Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms
CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage development...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 52; no. 5; pp. 825 - 841.e8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.05.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.
[Display omitted]
•Ly108 and CD69 define four Tex subsets linked in a hierarchical developmental pathway•Two TCF1+ subsets, effector-like and terminally exhausted subsets, are identified•Key transcriptional, epigenetic, and biological changes define subset transitions•TCF1, T-bet, and Tox coordinate Tex subset development and dynamics
Beltra et al. define a hierarchical developmental pathway for CD8+ T cell exhaustion, revealing four stages and multistep transcriptional and epigenetic dynamics underlying subset transitions and subset-associated biological changes. |
---|---|
AbstractList | CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy. CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy. [Display omitted] •Ly108 and CD69 define four Tex subsets linked in a hierarchical developmental pathway•Two TCF1+ subsets, effector-like and terminally exhausted subsets, are identified•Key transcriptional, epigenetic, and biological changes define subset transitions•TCF1, T-bet, and Tox coordinate Tex subset development and dynamics Beltra et al. define a hierarchical developmental pathway for CD8+ T cell exhaustion, revealing four stages and multistep transcriptional and epigenetic dynamics underlying subset transitions and subset-associated biological changes. SummaryCD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy. CD8 + T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8 + T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1 + progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy. Beltra et al. define a hierarchical developmental pathway for CD8 + T cell exhaustion, revealing four stages and multistep transcriptional and epigenetic dynamics underlying subset transitions and subset-associated biological changes. CD8 T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8 T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1 progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy. |
Author | Mitchell, Tara C. Abdel-Hakeem, Mohamed S. Khan, Omar Giles, Josephine R. Chen, Zeyu Huang, Yinghui Jane Wherry, E. John Xu, Wei Schuchter, Lynn M. Amaravadi, Ravi K. Huang, Alexander C. Beltra, Jean-Christophe Karakousis, Giorgos C. Ngiow, Shin Foong Nzingha, Kito Casella, Valentina Xu, Xiaowei Yan, Patrick Kurachi, Makoto Manne, Sasikanth |
AuthorAffiliation | 6 Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain 11 Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 4 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, Egypt 9 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 12 Lead Contact 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 7 Arsenal Biosciences, South San Francisco, CA, USA 10 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 5 Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan 2 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, P |
AuthorAffiliation_xml | – name: 8 Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – name: 7 Arsenal Biosciences, South San Francisco, CA, USA – name: 12 Lead Contact – name: 6 Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain – name: 4 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, Egypt – name: 3 Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA – name: 9 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – name: 5 Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan – name: 11 Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – name: 10 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – name: 2 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – name: 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA |
Author_xml | – sequence: 1 givenname: Jean-Christophe surname: Beltra fullname: Beltra, Jean-Christophe organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 2 givenname: Sasikanth surname: Manne fullname: Manne, Sasikanth organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 3 givenname: Mohamed S. surname: Abdel-Hakeem fullname: Abdel-Hakeem, Mohamed S. organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 4 givenname: Makoto surname: Kurachi fullname: Kurachi, Makoto organization: Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan – sequence: 5 givenname: Josephine R. surname: Giles fullname: Giles, Josephine R. organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 6 givenname: Zeyu surname: Chen fullname: Chen, Zeyu organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 7 givenname: Valentina surname: Casella fullname: Casella, Valentina organization: Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain – sequence: 8 givenname: Shin Foong surname: Ngiow fullname: Ngiow, Shin Foong organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 9 givenname: Omar surname: Khan fullname: Khan, Omar organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 10 givenname: Yinghui Jane surname: Huang fullname: Huang, Yinghui Jane organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 11 givenname: Patrick surname: Yan fullname: Yan, Patrick organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 12 givenname: Kito surname: Nzingha fullname: Nzingha, Kito organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 13 givenname: Wei surname: Xu fullname: Xu, Wei organization: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 14 givenname: Ravi K. surname: Amaravadi fullname: Amaravadi, Ravi K. organization: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 15 givenname: Xiaowei surname: Xu fullname: Xu, Xiaowei organization: Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 16 givenname: Giorgos C. surname: Karakousis fullname: Karakousis, Giorgos C. organization: Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 17 givenname: Tara C. surname: Mitchell fullname: Mitchell, Tara C. organization: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 18 givenname: Lynn M. surname: Schuchter fullname: Schuchter, Lynn M. organization: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 19 givenname: Alexander C. surname: Huang fullname: Huang, Alexander C. organization: Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – sequence: 20 givenname: E. John surname: Wherry fullname: Wherry, E. John email: wherry@pennmedicine.upenn.edu organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32396847$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl2L1DAUhousuB_6D0QC3ghLa5KmX14IMjurwoigs9chTU5nMqRJN2kH91_sTzZ1xkX3Qq-SkPd9OOc95zw5sc5CkrwkOCOYlG93me77yeqMYoozzDJM2JPkjOCmShmp8cl8r1halSQ_Tc5D2OGoKBr8LDnNad6UNavOkvsr2INxQw92FAZ9AyNG7WzY6iEg16FrN3m0_LEVUxhBocVVfYnWaAHGoO9TG2AM0bMHYQK6sQq8udN2g9Ze2CC9HmZWxAqr0HLQG7AwaolW8R2kGAAtnB29M-gLyK2wOvThefK0izR4cTwvkpvr5XrxKV19_fh58WGVStaQMRWiLqDpWJtXTOa0wW0jJdC6rWinpCpVnTd1rWjX0K7DImcthYooKGJ2RXTmF8n7A3eY2h6UjP17YfjgdS_8HXdC879_rN7yjdvzOi9xVZYR8OYI8O52gjDyXgcZgxEW3BQ4ZZgyWlSsiNLXj6S7GGsMZlbRoqxKRmbgqz8reijl97CigB0E0rsQPHQPEoL5vBN8xw87weed4JjxOPFoe_fIJvX4a8qxL23-Zz7GBHEWew2eB6nBSlDagxy5cvrfgJ9yVNfi |
CitedBy_id | crossref_primary_10_1016_j_celrep_2023_112940 crossref_primary_10_1136_jitc_2021_002780 crossref_primary_10_3389_fimmu_2023_1204363 crossref_primary_10_1038_s41586_022_05105_1 crossref_primary_10_1038_s41556_022_00942_8 crossref_primary_10_1016_j_celrep_2023_112944 crossref_primary_10_1126_science_adf1329 crossref_primary_10_1038_s41392_024_01873_6 crossref_primary_10_1016_j_cmet_2022_02_003 crossref_primary_10_1080_2162402X_2021_2010894 crossref_primary_10_3390_genes14101953 crossref_primary_10_1016_j_imlet_2020_11_004 crossref_primary_10_3389_fimmu_2020_592569 crossref_primary_10_1016_j_immuni_2024_08_014 crossref_primary_10_3389_fimmu_2023_1151748 crossref_primary_10_3389_fimmu_2023_1169144 crossref_primary_10_1016_j_xcrm_2025_101992 crossref_primary_10_1158_2159_8290_CD_21_0888 crossref_primary_10_1016_j_omto_2022_09_001 crossref_primary_10_3390_medicina60030373 crossref_primary_10_1016_j_semcancer_2022_05_015 crossref_primary_10_1038_s41375_023_01966_1 crossref_primary_10_1016_j_it_2021_09_002 crossref_primary_10_1016_j_coi_2024_102506 crossref_primary_10_1126_sciadv_adp9371 crossref_primary_10_1038_s41591_022_01829_9 crossref_primary_10_1126_sciimmunol_abg7836 crossref_primary_10_1096_fj_202002566R crossref_primary_10_1016_j_celrep_2024_115023 crossref_primary_10_1038_s41422_024_00926_3 crossref_primary_10_1016_j_trecan_2024_03_010 crossref_primary_10_1016_j_it_2022_04_010 crossref_primary_10_2139_ssrn_3942126 crossref_primary_10_3389_fimmu_2020_624144 crossref_primary_10_1186_s12964_024_01848_8 crossref_primary_10_3389_fimmu_2022_886646 crossref_primary_10_1016_j_clim_2025_110486 crossref_primary_10_3389_fimmu_2023_1267918 crossref_primary_10_1038_s41590_024_01843_8 crossref_primary_10_1136_jitc_2021_003614 crossref_primary_10_1016_j_isci_2020_101954 crossref_primary_10_1038_s41590_024_01952_4 crossref_primary_10_1038_s41392_023_01471_y crossref_primary_10_1016_j_immuni_2021_11_004 crossref_primary_10_1038_s41577_023_00884_8 crossref_primary_10_1186_s12885_023_11648_x crossref_primary_10_1186_s12935_024_03539_3 crossref_primary_10_1016_j_heliyon_2024_e32249 crossref_primary_10_4110_in_2022_22_e2 crossref_primary_10_3389_fimmu_2023_1181499 crossref_primary_10_7554_eLife_62420 crossref_primary_10_3389_fcell_2021_738373 crossref_primary_10_1038_s41416_024_02712_9 crossref_primary_10_1126_scitranslmed_abk1900 crossref_primary_10_1186_s13045_023_01504_7 crossref_primary_10_1007_s12032_022_01930_6 crossref_primary_10_3389_fimmu_2023_1151632 crossref_primary_10_1016_j_celrep_2023_112911 crossref_primary_10_1016_j_genrep_2024_101952 crossref_primary_10_1038_s41467_021_23324_4 crossref_primary_10_1126_science_adn2337 crossref_primary_10_1016_j_immuni_2021_11_017 crossref_primary_10_1126_sciimmunol_adn2717 crossref_primary_10_1002_cam4_7346 crossref_primary_10_1038_s41423_021_00750_4 crossref_primary_10_1016_j_addr_2022_114112 crossref_primary_10_1016_j_immuni_2024_01_013 crossref_primary_10_1073_pnas_2315989121 crossref_primary_10_3390_ijms21186966 crossref_primary_10_1177_00220345231151685 crossref_primary_10_1016_j_cmet_2023_12_010 crossref_primary_10_1016_j_imlet_2024_106938 crossref_primary_10_4049_immunohorizons_2000102 crossref_primary_10_1038_s42003_020_01441_y crossref_primary_10_1111_febs_16342 crossref_primary_10_3389_fphar_2025_1533464 crossref_primary_10_1016_j_banm_2021_01_018 crossref_primary_10_1016_j_immuni_2024_07_003 crossref_primary_10_3389_fimmu_2023_1149622 crossref_primary_10_1038_s41467_023_37379_y crossref_primary_10_3390_cells11142176 crossref_primary_10_1016_j_it_2021_03_006 crossref_primary_10_1136_jitc_2022_005293 crossref_primary_10_1097_CJI_0000000000000503 crossref_primary_10_1002_1878_0261_13603 crossref_primary_10_1111_bcpt_13841 crossref_primary_10_3389_fimmu_2024_1426418 crossref_primary_10_1136_jitc_2023_008739 crossref_primary_10_1016_j_immuni_2023_05_008 crossref_primary_10_1186_s13020_023_00785_x crossref_primary_10_1016_j_cell_2024_06_036 crossref_primary_10_1038_s41573_021_00345_8 crossref_primary_10_1016_j_intimp_2023_111363 crossref_primary_10_1172_JCI184332 crossref_primary_10_3324_haematol_2020_267914 crossref_primary_10_1038_s41590_021_00965_7 crossref_primary_10_1126_sciimmunol_abb9726 crossref_primary_10_3390_ijms241512317 crossref_primary_10_1016_j_bbcan_2024_189193 crossref_primary_10_2139_ssrn_4195922 crossref_primary_10_1007_s00262_023_03447_x crossref_primary_10_1146_annurev_immunol_090222_110914 crossref_primary_10_1002_cyto_b_21984 crossref_primary_10_1038_s42255_020_00280_9 crossref_primary_10_1126_sciimmunol_adg3868 crossref_primary_10_3389_fimmu_2024_1490845 crossref_primary_10_1016_j_xcrm_2024_101400 crossref_primary_10_1016_j_immuni_2024_02_001 crossref_primary_10_1038_s41419_023_06211_2 crossref_primary_10_1080_2162402X_2023_2293511 crossref_primary_10_1016_j_annonc_2022_03_013 crossref_primary_10_1038_s41419_024_06986_y crossref_primary_10_1073_pnas_2418985122 crossref_primary_10_1016_j_ebiom_2022_103941 crossref_primary_10_1038_s41467_021_25057_w crossref_primary_10_1038_s41467_022_33768_x crossref_primary_10_1038_s41586_023_06733_x crossref_primary_10_1136_jitc_2020_001478 crossref_primary_10_1016_j_ccell_2022_09_011 crossref_primary_10_1158_1078_0432_CCR_22_1471 crossref_primary_10_1111_cas_15033 crossref_primary_10_3389_fimmu_2024_1449291 crossref_primary_10_3389_fonc_2024_1357801 crossref_primary_10_1038_s41368_022_00160_w crossref_primary_10_1002_path_6197 crossref_primary_10_1038_s41417_022_00495_w crossref_primary_10_1016_j_bbcan_2024_189162 crossref_primary_10_1038_s41540_024_00336_6 crossref_primary_10_1186_s12885_022_10336_6 crossref_primary_10_1016_j_smim_2020_101435 crossref_primary_10_3389_fimmu_2022_1074698 crossref_primary_10_1016_j_heliyon_2023_e14334 crossref_primary_10_1080_2162402X_2023_2246319 crossref_primary_10_1038_s41590_022_01224_z crossref_primary_10_1371_journal_ppat_1010630 crossref_primary_10_1038_s42003_024_06456_3 crossref_primary_10_1097_RLI_0000000000001001 crossref_primary_10_1016_j_molcel_2021_03_045 crossref_primary_10_1038_s41698_025_00842_8 crossref_primary_10_1126_sciimmunol_abe3702 crossref_primary_10_1158_2159_8290_CD_20_0841 crossref_primary_10_1038_s41419_024_06840_1 crossref_primary_10_1002_advs_202400702 crossref_primary_10_1016_j_immuni_2022_03_006 crossref_primary_10_1016_j_jcmgh_2022_09_007 crossref_primary_10_1016_j_ccell_2023_02_020 crossref_primary_10_1016_j_cell_2024_03_037 crossref_primary_10_1038_s41590_023_01675_y crossref_primary_10_1371_journal_pbio_3002465 crossref_primary_10_1016_j_celrep_2021_108966 crossref_primary_10_3390_biology12040541 crossref_primary_10_3389_fimmu_2023_1198551 crossref_primary_10_1038_s41587_024_02226_y crossref_primary_10_1038_s43018_022_00490_y crossref_primary_10_3892_or_2024_8757 crossref_primary_10_3389_fimmu_2023_1148061 crossref_primary_10_1186_s12967_022_03798_6 crossref_primary_10_1158_2326_6066_CIR_21_1050 crossref_primary_10_1126_sciimmunol_ade3369 crossref_primary_10_1016_j_immuni_2023_01_029 crossref_primary_10_1038_s41467_023_37825_x crossref_primary_10_1158_2159_8290_CD_21_0003 crossref_primary_10_1186_s13062_020_00283_2 crossref_primary_10_1016_j_cell_2021_12_004 crossref_primary_10_3389_fphar_2021_720692 crossref_primary_10_1038_s41586_024_07630_7 crossref_primary_10_1038_s44318_024_00201_6 crossref_primary_10_1172_JCI163096 crossref_primary_10_1016_j_cell_2021_08_004 crossref_primary_10_1016_j_semcancer_2024_07_001 crossref_primary_10_3390_vaccines12121309 crossref_primary_10_4103_1673_5374_357903 crossref_primary_10_1016_j_immuni_2024_06_017 crossref_primary_10_1038_s41423_023_01064_3 crossref_primary_10_1007_s00262_021_03001_7 crossref_primary_10_1016_j_immuni_2024_06_014 crossref_primary_10_1016_j_ebiom_2024_105035 crossref_primary_10_1016_j_tibs_2024_08_002 crossref_primary_10_1007_s10555_024_10211_9 crossref_primary_10_1016_j_ebiom_2024_105154 crossref_primary_10_3389_fphar_2023_1146468 crossref_primary_10_1016_j_immuni_2024_11_007 crossref_primary_10_1002_adbi_202200264 crossref_primary_10_1016_j_celrep_2023_112649 crossref_primary_10_1038_s41590_022_01219_w crossref_primary_10_1038_s41467_021_26940_2 crossref_primary_10_1146_annurev_immunol_101320_025949 crossref_primary_10_1016_j_canlet_2023_216267 crossref_primary_10_1016_j_immuni_2022_02_004 crossref_primary_10_1016_j_immuni_2020_11_005 crossref_primary_10_1038_s41467_020_18256_4 crossref_primary_10_1053_j_gastro_2022_06_045 crossref_primary_10_7554_eLife_86032 crossref_primary_10_1093_jnci_djaa190 crossref_primary_10_3389_fimmu_2021_811968 crossref_primary_10_1158_2326_6066_CIR_20_0445 crossref_primary_10_1186_s13071_024_06573_2 crossref_primary_10_3389_fimmu_2022_1036616 crossref_primary_10_1038_s41590_023_01685_w crossref_primary_10_3389_fmolb_2022_898567 crossref_primary_10_3390_biology13100816 crossref_primary_10_1186_s13045_022_01255_x crossref_primary_10_2147_OTT_S255491 crossref_primary_10_3390_ijms241411673 crossref_primary_10_1016_j_celrep_2023_112876 crossref_primary_10_1371_journal_ppat_1008870 crossref_primary_10_1158_0008_5472_CAN_23_2455 crossref_primary_10_3389_fimmu_2023_1176994 crossref_primary_10_1177_09287329241290937 crossref_primary_10_1002_ijc_34843 crossref_primary_10_1038_s41590_022_01338_4 crossref_primary_10_1016_j_ccell_2020_09_001 crossref_primary_10_1016_j_cell_2024_02_022 crossref_primary_10_1002_ggn2_202200002 crossref_primary_10_1002_ctm2_874 crossref_primary_10_3390_cancers12082326 crossref_primary_10_1016_j_labinv_2023_100210 crossref_primary_10_1038_s41577_022_00802_4 crossref_primary_10_1038_s41573_021_00189_2 crossref_primary_10_1182_blood_2020009309 crossref_primary_10_1038_s41590_021_00949_7 crossref_primary_10_3389_fonc_2022_1022688 crossref_primary_10_3390_cancers14041078 crossref_primary_10_1038_s41467_021_23044_9 crossref_primary_10_1038_s41586_025_08732_6 crossref_primary_10_1002_ctm2_1416 crossref_primary_10_1021_acs_jcim_4c00261 crossref_primary_10_1016_j_trecan_2022_04_003 crossref_primary_10_1080_2162402X_2022_2038403 crossref_primary_10_1097_MD_0000000000038713 crossref_primary_10_1136_jitc_2023_008568 crossref_primary_10_4103_glioma_glioma_16_22 crossref_primary_10_1186_s13045_022_01307_2 crossref_primary_10_3389_fimmu_2022_977394 crossref_primary_10_1038_s41577_021_00563_6 crossref_primary_10_18632_aging_202351 crossref_primary_10_1016_j_apsb_2024_04_022 crossref_primary_10_3389_fimmu_2023_1187850 crossref_primary_10_1136_jitc_2023_007230 crossref_primary_10_3389_fimmu_2023_990419 crossref_primary_10_2174_0126669587296962240521114748 crossref_primary_10_1101_cshperspect_a037929 crossref_primary_10_3389_fimmu_2021_660944 crossref_primary_10_1038_s41577_023_00941_2 crossref_primary_10_4049_jimmunol_2300111 crossref_primary_10_3390_v12080799 crossref_primary_10_3389_fcell_2022_1082195 crossref_primary_10_1128_jvi_00225_23 crossref_primary_10_1182_blood_2023021680 crossref_primary_10_1016_j_canlet_2023_216219 crossref_primary_10_26442_18151434_2023_3_202443 crossref_primary_10_3389_fimmu_2020_589641 crossref_primary_10_1038_s41586_024_07135_3 crossref_primary_10_1172_JCI168465 crossref_primary_10_1016_j_cell_2023_02_021 crossref_primary_10_1038_s41590_022_01337_5 crossref_primary_10_1172_JCI169314 crossref_primary_10_7554_eLife_82705 crossref_primary_10_1007_s00395_024_01088_4 crossref_primary_10_1038_s41577_021_00574_3 crossref_primary_10_1038_s41590_022_01326_8 crossref_primary_10_3390_cells12151939 crossref_primary_10_3389_fimmu_2022_914406 crossref_primary_10_3390_cancers14194594 crossref_primary_10_1038_s41467_020_20751_7 crossref_primary_10_1016_j_xcrm_2024_101489 crossref_primary_10_4049_jimmunol_2100362 crossref_primary_10_1038_s41577_023_00867_9 crossref_primary_10_1126_sciimmunol_ade2094 crossref_primary_10_1158_2326_6066_CIR_21_0058 crossref_primary_10_3389_fimmu_2024_1383110 crossref_primary_10_1038_s41590_023_01477_2 crossref_primary_10_1084_jem_20202032 crossref_primary_10_1038_s41467_022_31504_z crossref_primary_10_1038_s41571_022_00689_z crossref_primary_10_1126_scitranslmed_abn5649 crossref_primary_10_1186_s13046_022_02590_0 crossref_primary_10_1111_cas_15311 crossref_primary_10_3389_fimmu_2021_715234 crossref_primary_10_1038_s41467_023_40398_4 crossref_primary_10_1002_advs_202413181 crossref_primary_10_1016_j_cell_2024_03_011 crossref_primary_10_3389_fimmu_2022_926714 crossref_primary_10_3389_fmed_2022_1034764 crossref_primary_10_3390_cancers17050906 crossref_primary_10_3390_ijms21186497 crossref_primary_10_1002_adma_202203019 crossref_primary_10_1073_pnas_2306763121 crossref_primary_10_1111_jcmm_70101 crossref_primary_10_3390_biom12111549 crossref_primary_10_3389_fonc_2023_1200646 crossref_primary_10_1182_bloodadvances_2024015285 crossref_primary_10_18632_aging_205977 crossref_primary_10_1111_imr_13203 crossref_primary_10_1016_j_coviro_2020_10_003 crossref_primary_10_1016_j_immuni_2022_01_018 crossref_primary_10_1016_j_ccell_2025_02_008 crossref_primary_10_1146_annurev_immunol_110519_071134 crossref_primary_10_1007_s11427_022_2100_2 crossref_primary_10_4049_jimmunol_2001348 crossref_primary_10_2139_ssrn_3802857 crossref_primary_10_3389_fimmu_2021_744530 crossref_primary_10_1016_j_ccell_2022_04_005 crossref_primary_10_3390_cells10123376 crossref_primary_10_1021_acs_molpharmaceut_4c00970 crossref_primary_10_3389_fimmu_2020_622509 crossref_primary_10_3389_fimmu_2024_1412731 crossref_primary_10_1155_ijog_8823837 crossref_primary_10_1016_j_omtn_2025_102465 crossref_primary_10_1016_j_canlet_2021_02_013 crossref_primary_10_3389_fimmu_2023_1154566 crossref_primary_10_1126_sciimmunol_ado3032 crossref_primary_10_1136_jitc_2024_009449 crossref_primary_10_1002_ijc_34669 crossref_primary_10_3389_fonc_2022_1010976 crossref_primary_10_3389_fimmu_2024_1362140 crossref_primary_10_1038_s41568_022_00531_9 crossref_primary_10_1038_s41467_023_41352_0 crossref_primary_10_1126_sciimmunol_adf2223 crossref_primary_10_1371_journal_pone_0274494 crossref_primary_10_3390_cells10102563 crossref_primary_10_3389_fimmu_2021_617658 crossref_primary_10_1016_j_it_2023_02_006 crossref_primary_10_1007_s00432_022_04326_1 crossref_primary_10_1172_JCI164258 crossref_primary_10_1136_jitc_2022_005433 crossref_primary_10_1007_s11538_023_01207_7 crossref_primary_10_1016_j_ymthe_2021_08_003 crossref_primary_10_1093_noajnl_vdad009 crossref_primary_10_1186_s12967_024_05391_5 crossref_primary_10_1002_adtp_202400068 crossref_primary_10_1038_s43018_022_00433_7 crossref_primary_10_1158_1078_0432_CCR_21_1916 crossref_primary_10_1016_j_immuni_2024_12_010 crossref_primary_10_1084_jem_20220729 crossref_primary_10_3389_fimmu_2024_1392940 crossref_primary_10_1016_j_yexcr_2022_113212 crossref_primary_10_1016_j_coi_2020_09_004 crossref_primary_10_1038_s41467_024_53262_w crossref_primary_10_1016_j_celrep_2023_112123 crossref_primary_10_1158_2326_6066_CIR_22_0099 crossref_primary_10_1016_j_ebiom_2022_104207 crossref_primary_10_3389_fphar_2020_612620 crossref_primary_10_1016_j_intimp_2025_114410 crossref_primary_10_1016_j_omto_2021_12_004 crossref_primary_10_1038_s41598_023_49810_x crossref_primary_10_1038_s41467_023_42734_0 crossref_primary_10_1126_sciimmunol_abh1873 crossref_primary_10_1186_s40364_024_00599_5 crossref_primary_10_1016_j_smim_2021_101480 crossref_primary_10_1016_j_ccell_2021_10_008 crossref_primary_10_3389_fonc_2021_723888 crossref_primary_10_1089_vim_2022_0002 crossref_primary_10_1002_advs_202101672 crossref_primary_10_1002_ctm2_1817 crossref_primary_10_1073_pnas_2104758118 crossref_primary_10_1038_s41591_024_03271_5 crossref_primary_10_1038_s43018_021_00292_8 crossref_primary_10_1038_s41590_022_01384_y crossref_primary_10_2217_imt_2020_0178 crossref_primary_10_1093_intimm_dxac013 crossref_primary_10_1016_j_imbio_2024_152824 crossref_primary_10_1016_j_canlet_2024_216963 crossref_primary_10_3389_fimmu_2023_1120886 crossref_primary_10_3390_ijms22136779 crossref_primary_10_1080_02656736_2023_2172219 crossref_primary_10_1016_j_trecan_2022_12_008 crossref_primary_10_1007_s11538_024_01389_8 crossref_primary_10_1186_s40779_023_00496_2 crossref_primary_10_4049_jimmunol_2200757 crossref_primary_10_1016_j_immuni_2023_09_005 crossref_primary_10_3389_fimmu_2022_907172 crossref_primary_10_1111_bph_16313 crossref_primary_10_1172_JCI177460 crossref_primary_10_1182_blood_2023019875 crossref_primary_10_1016_j_ebiom_2022_104371 crossref_primary_10_1016_j_celrep_2023_113155 crossref_primary_10_1038_s41590_023_01645_4 crossref_primary_10_3389_fphar_2023_1126916 crossref_primary_10_1016_j_celrep_2024_114401 crossref_primary_10_1016_j_ccell_2022_05_006 crossref_primary_10_1016_j_cmet_2022_07_012 crossref_primary_10_1016_j_ccell_2022_05_004 crossref_primary_10_1111_imm_13560 crossref_primary_10_1007_s11882_025_01199_5 crossref_primary_10_3389_fimmu_2020_583382 crossref_primary_10_1186_s12943_024_02175_9 crossref_primary_10_1016_j_isci_2023_108666 crossref_primary_10_1038_s41389_023_00482_2 crossref_primary_10_1136_jitc_2021_004012 crossref_primary_10_1016_j_immuni_2020_04_019 crossref_primary_10_4236_jct_2023_144015 crossref_primary_10_1136_jitc_2024_009367 crossref_primary_10_3389_fphar_2023_1051305 crossref_primary_10_1038_s41598_024_77941_2 crossref_primary_10_1111_febs_15756 crossref_primary_10_1016_j_jconrel_2024_07_023 crossref_primary_10_1126_sciimmunol_adg1094 crossref_primary_10_1158_1078_0432_CCR_23_1444 crossref_primary_10_1016_j_celrep_2024_113898 crossref_primary_10_1093_intimm_dxaa057 crossref_primary_10_1038_s41392_024_01979_x crossref_primary_10_1038_s41568_023_00615_0 crossref_primary_10_3389_fimmu_2023_1233261 crossref_primary_10_1073_pnas_2003656117 crossref_primary_10_1038_s43018_024_00798_x crossref_primary_10_1016_j_immuni_2023_11_005 crossref_primary_10_1016_j_jep_2024_119097 crossref_primary_10_1126_sciimmunol_adf8838 crossref_primary_10_26508_lsa_202201503 crossref_primary_10_1158_2326_6066_CIR_21_0459 crossref_primary_10_1016_j_semcancer_2022_02_018 crossref_primary_10_2147_ITT_S439969 crossref_primary_10_3389_fimmu_2023_1184167 crossref_primary_10_1016_j_jtct_2023_04_007 crossref_primary_10_1136_jitc_2023_007099 crossref_primary_10_3389_fimmu_2023_1334597 crossref_primary_10_1016_j_ccell_2024_08_007 crossref_primary_10_1111_imr_13057 crossref_primary_10_1016_j_cell_2021_11_016 crossref_primary_10_3389_fimmu_2022_975803 crossref_primary_10_1038_s41392_024_01943_9 crossref_primary_10_1097_HC9_0000000000000131 crossref_primary_10_1126_sciimmunol_abd5778 crossref_primary_10_1016_j_immuni_2021_06_007 crossref_primary_10_1111_cas_15932 crossref_primary_10_1016_j_immuni_2023_09_001 crossref_primary_10_1126_sciadv_adc9346 crossref_primary_10_3389_fimmu_2020_620374 crossref_primary_10_1038_s41435_024_00307_1 crossref_primary_10_1038_s41467_021_24981_1 crossref_primary_10_1158_0008_5472_CAN_24_0830 crossref_primary_10_1038_s41598_022_15705_6 crossref_primary_10_4049_jimmunol_2200744 crossref_primary_10_1182_blood_2022015956 crossref_primary_10_1021_acsnano_4c13425 crossref_primary_10_1084_jem_20200920 crossref_primary_10_1016_j_cell_2022_03_033 crossref_primary_10_1016_j_heliyon_2024_e39731 crossref_primary_10_3389_fimmu_2022_866179 crossref_primary_10_1158_2326_6066_CIR_21_0515 crossref_primary_10_1084_jem_20210877 crossref_primary_10_3390_cancers13030515 crossref_primary_10_1016_j_pharmthera_2021_107923 crossref_primary_10_4049_jimmunol_2200317 crossref_primary_10_3390_ijms241511937 crossref_primary_10_3389_fimmu_2022_771809 crossref_primary_10_1016_j_celrep_2022_111736 crossref_primary_10_1016_j_pharmr_2025_100042 crossref_primary_10_1158_2326_6066_CIR_22_0116 crossref_primary_10_3389_fimmu_2023_1167241 crossref_primary_10_3389_fonc_2024_1429919 crossref_primary_10_1016_j_pdpdt_2022_103271 crossref_primary_10_1038_s41590_024_01896_9 crossref_primary_10_1084_jem_20241148 crossref_primary_10_2217_bmm_2023_0202 crossref_primary_10_1016_j_celrep_2021_109120 crossref_primary_10_1615_CritRevEukaryotGeneExpr_2024052979 crossref_primary_10_1080_1744666X_2024_2412770 crossref_primary_10_1172_JCI160025 crossref_primary_10_4049_jimmunol_2200320 crossref_primary_10_4049_jimmunol_2200681 crossref_primary_10_4049_jimmunol_2300827 crossref_primary_10_1007_s10142_023_01056_6 crossref_primary_10_1073_pnas_2415119121 crossref_primary_10_3389_fimmu_2022_845223 crossref_primary_10_1126_sciimmunol_abj3067 crossref_primary_10_1038_s41467_024_51978_3 crossref_primary_10_1200_EDBK_389860 crossref_primary_10_1038_s41590_022_01210_5 crossref_primary_10_1016_j_ccell_2022_06_001 crossref_primary_10_1016_j_ccell_2023_08_013 crossref_primary_10_1093_intimm_dxac038 crossref_primary_10_1186_s12943_024_02104_w crossref_primary_10_3389_fimmu_2023_1213375 crossref_primary_10_1038_s43587_024_00620_4 crossref_primary_10_1136_jitc_2023_007614 crossref_primary_10_1007_s12672_025_02060_x crossref_primary_10_1016_j_isci_2022_104347 crossref_primary_10_3389_fimmu_2025_1535464 crossref_primary_10_1186_s12943_022_01706_6 crossref_primary_10_1186_s40364_024_00667_w crossref_primary_10_1038_s41467_023_36296_4 crossref_primary_10_4049_jimmunol_2200659 crossref_primary_10_1126_sciimmunol_adi3487 crossref_primary_10_1016_j_celrep_2024_114301 crossref_primary_10_3389_fimmu_2024_1476904 crossref_primary_10_1126_sciadv_ade0718 crossref_primary_10_1093_jimmun_vkae014 crossref_primary_10_1084_jem_20240152 crossref_primary_10_3389_fimmu_2023_1119383 crossref_primary_10_1038_s41388_020_01501_x crossref_primary_10_1016_j_it_2020_09_003 crossref_primary_10_1038_s41467_025_57819_1 crossref_primary_10_3389_fimmu_2025_1514780 crossref_primary_10_1038_s41590_021_00975_5 crossref_primary_10_1186_s12935_023_02948_0 crossref_primary_10_3389_fimmu_2021_725618 crossref_primary_10_1038_s41586_024_08466_x crossref_primary_10_1084_jem_20210759 crossref_primary_10_1097_PAI_0000000000001125 crossref_primary_10_1093_intimm_dxac050 crossref_primary_10_1093_neuonc_noad214 crossref_primary_10_1126_sciimmunol_abi5072 crossref_primary_10_3389_fcimb_2023_1206720 crossref_primary_10_1136_jitc_2021_002809 crossref_primary_10_37349_ei_2022_00042 crossref_primary_10_1084_jem_20220679 crossref_primary_10_1002_ctd2_199 crossref_primary_10_1007_s00262_022_03323_0 crossref_primary_10_3389_fphar_2022_989655 crossref_primary_10_3390_cells13110924 crossref_primary_10_1080_08830185_2024_2401352 crossref_primary_10_1038_s41592_023_01785_3 crossref_primary_10_1016_j_medj_2023_07_010 crossref_primary_10_1038_s41590_020_00810_3 crossref_primary_10_1016_j_phrs_2024_107161 crossref_primary_10_1371_journal_pbio_3002943 crossref_primary_10_1002_adbi_202101320 crossref_primary_10_1016_j_celrep_2023_112905 crossref_primary_10_1002_JLB_5MR1120_778R crossref_primary_10_1016_j_celrep_2021_109696 crossref_primary_10_1093_intimm_dxae032 crossref_primary_10_3389_fonc_2023_1249524 crossref_primary_10_1158_1078_0432_CCR_21_0206 crossref_primary_10_1038_s41467_022_35281_7 crossref_primary_10_1016_j_cell_2024_07_016 crossref_primary_10_1016_j_phrs_2023_106914 crossref_primary_10_3390_cancers14174192 crossref_primary_10_1016_j_ccell_2025_03_005 crossref_primary_10_1016_j_cell_2024_07_018 crossref_primary_10_1016_j_biomaterials_2025_123216 crossref_primary_10_4110_in_2023_23_e41 crossref_primary_10_1038_s41598_024_58419_7 crossref_primary_10_1158_2326_6066_CIR_22_0398 crossref_primary_10_3390_v16050799 crossref_primary_10_1016_j_suc_2024_11_005 crossref_primary_10_1016_j_ymthe_2024_04_004 crossref_primary_10_1136_gutjnl_2023_330424 crossref_primary_10_3389_fimmu_2022_1122530 crossref_primary_10_1016_j_immuni_2025_02_012 crossref_primary_10_1038_s41590_024_01961_3 crossref_primary_10_1126_sciimmunol_adf4726 crossref_primary_10_1186_s12964_023_01354_3 crossref_primary_10_1016_j_neo_2024_101072 crossref_primary_10_1111_cas_16177 crossref_primary_10_1002_eji_202048994 crossref_primary_10_3389_fimmu_2023_1172931 crossref_primary_10_1080_2162402X_2022_2046931 crossref_primary_10_1126_sciimmunol_adi7418 crossref_primary_10_1038_s41467_025_56270_6 crossref_primary_10_1172_jci_insight_177054 crossref_primary_10_1073_pnas_2412120121 crossref_primary_10_1038_s41698_024_00660_4 crossref_primary_10_3389_fimmu_2021_797172 crossref_primary_10_14348_molcells_2021_0263 crossref_primary_10_2139_ssrn_4176381 crossref_primary_10_1186_s12967_022_03442_3 crossref_primary_10_1016_j_ijbiomac_2025_139740 crossref_primary_10_3389_fgene_2022_881345 crossref_primary_10_1084_jem_20211538 crossref_primary_10_1038_s44386_024_00002_1 crossref_primary_10_46235_1028_7221_1210_MIP crossref_primary_10_3390_epigenomes4040027 crossref_primary_10_3324_haematol_2022_282474 crossref_primary_10_3390_cells10092234 crossref_primary_10_1038_s41590_024_01875_0 crossref_primary_10_1038_s41423_024_01224_z crossref_primary_10_3390_cancers13040598 crossref_primary_10_3389_fimmu_2020_593203 crossref_primary_10_3390_ijms24054786 crossref_primary_10_1080_13543784_2024_2360209 crossref_primary_10_1016_j_celrep_2020_108078 crossref_primary_10_1158_2767_9764_CRC_22_0434 crossref_primary_10_1371_journal_pbio_3001983 crossref_primary_10_1002_eji_202149486 crossref_primary_10_3389_fimmu_2023_1166128 crossref_primary_10_1038_s41467_023_42634_3 crossref_primary_10_1084_jem_20201730 |
Cites_doi | 10.1038/s41586-020-2056-8 10.1038/s41591-018-0057-z 10.1038/ni.2046 10.1038/nprot.2014.005 10.1016/j.immuni.2019.10.009 10.1038/ni1268 10.1016/j.cell.2018.11.043 10.1038/s41590-019-0312-6 10.1126/science.aaf0683 10.1158/2326-6066.CIR-14-0159 10.1038/nbt.3519 10.1038/nmeth.4402 10.1016/j.immuni.2018.12.021 10.1016/j.immuni.2019.09.013 10.1093/nar/gku864 10.1038/nature19317 10.1093/bioinformatics/btp352 10.1038/s41591-019-0522-3 10.1073/pnas.0801497105 10.1038/s41586-018-0694-x 10.1016/j.stem.2012.04.006 10.1016/j.immuni.2011.11.016 10.1038/nature22367 10.1126/sciimmunol.aai8593 10.1126/science.aaf2807 10.1038/nmeth.1923 10.1038/nature22079 10.1016/j.cell.2018.12.034 10.1038/nri.2017.112 10.1158/0008-5472.CAN-16-2141 10.1038/nbt.4096 10.1002/cyto.a.21015 10.1126/science.1229620 10.1038/s41586-019-1324-y 10.1016/j.immuni.2007.07.010 10.1073/pnas.1905675116 10.1038/s41591-019-0357-y 10.1038/s41575-018-0081-y 10.1038/s41590-019-0403-4 10.4049/jimmunol.177.9.5890 10.1016/j.immuni.2016.07.021 10.1038/nbt.1630 10.1073/pnas.1604256113 10.1016/j.immuni.2018.11.014 10.1016/j.immuni.2018.04.026 10.1016/j.molcel.2010.05.004 10.1038/s41586-019-1325-x 10.1101/sqb.2016.81.030965 10.1186/s13059-014-0550-8 10.1038/nmeth.2688 10.1172/JCI87324 10.1016/j.immuni.2016.10.028 10.1146/annurev-immunol-041015-055318 10.1126/science.aae0491 10.1038/nature19330 10.1038/s41586-019-1326-9 10.1038/nature14468 10.1038/nature24993 10.1016/j.immuni.2019.11.002 10.1084/jem.20142237 10.1126/science.1159806 10.1038/nprot.2017.083 10.1126/science.1090148 10.1189/jlb.1HI0314-154R 10.1158/2326-6066.CIR-17-0040 10.1038/s41586-019-1836-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020. Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2020.04.014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 841.e8 |
ExternalDocumentID | PMC8360766 32396847 10_1016_j_immuni_2020_04_014 S1074761320301722 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA114046 – fundername: NCI NIH HHS grantid: P30 CA016520 – fundername: NCI NIH HHS grantid: T32 CA009615 – fundername: NCI NIH HHS grantid: T32 CA009140 – fundername: NCI NIH HHS grantid: P50 CA174523 |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 7-5 7RV 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFRAH AFTJW AGGSO AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A O-L O9- OK1 OVD P2P PQQKQ PROAC RCE ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- RIG UHS X7M Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c491t-aa85e9f4b374c3290b9cce28b72fdcd6d83988d2f92ff0a34b2e71de510155e93 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 14:08:41 EDT 2025 Wed Jul 30 11:04:58 EDT 2025 Fri Jul 25 11:08:36 EDT 2025 Mon Jul 21 05:56:36 EDT 2025 Tue Jul 01 01:58:42 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Fri Feb 23 02:47:26 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | T cell exhaustion lineage chronic infection CD8 cancer immunotherapy exhaustion PD-1 blockade Tox TCF1 T-bet epigenetics |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-aa85e9f4b374c3290b9cce28b72fdcd6d83988d2f92ff0a34b2e71de510155e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AUTHOR CONTRIBUTIONS J.-C.B. and E.J.W. designed the experiments. J.-C.B. performed and analyzed the experiments with help from M.A.-H., V.C., and K.N. J.G. processed the ATAC-seq data. S.M. and J.-C.B. analyzed RNA-seq and ATAC-seq data. M.K., J.-C.B., S.F.N., and O.K. produced RV. Z.C. and Y.J.H. developed Tcf7cKO and Tox+/− mice. P.Y. and A.C.H. analyzed human samples. W.X., R.K.A., X.X., G.C.K., T.C.M., and L.M.S. coordinated human sample collection. J.-C.B. and E.J.W. wrote the manuscript. |
OpenAccessLink | http://www.cell.com/article/S1074761320301722/pdf |
PMID | 32396847 |
PQID | 2425676416 |
PQPubID | 2031079 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8360766 proquest_miscellaneous_2402425745 proquest_journals_2425676416 pubmed_primary_32396847 crossref_primary_10_1016_j_immuni_2020_04_014 crossref_citationtrail_10_1016_j_immuni_2020_04_014 elsevier_sciencedirect_doi_10_1016_j_immuni_2020_04_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-19 |
PublicationDateYYYYMMDD | 2020-05-19 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Buenrostro, Giresi, Zaba, Chang, Greenleaf (bib9) 2013; 10 Sen, Kaminski, Barnitz, Kurachi, Gerdemann, Yates, Tsao, Godec, LaFleur, Brown (bib55) 2016; 354 Grompe (bib15) 2012; 10 Daud, Loo, Pauli, Sanchez-Rodriguez, Sandoval, Taravati, Tsai, Nosrati, Nardo, Alvarado (bib12) 2016; 126 Huang, Postow, Orlowski, Mick, Bengsch, Manne, Xu, Harmon, Giles, Wenz (bib18) 2017; 545 Intlekofer, Takemoto, Wherry, Longworth, Northrup, Palanivel, Mullen, Gasink, Kaech, Miller (bib22) 2005; 6 Alfei, Kanev, Hofmann, Wu, Ghoneim, Roelli, Utzschneider, von Hoesslin, Cullen, Fan (bib1) 2019; 571 Butler, Hoffman, Smibert, Papalexi, Satija (bib10) 2018; 36 Gehart, Clevers (bib13) 2019; 16 McCracken, George, Kao, Marjon, Raveh, Weissman (bib36) 2016; 81 Taqueti, Grabie, Colvin, Pang, Jarolim, Luster, Glimcher, Lichtman (bib58) 2006; 177 Siddiqui, Schaeuble, Chennupati, Fuertes Marraco, Calderon-Copete, Pais Ferreira, Carmona, Scarpellino, Gfeller, Pradervand (bib57) 2019; 50 Huang, Orlowski, Xu, Mick, George, Yan, Manne, Kraya, Wubbenhorst, Dorfman (bib19) 2019; 25 Beltra, Bourbonnais, Bédard, Charpentier, Boulangé, Michaud, Boufaied, Bruneau, Shoukry, Lamarre, Decaluwe (bib3) 2016; 113 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib33) 2009; 25 Paley, Kroy, Odorizzi, Johnnidis, Dolfi, Barnett, Bikoff, Robertson, Lauer, Reiner, Wherry (bib45) 2012; 338 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib48) 2011; 12 Li, van der Leun, Yofe, Lubling, Gelbard-Solodkin, van Akkooi, van den Braber, Rozeman, Haanen, Blank (bib34) 2019; 176 Pauken, Sammons, Odorizzi, Manne, Godec, Khan, Drake, Chen, Sen, Kurachi (bib46) 2016; 354 Kurtulus, Madi, Escobar, Klapholz, Nyman, Christian, Pawlak, Dionne, Xia, Rozenblatt-Rosen (bib30) 2019; 50 Roederer, Nozzi, Nason (bib51) 2011; 79 Im, Hashimoto, Gerner, Lee, Kissick, Burger, Shan, Hale, Lee, Nasti (bib21) 2016; 537 Langmead, Salzberg (bib31) 2012; 9 Scott-Browne, López-Moyado, Trifari, Wong, Chavez, Rao, Pereira (bib54) 2016; 45 Odorizzi, Pauken, Paley, Sharpe, Wherry (bib44) 2015; 212 Bengsch, Ohtani, Khan, Setty, Manne, O’Brien, Gherardini, Herati, Huang, Chang (bib4) 2018; 48 Chen, Ji, Ngiow, Manne, Cai, Huang, Johnson, Staupe, Bengsch, Xu (bib11) 2019; 51 McLean, Bristor, Hiller, Clarke, Schaar, Lowe, Wenger, Bejerano (bib39) 2010; 28 Love, Huber, Anders (bib35) 2014; 15 Milner, Toma, Yu, Zhang, Omilusik, Phan, Wang, Getzler, Nguyen, Crotty (bib41) 2017; 552 Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib17) 2010; 38 Wu, Ji, Moseman, Xu, Manglani, Kirby, Anderson, Handon, Kenyon, Elkahloun (bib61) 2016; 1 Jansen, Prokhnevska, Master, Sanda, Carlisle, Bilen, Cardenas, Wilkinson, Lake, Sowalsky (bib24) 2019; 576 Kamphorst, Wieland, Nasti, Yang, Zhang, Barber, Konieczny, Daugherty, Koenig, Yu (bib26) 2017; 355 Muroyama, Nirschl, Kochel, Lopez-Bujanda, Theodros, Mao, Carrera-Haro, Ghasemzadeh, Marciscano, Velarde (bib42) 2017; 5 Wu, Madireddi, de Almeida, Banchereau, Chen, Chitre, Chiang, Iftikhar, O’Gorman, Au-Yeung (bib62) 2020; 579 Anderson, Mayer-Barber, Sung, Beura, James, Taylor, Qunaj, Griffith, Vezys, Barber, Masopust (bib2) 2014; 9 Qiu, Mao, Tang, Wang, Chawla, Pliner, Trapnell (bib50) 2017; 14 Yost, Satpathy, Wells, Qi, Wang, Kageyama, McNamara, Granja, Sarin, Brown (bib65) 2019; 25 Philip, Fairchild, Sun, Horste, Camara, Shakiba, Scott, Viale, Lauer, Merghoub (bib49) 2017; 545 Kao, Oestreich, Paley, Crawford, Angelosanto, Ali, Intlekofer, Boss, Reiner, Weinmann, Wherry (bib27) 2011; 12 Zander, Schauder, Xin, Nguyen, Wu, Zajac, Cui (bib66) 2019; 51 Zhang, Yu, Zheng, Zhang, Li, Fang, Gao, Kang, Zhang, Huang (bib67) 2018; 564 Yao, Sun, Lacey, Ji, Moseman, Shih, Heuston, Kirby, Anderson, Cheng (bib64) 2019; 20 Kurachi, Kurachi, Chen, Johnson, Khan, Bengsch, Stelekati, Attanasio, McLane, Tomura (bib29) 2017; 12 Berrien-Elliott, Yuan, Swier, Jackson, Chen, Donlin, Teague (bib5) 2015; 3 Thommen, Koelzer, Herzig, Roller, Trefny, Dimeloe, Kiialainen, Hanhart, Schill, Hess (bib59) 2018; 24 Utzschneider, Charmoy, Chennupati, Pousse, Ferreira, Calderon-Copete, Danilo, Alfei, Hofmann, Wieland (bib60) 2016; 45 Leek (bib32) 2014; 42 Pearce, Mullen, Martins, Krawczyk, Hutchins, Zediak, Banica, DiCioccio, Gross, Mao (bib47) 2003; 302 Seo, Chen, González-Avalos, Samaniego-Castruita, Das, Wang, López-Moyado, Georges, Zhang, Onodera (bib56) 2019; 116 Miller, Sen, Al Abosy, Bi, Virkud, LaFleur, Yates, Lako, Felt, Naik (bib40) 2019; 20 Gordon, Chaix, Rupp, Wu, Madera, Sun, Lindsten, Reiner (bib14) 2012; 36 Wykes, Lewin (bib63) 2018; 18 Beura, Anderson, Schenkel, Locquiao, Fraser, Vezys, Pepper, Masopust (bib6) 2015; 97 Blackburn, Shin, Freeman, Wherry (bib7) 2008; 105 Intlekofer, Banerjee, Takemoto, Gordon, Dejong, Shin, Hunter, Wherry, Lindsten, Reiner (bib23) 2008; 321 Scott, Dündar, Zumbo, Chandran, Klebanoff, Shakiba, Trivedi, Menocal, Appleby, Camara (bib53) 2019; 571 McKinney, Lee, Jayne, Lyons, Smith (bib37) 2015; 523 McLane, Abdel-Hakeem, Wherry (bib38) 2019; 37 He, Hou, Liu, Zhang, Bai, Han, Yang, Wei, Shen, Yang (bib16) 2016; 537 Khan, Giles, McDonald, Manne, Ngiow, Patel, Werner, Huang, Alexander, Wu (bib28) 2019; 571 Joshi, Cui, Chandele, Lee, Urso, Hagman, Gapin, Kaech (bib25) 2007; 27 Ngiow, Young, Blake, Hill, Yagita, Teng, Korman, Smyth (bib43) 2016; 76 Sade-Feldman, Yizhak, Bjorgaard, Ray, de Boer, Jenkins, Lieb, Chen, Frederick, Barzily-Rokni (bib52) 2019; 176 Hudson, Gensheimer, Hashimoto, Wieland, Valanparambil, Li, Lin, Konieczny, Im, Freeman (bib20) 2019; 51 Bray, Pimentel, Melsted, Pachter (bib8) 2016; 34 Sen (10.1016/j.immuni.2020.04.014_bib55) 2016; 354 Zhang (10.1016/j.immuni.2020.04.014_bib67) 2018; 564 Wykes (10.1016/j.immuni.2020.04.014_bib63) 2018; 18 Taqueti (10.1016/j.immuni.2020.04.014_bib58) 2006; 177 Beura (10.1016/j.immuni.2020.04.014_bib6) 2015; 97 Buenrostro (10.1016/j.immuni.2020.04.014_bib9) 2013; 10 Seo (10.1016/j.immuni.2020.04.014_bib56) 2019; 116 Miller (10.1016/j.immuni.2020.04.014_bib40) 2019; 20 Scott-Browne (10.1016/j.immuni.2020.04.014_bib54) 2016; 45 Huang (10.1016/j.immuni.2020.04.014_bib19) 2019; 25 Yost (10.1016/j.immuni.2020.04.014_bib65) 2019; 25 Daud (10.1016/j.immuni.2020.04.014_bib12) 2016; 126 Chen (10.1016/j.immuni.2020.04.014_bib11) 2019; 51 McLane (10.1016/j.immuni.2020.04.014_bib38) 2019; 37 Bray (10.1016/j.immuni.2020.04.014_bib8) 2016; 34 Intlekofer (10.1016/j.immuni.2020.04.014_bib22) 2005; 6 McCracken (10.1016/j.immuni.2020.04.014_bib36) 2016; 81 Blackburn (10.1016/j.immuni.2020.04.014_bib7) 2008; 105 Berrien-Elliott (10.1016/j.immuni.2020.04.014_bib5) 2015; 3 Butler (10.1016/j.immuni.2020.04.014_bib10) 2018; 36 Intlekofer (10.1016/j.immuni.2020.04.014_bib23) 2008; 321 Kurachi (10.1016/j.immuni.2020.04.014_bib29) 2017; 12 Li (10.1016/j.immuni.2020.04.014_bib33) 2009; 25 Leek (10.1016/j.immuni.2020.04.014_bib32) 2014; 42 Muroyama (10.1016/j.immuni.2020.04.014_bib42) 2017; 5 Jansen (10.1016/j.immuni.2020.04.014_bib24) 2019; 576 Wu (10.1016/j.immuni.2020.04.014_bib62) 2020; 579 Alfei (10.1016/j.immuni.2020.04.014_bib1) 2019; 571 Odorizzi (10.1016/j.immuni.2020.04.014_bib44) 2015; 212 Milner (10.1016/j.immuni.2020.04.014_bib41) 2017; 552 Siddiqui (10.1016/j.immuni.2020.04.014_bib57) 2019; 50 Joshi (10.1016/j.immuni.2020.04.014_bib25) 2007; 27 Zander (10.1016/j.immuni.2020.04.014_bib66) 2019; 51 Utzschneider (10.1016/j.immuni.2020.04.014_bib60) 2016; 45 McKinney (10.1016/j.immuni.2020.04.014_bib37) 2015; 523 Qiu (10.1016/j.immuni.2020.04.014_bib50) 2017; 14 Li (10.1016/j.immuni.2020.04.014_bib34) 2019; 176 Ngiow (10.1016/j.immuni.2020.04.014_bib43) 2016; 76 Sade-Feldman (10.1016/j.immuni.2020.04.014_bib52) 2019; 176 Love (10.1016/j.immuni.2020.04.014_bib35) 2014; 15 He (10.1016/j.immuni.2020.04.014_bib16) 2016; 537 Yao (10.1016/j.immuni.2020.04.014_bib64) 2019; 20 Kurtulus (10.1016/j.immuni.2020.04.014_bib30) 2019; 50 Pauken (10.1016/j.immuni.2020.04.014_bib46) 2016; 354 Kamphorst (10.1016/j.immuni.2020.04.014_bib26) 2017; 355 Hudson (10.1016/j.immuni.2020.04.014_bib20) 2019; 51 Gordon (10.1016/j.immuni.2020.04.014_bib14) 2012; 36 Gehart (10.1016/j.immuni.2020.04.014_bib13) 2019; 16 Paley (10.1016/j.immuni.2020.04.014_bib45) 2012; 338 Pearce (10.1016/j.immuni.2020.04.014_bib47) 2003; 302 Beltra (10.1016/j.immuni.2020.04.014_bib3) 2016; 113 Huang (10.1016/j.immuni.2020.04.014_bib18) 2017; 545 Scott (10.1016/j.immuni.2020.04.014_bib53) 2019; 571 Heinz (10.1016/j.immuni.2020.04.014_bib17) 2010; 38 Im (10.1016/j.immuni.2020.04.014_bib21) 2016; 537 Thommen (10.1016/j.immuni.2020.04.014_bib59) 2018; 24 Wu (10.1016/j.immuni.2020.04.014_bib61) 2016; 1 Khan (10.1016/j.immuni.2020.04.014_bib28) 2019; 571 Roederer (10.1016/j.immuni.2020.04.014_bib51) 2011; 79 Kao (10.1016/j.immuni.2020.04.014_bib27) 2011; 12 Anderson (10.1016/j.immuni.2020.04.014_bib2) 2014; 9 McLean (10.1016/j.immuni.2020.04.014_bib39) 2010; 28 Bengsch (10.1016/j.immuni.2020.04.014_bib4) 2018; 48 Philip (10.1016/j.immuni.2020.04.014_bib49) 2017; 545 Grompe (10.1016/j.immuni.2020.04.014_bib15) 2012; 10 Langmead (10.1016/j.immuni.2020.04.014_bib31) 2012; 9 Pedregosa (10.1016/j.immuni.2020.04.014_bib48) 2011; 12 32433943 - Immunity. 2020 May 19;52(5):724-726 |
References_xml | – volume: 10 start-page: 1213 year: 2013 end-page: 1218 ident: bib9 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods – volume: 12 start-page: 663 year: 2011 end-page: 671 ident: bib27 article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection publication-title: Nat. Immunol. – volume: 16 start-page: 19 year: 2019 end-page: 34 ident: bib13 article-title: Tales from the crypt: new insights into intestinal stem cells publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 576 start-page: 465 year: 2019 end-page: 470 ident: bib24 article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells publication-title: Nature – volume: 552 start-page: 253 year: 2017 end-page: 257 ident: bib41 article-title: Runx3 programs CD8 publication-title: Nature – volume: 34 start-page: 525 year: 2016 end-page: 527 ident: bib8 article-title: Near-optimal probabilistic RNA-seq quantification publication-title: Nat. Biotechnol. – volume: 25 start-page: 454 year: 2019 end-page: 461 ident: bib19 article-title: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma publication-title: Nat. Med. – volume: 126 start-page: 3447 year: 2016 end-page: 3452 ident: bib12 article-title: Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma publication-title: J. Clin. Invest. – volume: 105 start-page: 15016 year: 2008 end-page: 15021 ident: bib7 article-title: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 495 year: 2010 end-page: 501 ident: bib39 article-title: GREAT improves functional interpretation of cis-regulatory regions publication-title: Nat. Biotechnol. – volume: 1 start-page: 1 year: 2016 ident: bib61 article-title: The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness publication-title: Sci. Immunol. – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib31 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 176 start-page: 775 year: 2019 end-page: 789.e18 ident: bib34 article-title: Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma publication-title: Cell – volume: 15 start-page: 550 year: 2014 ident: bib35 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 27 start-page: 281 year: 2007 end-page: 295 ident: bib25 article-title: Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor publication-title: Immunity – volume: 321 start-page: 408 year: 2008 end-page: 411 ident: bib23 article-title: Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin publication-title: Science – volume: 14 start-page: 979 year: 2017 end-page: 982 ident: bib50 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods – volume: 545 start-page: 60 year: 2017 end-page: 65 ident: bib18 article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response publication-title: Nature – volume: 42 start-page: 42 year: 2014 ident: bib32 article-title: svaseq: removing batch effects and other unwanted noise from sequencing data publication-title: Nucleic Acids Res. – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: bib17 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell – volume: 5 start-page: 992 year: 2017 end-page: 1004 ident: bib42 article-title: Stereotactic Radiotherapy Increases Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment publication-title: Cancer Immunol. Res. – volume: 20 start-page: 326 year: 2019 end-page: 336 ident: bib40 article-title: Subsets of exhausted CD8 publication-title: Nat. Immunol. – volume: 37 start-page: 457 year: 2019 end-page: 495 ident: bib38 article-title: CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer publication-title: Annu. Rev. Immunol. – volume: 537 start-page: 417 year: 2016 end-page: 421 ident: bib21 article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy publication-title: Nature – volume: 212 start-page: 1125 year: 2015 end-page: 1137 ident: bib44 article-title: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells publication-title: J. Exp. Med. – volume: 523 start-page: 612 year: 2015 end-page: 616 ident: bib37 article-title: T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection publication-title: Nature – volume: 25 start-page: 1251 year: 2019 end-page: 1259 ident: bib65 article-title: Clonal replacement of tumor-specific T cells following PD-1 blockade publication-title: Nat. Med. – volume: 20 start-page: 890 year: 2019 end-page: 901 ident: bib64 article-title: Single-cell RNA-seq reveals TOX as a key regulator of CD8 publication-title: Nat. Immunol. – volume: 6 start-page: 1236 year: 2005 end-page: 1244 ident: bib22 article-title: Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin publication-title: Nat. Immunol. – volume: 338 start-page: 1220 year: 2012 end-page: 1225 ident: bib45 article-title: Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection publication-title: Science – volume: 79 start-page: 167 year: 2011 end-page: 174 ident: bib51 article-title: SPICE: exploration and analysis of post-cytometric complex multivariate datasets publication-title: Cytometry A – volume: 45 start-page: 1327 year: 2016 end-page: 1340 ident: bib54 article-title: Dynamic Changes in Chromatin Accessibility Occur in CD8 publication-title: Immunity – volume: 302 start-page: 1041 year: 2003 end-page: 1043 ident: bib47 article-title: Control of effector CD8+ T cell function by the transcription factor Eomesodermin publication-title: Science – volume: 50 start-page: 181 year: 2019 end-page: 194.e6, e186 ident: bib30 article-title: Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1 publication-title: Immunity – volume: 76 start-page: 6266 year: 2016 end-page: 6277 ident: bib43 article-title: Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell-Rich Tumor publication-title: Cancer Res. – volume: 97 start-page: 217 year: 2015 end-page: 225 ident: bib6 article-title: Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution publication-title: J. Leukoc. Biol. – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: bib10 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib33 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics – volume: 45 start-page: 415 year: 2016 end-page: 427 ident: bib60 article-title: T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections publication-title: Immunity – volume: 571 start-page: 265 year: 2019 end-page: 269 ident: bib1 article-title: TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection publication-title: Nature – volume: 564 start-page: 268 year: 2018 end-page: 272 ident: bib67 article-title: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer publication-title: Nature – volume: 9 start-page: 209 year: 2014 end-page: 222 ident: bib2 article-title: Intravascular staining for discrimination of vascular and tissue leukocytes publication-title: Nat. Protoc. – volume: 50 start-page: 195 year: 2019 end-page: 211.e10 ident: bib57 article-title: Intratumoral Tcf1 publication-title: Immunity – volume: 571 start-page: 270 year: 2019 end-page: 274 ident: bib53 article-title: TOX is a critical regulator of tumour-specific T cell differentiation publication-title: Nature – volume: 537 start-page: 412 year: 2016 end-page: 428 ident: bib16 article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection publication-title: Nature – volume: 571 start-page: 211 year: 2019 end-page: 218 ident: bib28 article-title: TOX transcriptionally and epigenetically programs CD8 publication-title: Nature – volume: 176 start-page: 404 year: 2019 ident: bib52 article-title: Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma publication-title: Cell – volume: 355 start-page: 1423 year: 2017 end-page: 1427 ident: bib26 article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent publication-title: Science – volume: 545 start-page: 452 year: 2017 end-page: 456 ident: bib49 article-title: Chromatin states define tumour-specific T cell dysfunction and reprogramming publication-title: Nature – volume: 116 start-page: 12410 year: 2019 end-page: 12415 ident: bib56 article-title: TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib48 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 51 start-page: 1043 year: 2019 end-page: 1058.e4 ident: bib20 article-title: Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1 publication-title: Immunity – volume: 81 start-page: 1 year: 2016 end-page: 9 ident: bib36 article-title: Normal and Neoplastic Stem Cells publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 48 start-page: 1029 year: 2018 end-page: 1045.e5, e1025 ident: bib4 article-title: Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells publication-title: Immunity – volume: 10 start-page: 685 year: 2012 end-page: 689 ident: bib15 article-title: Tissue stem cells: new tools and functional diversity publication-title: Cell Stem Cell – volume: 354 start-page: 1160 year: 2016 end-page: 1165 ident: bib46 article-title: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade publication-title: Science – volume: 51 start-page: 840 year: 2019 end-page: 855.e5, e845 ident: bib11 article-title: TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision publication-title: Immunity – volume: 354 start-page: 1165 year: 2016 end-page: 1169 ident: bib55 article-title: The epigenetic landscape of T cell exhaustion publication-title: Science – volume: 24 start-page: 994 year: 2018 end-page: 1004 ident: bib59 article-title: A transcriptionally and functionally distinct PD-1 publication-title: Nat. Med. – volume: 36 start-page: 55 year: 2012 end-page: 67 ident: bib14 article-title: The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation publication-title: Immunity – volume: 18 start-page: 91 year: 2018 end-page: 104 ident: bib63 article-title: Immune checkpoint blockade in infectious diseases publication-title: Nat. Rev. Immunol. – volume: 3 start-page: 116 year: 2015 end-page: 124 ident: bib5 article-title: Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor-infiltrating CD8+ T cells publication-title: Cancer Immunol. Res. – volume: 113 start-page: E5444 year: 2016 end-page: E5453 ident: bib3 article-title: IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: 1028 year: 2019 end-page: 1042.e4 ident: bib66 article-title: CD4 publication-title: Immunity – volume: 177 start-page: 5890 year: 2006 end-page: 5901 ident: bib58 article-title: T-bet controls pathogenicity of CTLs in the heart by separable effects on migration and effector activity publication-title: J. Immunol. – volume: 12 start-page: 1980 year: 2017 end-page: 1998 ident: bib29 article-title: Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function publication-title: Nat. Protoc. – volume: 579 start-page: 274 year: 2020 end-page: 278 ident: bib62 article-title: Peripheral T cell expansion predicts tumour infiltration and clinical response publication-title: Nature – volume: 579 start-page: 274 year: 2020 ident: 10.1016/j.immuni.2020.04.014_bib62 article-title: Peripheral T cell expansion predicts tumour infiltration and clinical response publication-title: Nature doi: 10.1038/s41586-020-2056-8 – volume: 24 start-page: 994 year: 2018 ident: 10.1016/j.immuni.2020.04.014_bib59 article-title: A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade publication-title: Nat. Med. doi: 10.1038/s41591-018-0057-z – volume: 12 start-page: 663 year: 2011 ident: 10.1016/j.immuni.2020.04.014_bib27 article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection publication-title: Nat. Immunol. doi: 10.1038/ni.2046 – volume: 9 start-page: 209 year: 2014 ident: 10.1016/j.immuni.2020.04.014_bib2 article-title: Intravascular staining for discrimination of vascular and tissue leukocytes publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.005 – volume: 51 start-page: 1028 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib66 article-title: CD4+ T Cell Help Is Required for the Formation of a Cytolytic CD8+ T Cell Subset that Protects against Chronic Infection and Cancer publication-title: Immunity doi: 10.1016/j.immuni.2019.10.009 – volume: 6 start-page: 1236 year: 2005 ident: 10.1016/j.immuni.2020.04.014_bib22 article-title: Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin publication-title: Nat. Immunol. doi: 10.1038/ni1268 – volume: 176 start-page: 775 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib34 article-title: Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma publication-title: Cell doi: 10.1016/j.cell.2018.11.043 – volume: 20 start-page: 326 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib40 article-title: Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0312-6 – volume: 355 start-page: 1423 year: 2017 ident: 10.1016/j.immuni.2020.04.014_bib26 article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent publication-title: Science doi: 10.1126/science.aaf0683 – volume: 3 start-page: 116 year: 2015 ident: 10.1016/j.immuni.2020.04.014_bib5 article-title: Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor-infiltrating CD8+ T cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-14-0159 – volume: 34 start-page: 525 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib8 article-title: Near-optimal probabilistic RNA-seq quantification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3519 – volume: 14 start-page: 979 year: 2017 ident: 10.1016/j.immuni.2020.04.014_bib50 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods doi: 10.1038/nmeth.4402 – volume: 50 start-page: 195 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib57 article-title: Intratumoral Tcf1+PD-1+CD8+ T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy publication-title: Immunity doi: 10.1016/j.immuni.2018.12.021 – volume: 51 start-page: 840 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib11 article-title: TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision publication-title: Immunity doi: 10.1016/j.immuni.2019.09.013 – volume: 42 start-page: 42 year: 2014 ident: 10.1016/j.immuni.2020.04.014_bib32 article-title: svaseq: removing batch effects and other unwanted noise from sequencing data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku864 – volume: 537 start-page: 412 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib16 article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection publication-title: Nature doi: 10.1038/nature19317 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.immuni.2020.04.014_bib33 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 25 start-page: 1251 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib65 article-title: Clonal replacement of tumor-specific T cells following PD-1 blockade publication-title: Nat. Med. doi: 10.1038/s41591-019-0522-3 – volume: 105 start-page: 15016 year: 2008 ident: 10.1016/j.immuni.2020.04.014_bib7 article-title: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0801497105 – volume: 564 start-page: 268 year: 2018 ident: 10.1016/j.immuni.2020.04.014_bib67 article-title: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer publication-title: Nature doi: 10.1038/s41586-018-0694-x – volume: 10 start-page: 685 year: 2012 ident: 10.1016/j.immuni.2020.04.014_bib15 article-title: Tissue stem cells: new tools and functional diversity publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.04.006 – volume: 36 start-page: 55 year: 2012 ident: 10.1016/j.immuni.2020.04.014_bib14 article-title: The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation publication-title: Immunity doi: 10.1016/j.immuni.2011.11.016 – volume: 545 start-page: 452 year: 2017 ident: 10.1016/j.immuni.2020.04.014_bib49 article-title: Chromatin states define tumour-specific T cell dysfunction and reprogramming publication-title: Nature doi: 10.1038/nature22367 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib61 article-title: The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aai8593 – volume: 354 start-page: 1160 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib46 article-title: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade publication-title: Science doi: 10.1126/science.aaf2807 – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.immuni.2020.04.014_bib31 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 545 start-page: 60 year: 2017 ident: 10.1016/j.immuni.2020.04.014_bib18 article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response publication-title: Nature doi: 10.1038/nature22079 – volume: 176 start-page: 404 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib52 article-title: Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma publication-title: Cell doi: 10.1016/j.cell.2018.12.034 – volume: 18 start-page: 91 year: 2018 ident: 10.1016/j.immuni.2020.04.014_bib63 article-title: Immune checkpoint blockade in infectious diseases publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.112 – volume: 76 start-page: 6266 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib43 article-title: Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell-Rich Tumor publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2141 – volume: 36 start-page: 411 year: 2018 ident: 10.1016/j.immuni.2020.04.014_bib10 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 79 start-page: 167 year: 2011 ident: 10.1016/j.immuni.2020.04.014_bib51 article-title: SPICE: exploration and analysis of post-cytometric complex multivariate datasets publication-title: Cytometry A doi: 10.1002/cyto.a.21015 – volume: 338 start-page: 1220 year: 2012 ident: 10.1016/j.immuni.2020.04.014_bib45 article-title: Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection publication-title: Science doi: 10.1126/science.1229620 – volume: 571 start-page: 270 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib53 article-title: TOX is a critical regulator of tumour-specific T cell differentiation publication-title: Nature doi: 10.1038/s41586-019-1324-y – volume: 27 start-page: 281 year: 2007 ident: 10.1016/j.immuni.2020.04.014_bib25 article-title: Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor publication-title: Immunity doi: 10.1016/j.immuni.2007.07.010 – volume: 116 start-page: 12410 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib56 article-title: TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1905675116 – volume: 25 start-page: 454 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib19 article-title: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma publication-title: Nat. Med. doi: 10.1038/s41591-019-0357-y – volume: 16 start-page: 19 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib13 article-title: Tales from the crypt: new insights into intestinal stem cells publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-018-0081-y – volume: 20 start-page: 890 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib64 article-title: Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0403-4 – volume: 177 start-page: 5890 year: 2006 ident: 10.1016/j.immuni.2020.04.014_bib58 article-title: T-bet controls pathogenicity of CTLs in the heart by separable effects on migration and effector activity publication-title: J. Immunol. doi: 10.4049/jimmunol.177.9.5890 – volume: 45 start-page: 415 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib60 article-title: T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections publication-title: Immunity doi: 10.1016/j.immuni.2016.07.021 – volume: 28 start-page: 495 year: 2010 ident: 10.1016/j.immuni.2020.04.014_bib39 article-title: GREAT improves functional interpretation of cis-regulatory regions publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1630 – volume: 113 start-page: E5444 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib3 article-title: IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1604256113 – volume: 50 start-page: 181 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib30 article-title: Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1-CD8+ Tumor-Infiltrating T Cells publication-title: Immunity doi: 10.1016/j.immuni.2018.11.014 – volume: 48 start-page: 1029 year: 2018 ident: 10.1016/j.immuni.2020.04.014_bib4 article-title: Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells publication-title: Immunity doi: 10.1016/j.immuni.2018.04.026 – volume: 38 start-page: 576 year: 2010 ident: 10.1016/j.immuni.2020.04.014_bib17 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 571 start-page: 211 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib28 article-title: TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion publication-title: Nature doi: 10.1038/s41586-019-1325-x – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.immuni.2020.04.014_bib48 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 81 start-page: 1 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib36 article-title: Normal and Neoplastic Stem Cells publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.2016.81.030965 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.immuni.2020.04.014_bib35 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 10 start-page: 1213 year: 2013 ident: 10.1016/j.immuni.2020.04.014_bib9 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods doi: 10.1038/nmeth.2688 – volume: 126 start-page: 3447 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib12 article-title: Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma publication-title: J. Clin. Invest. doi: 10.1172/JCI87324 – volume: 45 start-page: 1327 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib54 article-title: Dynamic Changes in Chromatin Accessibility Occur in CD8+ T Cells Responding to Viral Infection publication-title: Immunity doi: 10.1016/j.immuni.2016.10.028 – volume: 37 start-page: 457 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib38 article-title: CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-041015-055318 – volume: 354 start-page: 1165 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib55 article-title: The epigenetic landscape of T cell exhaustion publication-title: Science doi: 10.1126/science.aae0491 – volume: 537 start-page: 417 year: 2016 ident: 10.1016/j.immuni.2020.04.014_bib21 article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy publication-title: Nature doi: 10.1038/nature19330 – volume: 571 start-page: 265 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib1 article-title: TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection publication-title: Nature doi: 10.1038/s41586-019-1326-9 – volume: 523 start-page: 612 year: 2015 ident: 10.1016/j.immuni.2020.04.014_bib37 article-title: T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection publication-title: Nature doi: 10.1038/nature14468 – volume: 552 start-page: 253 year: 2017 ident: 10.1016/j.immuni.2020.04.014_bib41 article-title: Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours publication-title: Nature doi: 10.1038/nature24993 – volume: 51 start-page: 1043 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib20 article-title: Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1+ Stem-like CD8+ T Cells during Chronic Infection publication-title: Immunity doi: 10.1016/j.immuni.2019.11.002 – volume: 212 start-page: 1125 year: 2015 ident: 10.1016/j.immuni.2020.04.014_bib44 article-title: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells publication-title: J. Exp. Med. doi: 10.1084/jem.20142237 – volume: 321 start-page: 408 year: 2008 ident: 10.1016/j.immuni.2020.04.014_bib23 article-title: Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin publication-title: Science doi: 10.1126/science.1159806 – volume: 12 start-page: 1980 year: 2017 ident: 10.1016/j.immuni.2020.04.014_bib29 article-title: Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.083 – volume: 302 start-page: 1041 year: 2003 ident: 10.1016/j.immuni.2020.04.014_bib47 article-title: Control of effector CD8+ T cell function by the transcription factor Eomesodermin publication-title: Science doi: 10.1126/science.1090148 – volume: 97 start-page: 217 year: 2015 ident: 10.1016/j.immuni.2020.04.014_bib6 article-title: Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1HI0314-154R – volume: 5 start-page: 992 year: 2017 ident: 10.1016/j.immuni.2020.04.014_bib42 article-title: Stereotactic Radiotherapy Increases Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-17-0040 – volume: 576 start-page: 465 year: 2019 ident: 10.1016/j.immuni.2020.04.014_bib24 article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells publication-title: Nature doi: 10.1038/s41586-019-1836-5 – reference: 32433943 - Immunity. 2020 May 19;52(5):724-726 |
SSID | ssj0014590 |
Score | 2.7161508 |
Snippet | CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex)... CD8 T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8 T cells (Tex) remains... SummaryCD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells... CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex)... CD8 + T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8 + T cells (Tex)... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 825 |
SubjectTerms | Animals B7-H1 Antigen - genetics B7-H1 Antigen - immunology Biological effects Biology Cancer Cancer immunotherapy CD8 CD8 antigen CD8-Positive T-Lymphocytes - cytology CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell cycle Cells, Cultured chronic infection Developmental biology Epigenesis, Genetic - genetics Epigenesis, Genetic - immunology Epigenetics Exhaustion Hepatocyte nuclear factor 1 Hepatocyte Nuclear Factor 1-alpha - genetics Hepatocyte Nuclear Factor 1-alpha - immunology Homeodomain Proteins - genetics Homeodomain Proteins - immunology Humans Immunotherapy Immunotherapy - methods Infections Lymphocytes Lymphocytes T Mice, Inbred C57BL Neoplasms - genetics Neoplasms - immunology Neoplasms - therapy PD-1 blockade PD-L1 protein Population T cell exhaustion lineage T cell receptors T-bet T-Box Domain Proteins - genetics T-Box Domain Proteins - immunology T-Lymphocyte Subsets - immunology T-Lymphocyte Subsets - metabolism TCF1 Tox Transcription Transcription, Genetic - genetics Transcription, Genetic - immunology Tumors Viral infections |
Title | Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms |
URI | https://dx.doi.org/10.1016/j.immuni.2020.04.014 https://www.ncbi.nlm.nih.gov/pubmed/32396847 https://www.proquest.com/docview/2425676416 https://www.proquest.com/docview/2402425745 https://pubmed.ncbi.nlm.nih.gov/PMC8360766 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTSBeEIxbYUxG4g1FTW3HsR-3rNXEKA-wib5ZduyoQSWtSIfgX_CTd05uWkFoEm9J7BM5Ofa5yN93TMhbjXG9guxEKQEJioUrC54wUonlhS2cjiWSk-cf5fmVeL9IFnsk67kwCKvsbH9r0xtr3T0Zd39zvCnL8WeEEkISzhlG9SlDO8yFakh8i9NhJ0EkOh5wh9C7p881GK-y4WBAlsjipuDpRPzLPf0dfv6JorzllmaPyMMunqQn7ZAfk71QHZJ77QmTvw7J_Xm3d_6E_L6FDwKJAQW3LDc1XRd0Bq-i059LLAQUPM3O1Dt6SbOwWlG0LmFbg8wPiCtr2hyWtEKCFG18XW954LW28nS6wRKfyI6kH5BJjBgrmrWYeDoPyDUu62_1U3I1m15m51F3HkOUCz3ZRtaqJOhCOJ6KnDMdO53ngSmXssLnXnoItpTyrNCsKGLLhWMhnfiAyz4BSf6M7FfrKrwgVAQVc-F97mQQTglVJLF0wXmprQ4yHxHeq8HkXbFyPDNjZXpU2lfTKs-g8kwsDChvRKJBatMW67ijf9pr2OxMOgP-5A7Jo35CmG7R1wazN5lKCHFH5M3QDMsV92BsFdbX2KdN8kQyIs_b-TMMlTOuJUQLMKydmTV0wFLguy1VuWxKgiMVJ5Xy5X9_0CvyAO8QFzHRR2R_-_06vIZwa-uOycHJxacvF8fNuroBoDkthA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRTwuCJZXYQEjwQlVTW3HsQ8coNuqZdu90JV6M07sqEElrUgX2H_Bf-EPMpOXtiC0EtLeqtpjOZnJzDfyN2NCXmnE9QqyE6UEJCgWflmIhF0VWp7aNNaBxOLk2Ykcn4oPi3CxR341tTBIq6x9f-XTS29d_9Or32Zvk2W9j0glhCScM0T1EWM1s_LYn3-HvK14OzkCJb9mbDScD8bd-mqBbiJ0f9u1VoVepyLmkUg400Gsk8QzFUcsdYmTDnCDUo6lmqVpYLmImY_6zqMFhyDJYd1r5Dqgjwi9wWTxvj26EKEOWqIjbK-p1ytJZVlZ9AFpKQvKDqt98a94-Dfe_ZO2eSEOju6SOzWApe-qd3SP7Pn8gNyorrQ8PyA3Z_Vh_X3y8wIhCSRa2t0y2xR0ndIRLEWHP5bYecg7OjhSb-icDvxqRdGd-W0BMt8AyBa0vJ1phRVZtAyujauDZW3u6HCDPUWxHJNOsXQZSV10UJHw6cxjcXNWfCkekNMr0dJDsp-vc_-YUOFVwIVzSSy9iJVQaRjI2MdOaqu9TDqEN2owSd0dHS_pWJmGBvfZVMozqDwTCAPK65BuK7WpuoNcMj9qNGx2rNxAALtE8rAxCFN7mcJguigjCZi6Q162w-Af8NDH5n59hnOqrFKEHfKosp92q5xxLQGewLZ2LKudgL3Hd0fybFn2IMfan0jKJ__9QC_IrfF8NjXTycnxU3IbR5CU0deHZH_79cw_A6y3jZ-X3xYln676Y_4Nznppvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+Relationships+of+Four+Exhausted+CD8+%2B+T+Cell+Subsets+Reveals+Underlying+Transcriptional+and+Epigenetic+Landscape+Control+Mechanisms&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Beltra%2C+Jean-Christophe&rft.au=Manne%2C+Sasikanth&rft.au=Abdel-Hakeem%2C+Mohamed+S&rft.au=Kurachi%2C+Makoto&rft.date=2020-05-19&rft.eissn=1097-4180&rft.volume=52&rft.issue=5&rft.spage=825&rft_id=info:doi/10.1016%2Fj.immuni.2020.04.014&rft_id=info%3Apmid%2F32396847&rft.externalDocID=32396847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |