Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical
A new catalytic pathway is revealed for the rapid conversion of cellulose to sugars and further to 5-hydroxymethylfurfural (HMF) in a single-step process under mild temperatures (80–120 °C). Paired CuCl 2/CrCl 2 catalysts in 1-ethyl-3-methyl-imidazolium chloride solvent exhibited remarkably high act...
Saved in:
Published in | Applied catalysis. A, General Vol. 361; no. 1; pp. 117 - 122 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
01.06.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new catalytic pathway is revealed for the rapid conversion of cellulose to sugars and further to 5-hydroxymethylfurfural (HMF) in a single-step process under mild temperatures (80–120
°C). Paired CuCl
2/CrCl
2 catalysts in 1-ethyl-3-methyl-imidazolium chloride solvent exhibited remarkably high activity for hydrolytic cellulose depolymerization. The product selectivity can be tuned by simply varying the CuCl
2/CrCl
2 ratio.
The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl
2 and CrCl
2) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80–120
°C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4
±
4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions. |
---|---|
AbstractList | The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl[sub]2 and CrCl[sub]2) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80-120 [degree]C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4 +/- 4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions. A new catalytic pathway is revealed for the rapid conversion of cellulose to sugars and further to 5-hydroxymethylfurfural (HMF) in a single-step process under mild temperatures (80–120 °C). Paired CuCl 2/CrCl 2 catalysts in 1-ethyl-3-methyl-imidazolium chloride solvent exhibited remarkably high activity for hydrolytic cellulose depolymerization. The product selectivity can be tuned by simply varying the CuCl 2/CrCl 2 ratio. The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl 2 and CrCl 2) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80–120 °C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4 ± 4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions. The ability to use cellulosic biomass as feedstock for the production of fuels and chemicals currently derived from petroleum depends critically on the development of effective low-temperature processes. While HMF, as a versatile platform chemical suitable for use in polymer synthesis or production of liquid biofuels, can currently be made from fructose and glucose, synthesis of HMF directly from raw natural cellulose represents the last major barrier toward the development of a sustainable HMF platform. Here we report an unprecedented single-step pathway that depolymerizes cellulose rapidly under mild conditions and converts the resulting glucose to hydroxymethylfurfural (HMF). A pair of metal chlorides (CuCl2 and CrCl2) dissolved in 1-ethyl-3-methylimidazolium chloride at temperatures of 80-120°C catalyzes cellulose depolymerization and the subsequent glucose conversion to HMF with 95% selectivity among recoverable products (at 56% HMF yield). Cellulose depolymerization, which can also be catalyzed by other metalchloride pairs such as CuCl2 paired with PdCl2, CrCl3, or FeCl3, occurs at a rate that is more than one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single-metal chlorides at the same total loading showed low activity under similar conditions. Mechanistic studies suggest that the C2 hydrogen of the imidazolium ring is activated by the paired metal-chloride catalysts. |
Author | Zhou, Xiao-dong Brown, Heather M. Huang, Xiwen Su, Yu Amonette, James E. Zhang, Z. Conrad |
Author_xml | – sequence: 1 givenname: Yu surname: Su fullname: Su, Yu – sequence: 2 givenname: Heather M. surname: Brown fullname: Brown, Heather M. – sequence: 3 givenname: Xiwen surname: Huang fullname: Huang, Xiwen – sequence: 4 givenname: Xiao-dong surname: Zhou fullname: Zhou, Xiao-dong – sequence: 5 givenname: James E. surname: Amonette fullname: Amonette, James E. – sequence: 6 givenname: Z. Conrad surname: Zhang fullname: Zhang, Z. Conrad email: conrad.zhang@kior.com, zczhang@yahoo.com |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21563261$$DView record in Pascal Francis https://www.osti.gov/biblio/973991$$D View this record in Osti.gov |
BookMark | eNqFkUFv1DAUhC1UJLaFf8AhHIAikWAnthNzQKoqSpGKONADN8vrPLNeOXZqeyv23-Mo5cKhSJZ8-Wb0ZuYUnfjgAaGXBDcEE_5h36hZq6yaFmPRYNpg3D5BGzL0Xd0NPTtBGyxaXg8c_3yGTlPa40JQwTZI_7D-l4M6ZZgrHfw9xGSDr4KpNDh3cCFBlUPF6t1xjOH3cYK8OzpziOUpV51ff7t6975S1SJU2TqoZqeyCXGq9A4mq5V7jp4a5RK8ePjP0O3V59vL6_rm-5evlxc3taaC5FoNmjFlFFBiGDM9dJRyOm41H3q8JaYVI2NsFD0TuECm5wNXndEt6THbku4MvVptQ8pWJm0z6F2J5EFnKfpOiIV5uzJzDHcHSFlONi1BlYdwSFLgjlPasoV88yhZjmNswLiArx9AlUpYE5XXNsk52knFo2wJ413LF8OPK6djSCmCkeXC0ljwOSrrJMFyGVPu5TqmXMaUmMoyVRHTf8R__f8j-7TKoNR-byEutYDXMNq4tDIG-7jBH6E9vPE |
CitedBy_id | crossref_primary_10_1016_j_catcom_2010_09_003 crossref_primary_10_1002_jctb_5287 crossref_primary_10_1016_j_biortech_2011_10_062 crossref_primary_10_1039_c3ra46561f crossref_primary_10_1002_cssc_201500395 crossref_primary_10_1002_ceat_201200322 crossref_primary_10_1007_s00449_014_1259_5 crossref_primary_10_1039_C0EE00246A crossref_primary_10_1039_D1CY02225C crossref_primary_10_3775_jie_96_279 crossref_primary_10_1007_s11426_014_5283_8 crossref_primary_10_1002_app_42228 crossref_primary_10_1055_a_2129_9076 crossref_primary_10_1016_j_apcatb_2013_01_052 crossref_primary_10_1016_j_rser_2018_06_016 crossref_primary_10_5990_jwpa_43_308 crossref_primary_10_1021_jp9120518 crossref_primary_10_1039_C5GC02440D crossref_primary_10_1002_cctc_201402299 crossref_primary_10_1021_acs_jpca_7b06650 crossref_primary_10_1039_C5RA00382B crossref_primary_10_1039_C4GC01062K crossref_primary_10_1039_C4RA03656E crossref_primary_10_1016_j_carbpol_2012_09_021 crossref_primary_10_1515_hf_2010_075 crossref_primary_10_1021_acssuschemeng_5b00473 crossref_primary_10_1039_c002553d crossref_primary_10_1039_C7GC00362E crossref_primary_10_3390_ijms150712196 crossref_primary_10_1002_cssc_201402950 crossref_primary_10_1039_b925869h crossref_primary_10_1016_j_proci_2012_06_113 crossref_primary_10_1039_c2cy00500j crossref_primary_10_1016_j_catcom_2012_10_002 crossref_primary_10_1007_s10570_018_1872_6 crossref_primary_10_3390_catal6040049 crossref_primary_10_1016_j_cattod_2012_07_008 crossref_primary_10_1021_acs_iecr_5b01646 crossref_primary_10_1016_j_apcata_2013_04_015 crossref_primary_10_1007_s10086_016_1554_7 crossref_primary_10_1039_C5GC02071A crossref_primary_10_1016_j_molliq_2019_110943 crossref_primary_10_1021_cs200226h crossref_primary_10_1039_c3gc40667a crossref_primary_10_1002_cssc_201000192 crossref_primary_10_1016_j_envpol_2020_115674 crossref_primary_10_1021_cr100171a crossref_primary_10_1002_cssc_201100025 crossref_primary_10_1002_jctb_4096 crossref_primary_10_1016_j_biombioe_2010_12_006 crossref_primary_10_1016_j_cej_2017_06_105 crossref_primary_10_1039_C8RA05308A crossref_primary_10_1007_s10570_016_1118_4 crossref_primary_10_1021_acs_chemrev_8b00134 crossref_primary_10_1039_c2gc36364j crossref_primary_10_1002_cssc_201501224 crossref_primary_10_1002_bbb_2170 crossref_primary_10_1016_j_cattod_2020_10_029 crossref_primary_10_3390_ma10010042 crossref_primary_10_1002_cssc_201000184 crossref_primary_10_1016_j_biombioe_2013_02_008 crossref_primary_10_1016_j_rser_2015_01_050 crossref_primary_10_1007_s11172_015_1253_3 crossref_primary_10_1039_b914087e crossref_primary_10_1016_j_rser_2021_110706 crossref_primary_10_1016_S1872_2067_14_60031_0 crossref_primary_10_1039_c3ra43934h crossref_primary_10_1039_c2jm35391a crossref_primary_10_1039_D4CP02914C crossref_primary_10_1039_C6RA17532E crossref_primary_10_1007_s11814_018_0035_7 crossref_primary_10_1016_j_apcata_2010_06_008 crossref_primary_10_1016_j_carres_2010_10_022 crossref_primary_10_1016_j_biombioe_2012_03_016 crossref_primary_10_1002_bbb_339 crossref_primary_10_1016_j_jclepro_2017_05_209 crossref_primary_10_1039_c3cp50707f crossref_primary_10_1039_B918563A crossref_primary_10_3390_en18020306 crossref_primary_10_1016_j_apcata_2010_09_021 crossref_primary_10_1016_j_enconman_2022_115647 crossref_primary_10_1016_j_cattod_2016_11_030 crossref_primary_10_1002_aic_14289 crossref_primary_10_1016_S1872_2067_11_60501_9 crossref_primary_10_1016_j_combustflame_2013_05_026 crossref_primary_10_1021_cs300562e crossref_primary_10_1016_j_biortech_2010_12_073 crossref_primary_10_1016_j_ceja_2022_100307 crossref_primary_10_1016_j_jiec_2017_12_008 crossref_primary_10_1002_chem_200903028 crossref_primary_10_1007_s13399_021_01351_x crossref_primary_10_1021_cs300845f crossref_primary_10_1016_j_fuel_2016_08_004 crossref_primary_10_1039_c3gc42018c crossref_primary_10_1021_acssuschemeng_6b01652 crossref_primary_10_1039_b923961h crossref_primary_10_1039_c1gc15334j crossref_primary_10_1016_j_ultsonch_2017_01_028 crossref_primary_10_1016_j_biombioe_2012_11_020 crossref_primary_10_2174_0113852728325684240911063353 crossref_primary_10_1016_j_biortech_2022_127277 crossref_primary_10_1039_c3gc41141a crossref_primary_10_1021_acs_chemrev_6b00457 crossref_primary_10_1039_c3cy20808g crossref_primary_10_1039_D0RA05641C crossref_primary_10_1002_cctc_201100105 crossref_primary_10_1002_cssc_200900285 crossref_primary_10_1039_D4SU00700J crossref_primary_10_1021_acscatal_1c01989 crossref_primary_10_1039_C6CY00820H crossref_primary_10_1016_j_biombioe_2015_01_014 crossref_primary_10_1002_slct_201803130 crossref_primary_10_1080_17597269_2025_2454067 crossref_primary_10_1039_c3gc00060e crossref_primary_10_1360_TB_2024_0749 crossref_primary_10_1021_ie202174f crossref_primary_10_3389_fenrg_2021_679709 crossref_primary_10_1002_apj_1910 crossref_primary_10_1016_j_biortech_2011_11_069 crossref_primary_10_1039_c2gc16671b crossref_primary_10_1039_D2CY01619B crossref_primary_10_1016_j_rineng_2022_100631 crossref_primary_10_1021_acs_jpca_5b08277 crossref_primary_10_1016_j_carbpol_2018_08_043 crossref_primary_10_1039_c3ee41857j crossref_primary_10_1002_macp_201700013 crossref_primary_10_1002_slct_201802029 crossref_primary_10_1021_acssuschemeng_9b03534 crossref_primary_10_1246_bcsj_20140096 crossref_primary_10_1016_j_carres_2019_06_010 crossref_primary_10_3390_app9163369 crossref_primary_10_1002_wene_67 crossref_primary_10_1016_j_jcat_2011_12_017 crossref_primary_10_1039_c0cc04444j crossref_primary_10_1039_C2RA21805D crossref_primary_10_1016_j_apcatb_2018_11_019 crossref_primary_10_1021_jp5035689 crossref_primary_10_1016_j_cej_2012_11_019 crossref_primary_10_1039_C7CP07775K crossref_primary_10_1016_j_indcrop_2019_04_005 crossref_primary_10_1007_s10563_012_9142_3 crossref_primary_10_1002_anie_201200351 crossref_primary_10_1016_j_fuel_2023_128371 crossref_primary_10_1039_b914601f crossref_primary_10_1007_s10562_020_03441_3 crossref_primary_10_1016_j_cattod_2015_06_031 crossref_primary_10_1016_S1872_5813_16_30038_X crossref_primary_10_1007_s10570_017_1464_x crossref_primary_10_1016_j_jclepro_2013_01_035 crossref_primary_10_1039_C5RA02911B crossref_primary_10_1088_1755_1315_963_1_012004 crossref_primary_10_1002_ente_201700153 crossref_primary_10_1021_ef1000198 crossref_primary_10_1007_s11814_010_0167_x crossref_primary_10_1002_cssc_200900260 crossref_primary_10_1021_acssuschemeng_9b06018 crossref_primary_10_1016_j_biteb_2020_100478 crossref_primary_10_1016_j_biteb_2020_100476 crossref_primary_10_3389_fchem_2020_580146 crossref_primary_10_1002_bbb_267 crossref_primary_10_1021_cs200411d crossref_primary_10_1016_j_biortech_2013_10_095 crossref_primary_10_1002_cssc_201100631 crossref_primary_10_1016_j_biortech_2018_01_010 crossref_primary_10_1007_s10570_021_03808_8 crossref_primary_10_1021_acscatal_1c03045 crossref_primary_10_1021_ie101671r crossref_primary_10_1021_acssuschemeng_7b00875 crossref_primary_10_3390_polym12102237 crossref_primary_10_1016_j_apcata_2014_05_003 crossref_primary_10_1039_c3cp54915a crossref_primary_10_1002_cite_201000194 crossref_primary_10_1016_j_cattod_2013_07_008 crossref_primary_10_1016_j_indcrop_2012_01_013 crossref_primary_10_1002_cssc_201702016 crossref_primary_10_1016_j_carres_2010_11_009 crossref_primary_10_1016_j_biombioe_2013_12_019 crossref_primary_10_1590_0104_1428_08917 crossref_primary_10_1016_j_molcata_2012_01_010 crossref_primary_10_1016_j_algal_2015_12_013 crossref_primary_10_1039_c0ee00667j crossref_primary_10_1016_j_cattod_2023_01_019 crossref_primary_10_1021_jp106762b crossref_primary_10_1016_j_apcata_2012_06_002 crossref_primary_10_1080_15435075_2010_548888 crossref_primary_10_3775_jie_95_902 crossref_primary_10_1002_ejoc_201001539 crossref_primary_10_1039_C5CY02248G crossref_primary_10_1016_j_carbpol_2016_11_066 crossref_primary_10_1016_j_comptc_2010_11_012 crossref_primary_10_1007_s11426_016_9035_1 crossref_primary_10_1016_j_jaap_2012_07_012 crossref_primary_10_1039_D3RA01533E crossref_primary_10_1016_j_jiec_2010_12_017 crossref_primary_10_1016_j_jaap_2013_05_006 crossref_primary_10_1021_acssuschemeng_6b00174 crossref_primary_10_1039_C6RA20547J crossref_primary_10_1002_cssc_201300416 crossref_primary_10_1016_j_enzmictec_2018_07_002 crossref_primary_10_1039_c2gc35811e crossref_primary_10_1021_acs_macromol_4c01000 crossref_primary_10_1039_C9DT04604F crossref_primary_10_1016_j_jaap_2012_07_010 crossref_primary_10_1016_j_molliq_2023_123354 crossref_primary_10_1039_c1gc15152e crossref_primary_10_1007_s10563_011_9114_z crossref_primary_10_1016_j_indcrop_2020_113055 crossref_primary_10_1002_cben_201300004 crossref_primary_10_1021_acscatal_8b01197 crossref_primary_10_1021_acssuschemeng_9b05108 crossref_primary_10_1039_C3GC42436G crossref_primary_10_1039_C5RA16616K crossref_primary_10_1002_cctc_201000018 crossref_primary_10_1002_clen_201000074 crossref_primary_10_1002_star_201000012 crossref_primary_10_1002_ange_201200351 crossref_primary_10_1021_acs_iecr_8b00443 crossref_primary_10_1016_j_apcata_2011_10_014 crossref_primary_10_1021_cr300182k crossref_primary_10_2320_matertrans_MA201539 crossref_primary_10_1016_j_combustflame_2013_06_007 crossref_primary_10_1021_acs_iecr_7b03635 crossref_primary_10_1002_celc_202300151 crossref_primary_10_1021_acs_chemrev_7b00571 crossref_primary_10_1021_ie3019609 crossref_primary_10_3390_molecules24030594 crossref_primary_10_1016_j_indcrop_2014_08_006 crossref_primary_10_1016_j_jiec_2013_09_016 crossref_primary_10_1007_s13399_020_00682_5 crossref_primary_10_1039_C4GC00664J crossref_primary_10_1016_j_fuproc_2014_08_011 crossref_primary_10_1016_j_biortech_2010_11_098 crossref_primary_10_1016_j_cattod_2014_02_038 crossref_primary_10_1016_j_apcata_2011_06_018 crossref_primary_10_1002_tcr_202200269 crossref_primary_10_1615_CatalGreenChemEng_2023049758 crossref_primary_10_5059_yukigoseikyokaishi_80_541 crossref_primary_10_3390_inorganics4040032 crossref_primary_10_3724_SP_J_1088_2010_00149 crossref_primary_10_1039_c3ra23387a crossref_primary_10_1007_s12010_009_8795_5 crossref_primary_10_1007_s13399_020_00616_1 crossref_primary_10_1021_ie300140g crossref_primary_10_1039_c3ra45813j crossref_primary_10_1007_s10311_011_0322_6 crossref_primary_10_1016_j_cep_2011_08_007 crossref_primary_10_1016_j_carbpol_2016_01_053 crossref_primary_10_1039_C3CS60310E crossref_primary_10_1016_j_cattod_2011_03_020 crossref_primary_10_1016_j_jtice_2010_10_004 crossref_primary_10_1007_s11244_010_9560_2 crossref_primary_10_1016_j_apcata_2010_05_040 crossref_primary_10_1016_j_apcatb_2020_119314 crossref_primary_10_1007_s12010_022_03998_2 crossref_primary_10_1016_j_cattod_2018_11_071 crossref_primary_10_1016_j_cej_2024_149971 crossref_primary_10_3390_app11030989 crossref_primary_10_1016_j_crmicr_2024_100267 crossref_primary_10_1002_chem_201201522 crossref_primary_10_1155_2018_4723573 crossref_primary_10_1515_revce_2017_0071 crossref_primary_10_1039_c2ra21811a crossref_primary_10_1002_ente_201300068 crossref_primary_10_1039_B914206A crossref_primary_10_1016_j_apcata_2012_05_035 crossref_primary_10_1016_j_fuproc_2018_09_027 crossref_primary_10_1016_j_ces_2015_12_002 crossref_primary_10_1007_s11244_010_9570_0 crossref_primary_10_3390_catal11091113 crossref_primary_10_1016_j_biortech_2020_123864 crossref_primary_10_1021_ie102505y crossref_primary_10_1016_j_fuel_2022_124678 crossref_primary_10_1016_S1872_5813_13_60041_9 crossref_primary_10_1002_bbb_1932 crossref_primary_10_1016_j_biombioe_2012_01_011 crossref_primary_10_2115_fiberst_2017_0037 crossref_primary_10_1039_D3SU00038A crossref_primary_10_1063_1_4997555 crossref_primary_10_1007_s10562_019_02922_4 crossref_primary_10_1039_C5RA15400F crossref_primary_10_1016_j_cattod_2015_09_056 crossref_primary_10_1002_cssc_200900213 crossref_primary_10_1007_s12649_019_00898_1 crossref_primary_10_1021_cs5012684 crossref_primary_10_1002_asia_201901001 crossref_primary_10_1002_cite_201100237 crossref_primary_10_1007_s13399_014_0116_8 crossref_primary_10_1038_s41598_021_02259_2 crossref_primary_10_1016_j_indcrop_2012_03_036 crossref_primary_10_1080_00986445_2017_1371015 crossref_primary_10_1002_cssc_202102050 crossref_primary_10_1007_s11814_014_0138_8 crossref_primary_10_1039_C6GC02072K crossref_primary_10_3390_catal5042287 crossref_primary_10_1039_C8CY01971A crossref_primary_10_1039_c1cs15124j crossref_primary_10_1007_s11244_010_9579_4 crossref_primary_10_1039_c004343e crossref_primary_10_1039_C3GC41324A crossref_primary_10_7454_jessd_v6i2_1158 crossref_primary_10_1002_bit_23352 crossref_primary_10_1039_D0GC03991H crossref_primary_10_1039_C3GC41934G crossref_primary_10_1016_j_fuel_2013_03_031 crossref_primary_10_3775_jie_96_417 crossref_primary_10_1002_cssc_201500855 crossref_primary_10_1252_jcej_15we060 crossref_primary_10_1016_j_molcata_2016_05_012 crossref_primary_10_1002_cssc_201200795 crossref_primary_10_1039_c0gc00401d crossref_primary_10_3389_fchem_2020_00070 crossref_primary_10_4028_www_scientific_net_AMR_287_290_1585 crossref_primary_10_1016_j_biombioe_2023_107004 crossref_primary_10_1016_j_apcata_2025_120184 crossref_primary_10_1007_s11244_012_9797_z crossref_primary_10_1016_j_biombioe_2014_11_007 crossref_primary_10_1080_13102818_2014_980049 crossref_primary_10_1039_C7GC01688C crossref_primary_10_1002_slct_201700389 crossref_primary_10_1016_j_cej_2016_09_036 crossref_primary_10_1016_j_rser_2014_08_085 crossref_primary_10_1002_cctc_201000302 crossref_primary_10_3390_en12020233 crossref_primary_10_1016_j_pecs_2016_04_004 crossref_primary_10_1016_S1351_4180_13_70261_7 crossref_primary_10_1016_j_cej_2013_11_060 crossref_primary_10_1039_C6RA21289A crossref_primary_10_1039_C6RA03382B crossref_primary_10_1016_j_carbpol_2014_09_091 crossref_primary_10_1016_S1872_5813_13_60013_4 crossref_primary_10_1039_C6CY00384B crossref_primary_10_1039_C2SC21403B crossref_primary_10_1039_D0GC03557B crossref_primary_10_1007_s10562_013_0992_8 crossref_primary_10_1016_j_biortech_2013_01_081 crossref_primary_10_1007_s11426_014_5304_7 crossref_primary_10_1016_j_gee_2023_11_005 crossref_primary_10_1039_C3CY00762F crossref_primary_10_1002_cite_202200091 crossref_primary_10_1016_j_cej_2014_05_121 |
Cites_doi | 10.1021/ja808537j 10.1126/science.1111166 10.1021/bm049235j 10.1002/jctb.1195 10.1126/science.1141199 10.1021/ie50421a009 10.1021/jp070253f 10.1038/nature05923 10.1016/j.biortech.2003.11.003 10.1039/b600586c 10.1016/j.biortech.2004.06.025 10.1002/anie.200802879 10.1021/bk-2003-0856 10.1016/S0360-0564(05)49003-3 |
ContentType | Journal Article |
Copyright | 2009 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 – notice: 2009 INIST-CNRS |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | AAYXX CITATION IQODW 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1016/j.apcata.2009.04.002 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3875 |
EndPage | 122 |
ExternalDocumentID | 973991 21563261 10_1016_j_apcata_2009_04_002 S0926860X09002579 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCE SDF SDG SDP SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU BNPGV CITATION SSH IQODW 7SR 7U5 8BQ 8FD JG9 L7M AALMO ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c491t-a8c55afae41f55f7e34464dbc6870b1f29d555d97590ae4f7686a3fc21705b13 |
IEDL.DBID | .~1 |
ISSN | 0926-860X |
IngestDate | Fri May 19 00:38:58 EDT 2023 Fri Jul 11 10:18:36 EDT 2025 Fri Jul 11 11:58:55 EDT 2025 Wed Apr 02 07:25:36 EDT 2025 Tue Jul 01 00:38:54 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Fri Feb 23 02:12:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | HMF 1-Alkyl-3-methylimidazolium chloride CrCl 2 5-Hydroxymethylfurfural Cellobiose CuCl 2 1-Ethyl-3-methyl-imidazolium chloride Glucose Maltose Cellulose conversion Paired metal chlorides Ionic liquid Separation Methyl chloride Cellulose Purity Biofuel Biomass Depolymerization Alkyl Chlorides Low temperature Catalytic reaction Transition element compounds Polymer Conversion Fructose Hydrolysis Acids Fuel CrCl CuCl Catalyst |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-a8c55afae41f55f7e34464dbc6870b1f29d555d97590ae4f7686a3fc21705b13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 PNNL-SA-59545 USDOE AC05-76RL01830 |
PQID | 34455800 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_973991 proquest_miscellaneous_903644251 proquest_miscellaneous_34455800 pascalfrancis_primary_21563261 crossref_citationtrail_10_1016_j_apcata_2009_04_002 crossref_primary_10_1016_j_apcata_2009_04_002 elsevier_sciencedirect_doi_10_1016_j_apcata_2009_04_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090601 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 20090601 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: United States |
PublicationTitle | Applied catalysis. A, General |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zhang, Lynd (bib11) 2005; 6 Rogers, Seddon (bib14) 2003 Zhang (bib15) 2006; 49 Zhao, Holladay, Brown, Zhang (bib4) 2007; 316 Remsing, Swatloski, Rogers, Moyna (bib12) 2006; 12 Sanchez, Pilcher, Roslander, Modig, Galbe (bib8) 2004; 93 Rinaldi, Palkovits, Schuth (bib10) 2008; 47 T.A. Werpy, G. Petersen, Top value added chemicals from biomass 2004 (U.S. Department of Energy (DOE), Golden, CO; DOE/GO-102004-1992). Zhao, Holladay, Kwak, Zhang (bib13) 2007; 111 Gan, Allen, Taylor (bib5) 2005; 80 Binder, Raines (bib9) 2009; 131 Huber, Chheda, Barrett, Dumesic (bib2) 2005; 308 Roman-Leshkov, Barrett, Liu, Dumesic (bib3) 2007; 447 Saeman (bib6) 1945; 37 Mosier, Wyman, Dale, Elander, Lee (bib7) 2005; 96 Roman-Leshkov (10.1016/j.apcata.2009.04.002_bib3) 2007; 447 Binder (10.1016/j.apcata.2009.04.002_bib9) 2009; 131 Zhang (10.1016/j.apcata.2009.04.002_bib11) 2005; 6 Saeman (10.1016/j.apcata.2009.04.002_bib6) 1945; 37 Remsing (10.1016/j.apcata.2009.04.002_bib12) 2006; 12 Sanchez (10.1016/j.apcata.2009.04.002_bib8) 2004; 93 Zhao (10.1016/j.apcata.2009.04.002_bib13) 2007; 111 Zhang (10.1016/j.apcata.2009.04.002_bib15) 2006; 49 Huber (10.1016/j.apcata.2009.04.002_bib2) 2005; 308 Gan (10.1016/j.apcata.2009.04.002_bib5) 2005; 80 10.1016/j.apcata.2009.04.002_bib1 Mosier (10.1016/j.apcata.2009.04.002_bib7) 2005; 96 Rogers (10.1016/j.apcata.2009.04.002_bib14) 2003 Rinaldi (10.1016/j.apcata.2009.04.002_bib10) 2008; 47 Zhao (10.1016/j.apcata.2009.04.002_bib4) 2007; 316 |
References_xml | – volume: 308 start-page: 1446 year: 2005 end-page: 1450 ident: bib2 publication-title: Science – volume: 6 start-page: 1510 year: 2005 end-page: 1515 ident: bib11 publication-title: Biomacromolecules – volume: 93 start-page: 249 year: 2004 end-page: 256 ident: bib8 publication-title: Bioresource Technology – volume: 447 start-page: 982 year: 2007 end-page: 985 ident: bib3 publication-title: Nature – volume: 111 start-page: 5295 year: 2007 end-page: 5300 ident: bib13 publication-title: Journal of Physical Chemistry B – reference: T.A. Werpy, G. Petersen, Top value added chemicals from biomass 2004 (U.S. Department of Energy (DOE), Golden, CO; DOE/GO-102004-1992). – volume: 80 start-page: 688 year: 2005 end-page: 698 ident: bib5 publication-title: Journal of Chemical Technology and Biotechnology – volume: 131 start-page: 1979 year: 2009 end-page: 1985 ident: bib9 publication-title: Journal of the American Chemical Society – volume: 316 start-page: 1597 year: 2007 end-page: 1600 ident: bib4 publication-title: Science – volume: 37 start-page: 43 year: 1945 end-page: 52 ident: bib6 publication-title: Industrial and Engineering Chemistry – volume: 12 start-page: 1271 year: 2006 end-page: 1273 ident: bib12 publication-title: Chemical Communications – volume: 96 start-page: 673 year: 2005 end-page: 686 ident: bib7 publication-title: Bioresource Technology – volume: 47 start-page: 8047 year: 2008 end-page: 8050 ident: bib10 publication-title: Angewandte Chemie International Edition – year: 2003 ident: bib14 publication-title: ACS Symposium Series 858 American Chemical Society – volume: 49 start-page: 153 year: 2006 end-page: 237 ident: bib15 publication-title: Advances in Catalysis – volume: 131 start-page: 1979 issue: 5 year: 2009 ident: 10.1016/j.apcata.2009.04.002_bib9 publication-title: Journal of the American Chemical Society doi: 10.1021/ja808537j – volume: 308 start-page: 1446 year: 2005 ident: 10.1016/j.apcata.2009.04.002_bib2 publication-title: Science doi: 10.1126/science.1111166 – volume: 6 start-page: 1510 year: 2005 ident: 10.1016/j.apcata.2009.04.002_bib11 publication-title: Biomacromolecules doi: 10.1021/bm049235j – ident: 10.1016/j.apcata.2009.04.002_bib1 – volume: 80 start-page: 688 year: 2005 ident: 10.1016/j.apcata.2009.04.002_bib5 publication-title: Journal of Chemical Technology and Biotechnology doi: 10.1002/jctb.1195 – volume: 316 start-page: 1597 year: 2007 ident: 10.1016/j.apcata.2009.04.002_bib4 publication-title: Science doi: 10.1126/science.1141199 – volume: 37 start-page: 43 year: 1945 ident: 10.1016/j.apcata.2009.04.002_bib6 publication-title: Industrial and Engineering Chemistry doi: 10.1021/ie50421a009 – volume: 111 start-page: 5295 year: 2007 ident: 10.1016/j.apcata.2009.04.002_bib13 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp070253f – volume: 447 start-page: 982 year: 2007 ident: 10.1016/j.apcata.2009.04.002_bib3 publication-title: Nature doi: 10.1038/nature05923 – volume: 93 start-page: 249 year: 2004 ident: 10.1016/j.apcata.2009.04.002_bib8 publication-title: Bioresource Technology doi: 10.1016/j.biortech.2003.11.003 – volume: 12 start-page: 1271 year: 2006 ident: 10.1016/j.apcata.2009.04.002_bib12 publication-title: Chemical Communications doi: 10.1039/b600586c – volume: 96 start-page: 673 year: 2005 ident: 10.1016/j.apcata.2009.04.002_bib7 publication-title: Bioresource Technology doi: 10.1016/j.biortech.2004.06.025 – volume: 47 start-page: 8047 year: 2008 ident: 10.1016/j.apcata.2009.04.002_bib10 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200802879 – year: 2003 ident: 10.1016/j.apcata.2009.04.002_bib14 doi: 10.1021/bk-2003-0856 – volume: 49 start-page: 153 year: 2006 ident: 10.1016/j.apcata.2009.04.002_bib15 publication-title: Advances in Catalysis doi: 10.1016/S0360-0564(05)49003-3 |
SSID | ssj0002495 |
Score | 2.4762955 |
Snippet | A new catalytic pathway is revealed for the rapid conversion of cellulose to sugars and further to 5-hydroxymethylfurfural (HMF) in a single-step process under... The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of... The ability to use cellulosic biomass as feedstock for the production of fuels and chemicals currently derived from petroleum depends critically on the... |
SourceID | osti proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117 |
SubjectTerms | 02 PETROLEUM 08 HYDROGEN 09 BIOMASS FUELS 1-Alkyl-3-methylimidazolium chloride 1-Ethyl-3-methyl-imidazolium chloride 5-Hydroxymethylfurfural BIOFUELS BIOMASS Catalysis CATALYSTS Cellobiose CELLULOSE Cellulose conversion Chemistry CHLORIDES CrCl 2 CrCl2 CuCl 2 CuCl2 DEPOLYMERIZATION Environmental Molecular Sciences Laboratory Exact sciences and technology FRUCTOSE General and physical chemistry GLUCOSE HMF HYDROGEN HYDROLYSIS Ionic liquid Maltose Paired metal chlorides PETROLEUM POLYMERS PRODUCTION SYNTHESIS Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
Title | Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical |
URI | https://dx.doi.org/10.1016/j.apcata.2009.04.002 https://www.proquest.com/docview/34455800 https://www.proquest.com/docview/903644251 https://www.osti.gov/biblio/973991 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VywE4ICggtoXFBw4gYTYfthMfqxWrBdReWqS9WY5ji1bRJupmD73w2zuTj4UKUCVOkaIZyfKzxy-T8RuAd6VWibBRyaXNNRd5ENwiTeCRtj7YkCdFd-v99Eytvouva7k-gMV4F4bKKofY38f0LloPb-bDbM6by8v5eaQTlatoHWk6uDO6xCdERqv8089fZR7UW7nT20sUJ-vx-lxX42UbSpIMqpVin1z5y_E0qXHHUeGk3eLchb7pxR_xuzuUlk_hycAm2Uk_4Gdw4DeH8HAxNnE7hMe_6Q0-B3eOj8pzRLZhXb15lyxjdWCUwN9V9daztmaS_7gpqb6F-kvfVGF3HUidg71fnS4_fGSWkSNCWnnWVLYl3svcoDzwAi6Wny8WKz50WeBO6LjlNndS2mC9iIOUIfMpfiGKsnAKt3IRh0SXUspSZ1JHaBTw-0TZNLiEhHiKOH0Jk0298a-Apciegk689IUTkUegVeximSudZDJz8RTScW6NGxTIqRFGZcZSsyvTI0LNMbWJhEFEpsD3Xk2vwHGPfTbCZu6sJIOHxD2eR4QyeZGArqNKI3TTGZI4HPzsDvb7sSBnUsiB0eDtuBgMgkyw2Y2vd1uDEyolEvMpsH9YaPobjNEzPvrvwR_Do_5HFyWIXsOkvd75N8iX2mLWbYgZPDj58m11dgvPPxU_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVKOBQOCAqIFGh9AAkkTHa9tnd94IAKUUqbXhqk3Cyv1xZFq-yqSYRy4UfxC5nZj0AFqBJST5Eiz8qaGc88288zhLwotOLCRgWTNtNMZEEwCzCBRdr6YEPG8-bV-_RMTT6LT3M53yE_-rcwSKvsYn8b05to3f0z6rQ5qi8uRueR5ipT0TzSmLhT3TErT_zmG-zblu-OP4CRX3I-_jg7mrCutQBzQscrZjMnpQ3WizhIGVKfwLZIFLlT4L95HLgupJSFTqWOYFAAUK5sEhzH6jN5nMBnb5HbAqIFdk14-_0XrQR7OTf1_bhiOLv-uV7DKbM1Hsp0VTLF9jDnL-lwUMEKR6KmXYKtQttk44980STB8X1yr0Ov9H2roAdkxy_2yO5R3zRuj9z9rb7hQ-LO4af0DDyppg2_vTmco1WgeGGwLqulp6uKSvZlUyCfBvtZb8qwvgxYDYS-mkzHr99QS1EQXKj0tC7tCnE2dV2lg0dkdhOqf0wGi2rhnxCaAFoLmnvpcyciD46lYhfLTGmeytTFQ5L0ujWuq3iOjTdK01PbvprWItiMU5tIGLDIkLCtVN1W_LhmfNqbzVzxXANJ6RrJfbQySmHBXofMJhDTKYBGmPzBFdtv5wIYTQHmhgGHvTMYMDKazS58tV4aUKiUsBEYEvqPERpvnyFax_v_PflDsjuZTU_N6fHZyVNyp71kw8OpZ2Swulz754DVVvlBszgoMTe8GH8CI2dP_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-step+conversion+of+cellulose+to+5-hydroxymethylfurfural+%28HMF%29%2C+a+versatile+platform+chemical&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Su%2C+Yu&rft.au=Brown%2C+Heather+M.&rft.au=Huang%2C+Xiwen&rft.au=Zhou%2C+Xiao-dong&rft.date=2009-06-01&rft.issn=0926-860X&rft.volume=361&rft.issue=1-2&rft.spage=117&rft.epage=122&rft_id=info:doi/10.1016%2Fj.apcata.2009.04.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcata_2009_04_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon |