Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical

A new catalytic pathway is revealed for the rapid conversion of cellulose to sugars and further to 5-hydroxymethylfurfural (HMF) in a single-step process under mild temperatures (80–120 °C). Paired CuCl 2/CrCl 2 catalysts in 1-ethyl-3-methyl-imidazolium chloride solvent exhibited remarkably high act...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. A, General Vol. 361; no. 1; pp. 117 - 122
Main Authors Su, Yu, Brown, Heather M., Huang, Xiwen, Zhou, Xiao-dong, Amonette, James E., Zhang, Z. Conrad
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.06.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new catalytic pathway is revealed for the rapid conversion of cellulose to sugars and further to 5-hydroxymethylfurfural (HMF) in a single-step process under mild temperatures (80–120 °C). Paired CuCl 2/CrCl 2 catalysts in 1-ethyl-3-methyl-imidazolium chloride solvent exhibited remarkably high activity for hydrolytic cellulose depolymerization. The product selectivity can be tuned by simply varying the CuCl 2/CrCl 2 ratio. The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl 2 and CrCl 2) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80–120 °C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4 ± 4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions.
AbstractList The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl[sub]2 and CrCl[sub]2) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80-120 [degree]C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4 +/- 4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions.
A new catalytic pathway is revealed for the rapid conversion of cellulose to sugars and further to 5-hydroxymethylfurfural (HMF) in a single-step process under mild temperatures (80–120 °C). Paired CuCl 2/CrCl 2 catalysts in 1-ethyl-3-methyl-imidazolium chloride solvent exhibited remarkably high activity for hydrolytic cellulose depolymerization. The product selectivity can be tuned by simply varying the CuCl 2/CrCl 2 ratio. The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl 2 and CrCl 2) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80–120 °C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4 ± 4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions.
The ability to use cellulosic biomass as feedstock for the production of fuels and chemicals currently derived from petroleum depends critically on the development of effective low-temperature processes. While HMF, as a versatile platform chemical suitable for use in polymer synthesis or production of liquid biofuels, can currently be made from fructose and glucose, synthesis of HMF directly from raw natural cellulose represents the last major barrier toward the development of a sustainable HMF platform. Here we report an unprecedented single-step pathway that depolymerizes cellulose rapidly under mild conditions and converts the resulting glucose to hydroxymethylfurfural (HMF). A pair of metal chlorides (CuCl2 and CrCl2) dissolved in 1-ethyl-3-methylimidazolium chloride at temperatures of 80-120°C catalyzes cellulose depolymerization and the subsequent glucose conversion to HMF with 95% selectivity among recoverable products (at 56% HMF yield). Cellulose depolymerization, which can also be catalyzed by other metalchloride pairs such as CuCl2 paired with PdCl2, CrCl3, or FeCl3, occurs at a rate that is more than one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single-metal chlorides at the same total loading showed low activity under similar conditions. Mechanistic studies suggest that the C2 hydrogen of the imidazolium ring is activated by the paired metal-chloride catalysts.
Author Zhou, Xiao-dong
Brown, Heather M.
Huang, Xiwen
Su, Yu
Amonette, James E.
Zhang, Z. Conrad
Author_xml – sequence: 1
  givenname: Yu
  surname: Su
  fullname: Su, Yu
– sequence: 2
  givenname: Heather M.
  surname: Brown
  fullname: Brown, Heather M.
– sequence: 3
  givenname: Xiwen
  surname: Huang
  fullname: Huang, Xiwen
– sequence: 4
  givenname: Xiao-dong
  surname: Zhou
  fullname: Zhou, Xiao-dong
– sequence: 5
  givenname: James E.
  surname: Amonette
  fullname: Amonette, James E.
– sequence: 6
  givenname: Z. Conrad
  surname: Zhang
  fullname: Zhang, Z. Conrad
  email: conrad.zhang@kior.com, zczhang@yahoo.com
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21563261$$DView record in Pascal Francis
https://www.osti.gov/biblio/973991$$D View this record in Osti.gov
BookMark eNqFkUFv1DAUhC1UJLaFf8AhHIAikWAnthNzQKoqSpGKONADN8vrPLNeOXZqeyv23-Mo5cKhSJZ8-Wb0ZuYUnfjgAaGXBDcEE_5h36hZq6yaFmPRYNpg3D5BGzL0Xd0NPTtBGyxaXg8c_3yGTlPa40JQwTZI_7D-l4M6ZZgrHfw9xGSDr4KpNDh3cCFBlUPF6t1xjOH3cYK8OzpziOUpV51ff7t6975S1SJU2TqoZqeyCXGq9A4mq5V7jp4a5RK8ePjP0O3V59vL6_rm-5evlxc3taaC5FoNmjFlFFBiGDM9dJRyOm41H3q8JaYVI2NsFD0TuECm5wNXndEt6THbku4MvVptQ8pWJm0z6F2J5EFnKfpOiIV5uzJzDHcHSFlONi1BlYdwSFLgjlPasoV88yhZjmNswLiArx9AlUpYE5XXNsk52knFo2wJ413LF8OPK6djSCmCkeXC0ljwOSrrJMFyGVPu5TqmXMaUmMoyVRHTf8R__f8j-7TKoNR-byEutYDXMNq4tDIG-7jBH6E9vPE
CitedBy_id crossref_primary_10_1016_j_catcom_2010_09_003
crossref_primary_10_1002_jctb_5287
crossref_primary_10_1016_j_biortech_2011_10_062
crossref_primary_10_1039_c3ra46561f
crossref_primary_10_1002_cssc_201500395
crossref_primary_10_1002_ceat_201200322
crossref_primary_10_1007_s00449_014_1259_5
crossref_primary_10_1039_C0EE00246A
crossref_primary_10_1039_D1CY02225C
crossref_primary_10_3775_jie_96_279
crossref_primary_10_1007_s11426_014_5283_8
crossref_primary_10_1002_app_42228
crossref_primary_10_1055_a_2129_9076
crossref_primary_10_1016_j_apcatb_2013_01_052
crossref_primary_10_1016_j_rser_2018_06_016
crossref_primary_10_5990_jwpa_43_308
crossref_primary_10_1021_jp9120518
crossref_primary_10_1039_C5GC02440D
crossref_primary_10_1002_cctc_201402299
crossref_primary_10_1021_acs_jpca_7b06650
crossref_primary_10_1039_C5RA00382B
crossref_primary_10_1039_C4GC01062K
crossref_primary_10_1039_C4RA03656E
crossref_primary_10_1016_j_carbpol_2012_09_021
crossref_primary_10_1515_hf_2010_075
crossref_primary_10_1021_acssuschemeng_5b00473
crossref_primary_10_1039_c002553d
crossref_primary_10_1039_C7GC00362E
crossref_primary_10_3390_ijms150712196
crossref_primary_10_1002_cssc_201402950
crossref_primary_10_1039_b925869h
crossref_primary_10_1016_j_proci_2012_06_113
crossref_primary_10_1039_c2cy00500j
crossref_primary_10_1016_j_catcom_2012_10_002
crossref_primary_10_1007_s10570_018_1872_6
crossref_primary_10_3390_catal6040049
crossref_primary_10_1016_j_cattod_2012_07_008
crossref_primary_10_1021_acs_iecr_5b01646
crossref_primary_10_1016_j_apcata_2013_04_015
crossref_primary_10_1007_s10086_016_1554_7
crossref_primary_10_1039_C5GC02071A
crossref_primary_10_1016_j_molliq_2019_110943
crossref_primary_10_1021_cs200226h
crossref_primary_10_1039_c3gc40667a
crossref_primary_10_1002_cssc_201000192
crossref_primary_10_1016_j_envpol_2020_115674
crossref_primary_10_1021_cr100171a
crossref_primary_10_1002_cssc_201100025
crossref_primary_10_1002_jctb_4096
crossref_primary_10_1016_j_biombioe_2010_12_006
crossref_primary_10_1016_j_cej_2017_06_105
crossref_primary_10_1039_C8RA05308A
crossref_primary_10_1007_s10570_016_1118_4
crossref_primary_10_1021_acs_chemrev_8b00134
crossref_primary_10_1039_c2gc36364j
crossref_primary_10_1002_cssc_201501224
crossref_primary_10_1002_bbb_2170
crossref_primary_10_1016_j_cattod_2020_10_029
crossref_primary_10_3390_ma10010042
crossref_primary_10_1002_cssc_201000184
crossref_primary_10_1016_j_biombioe_2013_02_008
crossref_primary_10_1016_j_rser_2015_01_050
crossref_primary_10_1007_s11172_015_1253_3
crossref_primary_10_1039_b914087e
crossref_primary_10_1016_j_rser_2021_110706
crossref_primary_10_1016_S1872_2067_14_60031_0
crossref_primary_10_1039_c3ra43934h
crossref_primary_10_1039_c2jm35391a
crossref_primary_10_1039_D4CP02914C
crossref_primary_10_1039_C6RA17532E
crossref_primary_10_1007_s11814_018_0035_7
crossref_primary_10_1016_j_apcata_2010_06_008
crossref_primary_10_1016_j_carres_2010_10_022
crossref_primary_10_1016_j_biombioe_2012_03_016
crossref_primary_10_1002_bbb_339
crossref_primary_10_1016_j_jclepro_2017_05_209
crossref_primary_10_1039_c3cp50707f
crossref_primary_10_1039_B918563A
crossref_primary_10_3390_en18020306
crossref_primary_10_1016_j_apcata_2010_09_021
crossref_primary_10_1016_j_enconman_2022_115647
crossref_primary_10_1016_j_cattod_2016_11_030
crossref_primary_10_1002_aic_14289
crossref_primary_10_1016_S1872_2067_11_60501_9
crossref_primary_10_1016_j_combustflame_2013_05_026
crossref_primary_10_1021_cs300562e
crossref_primary_10_1016_j_biortech_2010_12_073
crossref_primary_10_1016_j_ceja_2022_100307
crossref_primary_10_1016_j_jiec_2017_12_008
crossref_primary_10_1002_chem_200903028
crossref_primary_10_1007_s13399_021_01351_x
crossref_primary_10_1021_cs300845f
crossref_primary_10_1016_j_fuel_2016_08_004
crossref_primary_10_1039_c3gc42018c
crossref_primary_10_1021_acssuschemeng_6b01652
crossref_primary_10_1039_b923961h
crossref_primary_10_1039_c1gc15334j
crossref_primary_10_1016_j_ultsonch_2017_01_028
crossref_primary_10_1016_j_biombioe_2012_11_020
crossref_primary_10_2174_0113852728325684240911063353
crossref_primary_10_1016_j_biortech_2022_127277
crossref_primary_10_1039_c3gc41141a
crossref_primary_10_1021_acs_chemrev_6b00457
crossref_primary_10_1039_c3cy20808g
crossref_primary_10_1039_D0RA05641C
crossref_primary_10_1002_cctc_201100105
crossref_primary_10_1002_cssc_200900285
crossref_primary_10_1039_D4SU00700J
crossref_primary_10_1021_acscatal_1c01989
crossref_primary_10_1039_C6CY00820H
crossref_primary_10_1016_j_biombioe_2015_01_014
crossref_primary_10_1002_slct_201803130
crossref_primary_10_1080_17597269_2025_2454067
crossref_primary_10_1039_c3gc00060e
crossref_primary_10_1360_TB_2024_0749
crossref_primary_10_1021_ie202174f
crossref_primary_10_3389_fenrg_2021_679709
crossref_primary_10_1002_apj_1910
crossref_primary_10_1016_j_biortech_2011_11_069
crossref_primary_10_1039_c2gc16671b
crossref_primary_10_1039_D2CY01619B
crossref_primary_10_1016_j_rineng_2022_100631
crossref_primary_10_1021_acs_jpca_5b08277
crossref_primary_10_1016_j_carbpol_2018_08_043
crossref_primary_10_1039_c3ee41857j
crossref_primary_10_1002_macp_201700013
crossref_primary_10_1002_slct_201802029
crossref_primary_10_1021_acssuschemeng_9b03534
crossref_primary_10_1246_bcsj_20140096
crossref_primary_10_1016_j_carres_2019_06_010
crossref_primary_10_3390_app9163369
crossref_primary_10_1002_wene_67
crossref_primary_10_1016_j_jcat_2011_12_017
crossref_primary_10_1039_c0cc04444j
crossref_primary_10_1039_C2RA21805D
crossref_primary_10_1016_j_apcatb_2018_11_019
crossref_primary_10_1021_jp5035689
crossref_primary_10_1016_j_cej_2012_11_019
crossref_primary_10_1039_C7CP07775K
crossref_primary_10_1016_j_indcrop_2019_04_005
crossref_primary_10_1007_s10563_012_9142_3
crossref_primary_10_1002_anie_201200351
crossref_primary_10_1016_j_fuel_2023_128371
crossref_primary_10_1039_b914601f
crossref_primary_10_1007_s10562_020_03441_3
crossref_primary_10_1016_j_cattod_2015_06_031
crossref_primary_10_1016_S1872_5813_16_30038_X
crossref_primary_10_1007_s10570_017_1464_x
crossref_primary_10_1016_j_jclepro_2013_01_035
crossref_primary_10_1039_C5RA02911B
crossref_primary_10_1088_1755_1315_963_1_012004
crossref_primary_10_1002_ente_201700153
crossref_primary_10_1021_ef1000198
crossref_primary_10_1007_s11814_010_0167_x
crossref_primary_10_1002_cssc_200900260
crossref_primary_10_1021_acssuschemeng_9b06018
crossref_primary_10_1016_j_biteb_2020_100478
crossref_primary_10_1016_j_biteb_2020_100476
crossref_primary_10_3389_fchem_2020_580146
crossref_primary_10_1002_bbb_267
crossref_primary_10_1021_cs200411d
crossref_primary_10_1016_j_biortech_2013_10_095
crossref_primary_10_1002_cssc_201100631
crossref_primary_10_1016_j_biortech_2018_01_010
crossref_primary_10_1007_s10570_021_03808_8
crossref_primary_10_1021_acscatal_1c03045
crossref_primary_10_1021_ie101671r
crossref_primary_10_1021_acssuschemeng_7b00875
crossref_primary_10_3390_polym12102237
crossref_primary_10_1016_j_apcata_2014_05_003
crossref_primary_10_1039_c3cp54915a
crossref_primary_10_1002_cite_201000194
crossref_primary_10_1016_j_cattod_2013_07_008
crossref_primary_10_1016_j_indcrop_2012_01_013
crossref_primary_10_1002_cssc_201702016
crossref_primary_10_1016_j_carres_2010_11_009
crossref_primary_10_1016_j_biombioe_2013_12_019
crossref_primary_10_1590_0104_1428_08917
crossref_primary_10_1016_j_molcata_2012_01_010
crossref_primary_10_1016_j_algal_2015_12_013
crossref_primary_10_1039_c0ee00667j
crossref_primary_10_1016_j_cattod_2023_01_019
crossref_primary_10_1021_jp106762b
crossref_primary_10_1016_j_apcata_2012_06_002
crossref_primary_10_1080_15435075_2010_548888
crossref_primary_10_3775_jie_95_902
crossref_primary_10_1002_ejoc_201001539
crossref_primary_10_1039_C5CY02248G
crossref_primary_10_1016_j_carbpol_2016_11_066
crossref_primary_10_1016_j_comptc_2010_11_012
crossref_primary_10_1007_s11426_016_9035_1
crossref_primary_10_1016_j_jaap_2012_07_012
crossref_primary_10_1039_D3RA01533E
crossref_primary_10_1016_j_jiec_2010_12_017
crossref_primary_10_1016_j_jaap_2013_05_006
crossref_primary_10_1021_acssuschemeng_6b00174
crossref_primary_10_1039_C6RA20547J
crossref_primary_10_1002_cssc_201300416
crossref_primary_10_1016_j_enzmictec_2018_07_002
crossref_primary_10_1039_c2gc35811e
crossref_primary_10_1021_acs_macromol_4c01000
crossref_primary_10_1039_C9DT04604F
crossref_primary_10_1016_j_jaap_2012_07_010
crossref_primary_10_1016_j_molliq_2023_123354
crossref_primary_10_1039_c1gc15152e
crossref_primary_10_1007_s10563_011_9114_z
crossref_primary_10_1016_j_indcrop_2020_113055
crossref_primary_10_1002_cben_201300004
crossref_primary_10_1021_acscatal_8b01197
crossref_primary_10_1021_acssuschemeng_9b05108
crossref_primary_10_1039_C3GC42436G
crossref_primary_10_1039_C5RA16616K
crossref_primary_10_1002_cctc_201000018
crossref_primary_10_1002_clen_201000074
crossref_primary_10_1002_star_201000012
crossref_primary_10_1002_ange_201200351
crossref_primary_10_1021_acs_iecr_8b00443
crossref_primary_10_1016_j_apcata_2011_10_014
crossref_primary_10_1021_cr300182k
crossref_primary_10_2320_matertrans_MA201539
crossref_primary_10_1016_j_combustflame_2013_06_007
crossref_primary_10_1021_acs_iecr_7b03635
crossref_primary_10_1002_celc_202300151
crossref_primary_10_1021_acs_chemrev_7b00571
crossref_primary_10_1021_ie3019609
crossref_primary_10_3390_molecules24030594
crossref_primary_10_1016_j_indcrop_2014_08_006
crossref_primary_10_1016_j_jiec_2013_09_016
crossref_primary_10_1007_s13399_020_00682_5
crossref_primary_10_1039_C4GC00664J
crossref_primary_10_1016_j_fuproc_2014_08_011
crossref_primary_10_1016_j_biortech_2010_11_098
crossref_primary_10_1016_j_cattod_2014_02_038
crossref_primary_10_1016_j_apcata_2011_06_018
crossref_primary_10_1002_tcr_202200269
crossref_primary_10_1615_CatalGreenChemEng_2023049758
crossref_primary_10_5059_yukigoseikyokaishi_80_541
crossref_primary_10_3390_inorganics4040032
crossref_primary_10_3724_SP_J_1088_2010_00149
crossref_primary_10_1039_c3ra23387a
crossref_primary_10_1007_s12010_009_8795_5
crossref_primary_10_1007_s13399_020_00616_1
crossref_primary_10_1021_ie300140g
crossref_primary_10_1039_c3ra45813j
crossref_primary_10_1007_s10311_011_0322_6
crossref_primary_10_1016_j_cep_2011_08_007
crossref_primary_10_1016_j_carbpol_2016_01_053
crossref_primary_10_1039_C3CS60310E
crossref_primary_10_1016_j_cattod_2011_03_020
crossref_primary_10_1016_j_jtice_2010_10_004
crossref_primary_10_1007_s11244_010_9560_2
crossref_primary_10_1016_j_apcata_2010_05_040
crossref_primary_10_1016_j_apcatb_2020_119314
crossref_primary_10_1007_s12010_022_03998_2
crossref_primary_10_1016_j_cattod_2018_11_071
crossref_primary_10_1016_j_cej_2024_149971
crossref_primary_10_3390_app11030989
crossref_primary_10_1016_j_crmicr_2024_100267
crossref_primary_10_1002_chem_201201522
crossref_primary_10_1155_2018_4723573
crossref_primary_10_1515_revce_2017_0071
crossref_primary_10_1039_c2ra21811a
crossref_primary_10_1002_ente_201300068
crossref_primary_10_1039_B914206A
crossref_primary_10_1016_j_apcata_2012_05_035
crossref_primary_10_1016_j_fuproc_2018_09_027
crossref_primary_10_1016_j_ces_2015_12_002
crossref_primary_10_1007_s11244_010_9570_0
crossref_primary_10_3390_catal11091113
crossref_primary_10_1016_j_biortech_2020_123864
crossref_primary_10_1021_ie102505y
crossref_primary_10_1016_j_fuel_2022_124678
crossref_primary_10_1016_S1872_5813_13_60041_9
crossref_primary_10_1002_bbb_1932
crossref_primary_10_1016_j_biombioe_2012_01_011
crossref_primary_10_2115_fiberst_2017_0037
crossref_primary_10_1039_D3SU00038A
crossref_primary_10_1063_1_4997555
crossref_primary_10_1007_s10562_019_02922_4
crossref_primary_10_1039_C5RA15400F
crossref_primary_10_1016_j_cattod_2015_09_056
crossref_primary_10_1002_cssc_200900213
crossref_primary_10_1007_s12649_019_00898_1
crossref_primary_10_1021_cs5012684
crossref_primary_10_1002_asia_201901001
crossref_primary_10_1002_cite_201100237
crossref_primary_10_1007_s13399_014_0116_8
crossref_primary_10_1038_s41598_021_02259_2
crossref_primary_10_1016_j_indcrop_2012_03_036
crossref_primary_10_1080_00986445_2017_1371015
crossref_primary_10_1002_cssc_202102050
crossref_primary_10_1007_s11814_014_0138_8
crossref_primary_10_1039_C6GC02072K
crossref_primary_10_3390_catal5042287
crossref_primary_10_1039_C8CY01971A
crossref_primary_10_1039_c1cs15124j
crossref_primary_10_1007_s11244_010_9579_4
crossref_primary_10_1039_c004343e
crossref_primary_10_1039_C3GC41324A
crossref_primary_10_7454_jessd_v6i2_1158
crossref_primary_10_1002_bit_23352
crossref_primary_10_1039_D0GC03991H
crossref_primary_10_1039_C3GC41934G
crossref_primary_10_1016_j_fuel_2013_03_031
crossref_primary_10_3775_jie_96_417
crossref_primary_10_1002_cssc_201500855
crossref_primary_10_1252_jcej_15we060
crossref_primary_10_1016_j_molcata_2016_05_012
crossref_primary_10_1002_cssc_201200795
crossref_primary_10_1039_c0gc00401d
crossref_primary_10_3389_fchem_2020_00070
crossref_primary_10_4028_www_scientific_net_AMR_287_290_1585
crossref_primary_10_1016_j_biombioe_2023_107004
crossref_primary_10_1016_j_apcata_2025_120184
crossref_primary_10_1007_s11244_012_9797_z
crossref_primary_10_1016_j_biombioe_2014_11_007
crossref_primary_10_1080_13102818_2014_980049
crossref_primary_10_1039_C7GC01688C
crossref_primary_10_1002_slct_201700389
crossref_primary_10_1016_j_cej_2016_09_036
crossref_primary_10_1016_j_rser_2014_08_085
crossref_primary_10_1002_cctc_201000302
crossref_primary_10_3390_en12020233
crossref_primary_10_1016_j_pecs_2016_04_004
crossref_primary_10_1016_S1351_4180_13_70261_7
crossref_primary_10_1016_j_cej_2013_11_060
crossref_primary_10_1039_C6RA21289A
crossref_primary_10_1039_C6RA03382B
crossref_primary_10_1016_j_carbpol_2014_09_091
crossref_primary_10_1016_S1872_5813_13_60013_4
crossref_primary_10_1039_C6CY00384B
crossref_primary_10_1039_C2SC21403B
crossref_primary_10_1039_D0GC03557B
crossref_primary_10_1007_s10562_013_0992_8
crossref_primary_10_1016_j_biortech_2013_01_081
crossref_primary_10_1007_s11426_014_5304_7
crossref_primary_10_1016_j_gee_2023_11_005
crossref_primary_10_1039_C3CY00762F
crossref_primary_10_1002_cite_202200091
crossref_primary_10_1016_j_cej_2014_05_121
Cites_doi 10.1021/ja808537j
10.1126/science.1111166
10.1021/bm049235j
10.1002/jctb.1195
10.1126/science.1141199
10.1021/ie50421a009
10.1021/jp070253f
10.1038/nature05923
10.1016/j.biortech.2003.11.003
10.1039/b600586c
10.1016/j.biortech.2004.06.025
10.1002/anie.200802879
10.1021/bk-2003-0856
10.1016/S0360-0564(05)49003-3
ContentType Journal Article
Copyright 2009
2009 INIST-CNRS
Copyright_xml – notice: 2009
– notice: 2009 INIST-CNRS
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
DBID AAYXX
CITATION
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1016/j.apcata.2009.04.002
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3875
EndPage 122
ExternalDocumentID 973991
21563261
10_1016_j_apcata_2009_04_002
S0926860X09002579
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
BNPGV
CITATION
SSH
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c491t-a8c55afae41f55f7e34464dbc6870b1f29d555d97590ae4f7686a3fc21705b13
IEDL.DBID .~1
ISSN 0926-860X
IngestDate Fri May 19 00:38:58 EDT 2023
Fri Jul 11 10:18:36 EDT 2025
Fri Jul 11 11:58:55 EDT 2025
Wed Apr 02 07:25:36 EDT 2025
Tue Jul 01 00:38:54 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Fri Feb 23 02:12:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords HMF
1-Alkyl-3-methylimidazolium chloride
CrCl 2
5-Hydroxymethylfurfural
Cellobiose
CuCl 2
1-Ethyl-3-methyl-imidazolium chloride
Glucose
Maltose
Cellulose conversion
Paired metal chlorides
Ionic liquid
Separation
Methyl chloride
Cellulose
Purity
Biofuel
Biomass
Depolymerization
Alkyl
Chlorides
Low temperature
Catalytic reaction
Transition element compounds
Polymer
Conversion
Fructose
Hydrolysis
Acids
Fuel
CrCl
CuCl
Catalyst
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-a8c55afae41f55f7e34464dbc6870b1f29d555d97590ae4f7686a3fc21705b13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PNNL-SA-59545
USDOE
AC05-76RL01830
PQID 34455800
PQPubID 23500
PageCount 6
ParticipantIDs osti_scitechconnect_973991
proquest_miscellaneous_903644251
proquest_miscellaneous_34455800
pascalfrancis_primary_21563261
crossref_citationtrail_10_1016_j_apcata_2009_04_002
crossref_primary_10_1016_j_apcata_2009_04_002
elsevier_sciencedirect_doi_10_1016_j_apcata_2009_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090601
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 20090601
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Applied catalysis. A, General
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Lynd (bib11) 2005; 6
Rogers, Seddon (bib14) 2003
Zhang (bib15) 2006; 49
Zhao, Holladay, Brown, Zhang (bib4) 2007; 316
Remsing, Swatloski, Rogers, Moyna (bib12) 2006; 12
Sanchez, Pilcher, Roslander, Modig, Galbe (bib8) 2004; 93
Rinaldi, Palkovits, Schuth (bib10) 2008; 47
T.A. Werpy, G. Petersen, Top value added chemicals from biomass 2004 (U.S. Department of Energy (DOE), Golden, CO; DOE/GO-102004-1992).
Zhao, Holladay, Kwak, Zhang (bib13) 2007; 111
Gan, Allen, Taylor (bib5) 2005; 80
Binder, Raines (bib9) 2009; 131
Huber, Chheda, Barrett, Dumesic (bib2) 2005; 308
Roman-Leshkov, Barrett, Liu, Dumesic (bib3) 2007; 447
Saeman (bib6) 1945; 37
Mosier, Wyman, Dale, Elander, Lee (bib7) 2005; 96
Roman-Leshkov (10.1016/j.apcata.2009.04.002_bib3) 2007; 447
Binder (10.1016/j.apcata.2009.04.002_bib9) 2009; 131
Zhang (10.1016/j.apcata.2009.04.002_bib11) 2005; 6
Saeman (10.1016/j.apcata.2009.04.002_bib6) 1945; 37
Remsing (10.1016/j.apcata.2009.04.002_bib12) 2006; 12
Sanchez (10.1016/j.apcata.2009.04.002_bib8) 2004; 93
Zhao (10.1016/j.apcata.2009.04.002_bib13) 2007; 111
Zhang (10.1016/j.apcata.2009.04.002_bib15) 2006; 49
Huber (10.1016/j.apcata.2009.04.002_bib2) 2005; 308
Gan (10.1016/j.apcata.2009.04.002_bib5) 2005; 80
10.1016/j.apcata.2009.04.002_bib1
Mosier (10.1016/j.apcata.2009.04.002_bib7) 2005; 96
Rogers (10.1016/j.apcata.2009.04.002_bib14) 2003
Rinaldi (10.1016/j.apcata.2009.04.002_bib10) 2008; 47
Zhao (10.1016/j.apcata.2009.04.002_bib4) 2007; 316
References_xml – volume: 308
  start-page: 1446
  year: 2005
  end-page: 1450
  ident: bib2
  publication-title: Science
– volume: 6
  start-page: 1510
  year: 2005
  end-page: 1515
  ident: bib11
  publication-title: Biomacromolecules
– volume: 93
  start-page: 249
  year: 2004
  end-page: 256
  ident: bib8
  publication-title: Bioresource Technology
– volume: 447
  start-page: 982
  year: 2007
  end-page: 985
  ident: bib3
  publication-title: Nature
– volume: 111
  start-page: 5295
  year: 2007
  end-page: 5300
  ident: bib13
  publication-title: Journal of Physical Chemistry B
– reference: T.A. Werpy, G. Petersen, Top value added chemicals from biomass 2004 (U.S. Department of Energy (DOE), Golden, CO; DOE/GO-102004-1992).
– volume: 80
  start-page: 688
  year: 2005
  end-page: 698
  ident: bib5
  publication-title: Journal of Chemical Technology and Biotechnology
– volume: 131
  start-page: 1979
  year: 2009
  end-page: 1985
  ident: bib9
  publication-title: Journal of the American Chemical Society
– volume: 316
  start-page: 1597
  year: 2007
  end-page: 1600
  ident: bib4
  publication-title: Science
– volume: 37
  start-page: 43
  year: 1945
  end-page: 52
  ident: bib6
  publication-title: Industrial and Engineering Chemistry
– volume: 12
  start-page: 1271
  year: 2006
  end-page: 1273
  ident: bib12
  publication-title: Chemical Communications
– volume: 96
  start-page: 673
  year: 2005
  end-page: 686
  ident: bib7
  publication-title: Bioresource Technology
– volume: 47
  start-page: 8047
  year: 2008
  end-page: 8050
  ident: bib10
  publication-title: Angewandte Chemie International Edition
– year: 2003
  ident: bib14
  publication-title: ACS Symposium Series 858 American Chemical Society
– volume: 49
  start-page: 153
  year: 2006
  end-page: 237
  ident: bib15
  publication-title: Advances in Catalysis
– volume: 131
  start-page: 1979
  issue: 5
  year: 2009
  ident: 10.1016/j.apcata.2009.04.002_bib9
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja808537j
– volume: 308
  start-page: 1446
  year: 2005
  ident: 10.1016/j.apcata.2009.04.002_bib2
  publication-title: Science
  doi: 10.1126/science.1111166
– volume: 6
  start-page: 1510
  year: 2005
  ident: 10.1016/j.apcata.2009.04.002_bib11
  publication-title: Biomacromolecules
  doi: 10.1021/bm049235j
– ident: 10.1016/j.apcata.2009.04.002_bib1
– volume: 80
  start-page: 688
  year: 2005
  ident: 10.1016/j.apcata.2009.04.002_bib5
  publication-title: Journal of Chemical Technology and Biotechnology
  doi: 10.1002/jctb.1195
– volume: 316
  start-page: 1597
  year: 2007
  ident: 10.1016/j.apcata.2009.04.002_bib4
  publication-title: Science
  doi: 10.1126/science.1141199
– volume: 37
  start-page: 43
  year: 1945
  ident: 10.1016/j.apcata.2009.04.002_bib6
  publication-title: Industrial and Engineering Chemistry
  doi: 10.1021/ie50421a009
– volume: 111
  start-page: 5295
  year: 2007
  ident: 10.1016/j.apcata.2009.04.002_bib13
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp070253f
– volume: 447
  start-page: 982
  year: 2007
  ident: 10.1016/j.apcata.2009.04.002_bib3
  publication-title: Nature
  doi: 10.1038/nature05923
– volume: 93
  start-page: 249
  year: 2004
  ident: 10.1016/j.apcata.2009.04.002_bib8
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2003.11.003
– volume: 12
  start-page: 1271
  year: 2006
  ident: 10.1016/j.apcata.2009.04.002_bib12
  publication-title: Chemical Communications
  doi: 10.1039/b600586c
– volume: 96
  start-page: 673
  year: 2005
  ident: 10.1016/j.apcata.2009.04.002_bib7
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2004.06.025
– volume: 47
  start-page: 8047
  year: 2008
  ident: 10.1016/j.apcata.2009.04.002_bib10
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200802879
– year: 2003
  ident: 10.1016/j.apcata.2009.04.002_bib14
  doi: 10.1021/bk-2003-0856
– volume: 49
  start-page: 153
  year: 2006
  ident: 10.1016/j.apcata.2009.04.002_bib15
  publication-title: Advances in Catalysis
  doi: 10.1016/S0360-0564(05)49003-3
SSID ssj0002495
Score 2.4762955
Snippet A new catalytic pathway is revealed for the rapid conversion of cellulose to sugars and further to 5-hydroxymethylfurfural (HMF) in a single-step process under...
The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of...
The ability to use cellulosic biomass as feedstock for the production of fuels and chemicals currently derived from petroleum depends critically on the...
SourceID osti
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms 02 PETROLEUM
08 HYDROGEN
09 BIOMASS FUELS
1-Alkyl-3-methylimidazolium chloride
1-Ethyl-3-methyl-imidazolium chloride
5-Hydroxymethylfurfural
BIOFUELS
BIOMASS
Catalysis
CATALYSTS
Cellobiose
CELLULOSE
Cellulose conversion
Chemistry
CHLORIDES
CrCl 2
CrCl2
CuCl 2
CuCl2
DEPOLYMERIZATION
Environmental Molecular Sciences Laboratory
Exact sciences and technology
FRUCTOSE
General and physical chemistry
GLUCOSE
HMF
HYDROGEN
HYDROLYSIS
Ionic liquid
Maltose
Paired metal chlorides
PETROLEUM
POLYMERS
PRODUCTION
SYNTHESIS
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Title Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical
URI https://dx.doi.org/10.1016/j.apcata.2009.04.002
https://www.proquest.com/docview/34455800
https://www.proquest.com/docview/903644251
https://www.osti.gov/biblio/973991
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VywE4ICggtoXFBw4gYTYfthMfqxWrBdReWqS9WY5ji1bRJupmD73w2zuTj4UKUCVOkaIZyfKzxy-T8RuAd6VWibBRyaXNNRd5ENwiTeCRtj7YkCdFd-v99Eytvouva7k-gMV4F4bKKofY38f0LloPb-bDbM6by8v5eaQTlatoHWk6uDO6xCdERqv8089fZR7UW7nT20sUJ-vx-lxX42UbSpIMqpVin1z5y_E0qXHHUeGk3eLchb7pxR_xuzuUlk_hycAm2Uk_4Gdw4DeH8HAxNnE7hMe_6Q0-B3eOj8pzRLZhXb15lyxjdWCUwN9V9daztmaS_7gpqb6F-kvfVGF3HUidg71fnS4_fGSWkSNCWnnWVLYl3svcoDzwAi6Wny8WKz50WeBO6LjlNndS2mC9iIOUIfMpfiGKsnAKt3IRh0SXUspSZ1JHaBTw-0TZNLiEhHiKOH0Jk0298a-Apciegk689IUTkUegVeximSudZDJz8RTScW6NGxTIqRFGZcZSsyvTI0LNMbWJhEFEpsD3Xk2vwHGPfTbCZu6sJIOHxD2eR4QyeZGArqNKI3TTGZI4HPzsDvb7sSBnUsiB0eDtuBgMgkyw2Y2vd1uDEyolEvMpsH9YaPobjNEzPvrvwR_Do_5HFyWIXsOkvd75N8iX2mLWbYgZPDj58m11dgvPPxU_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVKOBQOCAqIFGh9AAkkTHa9tnd94IAKUUqbXhqk3Cyv1xZFq-yqSYRy4UfxC5nZj0AFqBJST5Eiz8qaGc88288zhLwotOLCRgWTNtNMZEEwCzCBRdr6YEPG8-bV-_RMTT6LT3M53yE_-rcwSKvsYn8b05to3f0z6rQ5qi8uRueR5ipT0TzSmLhT3TErT_zmG-zblu-OP4CRX3I-_jg7mrCutQBzQscrZjMnpQ3WizhIGVKfwLZIFLlT4L95HLgupJSFTqWOYFAAUK5sEhzH6jN5nMBnb5HbAqIFdk14-_0XrQR7OTf1_bhiOLv-uV7DKbM1Hsp0VTLF9jDnL-lwUMEKR6KmXYKtQttk44980STB8X1yr0Ov9H2roAdkxy_2yO5R3zRuj9z9rb7hQ-LO4af0DDyppg2_vTmco1WgeGGwLqulp6uKSvZlUyCfBvtZb8qwvgxYDYS-mkzHr99QS1EQXKj0tC7tCnE2dV2lg0dkdhOqf0wGi2rhnxCaAFoLmnvpcyciD46lYhfLTGmeytTFQ5L0ujWuq3iOjTdK01PbvprWItiMU5tIGLDIkLCtVN1W_LhmfNqbzVzxXANJ6RrJfbQySmHBXofMJhDTKYBGmPzBFdtv5wIYTQHmhgGHvTMYMDKazS58tV4aUKiUsBEYEvqPERpvnyFax_v_PflDsjuZTU_N6fHZyVNyp71kw8OpZ2Swulz754DVVvlBszgoMTe8GH8CI2dP_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-step+conversion+of+cellulose+to+5-hydroxymethylfurfural+%28HMF%29%2C+a+versatile+platform+chemical&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Su%2C+Yu&rft.au=Brown%2C+Heather+M.&rft.au=Huang%2C+Xiwen&rft.au=Zhou%2C+Xiao-dong&rft.date=2009-06-01&rft.issn=0926-860X&rft.volume=361&rft.issue=1-2&rft.spage=117&rft.epage=122&rft_id=info:doi/10.1016%2Fj.apcata.2009.04.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcata_2009_04_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon