantsci.2019.05.018 – volume: 7 start-page: e32077 year: 2018 ident: 2024050115254790200_koad326-B80 article-title: LPCAT1 controls phosphate homeostasis in a zinc-dependent manner publication-title: Elife doi: 10.7554/eLife.32077 – volume: 184 start-page: 2064 issue: 4 year: 2020 ident: 2024050115254790200_koad326-B152 article-title: Spatial profiles of phosphate in roots indicate developmental control of uptake, recycling, and sequestration publication-title: Plant Physiol doi: 10.1104/pp.20.01008 – volume: 405 start-page: 191 issue: 1 year: 2007 ident: 2024050115254790200_koad326-B24 article-title: BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis publication-title: Biochem J doi: 10.1042/BJ20070102 – volume: 2 start-page: 83 year: 2011 ident: 2024050115254790200_koad326-B124 article-title: Phosphate import in plants: focus on the PHT1 transporters publication-title: Front Plant Sci doi: 10.3389/fpls.2011.00083 – volume: 177 start-page: 90 issue: 1 year: 2018 ident: 2024050115254790200_koad326-B164 article-title: Large crown root number improves topsoil foraging and phosphorus acquisition publication-title: Plant Physiol doi: 10.1104/pp.18.00234 – volume: 183 start-page: 1145 issue: 3 year: 2020 ident: 2024050115254790200_koad326-B143 article-title: Modulation of shoot phosphate level and growth by PHOSPHATE1 upstream open reading frame publication-title: Plant Physiol doi: 10.1104/pp.19.01549 – volume: 53 start-page: 731 issue: 5 year: 2008 ident: 2024050115254790200_koad326-B129 article-title: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03363.x – volume: 157 start-page: 423 issue: 3 year: 2003 ident: 2024050115254790200_koad326-B175 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytol doi: 10.1046/j.1469-8137.2003.00695.x – volume: 170 start-page: 385 issue: 1 year: 2016 ident: 2024050115254790200_koad326-B191 article-title: The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal publication-title: Plant Physiol doi: 10.1104/pp.15.00975 – volume: 97 start-page: 1087 issue: 3 year: 1991 ident: 2024050115254790200_koad326-B135 article-title: Mutant of Arabidopsis deficient in xylem loading of phosphate publication-title: Plant Physiol doi: 10.1104/pp.97.3.1087 – volume: 143 start-page: 1789 issue: 4 year: 2007 ident: 2024050115254790200_koad326-B37 article-title: WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.106.093971 – volume: 141 start-page: 988 issue: 3 year: 2006 ident: 2024050115254790200_koad326-B7 article-title: PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants publication-title: Plant Physiol doi: 10.1104/pp.106.079707 – volume: 5 start-page: 84 issue: 1 year: 2019 ident: 2024050115254790200_koad326-B199 article-title: Identification of vacuolar phosphate efflux transporters in land plants publication-title: Nat Plants doi: 10.1038/s41477-018-0334-3 – volume: 41 start-page: 555 issue: 5 year: 2017 ident: 2024050115254790200_koad326-B57 article-title: Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling publication-title: Dev Cell doi: 10.1016/j.devcel.2017.05.009 – volume: 24 start-page: 2168 issue: 5 year: 2012 ident: 2024050115254790200_koad326-B96 article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.096636 – volume: 12 start-page: RP87956 year: 2023 ident: 2024050115254790200_koad326-B17 article-title: Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP8 and the SPX domain of Pho81 publication-title: Elife doi: 10.7554/eLife.87956.3 – volume: 8 start-page: 509 year: 2017 ident: 2024050115254790200_koad326-B120 article-title: Novel alleles of phosphorus-starvation tolerance 1 gene (PSTOL1) from Oryza rufipogon confers high phosphorus uptake efficiency publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00509 – volume: 46 start-page: 174 issue: 1 year: 2005 ident: 2024050115254790200_koad326-B154 article-title: Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pci011 – volume: 193 start-page: 842 issue: 4 year: 2012 ident: 2024050115254790200_koad326-B157 article-title: The emerging importance of the SPX domain-containing proteins in phosphate homeostasis publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.04002.x – volume: 130 start-page: 221 issue: 1 year: 2002 ident: 2024050115254790200_koad326-B75 article-title: Regulated expression of Arabidopsis phosphate transporters publication-title: Plant Physiol doi: 10.1104/pp.020007 – volume: 152 start-page: 1693 issue: 3 year: 2010 ident: 2024050115254790200_koad326-B156 article-title: Characterization of the rice PHO1 gene family reveals a key role for OsPHO1; 2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons publication-title: Plant Physiol doi: 10.1104/pp.109.149872 – volume: 29 start-page: 1924 issue: 10 year: 2006 ident: 2024050115254790200_koad326-B187 article-title: Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2006.01568.x – volume: 68 start-page: 3045 issue: 12 year: 2017 ident: 2024050115254790200_koad326-B202 article-title: Role of vacuoles in phosphorus storage and remobilization publication-title: J Exp Bot doi: 10.1093/jxb/eru149 – volume: 112 start-page: E6571 issue: 47 year: 2015 ident: 2024050115254790200_koad326-B94 article-title: A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1514598112 – volume: 284 start-page: 33614 issue: 48 year: 2009 ident: 2024050115254790200_koad326-B116 article-title: The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage publication-title: J Biol Chem doi: 10.1074/jbc.M109.030247 – volume: 17 start-page: 3500 issue: 12 year: 2005 ident: 2024050115254790200_koad326-B52 article-title: PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.105.036640 – volume: 21 start-page: 3554 issue: 11 year: 2009 ident: 2024050115254790200_koad326-B23 article-title: The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.064980 – volume: 4 start-page: 1510 issue: 1 year: 2013 ident: 2024050115254790200_koad326-B125 article-title: A new class of plant lipid is essential for protection against phosphorus depletion publication-title: Nat Commun doi: 10.1038/ncomms2512 – volume: 184 start-page: 236 issue: 1 year: 2020 ident: 2024050115254790200_koad326-B102 article-title: Spatial divergence of PHR-PHT1 modules maintains phosphorus homeostasis in soybean nodules publication-title: Plant Physiol doi: 10.1104/pp.19.01209 – volume: 27 start-page: 711 issue: 3 year: 2015 ident: 2024050115254790200_koad326-B22 article-title: The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels publication-title: Plant Cell doi: 10.1105/tpc.114.135335 – volume: 39 start-page: 1033 issue: 8 year: 2007 ident: 2024050115254790200_koad326-B46 article-title: Target mimicry provides a new mechanism for regulation of microRNA activity publication-title: Nat Genet doi: 10.1038/ng2079 – volume: 182 start-page: 393 issue: 1 year: 2020 ident: 2024050115254790200_koad326-B203 article-title: Upstream open reading frame and phosphate-regulated expression of rice OsNLA1 controls phosphate transport and reproduction publication-title: Plant Physiol doi: 10.1104/pp.19.01101 – volume: 26 start-page: 1586 issue: 4 year: 2014 ident: 2024050115254790200_koad326-B104 article-title: SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice publication-title: Plant Cell doi: 10.1105/tpc.114.123208 – volume: 119 start-page: 241 issue: 1 year: 1999 ident: 2024050115254790200_koad326-B13 article-title: The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots publication-title: Plant Physiol doi: 10.1104/pp.119.1.241 – volume: 30 start-page: 1499 issue: 12 year: 2007 ident: 2024050115254790200_koad326-B123 article-title: Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2007.01734.x – volume: 24 start-page: 559 issue: 5 year: 2000 ident: 2024050115254790200_koad326-B107 article-title: Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis publication-title: Plant J doi: 10.1046/j.1365-313x.2000.00893.x – volume: 291 start-page: 22262 issue: 42 year: 2016 ident: 2024050115254790200_koad326-B36 article-title: Vtc5, a novel subunit of the vacuolar transporter chaperone complex, regulates polyphosphate synthesis and phosphate homeostasis in yeast publication-title: J Biol Chem doi: 10.1074/jbc.M116.746784 – volume: 185 start-page: 196 issue: 1 year: 2021 ident: 2024050115254790200_koad326-B121 article-title: PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula publication-title: Plant Physiol – volume: 455 start-page: 189 issue: 7210 year: 2008 ident: 2024050115254790200_koad326-B51 article-title: Strigolactone inhibition of shoot branching publication-title: Nature doi: 10.1038/nature07271 – volume: 15 start-page: 138 issue: 1 year: 2022 ident: 2024050115254790200_koad326-B55 article-title: A reciprocal inhibitory module for Pi and iron signaling publication-title: Mol Plant doi: 10.1016/j.molp.2021.09.011 – volume: 145 start-page: 147 issue: 1 year: 2007 ident: 2024050115254790200_koad326-B39 article-title: Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6 publication-title: Plant Physiol doi: 10.1104/pp.107.101691 – volume: 18 start-page: 115 issue: 1 year: 2018 ident: 2024050115254790200_koad326-B109 article-title: A PSTOL-like gene, controls a number of agronomically important traits in wheat publication-title: BMC Plant Biol doi: 10.1186/s12870-018-1331-4 – volume: 61 start-page: 46 issue: 1-2 year: 2001 ident: 2024050115254790200_koad326-B59 article-title: Galactolipids not associated with the photosynthetic apparatus in phosphate-deprived plants publication-title: J Photochem Photobiol B: Biol doi: 10.1016/S1011-1344(01)00144-0 – volume: 156 start-page: 1116 issue: 3 year: 2011 ident: 2024050115254790200_koad326-B86 article-title: Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.110.171736 – volume: 15 start-page: 2038 issue: 22 year: 2005 ident: 2024050115254790200_koad326-B47 article-title: A miRNA involved in phosphate-starvation response in Arabidopsis publication-title: Curr Biol doi: 10.1016/j.cub.2005.10.016 – volume: 155 start-page: 974 issue: 2 year: 2011 ident: 2024050115254790200_koad326-B81 article-title: Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.110.164640 – volume: 19 start-page: 529 issue: 5 year: 1996 ident: 2024050115254790200_koad326-B9 article-title: Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability publication-title: Plant, Cell Environ doi: 10.1111/j.1365-3040.1996.tb00386.x – volume: 10 start-page: 1003 issue: 9 year: 2009 ident: 2024050115254790200_koad326-B67 article-title: The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity publication-title: EMBO Rep doi: 10.1038/embor.2009.105 – volume: 352 start-page: 986 issue: 6288 year: 2016 ident: 2024050115254790200_koad326-B194 article-title: Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains publication-title: Science doi: 10.1126/science.aad9858 |
SSID | ssj0001719 |
Score | 2.6153855 |
SecondaryResourceType | review_article |
Snippet | Abstract
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often... As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1504 |
SubjectTerms | Biological Transport Nutrients - metabolism Phosphates - metabolism Phosphorus - metabolism Plant Roots - metabolism Plants - metabolism Review Signal Transduction |
Title | Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38163641 https://www.proquest.com/docview/2909085044 https://pubmed.ncbi.nlm.nih.gov/PMC11062440 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60CHoRra_6KKsIXhqaZDeb7FGLpShVhBZ6MiSbjS2WpDTtwX_vbJOGtih6yGknYZhJdr7JzH4DcOu5sTJprIyQeZigUB4ZQjMOCRZazKGIyBcV_O4L7_TZ08AZFGTR2Q8lfEGbk7H-h938TIMIsQbuthiBNUt-73VQ7rmWuxjhYen-OD3du6Rn3Lx9LfysHWlbQZabDZIrEad9APsFVCT3uW8PYUslVdh5SBHOfVVht7Uc1XYE7138tjWKUxkZJWS-emCFzJb05Q2S6W715KNBcInozo1AH0YnaUwQBpLJGK1MEk3PjwqRyTDN8JrOs2Potx97rY5RDE4wJBPWzAg9hMy2EzmY3gplSxFi2iWELU0uGedBzHgYRYzFUnJFpYgRFbimHVMnVhwREz2BSoI6nwHh0lGey6II8w6m3DCQkfDQgyFjjlCmWQNjaU9fFqzierjF2M-r29TP7e8X9q_BXSk_yfk0fpW8Qff8KXS99J6PNtdLQaLSeebbwhSajo-xGpzm3iyfpYullDOrBt6an0sBzbm9vpKMhgvubURLHBGRef4f7S5gz0YMlPdHXkJlNp2rK8Qws7AO289vXn3xEn8Du3Lztg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Milestones+in+understanding+transport%2C+sensing%2C+and+signaling+of+the+plant+nutrient+phosphorus&rft.jtitle=The+Plant+cell&rft.au=Yang%2C+Shu-Yi&rft.au=Lin%2C+Wei-Yi&rft.au=Hsiao%2C+Yi-Min&rft.au=Chiou%2C+Tzyy-Jen&rft.date=2024-05-01&rft.issn=1532-298X&rft.eissn=1532-298X&rft.volume=36&rft.issue=5&rft.spage=1504&rft_id=info:doi/10.1093%2Fplcell%2Fkoad326&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |