Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms

CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage development...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 52; no. 5; pp. 825 - 841.e8
Main Authors Beltra, Jean-Christophe, Manne, Sasikanth, Abdel-Hakeem, Mohamed S., Kurachi, Makoto, Giles, Josephine R., Chen, Zeyu, Casella, Valentina, Ngiow, Shin Foong, Khan, Omar, Huang, Yinghui Jane, Yan, Patrick, Nzingha, Kito, Xu, Wei, Amaravadi, Ravi K., Xu, Xiaowei, Karakousis, Giorgos C., Mitchell, Tara C., Schuchter, Lynn M., Huang, Alexander C., Wherry, E. John
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.05.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy. [Display omitted] •Ly108 and CD69 define four Tex subsets linked in a hierarchical developmental pathway•Two TCF1+ subsets, effector-like and terminally exhausted subsets, are identified•Key transcriptional, epigenetic, and biological changes define subset transitions•TCF1, T-bet, and Tox coordinate Tex subset development and dynamics Beltra et al. define a hierarchical developmental pathway for CD8+ T cell exhaustion, revealing four stages and multistep transcriptional and epigenetic dynamics underlying subset transitions and subset-associated biological changes.
AbstractList CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.
CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy. [Display omitted] •Ly108 and CD69 define four Tex subsets linked in a hierarchical developmental pathway•Two TCF1+ subsets, effector-like and terminally exhausted subsets, are identified•Key transcriptional, epigenetic, and biological changes define subset transitions•TCF1, T-bet, and Tox coordinate Tex subset development and dynamics Beltra et al. define a hierarchical developmental pathway for CD8+ T cell exhaustion, revealing four stages and multistep transcriptional and epigenetic dynamics underlying subset transitions and subset-associated biological changes.
SummaryCD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.
CD8 + T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8 + T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at “re-invigorating” Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1 + progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy. Beltra et al. define a hierarchical developmental pathway for CD8 + T cell exhaustion, revealing four stages and multistep transcriptional and epigenetic dynamics underlying subset transitions and subset-associated biological changes.
CD8 T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8 T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1 progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.
Author Mitchell, Tara C.
Abdel-Hakeem, Mohamed S.
Khan, Omar
Giles, Josephine R.
Chen, Zeyu
Huang, Yinghui Jane
Wherry, E. John
Xu, Wei
Schuchter, Lynn M.
Amaravadi, Ravi K.
Huang, Alexander C.
Beltra, Jean-Christophe
Karakousis, Giorgos C.
Ngiow, Shin Foong
Nzingha, Kito
Casella, Valentina
Xu, Xiaowei
Yan, Patrick
Kurachi, Makoto
Manne, Sasikanth
AuthorAffiliation 6 Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
11 Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
4 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, Egypt
9 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
12 Lead Contact
1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
7 Arsenal Biosciences, South San Francisco, CA, USA
10 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
5 Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
2 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, P
AuthorAffiliation_xml – name: 8 Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– name: 7 Arsenal Biosciences, South San Francisco, CA, USA
– name: 12 Lead Contact
– name: 6 Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
– name: 4 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, Egypt
– name: 3 Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
– name: 9 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– name: 5 Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
– name: 11 Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– name: 10 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– name: 2 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– name: 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Author_xml – sequence: 1
  givenname: Jean-Christophe
  surname: Beltra
  fullname: Beltra, Jean-Christophe
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Sasikanth
  surname: Manne
  fullname: Manne, Sasikanth
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: Mohamed S.
  surname: Abdel-Hakeem
  fullname: Abdel-Hakeem, Mohamed S.
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: Makoto
  surname: Kurachi
  fullname: Kurachi, Makoto
  organization: Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
– sequence: 5
  givenname: Josephine R.
  surname: Giles
  fullname: Giles, Josephine R.
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 6
  givenname: Zeyu
  surname: Chen
  fullname: Chen, Zeyu
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 7
  givenname: Valentina
  surname: Casella
  fullname: Casella, Valentina
  organization: Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 8
  givenname: Shin Foong
  surname: Ngiow
  fullname: Ngiow, Shin Foong
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 9
  givenname: Omar
  surname: Khan
  fullname: Khan, Omar
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 10
  givenname: Yinghui Jane
  surname: Huang
  fullname: Huang, Yinghui Jane
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 11
  givenname: Patrick
  surname: Yan
  fullname: Yan, Patrick
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 12
  givenname: Kito
  surname: Nzingha
  fullname: Nzingha, Kito
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 13
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
  organization: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 14
  givenname: Ravi K.
  surname: Amaravadi
  fullname: Amaravadi, Ravi K.
  organization: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 15
  givenname: Xiaowei
  surname: Xu
  fullname: Xu, Xiaowei
  organization: Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 16
  givenname: Giorgos C.
  surname: Karakousis
  fullname: Karakousis, Giorgos C.
  organization: Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 17
  givenname: Tara C.
  surname: Mitchell
  fullname: Mitchell, Tara C.
  organization: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 18
  givenname: Lynn M.
  surname: Schuchter
  fullname: Schuchter, Lynn M.
  organization: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 19
  givenname: Alexander C.
  surname: Huang
  fullname: Huang, Alexander C.
  organization: Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 20
  givenname: E. John
  surname: Wherry
  fullname: Wherry, E. John
  email: wherry@pennmedicine.upenn.edu
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32396847$$D View this record in MEDLINE/PubMed
BookMark eNqFkl2L1DAUhousuB_6D0QC3ghLa5KmX14IMjurwoigs9chTU5nMqRJN2kH91_sTzZ1xkX3Qq-SkPd9OOc95zw5sc5CkrwkOCOYlG93me77yeqMYoozzDJM2JPkjOCmShmp8cl8r1halSQ_Tc5D2OGoKBr8LDnNad6UNavOkvsr2INxQw92FAZ9AyNG7WzY6iEg16FrN3m0_LEVUxhBocVVfYnWaAHGoO9TG2AM0bMHYQK6sQq8udN2g9Ze2CC9HmZWxAqr0HLQG7AwaolW8R2kGAAtnB29M-gLyK2wOvThefK0izR4cTwvkpvr5XrxKV19_fh58WGVStaQMRWiLqDpWJtXTOa0wW0jJdC6rWinpCpVnTd1rWjX0K7DImcthYooKGJ2RXTmF8n7A3eY2h6UjP17YfjgdS_8HXdC879_rN7yjdvzOi9xVZYR8OYI8O52gjDyXgcZgxEW3BQ4ZZgyWlSsiNLXj6S7GGsMZlbRoqxKRmbgqz8reijl97CigB0E0rsQPHQPEoL5vBN8xw87weed4JjxOPFoe_fIJvX4a8qxL23-Zz7GBHEWew2eB6nBSlDagxy5cvrfgJ9yVNfi
CitedBy_id crossref_primary_10_1016_j_celrep_2023_112940
crossref_primary_10_1136_jitc_2021_002780
crossref_primary_10_3389_fimmu_2023_1204363
crossref_primary_10_1038_s41586_022_05105_1
crossref_primary_10_1038_s41556_022_00942_8
crossref_primary_10_1016_j_celrep_2023_112944
crossref_primary_10_1126_science_adf1329
crossref_primary_10_1038_s41392_024_01873_6
crossref_primary_10_1016_j_cmet_2022_02_003
crossref_primary_10_1080_2162402X_2021_2010894
crossref_primary_10_3390_genes14101953
crossref_primary_10_1016_j_imlet_2020_11_004
crossref_primary_10_3389_fimmu_2020_592569
crossref_primary_10_1016_j_immuni_2024_08_014
crossref_primary_10_3389_fimmu_2023_1151748
crossref_primary_10_3389_fimmu_2023_1169144
crossref_primary_10_1016_j_xcrm_2025_101992
crossref_primary_10_1158_2159_8290_CD_21_0888
crossref_primary_10_1016_j_omto_2022_09_001
crossref_primary_10_3390_medicina60030373
crossref_primary_10_1016_j_semcancer_2022_05_015
crossref_primary_10_1038_s41375_023_01966_1
crossref_primary_10_1016_j_it_2021_09_002
crossref_primary_10_1016_j_coi_2024_102506
crossref_primary_10_1126_sciadv_adp9371
crossref_primary_10_1038_s41591_022_01829_9
crossref_primary_10_1126_sciimmunol_abg7836
crossref_primary_10_1096_fj_202002566R
crossref_primary_10_1016_j_celrep_2024_115023
crossref_primary_10_1038_s41422_024_00926_3
crossref_primary_10_1016_j_trecan_2024_03_010
crossref_primary_10_1016_j_it_2022_04_010
crossref_primary_10_2139_ssrn_3942126
crossref_primary_10_3389_fimmu_2020_624144
crossref_primary_10_1186_s12964_024_01848_8
crossref_primary_10_3389_fimmu_2022_886646
crossref_primary_10_1016_j_clim_2025_110486
crossref_primary_10_3389_fimmu_2023_1267918
crossref_primary_10_1038_s41590_024_01843_8
crossref_primary_10_1136_jitc_2021_003614
crossref_primary_10_1016_j_isci_2020_101954
crossref_primary_10_1038_s41590_024_01952_4
crossref_primary_10_1038_s41392_023_01471_y
crossref_primary_10_1016_j_immuni_2021_11_004
crossref_primary_10_1038_s41577_023_00884_8
crossref_primary_10_1186_s12885_023_11648_x
crossref_primary_10_1186_s12935_024_03539_3
crossref_primary_10_1016_j_heliyon_2024_e32249
crossref_primary_10_4110_in_2022_22_e2
crossref_primary_10_3389_fimmu_2023_1181499
crossref_primary_10_7554_eLife_62420
crossref_primary_10_3389_fcell_2021_738373
crossref_primary_10_1038_s41416_024_02712_9
crossref_primary_10_1126_scitranslmed_abk1900
crossref_primary_10_1186_s13045_023_01504_7
crossref_primary_10_1007_s12032_022_01930_6
crossref_primary_10_3389_fimmu_2023_1151632
crossref_primary_10_1016_j_celrep_2023_112911
crossref_primary_10_1016_j_genrep_2024_101952
crossref_primary_10_1038_s41467_021_23324_4
crossref_primary_10_1126_science_adn2337
crossref_primary_10_1016_j_immuni_2021_11_017
crossref_primary_10_1126_sciimmunol_adn2717
crossref_primary_10_1002_cam4_7346
crossref_primary_10_1038_s41423_021_00750_4
crossref_primary_10_1016_j_addr_2022_114112
crossref_primary_10_1016_j_immuni_2024_01_013
crossref_primary_10_1073_pnas_2315989121
crossref_primary_10_3390_ijms21186966
crossref_primary_10_1177_00220345231151685
crossref_primary_10_1016_j_cmet_2023_12_010
crossref_primary_10_1016_j_imlet_2024_106938
crossref_primary_10_4049_immunohorizons_2000102
crossref_primary_10_1038_s42003_020_01441_y
crossref_primary_10_1111_febs_16342
crossref_primary_10_3389_fphar_2025_1533464
crossref_primary_10_1016_j_banm_2021_01_018
crossref_primary_10_1016_j_immuni_2024_07_003
crossref_primary_10_3389_fimmu_2023_1149622
crossref_primary_10_1038_s41467_023_37379_y
crossref_primary_10_3390_cells11142176
crossref_primary_10_1016_j_it_2021_03_006
crossref_primary_10_1136_jitc_2022_005293
crossref_primary_10_1097_CJI_0000000000000503
crossref_primary_10_1002_1878_0261_13603
crossref_primary_10_1111_bcpt_13841
crossref_primary_10_3389_fimmu_2024_1426418
crossref_primary_10_1136_jitc_2023_008739
crossref_primary_10_1016_j_immuni_2023_05_008
crossref_primary_10_1186_s13020_023_00785_x
crossref_primary_10_1016_j_cell_2024_06_036
crossref_primary_10_1038_s41573_021_00345_8
crossref_primary_10_1016_j_intimp_2023_111363
crossref_primary_10_1172_JCI184332
crossref_primary_10_3324_haematol_2020_267914
crossref_primary_10_1038_s41590_021_00965_7
crossref_primary_10_1126_sciimmunol_abb9726
crossref_primary_10_3390_ijms241512317
crossref_primary_10_1016_j_bbcan_2024_189193
crossref_primary_10_2139_ssrn_4195922
crossref_primary_10_1007_s00262_023_03447_x
crossref_primary_10_1146_annurev_immunol_090222_110914
crossref_primary_10_1002_cyto_b_21984
crossref_primary_10_1038_s42255_020_00280_9
crossref_primary_10_1126_sciimmunol_adg3868
crossref_primary_10_3389_fimmu_2024_1490845
crossref_primary_10_1016_j_xcrm_2024_101400
crossref_primary_10_1016_j_immuni_2024_02_001
crossref_primary_10_1038_s41419_023_06211_2
crossref_primary_10_1080_2162402X_2023_2293511
crossref_primary_10_1016_j_annonc_2022_03_013
crossref_primary_10_1038_s41419_024_06986_y
crossref_primary_10_1073_pnas_2418985122
crossref_primary_10_1016_j_ebiom_2022_103941
crossref_primary_10_1038_s41467_021_25057_w
crossref_primary_10_1038_s41467_022_33768_x
crossref_primary_10_1038_s41586_023_06733_x
crossref_primary_10_1136_jitc_2020_001478
crossref_primary_10_1016_j_ccell_2022_09_011
crossref_primary_10_1158_1078_0432_CCR_22_1471
crossref_primary_10_1111_cas_15033
crossref_primary_10_3389_fimmu_2024_1449291
crossref_primary_10_3389_fonc_2024_1357801
crossref_primary_10_1038_s41368_022_00160_w
crossref_primary_10_1002_path_6197
crossref_primary_10_1038_s41417_022_00495_w
crossref_primary_10_1016_j_bbcan_2024_189162
crossref_primary_10_1038_s41540_024_00336_6
crossref_primary_10_1186_s12885_022_10336_6
crossref_primary_10_1016_j_smim_2020_101435
crossref_primary_10_3389_fimmu_2022_1074698
crossref_primary_10_1016_j_heliyon_2023_e14334
crossref_primary_10_1080_2162402X_2023_2246319
crossref_primary_10_1038_s41590_022_01224_z
crossref_primary_10_1371_journal_ppat_1010630
crossref_primary_10_1038_s42003_024_06456_3
crossref_primary_10_1097_RLI_0000000000001001
crossref_primary_10_1016_j_molcel_2021_03_045
crossref_primary_10_1038_s41698_025_00842_8
crossref_primary_10_1126_sciimmunol_abe3702
crossref_primary_10_1158_2159_8290_CD_20_0841
crossref_primary_10_1038_s41419_024_06840_1
crossref_primary_10_1002_advs_202400702
crossref_primary_10_1016_j_immuni_2022_03_006
crossref_primary_10_1016_j_jcmgh_2022_09_007
crossref_primary_10_1016_j_ccell_2023_02_020
crossref_primary_10_1016_j_cell_2024_03_037
crossref_primary_10_1038_s41590_023_01675_y
crossref_primary_10_1371_journal_pbio_3002465
crossref_primary_10_1016_j_celrep_2021_108966
crossref_primary_10_3390_biology12040541
crossref_primary_10_3389_fimmu_2023_1198551
crossref_primary_10_1038_s41587_024_02226_y
crossref_primary_10_1038_s43018_022_00490_y
crossref_primary_10_3892_or_2024_8757
crossref_primary_10_3389_fimmu_2023_1148061
crossref_primary_10_1186_s12967_022_03798_6
crossref_primary_10_1158_2326_6066_CIR_21_1050
crossref_primary_10_1126_sciimmunol_ade3369
crossref_primary_10_1016_j_immuni_2023_01_029
crossref_primary_10_1038_s41467_023_37825_x
crossref_primary_10_1158_2159_8290_CD_21_0003
crossref_primary_10_1186_s13062_020_00283_2
crossref_primary_10_1016_j_cell_2021_12_004
crossref_primary_10_3389_fphar_2021_720692
crossref_primary_10_1038_s41586_024_07630_7
crossref_primary_10_1038_s44318_024_00201_6
crossref_primary_10_1172_JCI163096
crossref_primary_10_1016_j_cell_2021_08_004
crossref_primary_10_1016_j_semcancer_2024_07_001
crossref_primary_10_3390_vaccines12121309
crossref_primary_10_4103_1673_5374_357903
crossref_primary_10_1016_j_immuni_2024_06_017
crossref_primary_10_1038_s41423_023_01064_3
crossref_primary_10_1007_s00262_021_03001_7
crossref_primary_10_1016_j_immuni_2024_06_014
crossref_primary_10_1016_j_ebiom_2024_105035
crossref_primary_10_1016_j_tibs_2024_08_002
crossref_primary_10_1007_s10555_024_10211_9
crossref_primary_10_1016_j_ebiom_2024_105154
crossref_primary_10_3389_fphar_2023_1146468
crossref_primary_10_1016_j_immuni_2024_11_007
crossref_primary_10_1002_adbi_202200264
crossref_primary_10_1016_j_celrep_2023_112649
crossref_primary_10_1038_s41590_022_01219_w
crossref_primary_10_1038_s41467_021_26940_2
crossref_primary_10_1146_annurev_immunol_101320_025949
crossref_primary_10_1016_j_canlet_2023_216267
crossref_primary_10_1016_j_immuni_2022_02_004
crossref_primary_10_1016_j_immuni_2020_11_005
crossref_primary_10_1038_s41467_020_18256_4
crossref_primary_10_1053_j_gastro_2022_06_045
crossref_primary_10_7554_eLife_86032
crossref_primary_10_1093_jnci_djaa190
crossref_primary_10_3389_fimmu_2021_811968
crossref_primary_10_1158_2326_6066_CIR_20_0445
crossref_primary_10_1186_s13071_024_06573_2
crossref_primary_10_3389_fimmu_2022_1036616
crossref_primary_10_1038_s41590_023_01685_w
crossref_primary_10_3389_fmolb_2022_898567
crossref_primary_10_3390_biology13100816
crossref_primary_10_1186_s13045_022_01255_x
crossref_primary_10_2147_OTT_S255491
crossref_primary_10_3390_ijms241411673
crossref_primary_10_1016_j_celrep_2023_112876
crossref_primary_10_1371_journal_ppat_1008870
crossref_primary_10_1158_0008_5472_CAN_23_2455
crossref_primary_10_3389_fimmu_2023_1176994
crossref_primary_10_1177_09287329241290937
crossref_primary_10_1002_ijc_34843
crossref_primary_10_1038_s41590_022_01338_4
crossref_primary_10_1016_j_ccell_2020_09_001
crossref_primary_10_1016_j_cell_2024_02_022
crossref_primary_10_1002_ggn2_202200002
crossref_primary_10_1002_ctm2_874
crossref_primary_10_3390_cancers12082326
crossref_primary_10_1016_j_labinv_2023_100210
crossref_primary_10_1038_s41577_022_00802_4
crossref_primary_10_1038_s41573_021_00189_2
crossref_primary_10_1182_blood_2020009309
crossref_primary_10_1038_s41590_021_00949_7
crossref_primary_10_3389_fonc_2022_1022688
crossref_primary_10_3390_cancers14041078
crossref_primary_10_1038_s41467_021_23044_9
crossref_primary_10_1038_s41586_025_08732_6
crossref_primary_10_1002_ctm2_1416
crossref_primary_10_1021_acs_jcim_4c00261
crossref_primary_10_1016_j_trecan_2022_04_003
crossref_primary_10_1080_2162402X_2022_2038403
crossref_primary_10_1097_MD_0000000000038713
crossref_primary_10_1136_jitc_2023_008568
crossref_primary_10_4103_glioma_glioma_16_22
crossref_primary_10_1186_s13045_022_01307_2
crossref_primary_10_3389_fimmu_2022_977394
crossref_primary_10_1038_s41577_021_00563_6
crossref_primary_10_18632_aging_202351
crossref_primary_10_1016_j_apsb_2024_04_022
crossref_primary_10_3389_fimmu_2023_1187850
crossref_primary_10_1136_jitc_2023_007230
crossref_primary_10_3389_fimmu_2023_990419
crossref_primary_10_2174_0126669587296962240521114748
crossref_primary_10_1101_cshperspect_a037929
crossref_primary_10_3389_fimmu_2021_660944
crossref_primary_10_1038_s41577_023_00941_2
crossref_primary_10_4049_jimmunol_2300111
crossref_primary_10_3390_v12080799
crossref_primary_10_3389_fcell_2022_1082195
crossref_primary_10_1128_jvi_00225_23
crossref_primary_10_1182_blood_2023021680
crossref_primary_10_1016_j_canlet_2023_216219
crossref_primary_10_26442_18151434_2023_3_202443
crossref_primary_10_3389_fimmu_2020_589641
crossref_primary_10_1038_s41586_024_07135_3
crossref_primary_10_1172_JCI168465
crossref_primary_10_1016_j_cell_2023_02_021
crossref_primary_10_1038_s41590_022_01337_5
crossref_primary_10_1172_JCI169314
crossref_primary_10_7554_eLife_82705
crossref_primary_10_1007_s00395_024_01088_4
crossref_primary_10_1038_s41577_021_00574_3
crossref_primary_10_1038_s41590_022_01326_8
crossref_primary_10_3390_cells12151939
crossref_primary_10_3389_fimmu_2022_914406
crossref_primary_10_3390_cancers14194594
crossref_primary_10_1038_s41467_020_20751_7
crossref_primary_10_1016_j_xcrm_2024_101489
crossref_primary_10_4049_jimmunol_2100362
crossref_primary_10_1038_s41577_023_00867_9
crossref_primary_10_1126_sciimmunol_ade2094
crossref_primary_10_1158_2326_6066_CIR_21_0058
crossref_primary_10_3389_fimmu_2024_1383110
crossref_primary_10_1038_s41590_023_01477_2
crossref_primary_10_1084_jem_20202032
crossref_primary_10_1038_s41467_022_31504_z
crossref_primary_10_1038_s41571_022_00689_z
crossref_primary_10_1126_scitranslmed_abn5649
crossref_primary_10_1186_s13046_022_02590_0
crossref_primary_10_1111_cas_15311
crossref_primary_10_3389_fimmu_2021_715234
crossref_primary_10_1038_s41467_023_40398_4
crossref_primary_10_1002_advs_202413181
crossref_primary_10_1016_j_cell_2024_03_011
crossref_primary_10_3389_fimmu_2022_926714
crossref_primary_10_3389_fmed_2022_1034764
crossref_primary_10_3390_cancers17050906
crossref_primary_10_3390_ijms21186497
crossref_primary_10_1002_adma_202203019
crossref_primary_10_1073_pnas_2306763121
crossref_primary_10_1111_jcmm_70101
crossref_primary_10_3390_biom12111549
crossref_primary_10_3389_fonc_2023_1200646
crossref_primary_10_1182_bloodadvances_2024015285
crossref_primary_10_18632_aging_205977
crossref_primary_10_1111_imr_13203
crossref_primary_10_1016_j_coviro_2020_10_003
crossref_primary_10_1016_j_immuni_2022_01_018
crossref_primary_10_1016_j_ccell_2025_02_008
crossref_primary_10_1146_annurev_immunol_110519_071134
crossref_primary_10_1007_s11427_022_2100_2
crossref_primary_10_4049_jimmunol_2001348
crossref_primary_10_2139_ssrn_3802857
crossref_primary_10_3389_fimmu_2021_744530
crossref_primary_10_1016_j_ccell_2022_04_005
crossref_primary_10_3390_cells10123376
crossref_primary_10_1021_acs_molpharmaceut_4c00970
crossref_primary_10_3389_fimmu_2020_622509
crossref_primary_10_3389_fimmu_2024_1412731
crossref_primary_10_1155_ijog_8823837
crossref_primary_10_1016_j_omtn_2025_102465
crossref_primary_10_1016_j_canlet_2021_02_013
crossref_primary_10_3389_fimmu_2023_1154566
crossref_primary_10_1126_sciimmunol_ado3032
crossref_primary_10_1136_jitc_2024_009449
crossref_primary_10_1002_ijc_34669
crossref_primary_10_3389_fonc_2022_1010976
crossref_primary_10_3389_fimmu_2024_1362140
crossref_primary_10_1038_s41568_022_00531_9
crossref_primary_10_1038_s41467_023_41352_0
crossref_primary_10_1126_sciimmunol_adf2223
crossref_primary_10_1371_journal_pone_0274494
crossref_primary_10_3390_cells10102563
crossref_primary_10_3389_fimmu_2021_617658
crossref_primary_10_1016_j_it_2023_02_006
crossref_primary_10_1007_s00432_022_04326_1
crossref_primary_10_1172_JCI164258
crossref_primary_10_1136_jitc_2022_005433
crossref_primary_10_1007_s11538_023_01207_7
crossref_primary_10_1016_j_ymthe_2021_08_003
crossref_primary_10_1093_noajnl_vdad009
crossref_primary_10_1186_s12967_024_05391_5
crossref_primary_10_1002_adtp_202400068
crossref_primary_10_1038_s43018_022_00433_7
crossref_primary_10_1158_1078_0432_CCR_21_1916
crossref_primary_10_1016_j_immuni_2024_12_010
crossref_primary_10_1084_jem_20220729
crossref_primary_10_3389_fimmu_2024_1392940
crossref_primary_10_1016_j_yexcr_2022_113212
crossref_primary_10_1016_j_coi_2020_09_004
crossref_primary_10_1038_s41467_024_53262_w
crossref_primary_10_1016_j_celrep_2023_112123
crossref_primary_10_1158_2326_6066_CIR_22_0099
crossref_primary_10_1016_j_ebiom_2022_104207
crossref_primary_10_3389_fphar_2020_612620
crossref_primary_10_1016_j_intimp_2025_114410
crossref_primary_10_1016_j_omto_2021_12_004
crossref_primary_10_1038_s41598_023_49810_x
crossref_primary_10_1038_s41467_023_42734_0
crossref_primary_10_1126_sciimmunol_abh1873
crossref_primary_10_1186_s40364_024_00599_5
crossref_primary_10_1016_j_smim_2021_101480
crossref_primary_10_1016_j_ccell_2021_10_008
crossref_primary_10_3389_fonc_2021_723888
crossref_primary_10_1089_vim_2022_0002
crossref_primary_10_1002_advs_202101672
crossref_primary_10_1002_ctm2_1817
crossref_primary_10_1073_pnas_2104758118
crossref_primary_10_1038_s41591_024_03271_5
crossref_primary_10_1038_s43018_021_00292_8
crossref_primary_10_1038_s41590_022_01384_y
crossref_primary_10_2217_imt_2020_0178
crossref_primary_10_1093_intimm_dxac013
crossref_primary_10_1016_j_imbio_2024_152824
crossref_primary_10_1016_j_canlet_2024_216963
crossref_primary_10_3389_fimmu_2023_1120886
crossref_primary_10_3390_ijms22136779
crossref_primary_10_1080_02656736_2023_2172219
crossref_primary_10_1016_j_trecan_2022_12_008
crossref_primary_10_1007_s11538_024_01389_8
crossref_primary_10_1186_s40779_023_00496_2
crossref_primary_10_4049_jimmunol_2200757
crossref_primary_10_1016_j_immuni_2023_09_005
crossref_primary_10_3389_fimmu_2022_907172
crossref_primary_10_1111_bph_16313
crossref_primary_10_1172_JCI177460
crossref_primary_10_1182_blood_2023019875
crossref_primary_10_1016_j_ebiom_2022_104371
crossref_primary_10_1016_j_celrep_2023_113155
crossref_primary_10_1038_s41590_023_01645_4
crossref_primary_10_3389_fphar_2023_1126916
crossref_primary_10_1016_j_celrep_2024_114401
crossref_primary_10_1016_j_ccell_2022_05_006
crossref_primary_10_1016_j_cmet_2022_07_012
crossref_primary_10_1016_j_ccell_2022_05_004
crossref_primary_10_1111_imm_13560
crossref_primary_10_1007_s11882_025_01199_5
crossref_primary_10_3389_fimmu_2020_583382
crossref_primary_10_1186_s12943_024_02175_9
crossref_primary_10_1016_j_isci_2023_108666
crossref_primary_10_1038_s41389_023_00482_2
crossref_primary_10_1136_jitc_2021_004012
crossref_primary_10_1016_j_immuni_2020_04_019
crossref_primary_10_4236_jct_2023_144015
crossref_primary_10_1136_jitc_2024_009367
crossref_primary_10_3389_fphar_2023_1051305
crossref_primary_10_1038_s41598_024_77941_2
crossref_primary_10_1111_febs_15756
crossref_primary_10_1016_j_jconrel_2024_07_023
crossref_primary_10_1126_sciimmunol_adg1094
crossref_primary_10_1158_1078_0432_CCR_23_1444
crossref_primary_10_1016_j_celrep_2024_113898
crossref_primary_10_1093_intimm_dxaa057
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_1038_s41568_023_00615_0
crossref_primary_10_3389_fimmu_2023_1233261
crossref_primary_10_1073_pnas_2003656117
crossref_primary_10_1038_s43018_024_00798_x
crossref_primary_10_1016_j_immuni_2023_11_005
crossref_primary_10_1016_j_jep_2024_119097
crossref_primary_10_1126_sciimmunol_adf8838
crossref_primary_10_26508_lsa_202201503
crossref_primary_10_1158_2326_6066_CIR_21_0459
crossref_primary_10_1016_j_semcancer_2022_02_018
crossref_primary_10_2147_ITT_S439969
crossref_primary_10_3389_fimmu_2023_1184167
crossref_primary_10_1016_j_jtct_2023_04_007
crossref_primary_10_1136_jitc_2023_007099
crossref_primary_10_3389_fimmu_2023_1334597
crossref_primary_10_1016_j_ccell_2024_08_007
crossref_primary_10_1111_imr_13057
crossref_primary_10_1016_j_cell_2021_11_016
crossref_primary_10_3389_fimmu_2022_975803
crossref_primary_10_1038_s41392_024_01943_9
crossref_primary_10_1097_HC9_0000000000000131
crossref_primary_10_1126_sciimmunol_abd5778
crossref_primary_10_1016_j_immuni_2021_06_007
crossref_primary_10_1111_cas_15932
crossref_primary_10_1016_j_immuni_2023_09_001
crossref_primary_10_1126_sciadv_adc9346
crossref_primary_10_3389_fimmu_2020_620374
crossref_primary_10_1038_s41435_024_00307_1
crossref_primary_10_1038_s41467_021_24981_1
crossref_primary_10_1158_0008_5472_CAN_24_0830
crossref_primary_10_1038_s41598_022_15705_6
crossref_primary_10_4049_jimmunol_2200744
crossref_primary_10_1182_blood_2022015956
crossref_primary_10_1021_acsnano_4c13425
crossref_primary_10_1084_jem_20200920
crossref_primary_10_1016_j_cell_2022_03_033
crossref_primary_10_1016_j_heliyon_2024_e39731
crossref_primary_10_3389_fimmu_2022_866179
crossref_primary_10_1158_2326_6066_CIR_21_0515
crossref_primary_10_1084_jem_20210877
crossref_primary_10_3390_cancers13030515
crossref_primary_10_1016_j_pharmthera_2021_107923
crossref_primary_10_4049_jimmunol_2200317
crossref_primary_10_3390_ijms241511937
crossref_primary_10_3389_fimmu_2022_771809
crossref_primary_10_1016_j_celrep_2022_111736
crossref_primary_10_1016_j_pharmr_2025_100042
crossref_primary_10_1158_2326_6066_CIR_22_0116
crossref_primary_10_3389_fimmu_2023_1167241
crossref_primary_10_3389_fonc_2024_1429919
crossref_primary_10_1016_j_pdpdt_2022_103271
crossref_primary_10_1038_s41590_024_01896_9
crossref_primary_10_1084_jem_20241148
crossref_primary_10_2217_bmm_2023_0202
crossref_primary_10_1016_j_celrep_2021_109120
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2024052979
crossref_primary_10_1080_1744666X_2024_2412770
crossref_primary_10_1172_JCI160025
crossref_primary_10_4049_jimmunol_2200320
crossref_primary_10_4049_jimmunol_2200681
crossref_primary_10_4049_jimmunol_2300827
crossref_primary_10_1007_s10142_023_01056_6
crossref_primary_10_1073_pnas_2415119121
crossref_primary_10_3389_fimmu_2022_845223
crossref_primary_10_1126_sciimmunol_abj3067
crossref_primary_10_1038_s41467_024_51978_3
crossref_primary_10_1200_EDBK_389860
crossref_primary_10_1038_s41590_022_01210_5
crossref_primary_10_1016_j_ccell_2022_06_001
crossref_primary_10_1016_j_ccell_2023_08_013
crossref_primary_10_1093_intimm_dxac038
crossref_primary_10_1186_s12943_024_02104_w
crossref_primary_10_3389_fimmu_2023_1213375
crossref_primary_10_1038_s43587_024_00620_4
crossref_primary_10_1136_jitc_2023_007614
crossref_primary_10_1007_s12672_025_02060_x
crossref_primary_10_1016_j_isci_2022_104347
crossref_primary_10_3389_fimmu_2025_1535464
crossref_primary_10_1186_s12943_022_01706_6
crossref_primary_10_1186_s40364_024_00667_w
crossref_primary_10_1038_s41467_023_36296_4
crossref_primary_10_4049_jimmunol_2200659
crossref_primary_10_1126_sciimmunol_adi3487
crossref_primary_10_1016_j_celrep_2024_114301
crossref_primary_10_3389_fimmu_2024_1476904
crossref_primary_10_1126_sciadv_ade0718
crossref_primary_10_1093_jimmun_vkae014
crossref_primary_10_1084_jem_20240152
crossref_primary_10_3389_fimmu_2023_1119383
crossref_primary_10_1038_s41388_020_01501_x
crossref_primary_10_1016_j_it_2020_09_003
crossref_primary_10_1038_s41467_025_57819_1
crossref_primary_10_3389_fimmu_2025_1514780
crossref_primary_10_1038_s41590_021_00975_5
crossref_primary_10_1186_s12935_023_02948_0
crossref_primary_10_3389_fimmu_2021_725618
crossref_primary_10_1038_s41586_024_08466_x
crossref_primary_10_1084_jem_20210759
crossref_primary_10_1097_PAI_0000000000001125
crossref_primary_10_1093_intimm_dxac050
crossref_primary_10_1093_neuonc_noad214
crossref_primary_10_1126_sciimmunol_abi5072
crossref_primary_10_3389_fcimb_2023_1206720
crossref_primary_10_1136_jitc_2021_002809
crossref_primary_10_37349_ei_2022_00042
crossref_primary_10_1084_jem_20220679
crossref_primary_10_1002_ctd2_199
crossref_primary_10_1007_s00262_022_03323_0
crossref_primary_10_3389_fphar_2022_989655
crossref_primary_10_3390_cells13110924
crossref_primary_10_1080_08830185_2024_2401352
crossref_primary_10_1038_s41592_023_01785_3
crossref_primary_10_1016_j_medj_2023_07_010
crossref_primary_10_1038_s41590_020_00810_3
crossref_primary_10_1016_j_phrs_2024_107161
crossref_primary_10_1371_journal_pbio_3002943
crossref_primary_10_1002_adbi_202101320
crossref_primary_10_1016_j_celrep_2023_112905
crossref_primary_10_1002_JLB_5MR1120_778R
crossref_primary_10_1016_j_celrep_2021_109696
crossref_primary_10_1093_intimm_dxae032
crossref_primary_10_3389_fonc_2023_1249524
crossref_primary_10_1158_1078_0432_CCR_21_0206
crossref_primary_10_1038_s41467_022_35281_7
crossref_primary_10_1016_j_cell_2024_07_016
crossref_primary_10_1016_j_phrs_2023_106914
crossref_primary_10_3390_cancers14174192
crossref_primary_10_1016_j_ccell_2025_03_005
crossref_primary_10_1016_j_cell_2024_07_018
crossref_primary_10_1016_j_biomaterials_2025_123216
crossref_primary_10_4110_in_2023_23_e41
crossref_primary_10_1038_s41598_024_58419_7
crossref_primary_10_1158_2326_6066_CIR_22_0398
crossref_primary_10_3390_v16050799
crossref_primary_10_1016_j_suc_2024_11_005
crossref_primary_10_1016_j_ymthe_2024_04_004
crossref_primary_10_1136_gutjnl_2023_330424
crossref_primary_10_3389_fimmu_2022_1122530
crossref_primary_10_1016_j_immuni_2025_02_012
crossref_primary_10_1038_s41590_024_01961_3
crossref_primary_10_1126_sciimmunol_adf4726
crossref_primary_10_1186_s12964_023_01354_3
crossref_primary_10_1016_j_neo_2024_101072
crossref_primary_10_1111_cas_16177
crossref_primary_10_1002_eji_202048994
crossref_primary_10_3389_fimmu_2023_1172931
crossref_primary_10_1080_2162402X_2022_2046931
crossref_primary_10_1126_sciimmunol_adi7418
crossref_primary_10_1038_s41467_025_56270_6
crossref_primary_10_1172_jci_insight_177054
crossref_primary_10_1073_pnas_2412120121
crossref_primary_10_1038_s41698_024_00660_4
crossref_primary_10_3389_fimmu_2021_797172
crossref_primary_10_14348_molcells_2021_0263
crossref_primary_10_2139_ssrn_4176381
crossref_primary_10_1186_s12967_022_03442_3
crossref_primary_10_1016_j_ijbiomac_2025_139740
crossref_primary_10_3389_fgene_2022_881345
crossref_primary_10_1084_jem_20211538
crossref_primary_10_1038_s44386_024_00002_1
crossref_primary_10_46235_1028_7221_1210_MIP
crossref_primary_10_3390_epigenomes4040027
crossref_primary_10_3324_haematol_2022_282474
crossref_primary_10_3390_cells10092234
crossref_primary_10_1038_s41590_024_01875_0
crossref_primary_10_1038_s41423_024_01224_z
crossref_primary_10_3390_cancers13040598
crossref_primary_10_3389_fimmu_2020_593203
crossref_primary_10_3390_ijms24054786
crossref_primary_10_1080_13543784_2024_2360209
crossref_primary_10_1016_j_celrep_2020_108078
crossref_primary_10_1158_2767_9764_CRC_22_0434
crossref_primary_10_1371_journal_pbio_3001983
crossref_primary_10_1002_eji_202149486
crossref_primary_10_3389_fimmu_2023_1166128
crossref_primary_10_1038_s41467_023_42634_3
crossref_primary_10_1084_jem_20201730
Cites_doi 10.1038/s41586-020-2056-8
10.1038/s41591-018-0057-z
10.1038/ni.2046
10.1038/nprot.2014.005
10.1016/j.immuni.2019.10.009
10.1038/ni1268
10.1016/j.cell.2018.11.043
10.1038/s41590-019-0312-6
10.1126/science.aaf0683
10.1158/2326-6066.CIR-14-0159
10.1038/nbt.3519
10.1038/nmeth.4402
10.1016/j.immuni.2018.12.021
10.1016/j.immuni.2019.09.013
10.1093/nar/gku864
10.1038/nature19317
10.1093/bioinformatics/btp352
10.1038/s41591-019-0522-3
10.1073/pnas.0801497105
10.1038/s41586-018-0694-x
10.1016/j.stem.2012.04.006
10.1016/j.immuni.2011.11.016
10.1038/nature22367
10.1126/sciimmunol.aai8593
10.1126/science.aaf2807
10.1038/nmeth.1923
10.1038/nature22079
10.1016/j.cell.2018.12.034
10.1038/nri.2017.112
10.1158/0008-5472.CAN-16-2141
10.1038/nbt.4096
10.1002/cyto.a.21015
10.1126/science.1229620
10.1038/s41586-019-1324-y
10.1016/j.immuni.2007.07.010
10.1073/pnas.1905675116
10.1038/s41591-019-0357-y
10.1038/s41575-018-0081-y
10.1038/s41590-019-0403-4
10.4049/jimmunol.177.9.5890
10.1016/j.immuni.2016.07.021
10.1038/nbt.1630
10.1073/pnas.1604256113
10.1016/j.immuni.2018.11.014
10.1016/j.immuni.2018.04.026
10.1016/j.molcel.2010.05.004
10.1038/s41586-019-1325-x
10.1101/sqb.2016.81.030965
10.1186/s13059-014-0550-8
10.1038/nmeth.2688
10.1172/JCI87324
10.1016/j.immuni.2016.10.028
10.1146/annurev-immunol-041015-055318
10.1126/science.aae0491
10.1038/nature19330
10.1038/s41586-019-1326-9
10.1038/nature14468
10.1038/nature24993
10.1016/j.immuni.2019.11.002
10.1084/jem.20142237
10.1126/science.1159806
10.1038/nprot.2017.083
10.1126/science.1090148
10.1189/jlb.1HI0314-154R
10.1158/2326-6066.CIR-17-0040
10.1038/s41586-019-1836-5
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020. Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2020.04.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 841.e8
ExternalDocumentID PMC8360766
32396847
10_1016_j_immuni_2020_04_014
S1074761320301722
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA114046
– fundername: NCI NIH HHS
  grantid: P30 CA016520
– fundername: NCI NIH HHS
  grantid: T32 CA009615
– fundername: NCI NIH HHS
  grantid: T32 CA009140
– fundername: NCI NIH HHS
  grantid: P50 CA174523
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
7-5
7RV
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
RIG
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c491t-aa85e9f4b374c3290b9cce28b72fdcd6d83988d2f92ff0a34b2e71de510155e93
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 14:08:41 EDT 2025
Wed Jul 30 11:04:58 EDT 2025
Fri Jul 25 11:08:36 EDT 2025
Mon Jul 21 05:56:36 EDT 2025
Tue Jul 01 01:58:42 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Fri Feb 23 02:47:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords T cell exhaustion lineage
chronic infection
CD8
cancer immunotherapy
exhaustion
PD-1 blockade
Tox
TCF1
T-bet
epigenetics
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-aa85e9f4b374c3290b9cce28b72fdcd6d83988d2f92ff0a34b2e71de510155e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
J.-C.B. and E.J.W. designed the experiments. J.-C.B. performed and analyzed the experiments with help from M.A.-H., V.C., and K.N. J.G. processed the ATAC-seq data. S.M. and J.-C.B. analyzed RNA-seq and ATAC-seq data. M.K., J.-C.B., S.F.N., and O.K. produced RV. Z.C. and Y.J.H. developed Tcf7cKO and Tox+/− mice. P.Y. and A.C.H. analyzed human samples. W.X., R.K.A., X.X., G.C.K., T.C.M., and L.M.S. coordinated human sample collection. J.-C.B. and E.J.W. wrote the manuscript.
OpenAccessLink http://www.cell.com/article/S1074761320301722/pdf
PMID 32396847
PQID 2425676416
PQPubID 2031079
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8360766
proquest_miscellaneous_2402425745
proquest_journals_2425676416
pubmed_primary_32396847
crossref_primary_10_1016_j_immuni_2020_04_014
crossref_citationtrail_10_1016_j_immuni_2020_04_014
elsevier_sciencedirect_doi_10_1016_j_immuni_2020_04_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-19
PublicationDateYYYYMMDD 2020-05-19
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Buenrostro, Giresi, Zaba, Chang, Greenleaf (bib9) 2013; 10
Sen, Kaminski, Barnitz, Kurachi, Gerdemann, Yates, Tsao, Godec, LaFleur, Brown (bib55) 2016; 354
Grompe (bib15) 2012; 10
Daud, Loo, Pauli, Sanchez-Rodriguez, Sandoval, Taravati, Tsai, Nosrati, Nardo, Alvarado (bib12) 2016; 126
Huang, Postow, Orlowski, Mick, Bengsch, Manne, Xu, Harmon, Giles, Wenz (bib18) 2017; 545
Intlekofer, Takemoto, Wherry, Longworth, Northrup, Palanivel, Mullen, Gasink, Kaech, Miller (bib22) 2005; 6
Alfei, Kanev, Hofmann, Wu, Ghoneim, Roelli, Utzschneider, von Hoesslin, Cullen, Fan (bib1) 2019; 571
Butler, Hoffman, Smibert, Papalexi, Satija (bib10) 2018; 36
Gehart, Clevers (bib13) 2019; 16
McCracken, George, Kao, Marjon, Raveh, Weissman (bib36) 2016; 81
Taqueti, Grabie, Colvin, Pang, Jarolim, Luster, Glimcher, Lichtman (bib58) 2006; 177
Siddiqui, Schaeuble, Chennupati, Fuertes Marraco, Calderon-Copete, Pais Ferreira, Carmona, Scarpellino, Gfeller, Pradervand (bib57) 2019; 50
Huang, Orlowski, Xu, Mick, George, Yan, Manne, Kraya, Wubbenhorst, Dorfman (bib19) 2019; 25
Beltra, Bourbonnais, Bédard, Charpentier, Boulangé, Michaud, Boufaied, Bruneau, Shoukry, Lamarre, Decaluwe (bib3) 2016; 113
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib33) 2009; 25
Paley, Kroy, Odorizzi, Johnnidis, Dolfi, Barnett, Bikoff, Robertson, Lauer, Reiner, Wherry (bib45) 2012; 338
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib48) 2011; 12
Li, van der Leun, Yofe, Lubling, Gelbard-Solodkin, van Akkooi, van den Braber, Rozeman, Haanen, Blank (bib34) 2019; 176
Pauken, Sammons, Odorizzi, Manne, Godec, Khan, Drake, Chen, Sen, Kurachi (bib46) 2016; 354
Kurtulus, Madi, Escobar, Klapholz, Nyman, Christian, Pawlak, Dionne, Xia, Rozenblatt-Rosen (bib30) 2019; 50
Roederer, Nozzi, Nason (bib51) 2011; 79
Im, Hashimoto, Gerner, Lee, Kissick, Burger, Shan, Hale, Lee, Nasti (bib21) 2016; 537
Langmead, Salzberg (bib31) 2012; 9
Scott-Browne, López-Moyado, Trifari, Wong, Chavez, Rao, Pereira (bib54) 2016; 45
Odorizzi, Pauken, Paley, Sharpe, Wherry (bib44) 2015; 212
Bengsch, Ohtani, Khan, Setty, Manne, O’Brien, Gherardini, Herati, Huang, Chang (bib4) 2018; 48
Chen, Ji, Ngiow, Manne, Cai, Huang, Johnson, Staupe, Bengsch, Xu (bib11) 2019; 51
McLean, Bristor, Hiller, Clarke, Schaar, Lowe, Wenger, Bejerano (bib39) 2010; 28
Love, Huber, Anders (bib35) 2014; 15
Milner, Toma, Yu, Zhang, Omilusik, Phan, Wang, Getzler, Nguyen, Crotty (bib41) 2017; 552
Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib17) 2010; 38
Wu, Ji, Moseman, Xu, Manglani, Kirby, Anderson, Handon, Kenyon, Elkahloun (bib61) 2016; 1
Jansen, Prokhnevska, Master, Sanda, Carlisle, Bilen, Cardenas, Wilkinson, Lake, Sowalsky (bib24) 2019; 576
Kamphorst, Wieland, Nasti, Yang, Zhang, Barber, Konieczny, Daugherty, Koenig, Yu (bib26) 2017; 355
Muroyama, Nirschl, Kochel, Lopez-Bujanda, Theodros, Mao, Carrera-Haro, Ghasemzadeh, Marciscano, Velarde (bib42) 2017; 5
Wu, Madireddi, de Almeida, Banchereau, Chen, Chitre, Chiang, Iftikhar, O’Gorman, Au-Yeung (bib62) 2020; 579
Anderson, Mayer-Barber, Sung, Beura, James, Taylor, Qunaj, Griffith, Vezys, Barber, Masopust (bib2) 2014; 9
Qiu, Mao, Tang, Wang, Chawla, Pliner, Trapnell (bib50) 2017; 14
Yost, Satpathy, Wells, Qi, Wang, Kageyama, McNamara, Granja, Sarin, Brown (bib65) 2019; 25
Philip, Fairchild, Sun, Horste, Camara, Shakiba, Scott, Viale, Lauer, Merghoub (bib49) 2017; 545
Kao, Oestreich, Paley, Crawford, Angelosanto, Ali, Intlekofer, Boss, Reiner, Weinmann, Wherry (bib27) 2011; 12
Zander, Schauder, Xin, Nguyen, Wu, Zajac, Cui (bib66) 2019; 51
Zhang, Yu, Zheng, Zhang, Li, Fang, Gao, Kang, Zhang, Huang (bib67) 2018; 564
Yao, Sun, Lacey, Ji, Moseman, Shih, Heuston, Kirby, Anderson, Cheng (bib64) 2019; 20
Kurachi, Kurachi, Chen, Johnson, Khan, Bengsch, Stelekati, Attanasio, McLane, Tomura (bib29) 2017; 12
Berrien-Elliott, Yuan, Swier, Jackson, Chen, Donlin, Teague (bib5) 2015; 3
Thommen, Koelzer, Herzig, Roller, Trefny, Dimeloe, Kiialainen, Hanhart, Schill, Hess (bib59) 2018; 24
Utzschneider, Charmoy, Chennupati, Pousse, Ferreira, Calderon-Copete, Danilo, Alfei, Hofmann, Wieland (bib60) 2016; 45
Leek (bib32) 2014; 42
Pearce, Mullen, Martins, Krawczyk, Hutchins, Zediak, Banica, DiCioccio, Gross, Mao (bib47) 2003; 302
Seo, Chen, González-Avalos, Samaniego-Castruita, Das, Wang, López-Moyado, Georges, Zhang, Onodera (bib56) 2019; 116
Miller, Sen, Al Abosy, Bi, Virkud, LaFleur, Yates, Lako, Felt, Naik (bib40) 2019; 20
Gordon, Chaix, Rupp, Wu, Madera, Sun, Lindsten, Reiner (bib14) 2012; 36
Wykes, Lewin (bib63) 2018; 18
Beura, Anderson, Schenkel, Locquiao, Fraser, Vezys, Pepper, Masopust (bib6) 2015; 97
Blackburn, Shin, Freeman, Wherry (bib7) 2008; 105
Intlekofer, Banerjee, Takemoto, Gordon, Dejong, Shin, Hunter, Wherry, Lindsten, Reiner (bib23) 2008; 321
Scott, Dündar, Zumbo, Chandran, Klebanoff, Shakiba, Trivedi, Menocal, Appleby, Camara (bib53) 2019; 571
McKinney, Lee, Jayne, Lyons, Smith (bib37) 2015; 523
McLane, Abdel-Hakeem, Wherry (bib38) 2019; 37
He, Hou, Liu, Zhang, Bai, Han, Yang, Wei, Shen, Yang (bib16) 2016; 537
Khan, Giles, McDonald, Manne, Ngiow, Patel, Werner, Huang, Alexander, Wu (bib28) 2019; 571
Joshi, Cui, Chandele, Lee, Urso, Hagman, Gapin, Kaech (bib25) 2007; 27
Ngiow, Young, Blake, Hill, Yagita, Teng, Korman, Smyth (bib43) 2016; 76
Sade-Feldman, Yizhak, Bjorgaard, Ray, de Boer, Jenkins, Lieb, Chen, Frederick, Barzily-Rokni (bib52) 2019; 176
Hudson, Gensheimer, Hashimoto, Wieland, Valanparambil, Li, Lin, Konieczny, Im, Freeman (bib20) 2019; 51
Bray, Pimentel, Melsted, Pachter (bib8) 2016; 34
Sen (10.1016/j.immuni.2020.04.014_bib55) 2016; 354
Zhang (10.1016/j.immuni.2020.04.014_bib67) 2018; 564
Wykes (10.1016/j.immuni.2020.04.014_bib63) 2018; 18
Taqueti (10.1016/j.immuni.2020.04.014_bib58) 2006; 177
Beura (10.1016/j.immuni.2020.04.014_bib6) 2015; 97
Buenrostro (10.1016/j.immuni.2020.04.014_bib9) 2013; 10
Seo (10.1016/j.immuni.2020.04.014_bib56) 2019; 116
Miller (10.1016/j.immuni.2020.04.014_bib40) 2019; 20
Scott-Browne (10.1016/j.immuni.2020.04.014_bib54) 2016; 45
Huang (10.1016/j.immuni.2020.04.014_bib19) 2019; 25
Yost (10.1016/j.immuni.2020.04.014_bib65) 2019; 25
Daud (10.1016/j.immuni.2020.04.014_bib12) 2016; 126
Chen (10.1016/j.immuni.2020.04.014_bib11) 2019; 51
McLane (10.1016/j.immuni.2020.04.014_bib38) 2019; 37
Bray (10.1016/j.immuni.2020.04.014_bib8) 2016; 34
Intlekofer (10.1016/j.immuni.2020.04.014_bib22) 2005; 6
McCracken (10.1016/j.immuni.2020.04.014_bib36) 2016; 81
Blackburn (10.1016/j.immuni.2020.04.014_bib7) 2008; 105
Berrien-Elliott (10.1016/j.immuni.2020.04.014_bib5) 2015; 3
Butler (10.1016/j.immuni.2020.04.014_bib10) 2018; 36
Intlekofer (10.1016/j.immuni.2020.04.014_bib23) 2008; 321
Kurachi (10.1016/j.immuni.2020.04.014_bib29) 2017; 12
Li (10.1016/j.immuni.2020.04.014_bib33) 2009; 25
Leek (10.1016/j.immuni.2020.04.014_bib32) 2014; 42
Muroyama (10.1016/j.immuni.2020.04.014_bib42) 2017; 5
Jansen (10.1016/j.immuni.2020.04.014_bib24) 2019; 576
Wu (10.1016/j.immuni.2020.04.014_bib62) 2020; 579
Alfei (10.1016/j.immuni.2020.04.014_bib1) 2019; 571
Odorizzi (10.1016/j.immuni.2020.04.014_bib44) 2015; 212
Milner (10.1016/j.immuni.2020.04.014_bib41) 2017; 552
Siddiqui (10.1016/j.immuni.2020.04.014_bib57) 2019; 50
Joshi (10.1016/j.immuni.2020.04.014_bib25) 2007; 27
Zander (10.1016/j.immuni.2020.04.014_bib66) 2019; 51
Utzschneider (10.1016/j.immuni.2020.04.014_bib60) 2016; 45
McKinney (10.1016/j.immuni.2020.04.014_bib37) 2015; 523
Qiu (10.1016/j.immuni.2020.04.014_bib50) 2017; 14
Li (10.1016/j.immuni.2020.04.014_bib34) 2019; 176
Ngiow (10.1016/j.immuni.2020.04.014_bib43) 2016; 76
Sade-Feldman (10.1016/j.immuni.2020.04.014_bib52) 2019; 176
Love (10.1016/j.immuni.2020.04.014_bib35) 2014; 15
He (10.1016/j.immuni.2020.04.014_bib16) 2016; 537
Yao (10.1016/j.immuni.2020.04.014_bib64) 2019; 20
Kurtulus (10.1016/j.immuni.2020.04.014_bib30) 2019; 50
Pauken (10.1016/j.immuni.2020.04.014_bib46) 2016; 354
Kamphorst (10.1016/j.immuni.2020.04.014_bib26) 2017; 355
Hudson (10.1016/j.immuni.2020.04.014_bib20) 2019; 51
Gordon (10.1016/j.immuni.2020.04.014_bib14) 2012; 36
Gehart (10.1016/j.immuni.2020.04.014_bib13) 2019; 16
Paley (10.1016/j.immuni.2020.04.014_bib45) 2012; 338
Pearce (10.1016/j.immuni.2020.04.014_bib47) 2003; 302
Beltra (10.1016/j.immuni.2020.04.014_bib3) 2016; 113
Huang (10.1016/j.immuni.2020.04.014_bib18) 2017; 545
Scott (10.1016/j.immuni.2020.04.014_bib53) 2019; 571
Heinz (10.1016/j.immuni.2020.04.014_bib17) 2010; 38
Im (10.1016/j.immuni.2020.04.014_bib21) 2016; 537
Thommen (10.1016/j.immuni.2020.04.014_bib59) 2018; 24
Wu (10.1016/j.immuni.2020.04.014_bib61) 2016; 1
Khan (10.1016/j.immuni.2020.04.014_bib28) 2019; 571
Roederer (10.1016/j.immuni.2020.04.014_bib51) 2011; 79
Kao (10.1016/j.immuni.2020.04.014_bib27) 2011; 12
Anderson (10.1016/j.immuni.2020.04.014_bib2) 2014; 9
McLean (10.1016/j.immuni.2020.04.014_bib39) 2010; 28
Bengsch (10.1016/j.immuni.2020.04.014_bib4) 2018; 48
Philip (10.1016/j.immuni.2020.04.014_bib49) 2017; 545
Grompe (10.1016/j.immuni.2020.04.014_bib15) 2012; 10
Langmead (10.1016/j.immuni.2020.04.014_bib31) 2012; 9
Pedregosa (10.1016/j.immuni.2020.04.014_bib48) 2011; 12
32433943 - Immunity. 2020 May 19;52(5):724-726
References_xml – volume: 10
  start-page: 1213
  year: 2013
  end-page: 1218
  ident: bib9
  article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
  publication-title: Nat. Methods
– volume: 12
  start-page: 663
  year: 2011
  end-page: 671
  ident: bib27
  article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection
  publication-title: Nat. Immunol.
– volume: 16
  start-page: 19
  year: 2019
  end-page: 34
  ident: bib13
  article-title: Tales from the crypt: new insights into intestinal stem cells
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 576
  start-page: 465
  year: 2019
  end-page: 470
  ident: bib24
  article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells
  publication-title: Nature
– volume: 552
  start-page: 253
  year: 2017
  end-page: 257
  ident: bib41
  article-title: Runx3 programs CD8
  publication-title: Nature
– volume: 34
  start-page: 525
  year: 2016
  end-page: 527
  ident: bib8
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat. Biotechnol.
– volume: 25
  start-page: 454
  year: 2019
  end-page: 461
  ident: bib19
  article-title: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma
  publication-title: Nat. Med.
– volume: 126
  start-page: 3447
  year: 2016
  end-page: 3452
  ident: bib12
  article-title: Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma
  publication-title: J. Clin. Invest.
– volume: 105
  start-page: 15016
  year: 2008
  end-page: 15021
  ident: bib7
  article-title: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 495
  year: 2010
  end-page: 501
  ident: bib39
  article-title: GREAT improves functional interpretation of cis-regulatory regions
  publication-title: Nat. Biotechnol.
– volume: 1
  start-page: 1
  year: 2016
  ident: bib61
  article-title: The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness
  publication-title: Sci. Immunol.
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib31
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 176
  start-page: 775
  year: 2019
  end-page: 789.e18
  ident: bib34
  article-title: Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma
  publication-title: Cell
– volume: 15
  start-page: 550
  year: 2014
  ident: bib35
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 27
  start-page: 281
  year: 2007
  end-page: 295
  ident: bib25
  article-title: Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor
  publication-title: Immunity
– volume: 321
  start-page: 408
  year: 2008
  end-page: 411
  ident: bib23
  article-title: Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin
  publication-title: Science
– volume: 14
  start-page: 979
  year: 2017
  end-page: 982
  ident: bib50
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
– volume: 545
  start-page: 60
  year: 2017
  end-page: 65
  ident: bib18
  article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response
  publication-title: Nature
– volume: 42
  start-page: 42
  year: 2014
  ident: bib32
  article-title: svaseq: removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res.
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: bib17
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
– volume: 5
  start-page: 992
  year: 2017
  end-page: 1004
  ident: bib42
  article-title: Stereotactic Radiotherapy Increases Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment
  publication-title: Cancer Immunol. Res.
– volume: 20
  start-page: 326
  year: 2019
  end-page: 336
  ident: bib40
  article-title: Subsets of exhausted CD8
  publication-title: Nat. Immunol.
– volume: 37
  start-page: 457
  year: 2019
  end-page: 495
  ident: bib38
  article-title: CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer
  publication-title: Annu. Rev. Immunol.
– volume: 537
  start-page: 417
  year: 2016
  end-page: 421
  ident: bib21
  article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy
  publication-title: Nature
– volume: 212
  start-page: 1125
  year: 2015
  end-page: 1137
  ident: bib44
  article-title: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells
  publication-title: J. Exp. Med.
– volume: 523
  start-page: 612
  year: 2015
  end-page: 616
  ident: bib37
  article-title: T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection
  publication-title: Nature
– volume: 25
  start-page: 1251
  year: 2019
  end-page: 1259
  ident: bib65
  article-title: Clonal replacement of tumor-specific T cells following PD-1 blockade
  publication-title: Nat. Med.
– volume: 20
  start-page: 890
  year: 2019
  end-page: 901
  ident: bib64
  article-title: Single-cell RNA-seq reveals TOX as a key regulator of CD8
  publication-title: Nat. Immunol.
– volume: 6
  start-page: 1236
  year: 2005
  end-page: 1244
  ident: bib22
  article-title: Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin
  publication-title: Nat. Immunol.
– volume: 338
  start-page: 1220
  year: 2012
  end-page: 1225
  ident: bib45
  article-title: Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection
  publication-title: Science
– volume: 79
  start-page: 167
  year: 2011
  end-page: 174
  ident: bib51
  article-title: SPICE: exploration and analysis of post-cytometric complex multivariate datasets
  publication-title: Cytometry A
– volume: 45
  start-page: 1327
  year: 2016
  end-page: 1340
  ident: bib54
  article-title: Dynamic Changes in Chromatin Accessibility Occur in CD8
  publication-title: Immunity
– volume: 302
  start-page: 1041
  year: 2003
  end-page: 1043
  ident: bib47
  article-title: Control of effector CD8+ T cell function by the transcription factor Eomesodermin
  publication-title: Science
– volume: 50
  start-page: 181
  year: 2019
  end-page: 194.e6, e186
  ident: bib30
  article-title: Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1
  publication-title: Immunity
– volume: 76
  start-page: 6266
  year: 2016
  end-page: 6277
  ident: bib43
  article-title: Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell-Rich Tumor
  publication-title: Cancer Res.
– volume: 97
  start-page: 217
  year: 2015
  end-page: 225
  ident: bib6
  article-title: Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution
  publication-title: J. Leukoc. Biol.
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib10
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib33
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 45
  start-page: 415
  year: 2016
  end-page: 427
  ident: bib60
  article-title: T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections
  publication-title: Immunity
– volume: 571
  start-page: 265
  year: 2019
  end-page: 269
  ident: bib1
  article-title: TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection
  publication-title: Nature
– volume: 564
  start-page: 268
  year: 2018
  end-page: 272
  ident: bib67
  article-title: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer
  publication-title: Nature
– volume: 9
  start-page: 209
  year: 2014
  end-page: 222
  ident: bib2
  article-title: Intravascular staining for discrimination of vascular and tissue leukocytes
  publication-title: Nat. Protoc.
– volume: 50
  start-page: 195
  year: 2019
  end-page: 211.e10
  ident: bib57
  article-title: Intratumoral Tcf1
  publication-title: Immunity
– volume: 571
  start-page: 270
  year: 2019
  end-page: 274
  ident: bib53
  article-title: TOX is a critical regulator of tumour-specific T cell differentiation
  publication-title: Nature
– volume: 537
  start-page: 412
  year: 2016
  end-page: 428
  ident: bib16
  article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection
  publication-title: Nature
– volume: 571
  start-page: 211
  year: 2019
  end-page: 218
  ident: bib28
  article-title: TOX transcriptionally and epigenetically programs CD8
  publication-title: Nature
– volume: 176
  start-page: 404
  year: 2019
  ident: bib52
  article-title: Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma
  publication-title: Cell
– volume: 355
  start-page: 1423
  year: 2017
  end-page: 1427
  ident: bib26
  article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent
  publication-title: Science
– volume: 545
  start-page: 452
  year: 2017
  end-page: 456
  ident: bib49
  article-title: Chromatin states define tumour-specific T cell dysfunction and reprogramming
  publication-title: Nature
– volume: 116
  start-page: 12410
  year: 2019
  end-page: 12415
  ident: bib56
  article-title: TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib48
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 1043
  year: 2019
  end-page: 1058.e4
  ident: bib20
  article-title: Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1
  publication-title: Immunity
– volume: 81
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib36
  article-title: Normal and Neoplastic Stem Cells
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 48
  start-page: 1029
  year: 2018
  end-page: 1045.e5, e1025
  ident: bib4
  article-title: Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells
  publication-title: Immunity
– volume: 10
  start-page: 685
  year: 2012
  end-page: 689
  ident: bib15
  article-title: Tissue stem cells: new tools and functional diversity
  publication-title: Cell Stem Cell
– volume: 354
  start-page: 1160
  year: 2016
  end-page: 1165
  ident: bib46
  article-title: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade
  publication-title: Science
– volume: 51
  start-page: 840
  year: 2019
  end-page: 855.e5, e845
  ident: bib11
  article-title: TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision
  publication-title: Immunity
– volume: 354
  start-page: 1165
  year: 2016
  end-page: 1169
  ident: bib55
  article-title: The epigenetic landscape of T cell exhaustion
  publication-title: Science
– volume: 24
  start-page: 994
  year: 2018
  end-page: 1004
  ident: bib59
  article-title: A transcriptionally and functionally distinct PD-1
  publication-title: Nat. Med.
– volume: 36
  start-page: 55
  year: 2012
  end-page: 67
  ident: bib14
  article-title: The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation
  publication-title: Immunity
– volume: 18
  start-page: 91
  year: 2018
  end-page: 104
  ident: bib63
  article-title: Immune checkpoint blockade in infectious diseases
  publication-title: Nat. Rev. Immunol.
– volume: 3
  start-page: 116
  year: 2015
  end-page: 124
  ident: bib5
  article-title: Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor-infiltrating CD8+ T cells
  publication-title: Cancer Immunol. Res.
– volume: 113
  start-page: E5444
  year: 2016
  end-page: E5453
  ident: bib3
  article-title: IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51
  start-page: 1028
  year: 2019
  end-page: 1042.e4
  ident: bib66
  article-title: CD4
  publication-title: Immunity
– volume: 177
  start-page: 5890
  year: 2006
  end-page: 5901
  ident: bib58
  article-title: T-bet controls pathogenicity of CTLs in the heart by separable effects on migration and effector activity
  publication-title: J. Immunol.
– volume: 12
  start-page: 1980
  year: 2017
  end-page: 1998
  ident: bib29
  article-title: Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function
  publication-title: Nat. Protoc.
– volume: 579
  start-page: 274
  year: 2020
  end-page: 278
  ident: bib62
  article-title: Peripheral T cell expansion predicts tumour infiltration and clinical response
  publication-title: Nature
– volume: 579
  start-page: 274
  year: 2020
  ident: 10.1016/j.immuni.2020.04.014_bib62
  article-title: Peripheral T cell expansion predicts tumour infiltration and clinical response
  publication-title: Nature
  doi: 10.1038/s41586-020-2056-8
– volume: 24
  start-page: 994
  year: 2018
  ident: 10.1016/j.immuni.2020.04.014_bib59
  article-title: A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0057-z
– volume: 12
  start-page: 663
  year: 2011
  ident: 10.1016/j.immuni.2020.04.014_bib27
  article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2046
– volume: 9
  start-page: 209
  year: 2014
  ident: 10.1016/j.immuni.2020.04.014_bib2
  article-title: Intravascular staining for discrimination of vascular and tissue leukocytes
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.005
– volume: 51
  start-page: 1028
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib66
  article-title: CD4+ T Cell Help Is Required for the Formation of a Cytolytic CD8+ T Cell Subset that Protects against Chronic Infection and Cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.10.009
– volume: 6
  start-page: 1236
  year: 2005
  ident: 10.1016/j.immuni.2020.04.014_bib22
  article-title: Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1268
– volume: 176
  start-page: 775
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib34
  article-title: Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.043
– volume: 20
  start-page: 326
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib40
  article-title: Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0312-6
– volume: 355
  start-page: 1423
  year: 2017
  ident: 10.1016/j.immuni.2020.04.014_bib26
  article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent
  publication-title: Science
  doi: 10.1126/science.aaf0683
– volume: 3
  start-page: 116
  year: 2015
  ident: 10.1016/j.immuni.2020.04.014_bib5
  article-title: Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor-infiltrating CD8+ T cells
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-14-0159
– volume: 34
  start-page: 525
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib8
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3519
– volume: 14
  start-page: 979
  year: 2017
  ident: 10.1016/j.immuni.2020.04.014_bib50
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4402
– volume: 50
  start-page: 195
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib57
  article-title: Intratumoral Tcf1+PD-1+CD8+ T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.12.021
– volume: 51
  start-page: 840
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib11
  article-title: TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.09.013
– volume: 42
  start-page: 42
  year: 2014
  ident: 10.1016/j.immuni.2020.04.014_bib32
  article-title: svaseq: removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku864
– volume: 537
  start-page: 412
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib16
  article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection
  publication-title: Nature
  doi: 10.1038/nature19317
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.immuni.2020.04.014_bib33
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 25
  start-page: 1251
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib65
  article-title: Clonal replacement of tumor-specific T cells following PD-1 blockade
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0522-3
– volume: 105
  start-page: 15016
  year: 2008
  ident: 10.1016/j.immuni.2020.04.014_bib7
  article-title: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801497105
– volume: 564
  start-page: 268
  year: 2018
  ident: 10.1016/j.immuni.2020.04.014_bib67
  article-title: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer
  publication-title: Nature
  doi: 10.1038/s41586-018-0694-x
– volume: 10
  start-page: 685
  year: 2012
  ident: 10.1016/j.immuni.2020.04.014_bib15
  article-title: Tissue stem cells: new tools and functional diversity
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.04.006
– volume: 36
  start-page: 55
  year: 2012
  ident: 10.1016/j.immuni.2020.04.014_bib14
  article-title: The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.11.016
– volume: 545
  start-page: 452
  year: 2017
  ident: 10.1016/j.immuni.2020.04.014_bib49
  article-title: Chromatin states define tumour-specific T cell dysfunction and reprogramming
  publication-title: Nature
  doi: 10.1038/nature22367
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib61
  article-title: The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aai8593
– volume: 354
  start-page: 1160
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib46
  article-title: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade
  publication-title: Science
  doi: 10.1126/science.aaf2807
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.immuni.2020.04.014_bib31
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 545
  start-page: 60
  year: 2017
  ident: 10.1016/j.immuni.2020.04.014_bib18
  article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response
  publication-title: Nature
  doi: 10.1038/nature22079
– volume: 176
  start-page: 404
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib52
  article-title: Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.034
– volume: 18
  start-page: 91
  year: 2018
  ident: 10.1016/j.immuni.2020.04.014_bib63
  article-title: Immune checkpoint blockade in infectious diseases
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.112
– volume: 76
  start-page: 6266
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib43
  article-title: Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell-Rich Tumor
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2141
– volume: 36
  start-page: 411
  year: 2018
  ident: 10.1016/j.immuni.2020.04.014_bib10
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 79
  start-page: 167
  year: 2011
  ident: 10.1016/j.immuni.2020.04.014_bib51
  article-title: SPICE: exploration and analysis of post-cytometric complex multivariate datasets
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.21015
– volume: 338
  start-page: 1220
  year: 2012
  ident: 10.1016/j.immuni.2020.04.014_bib45
  article-title: Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection
  publication-title: Science
  doi: 10.1126/science.1229620
– volume: 571
  start-page: 270
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib53
  article-title: TOX is a critical regulator of tumour-specific T cell differentiation
  publication-title: Nature
  doi: 10.1038/s41586-019-1324-y
– volume: 27
  start-page: 281
  year: 2007
  ident: 10.1016/j.immuni.2020.04.014_bib25
  article-title: Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.07.010
– volume: 116
  start-page: 12410
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib56
  article-title: TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1905675116
– volume: 25
  start-page: 454
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib19
  article-title: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0357-y
– volume: 16
  start-page: 19
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib13
  article-title: Tales from the crypt: new insights into intestinal stem cells
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-018-0081-y
– volume: 20
  start-page: 890
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib64
  article-title: Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0403-4
– volume: 177
  start-page: 5890
  year: 2006
  ident: 10.1016/j.immuni.2020.04.014_bib58
  article-title: T-bet controls pathogenicity of CTLs in the heart by separable effects on migration and effector activity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.9.5890
– volume: 45
  start-page: 415
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib60
  article-title: T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.021
– volume: 28
  start-page: 495
  year: 2010
  ident: 10.1016/j.immuni.2020.04.014_bib39
  article-title: GREAT improves functional interpretation of cis-regulatory regions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1630
– volume: 113
  start-page: E5444
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib3
  article-title: IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1604256113
– volume: 50
  start-page: 181
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib30
  article-title: Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1-CD8+ Tumor-Infiltrating T Cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.11.014
– volume: 48
  start-page: 1029
  year: 2018
  ident: 10.1016/j.immuni.2020.04.014_bib4
  article-title: Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.026
– volume: 38
  start-page: 576
  year: 2010
  ident: 10.1016/j.immuni.2020.04.014_bib17
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 571
  start-page: 211
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib28
  article-title: TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion
  publication-title: Nature
  doi: 10.1038/s41586-019-1325-x
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.immuni.2020.04.014_bib48
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 81
  start-page: 1
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib36
  article-title: Normal and Neoplastic Stem Cells
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.2016.81.030965
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.immuni.2020.04.014_bib35
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 10
  start-page: 1213
  year: 2013
  ident: 10.1016/j.immuni.2020.04.014_bib9
  article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2688
– volume: 126
  start-page: 3447
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib12
  article-title: Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI87324
– volume: 45
  start-page: 1327
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib54
  article-title: Dynamic Changes in Chromatin Accessibility Occur in CD8+ T Cells Responding to Viral Infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.10.028
– volume: 37
  start-page: 457
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib38
  article-title: CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-041015-055318
– volume: 354
  start-page: 1165
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib55
  article-title: The epigenetic landscape of T cell exhaustion
  publication-title: Science
  doi: 10.1126/science.aae0491
– volume: 537
  start-page: 417
  year: 2016
  ident: 10.1016/j.immuni.2020.04.014_bib21
  article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy
  publication-title: Nature
  doi: 10.1038/nature19330
– volume: 571
  start-page: 265
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib1
  article-title: TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection
  publication-title: Nature
  doi: 10.1038/s41586-019-1326-9
– volume: 523
  start-page: 612
  year: 2015
  ident: 10.1016/j.immuni.2020.04.014_bib37
  article-title: T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection
  publication-title: Nature
  doi: 10.1038/nature14468
– volume: 552
  start-page: 253
  year: 2017
  ident: 10.1016/j.immuni.2020.04.014_bib41
  article-title: Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours
  publication-title: Nature
  doi: 10.1038/nature24993
– volume: 51
  start-page: 1043
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib20
  article-title: Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1+ Stem-like CD8+ T Cells during Chronic Infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.11.002
– volume: 212
  start-page: 1125
  year: 2015
  ident: 10.1016/j.immuni.2020.04.014_bib44
  article-title: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20142237
– volume: 321
  start-page: 408
  year: 2008
  ident: 10.1016/j.immuni.2020.04.014_bib23
  article-title: Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin
  publication-title: Science
  doi: 10.1126/science.1159806
– volume: 12
  start-page: 1980
  year: 2017
  ident: 10.1016/j.immuni.2020.04.014_bib29
  article-title: Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.083
– volume: 302
  start-page: 1041
  year: 2003
  ident: 10.1016/j.immuni.2020.04.014_bib47
  article-title: Control of effector CD8+ T cell function by the transcription factor Eomesodermin
  publication-title: Science
  doi: 10.1126/science.1090148
– volume: 97
  start-page: 217
  year: 2015
  ident: 10.1016/j.immuni.2020.04.014_bib6
  article-title: Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1HI0314-154R
– volume: 5
  start-page: 992
  year: 2017
  ident: 10.1016/j.immuni.2020.04.014_bib42
  article-title: Stereotactic Radiotherapy Increases Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-17-0040
– volume: 576
  start-page: 465
  year: 2019
  ident: 10.1016/j.immuni.2020.04.014_bib24
  article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells
  publication-title: Nature
  doi: 10.1038/s41586-019-1836-5
– reference: 32433943 - Immunity. 2020 May 19;52(5):724-726
SSID ssj0014590
Score 2.7161508
Snippet CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex)...
CD8 T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8 T cells (Tex) remains...
SummaryCD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells...
CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex)...
CD8 + T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8 + T cells (Tex)...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 825
SubjectTerms Animals
B7-H1 Antigen - genetics
B7-H1 Antigen - immunology
Biological effects
Biology
Cancer
Cancer immunotherapy
CD8
CD8 antigen
CD8-Positive T-Lymphocytes - cytology
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell cycle
Cells, Cultured
chronic infection
Developmental biology
Epigenesis, Genetic - genetics
Epigenesis, Genetic - immunology
Epigenetics
Exhaustion
Hepatocyte nuclear factor 1
Hepatocyte Nuclear Factor 1-alpha - genetics
Hepatocyte Nuclear Factor 1-alpha - immunology
Homeodomain Proteins - genetics
Homeodomain Proteins - immunology
Humans
Immunotherapy
Immunotherapy - methods
Infections
Lymphocytes
Lymphocytes T
Mice, Inbred C57BL
Neoplasms - genetics
Neoplasms - immunology
Neoplasms - therapy
PD-1 blockade
PD-L1 protein
Population
T cell exhaustion lineage
T cell receptors
T-bet
T-Box Domain Proteins - genetics
T-Box Domain Proteins - immunology
T-Lymphocyte Subsets - immunology
T-Lymphocyte Subsets - metabolism
TCF1
Tox
Transcription
Transcription, Genetic - genetics
Transcription, Genetic - immunology
Tumors
Viral infections
Title Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms
URI https://dx.doi.org/10.1016/j.immuni.2020.04.014
https://www.ncbi.nlm.nih.gov/pubmed/32396847
https://www.proquest.com/docview/2425676416
https://www.proquest.com/docview/2402425745
https://pubmed.ncbi.nlm.nih.gov/PMC8360766
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTSBeEIxbYUxG4g1FTW3HsR-3rNXEKA-wib5ZduyoQSWtSIfgX_CTd05uWkFoEm9J7BM5Ofa5yN93TMhbjXG9guxEKQEJioUrC54wUonlhS2cjiWSk-cf5fmVeL9IFnsk67kwCKvsbH9r0xtr3T0Zd39zvCnL8WeEEkISzhlG9SlDO8yFakh8i9NhJ0EkOh5wh9C7p881GK-y4WBAlsjipuDpRPzLPf0dfv6JorzllmaPyMMunqQn7ZAfk71QHZJ77QmTvw7J_Xm3d_6E_L6FDwKJAQW3LDc1XRd0Bq-i059LLAQUPM3O1Dt6SbOwWlG0LmFbg8wPiCtr2hyWtEKCFG18XW954LW28nS6wRKfyI6kH5BJjBgrmrWYeDoPyDUu62_1U3I1m15m51F3HkOUCz3ZRtaqJOhCOJ6KnDMdO53ngSmXssLnXnoItpTyrNCsKGLLhWMhnfiAyz4BSf6M7FfrKrwgVAQVc-F97mQQTglVJLF0wXmprQ4yHxHeq8HkXbFyPDNjZXpU2lfTKs-g8kwsDChvRKJBatMW67ijf9pr2OxMOgP-5A7Jo35CmG7R1wazN5lKCHFH5M3QDMsV92BsFdbX2KdN8kQyIs_b-TMMlTOuJUQLMKydmTV0wFLguy1VuWxKgiMVJ5Xy5X9_0CvyAO8QFzHRR2R_-_06vIZwa-uOycHJxacvF8fNuroBoDkthA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRTwuCJZXYQEjwQlVTW3HsQ8coNuqZdu90JV6M07sqEElrUgX2H_Bf-EPMpOXtiC0EtLeqtpjOZnJzDfyN2NCXmnE9QqyE6UEJCgWflmIhF0VWp7aNNaBxOLk2Ykcn4oPi3CxR341tTBIq6x9f-XTS29d_9Or32Zvk2W9j0glhCScM0T1EWM1s_LYn3-HvK14OzkCJb9mbDScD8bd-mqBbiJ0f9u1VoVepyLmkUg400Gsk8QzFUcsdYmTDnCDUo6lmqVpYLmImY_6zqMFhyDJYd1r5Dqgjwi9wWTxvj26EKEOWqIjbK-p1ytJZVlZ9AFpKQvKDqt98a94-Dfe_ZO2eSEOju6SOzWApe-qd3SP7Pn8gNyorrQ8PyA3Z_Vh_X3y8wIhCSRa2t0y2xR0ndIRLEWHP5bYecg7OjhSb-icDvxqRdGd-W0BMt8AyBa0vJ1phRVZtAyujauDZW3u6HCDPUWxHJNOsXQZSV10UJHw6cxjcXNWfCkekNMr0dJDsp-vc_-YUOFVwIVzSSy9iJVQaRjI2MdOaqu9TDqEN2owSd0dHS_pWJmGBvfZVMozqDwTCAPK65BuK7WpuoNcMj9qNGx2rNxAALtE8rAxCFN7mcJguigjCZi6Q162w-Af8NDH5n59hnOqrFKEHfKosp92q5xxLQGewLZ2LKudgL3Hd0fybFn2IMfan0jKJ__9QC_IrfF8NjXTycnxU3IbR5CU0deHZH_79cw_A6y3jZ-X3xYln676Y_4Nznppvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+Relationships+of+Four+Exhausted+CD8+%2B+T+Cell+Subsets+Reveals+Underlying+Transcriptional+and+Epigenetic+Landscape+Control+Mechanisms&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Beltra%2C+Jean-Christophe&rft.au=Manne%2C+Sasikanth&rft.au=Abdel-Hakeem%2C+Mohamed+S&rft.au=Kurachi%2C+Makoto&rft.date=2020-05-19&rft.eissn=1097-4180&rft.volume=52&rft.issue=5&rft.spage=825&rft_id=info:doi/10.1016%2Fj.immuni.2020.04.014&rft_id=info%3Apmid%2F32396847&rft.externalDocID=32396847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon