Extracting the dynamics of behavior in sensory decision-making experiments
Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexi...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 109; no. 4; pp. 597 - 610.e6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.02.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2020.12.004 |
Cover
Loading…
Abstract | Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks.
[Display omitted]
•Dynamic model for time-varying sensory decision-making behavior•Visualize changes in behavioral strategies of mice, rats, and humans across training•Infer how quickly different parameters change between trials and between sessions•Colab notebook reproduces all figures and analyses, facilitating application to new data
Roy et al. present a method for inferring the time course of behavioral strategies in sensory decision-making tasks, which they use to analyze how behavior evolves during training in rats, mice, and humans. |
---|---|
AbstractList | Decision-making strategies evolve during training, and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function, fit after training is complete. Here we present
PsyTrack
, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks, and show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice, and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks.
Roy et al. present a method for inferring the time course of behavioral strategies in sensory decision-making tasks, which they use to analyze how behavior evolves during training in rats, mice, & humans. SummaryDecision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks. Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks.Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks. Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks. Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks. [Display omitted] •Dynamic model for time-varying sensory decision-making behavior•Visualize changes in behavioral strategies of mice, rats, and humans across training•Infer how quickly different parameters change between trials and between sessions•Colab notebook reproduces all figures and analyses, facilitating application to new data Roy et al. present a method for inferring the time course of behavioral strategies in sensory decision-making tasks, which they use to analyze how behavior evolves during training in rats, mice, and humans. |
Author | Roy, Nicholas A. Akrami, Athena Bak, Ji Hyun Brody, Carlos D. Pillow, Jonathan W. |
AuthorAffiliation | d Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK e Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA f Dept. of Psychology, Princeton University, Princeton, NJ 08544, USA b Korea Institute for Advanced Study, Seoul 02455, South Korea g Current address: DeepMind, London N1C 4AG, UK i Lead Contact c Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA a Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA h Current address: University of California, San Francisco, San Francisco, CA 94158, USA |
AuthorAffiliation_xml | – name: e Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA – name: d Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK – name: c Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA – name: h Current address: University of California, San Francisco, San Francisco, CA 94158, USA – name: a Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA – name: i Lead Contact – name: f Dept. of Psychology, Princeton University, Princeton, NJ 08544, USA – name: b Korea Institute for Advanced Study, Seoul 02455, South Korea – name: g Current address: DeepMind, London N1C 4AG, UK |
Author_xml | – sequence: 1 givenname: Nicholas A. orcidid: 0000-0002-4277-2928 surname: Roy fullname: Roy, Nicholas A. email: nicholas.roy.42@gmail.com organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA – sequence: 2 givenname: Ji Hyun orcidid: 0000-0002-5700-7823 surname: Bak fullname: Bak, Ji Hyun organization: Korea Institute for Advanced Study, Seoul 02455, South Korea – sequence: 3 givenname: Athena surname: Akrami fullname: Akrami, Athena organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA – sequence: 4 givenname: Carlos D. orcidid: 0000-0002-4201-561X surname: Brody fullname: Brody, Carlos D. organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA – sequence: 5 givenname: Jonathan W. surname: Pillow fullname: Pillow, Jonathan W. email: pillow@princeton.edu organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33412101$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1URNPCP0BoJDZsJvg9YxZIVVVeqsQG1pZj32kcZuxge6Lm3-MoKYIuYGXJ_s7xufdcoLMQAyD0kuAlwUS-3SwDzCmGJcW0XtElxvwJWhCsupYTpc7QAvdKtpJ27Bxd5LzBmHChyDN0zhgntLos0Jeb-5KMLT7cNWUNjdsHM3mbmzg0K1ibnY-p8aHJEHJM-8aB9dnH0E7mx0ED91tIfoJQ8nP0dDBjhhen8xJ9_3Dz7fpTe_v14-frq9vWckVKa4RzzhoG2BpMTeeM4aYb1NAp7AjjSvW8p1gw5eQKeE1PXQ-SciYGgcGwS_T-6LudVxM4W_9OZtTbGsOkvY7G679fgl_ru7jTXa86KkQ1eHMySPHnDLnoyWcL42gCxDlryjspZC_xAX39CN3EOYU6XqUUFlIxQSv16s9Ev6M8rLkC746ATTHnBIO2vphS91gD-lETrA-d6o0-dqoPnWpCde20ivkj8YP_f2SnNUHtYuch6Ww9BAvOJ7BFu-j_bfAL4nO-gg |
CitedBy_id | crossref_primary_10_1167_jov_21_13_5 crossref_primary_10_1073_pnas_2417025122 crossref_primary_10_1016_j_neuron_2022_07_005 crossref_primary_10_1038_s41593_021_01007_z crossref_primary_10_1016_j_cell_2022_08_019 crossref_primary_10_7554_eLife_63711 crossref_primary_10_1016_j_celrep_2022_111190 crossref_primary_10_3758_s13428_023_02244_9 crossref_primary_10_1016_j_cub_2024_09_045 crossref_primary_10_1016_j_neuron_2024_02_008 crossref_primary_10_1371_journal_pcbi_1011985 crossref_primary_10_1371_journal_pcbi_1011104 crossref_primary_10_1016_j_neuron_2022_05_012 crossref_primary_10_1016_j_plrev_2023_07_006 crossref_primary_10_1080_1528008X_2023_2235717 crossref_primary_10_7554_eLife_86491 crossref_primary_10_1016_j_anbehav_2024_02_016 crossref_primary_10_1038_s41467_024_44880_5 crossref_primary_10_1038_s41583_025_00916_3 crossref_primary_10_1038_s41593_023_01567_2 crossref_primary_10_1016_j_neuroimage_2025_121134 crossref_primary_10_1523_JNEUROSCI_0231_23_2024 crossref_primary_10_1016_j_cub_2024_04_017 crossref_primary_10_1016_j_neuroimage_2022_119610 crossref_primary_10_7554_eLife_64978 crossref_primary_10_1016_j_neuron_2024_06_016 crossref_primary_10_1038_s41467_022_29807_2 crossref_primary_10_1371_journal_pbio_3002410 crossref_primary_10_1038_s41593_022_01021_9 crossref_primary_10_1016_j_ibneur_2022_05_006 crossref_primary_10_1073_pnas_2113961119 crossref_primary_10_1016_j_neuron_2021_01_025 crossref_primary_10_1167_jov_24_2_5 crossref_primary_10_1371_journal_pcbi_1011950 crossref_primary_10_1007_s10071_023_01769_y crossref_primary_10_1371_journal_pcbi_1011430 crossref_primary_10_3389_fnins_2022_794681 crossref_primary_10_1016_j_conb_2023_102759 crossref_primary_10_1093_cercor_bhae328 crossref_primary_10_1523_ENEURO_0327_24_2024 crossref_primary_10_1038_s41562_022_01510_8 |
Cites_doi | 10.1073/pnas.1315171111 10.1016/j.neuron.2016.12.041 10.1038/nn.3410 10.1038/nn.2123 10.1146/annurev.neuro.29.051605.113038 10.1073/pnas.1211606110 10.1038/nn.3043 10.1523/JNEUROSCI.2908-03.2004 10.1126/science.1455246 10.1126/science.1151564 10.1016/j.cobeha.2016.04.003 10.1016/j.jmp.2008.12.005 10.1038/s41467-018-06561-y 10.1523/JNEUROSCI.2978-14.2015 10.1109/MCSE.2007.55 10.1523/JNEUROSCI.6689-10.2011 10.1016/j.celrep.2017.08.047 10.1038/nature25510 10.1167/18.12.4 10.1371/journal.pone.0088678 10.1901/jeab.2005.23-05 10.1177/1534582305280030 10.1111/1467-9280.00067 10.1152/jn.00402.2014 10.1167/14.7.9 10.1126/science.1233912 10.1016/j.neuron.2016.12.003 10.1007/BF00115009 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020. Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020. Elsevier Inc. |
CorporateAuthor | The International Brain Laboratory International Brain Laboratory |
CorporateAuthor_xml | – name: The International Brain Laboratory – name: International Brain Laboratory |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2020.12.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 610.e6 |
ExternalDocumentID | PMC7897255 33412101 10_1016_j_neuron_2020_12_004 S0896627320309636 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Howard Hughes Medical Institute – fundername: Wellcome Trust grantid: 209558 – fundername: NINDS NIH HHS grantid: R01 NS104899 – fundername: Wellcome Trust grantid: 216324 – fundername: NIBIB NIH HHS grantid: R01 EB026946 – fundername: NINDS NIH HHS grantid: U19 NS104648 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M2M M2O M3Z M41 N9A O-L O9- OK1 P2P P6G PQQKQ PROAC RCE ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FGOYB G-2 HZ~ ITC MVM OZT R2- RIG X7M ZGI ZKB CGR CUY CVF ECM EFKBS EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c491t-a5dddca3e0ca02a7daa4a7f9f790d1349984820539d6be42732d8e62435f50ea3 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 14:33:00 EDT 2025 Thu Jul 10 23:46:10 EDT 2025 Fri Jul 25 11:05:34 EDT 2025 Mon Jul 21 06:01:47 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Tue Jul 01 01:16:25 EDT 2025 Fri Feb 23 02:48:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | sensory decision making behavioral dynamics learning psychophysics |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-a5dddca3e0ca02a7daa4a7f9f790d1349984820539d6be42732d8e62435f50ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AUTHOR CONTRIBUTIONS Conceptualization, N.A.R., J.H.B., J.W.P.; Methodology, N.A.R., J.H.B., J.W.P.; Software, N.A.R.; Formal Analysis, N.A.R.; Investigation, N.A.R., I.B.L., A.A.; Resources, I.B.L., A.A., C.D.B., J.W.P.; Data Curation, N.A.R., I.B.L., A.A.; Writing – Original Draft, N.A.R.; Writing – Review & Editing, N.A.R., J.H.B., I.B.L., A.A., C.D.B., J.W.P.; Visualization, N.A.R.; Supervision, J.W.P.; Project Administration, N.A.R., J.W.P.; Funding Acquisition, I.B.L., J.W.P. |
ORCID | 0000-0002-4201-561X 0000-0002-4277-2928 0000-0002-5700-7823 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7897255 |
PMID | 33412101 |
PQID | 2490569352 |
PQPubID | 2031076 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897255 proquest_miscellaneous_2476568605 proquest_journals_2490569352 pubmed_primary_33412101 crossref_citationtrail_10_1016_j_neuron_2020_12_004 crossref_primary_10_1016_j_neuron_2020_12_004 elsevier_sciencedirect_doi_10_1016_j_neuron_2020_12_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-17 |
PublicationDateYYYYMMDD | 2021-02-17 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Murphy, Mondragon, Murphy (bib29) 2008; 319 Usher, Tsetsos, Yu, Lagnado (bib50) 2013; 18 Corrado, Sugrue, Seung, Newsome (bib13) 2005; 84 Carandini, Churchland (bib10) 2013; 16 Aguillon-Rodriguez, Angelaki, Bayer, Bonacchi, Carandini, Cazettes, Chapuis, Churchland, Dan (bib24) 2020 Carandini (bib9) 2012; 15 Jones, Oliphant, Peterson (bib25) 2001 Hunter (bib22) 2007; 9 Smith, Frank, Wirth, Yanike, Hu, Kubota, Graybiel, Suzuki, Brown (bib44) 2004; 24 Kattner, Cochrane, Green (bib26) 2017; 17 Green, Swets (bib19) 1966 Nassar, Frank (bib30) 2016; 11 Roy, Bak, Pillow (bib40) 2018 Bak, Choi, Akrami, Witten, Pillow (bib4) 2016; 30 Suzuki, Brown (bib47) 2005; 4 Rybicki, Hummer (bib41) 1991; 245 Frund, Wichmann, Macke (bib17) 2014; 14 Piet, Hady, Brody (bib36) 2018; 9 Samejima, Doya, Ueda, Kimura (bib43) 2004; 16 Churchland, Kiani, Shadlen (bib11) 2008; 11 Sahani, Linden (bib42) 2003; 15 Daw (bib15) 2011 Pisupati, Chartarifsky-Lynn, Khanal, Churchland (bib37) 2019 Burgess, Lak, Steinmetz, Zatka-Haas, Bai Reddy, Jacobs, Linden, Paton, Ranson, Schröder (bib7) 2017; 20 Wu, Roy, Keeley, Pillow (bib51) 2017; 30 Ratcliff, Rouder (bib38) 1998; 9 Niv, Daniel, Geana, Gershman, Leong, Radulescu, Wilson (bib33) 2015; 35 Busse, Ayaz, Dhruv, Katzner, Saleem, Schölvinck, Zaharia, Carandini (bib8) 2011; 31 Tipping (bib49) 2001; 1 Gold, Shadlen (bib18) 2007; 30 Niv (bib32) 2020 Lu, Williamson, Kaufman (bib28) 1992; 258 Papadimitriou, Ferdoash, Snyder (bib35) 2015; 113 Brunton, Botvinick, Brody (bib6) 2013; 340 Nocedal, Wright (bib34) 2006 Bak, Pillow (bib3) 2018; 18 Sutton (bib45) 1988; 3 Bishop (bib5) 2006 Niv (bib31) 2009; 53 Fassihi, Akrami, Esmaeili, Diamond (bib16) 2014; 111 Daw, Courville (bib14) 2008; 20 Krakauer, Ghazanfar, Gomez-Marin, MacIver, Poeppel (bib27) 2017; 93 Roy, Bak, Akrami, Brody, Pillow (bib39) 2018; 31 Cohen, Schneidman (bib12) 2013; 110 Akrami, Kopec, Diamond, Brody (bib1) 2018; 554 Guo, Hires, Li, O’Connor, Komiyama, Ophir, Huber, Bonardi, Morandell, Gutnisky (bib20) 2014; 9 Sutton, Barto (bib46) 2018 Ashwood, Roy, Bak, Pillow (bib2) 2020; 34 Hanks, Summerfield (bib21) 2017; 93 Bonacchi, Chapuis, Churchland, Harris, Rossant, Sasaki, Shen, Steinmetz, Walker (bib23) 2019 Bak (10.1016/j.neuron.2020.12.004_bib3) 2018; 18 Brunton (10.1016/j.neuron.2020.12.004_bib6) 2013; 340 Niv (10.1016/j.neuron.2020.12.004_bib32) 2020 Green (10.1016/j.neuron.2020.12.004_bib19) 1966 Murphy (10.1016/j.neuron.2020.12.004_bib29) 2008; 319 Sutton (10.1016/j.neuron.2020.12.004_bib45) 1988; 3 Ratcliff (10.1016/j.neuron.2020.12.004_bib38) 1998; 9 Frund (10.1016/j.neuron.2020.12.004_bib17) 2014; 14 Hanks (10.1016/j.neuron.2020.12.004_bib21) 2017; 93 Aguillon-Rodriguez (10.1016/j.neuron.2020.12.004_bib24) 2020 Papadimitriou (10.1016/j.neuron.2020.12.004_bib35) 2015; 113 Usher (10.1016/j.neuron.2020.12.004_bib50) 2013; 18 Piet (10.1016/j.neuron.2020.12.004_bib36) 2018; 9 Jones (10.1016/j.neuron.2020.12.004_bib25) 2001 Cohen (10.1016/j.neuron.2020.12.004_bib12) 2013; 110 Churchland (10.1016/j.neuron.2020.12.004_bib11) 2008; 11 Daw (10.1016/j.neuron.2020.12.004_bib14) 2008; 20 Samejima (10.1016/j.neuron.2020.12.004_bib43) 2004; 16 Sahani (10.1016/j.neuron.2020.12.004_bib42) 2003; 15 Burgess (10.1016/j.neuron.2020.12.004_bib7) 2017; 20 Gold (10.1016/j.neuron.2020.12.004_bib18) 2007; 30 Carandini (10.1016/j.neuron.2020.12.004_bib9) 2012; 15 Fassihi (10.1016/j.neuron.2020.12.004_bib16) 2014; 111 Hunter (10.1016/j.neuron.2020.12.004_bib22) 2007; 9 Pisupati (10.1016/j.neuron.2020.12.004_bib37) 2019 Lu (10.1016/j.neuron.2020.12.004_bib28) 1992; 258 Sutton (10.1016/j.neuron.2020.12.004_bib46) 2018 Bak (10.1016/j.neuron.2020.12.004_bib4) 2016; 30 Akrami (10.1016/j.neuron.2020.12.004_bib1) 2018; 554 Nassar (10.1016/j.neuron.2020.12.004_bib30) 2016; 11 Niv (10.1016/j.neuron.2020.12.004_bib31) 2009; 53 Bonacchi (10.1016/j.neuron.2020.12.004_bib23) 2019 Rybicki (10.1016/j.neuron.2020.12.004_bib41) 1991; 245 Tipping (10.1016/j.neuron.2020.12.004_bib49) 2001; 1 Wu (10.1016/j.neuron.2020.12.004_bib51) 2017; 30 Kattner (10.1016/j.neuron.2020.12.004_bib26) 2017; 17 Suzuki (10.1016/j.neuron.2020.12.004_bib47) 2005; 4 Daw (10.1016/j.neuron.2020.12.004_bib15) 2011 Roy (10.1016/j.neuron.2020.12.004_bib39) 2018; 31 Roy (10.1016/j.neuron.2020.12.004_bib40) 2018 Krakauer (10.1016/j.neuron.2020.12.004_bib27) 2017; 93 Ashwood (10.1016/j.neuron.2020.12.004_bib2) 2020; 34 Busse (10.1016/j.neuron.2020.12.004_bib8) 2011; 31 Nocedal (10.1016/j.neuron.2020.12.004_bib34) 2006 Guo (10.1016/j.neuron.2020.12.004_bib20) 2014; 9 Niv (10.1016/j.neuron.2020.12.004_bib33) 2015; 35 Smith (10.1016/j.neuron.2020.12.004_bib44) 2004; 24 Carandini (10.1016/j.neuron.2020.12.004_bib10) 2013; 16 Corrado (10.1016/j.neuron.2020.12.004_bib13) 2005; 84 Bishop (10.1016/j.neuron.2020.12.004_bib5) 2006 33600750 - Neuron. 2021 Feb 17;109(4):561-563 |
References_xml | – volume: 18 start-page: 4 year: 2018 ident: bib3 article-title: Adaptive stimulus selection for multi-alternative psychometric functions with lapses publication-title: J. Vision – volume: 93 start-page: 15 year: 2017 end-page: 31 ident: bib21 article-title: Perceptual decision making in rodents, monkeys, and humans publication-title: Neuron – volume: 34 start-page: 33 year: 2020 ident: bib2 article-title: Inferring learning rules from animal decision-making publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 369 year: 2008 end-page: 376 ident: bib14 article-title: The pigeon as particle filter publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: bib24 article-title: A standardized and reproducible method to measure decision-making in mice publication-title: bioRxiv – year: 2006 ident: bib5 article-title: Pattern Recognition and Machine Learning – volume: 340 start-page: 95 year: 2013 end-page: 98 ident: bib6 article-title: Rats and humans can optimally accumulate evidence for decision-making publication-title: Science – volume: 111 start-page: 2331 year: 2014 end-page: 2336 ident: bib16 article-title: Tactile perception and working memory in rats and humans publication-title: Proc. Natl. Acad. Sci. USA – start-page: 827873 year: 2019 ident: bib23 article-title: Data architecture and visualization for a large-scale neuroscience collaboration publication-title: BioRxiv – volume: 110 start-page: 684 year: 2013 end-page: 689 ident: bib12 article-title: High-order feature-based mixture models of classification learning predict individual learning curves and enable personalized teaching publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 67 year: 2005 end-page: 95 ident: bib47 article-title: Behavioral and neurophysiological analyses of dynamic learning processes publication-title: Behav. Cogn. Neurosci. Rev. – year: 2011 ident: bib15 article-title: Trial-by-trial data analysis using computational models publication-title: Decision Making, Affect, and Learning: Attention and Performance XXIII – volume: 14 start-page: 9 year: 2014 ident: bib17 article-title: Quantifying the effect of intertrial dependence on perceptual decisions publication-title: J. Vision – volume: 113 start-page: 567 year: 2015 end-page: 577 ident: bib35 article-title: Ghosts in the machine: memory interference from the previous trial publication-title: J. Neurophysiol. – volume: 30 start-page: 535 year: 2007 end-page: 574 ident: bib18 article-title: The neural basis of decision making publication-title: Annu. Rev. Neurosci. – year: 2020 ident: bib32 article-title: The primacy of behavioral research for understanding the brain publication-title: PsyArXiv – volume: 15 start-page: 317 year: 2003 end-page: 324 ident: bib42 article-title: Evidence optimization techniques for estimating stimulus-response functions publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 693 year: 2008 end-page: 702 ident: bib11 article-title: Decision-making with multiple alternatives publication-title: Nat. Neurosci. – year: 1966 ident: bib19 article-title: Signal Detection Theory and Psychophysics – volume: 3 start-page: 9 year: 1988 end-page: 44 ident: bib45 article-title: Learning to predict by the methods of temporal differences publication-title: Mach. Learn. – volume: 30 start-page: 1947 year: 2016 end-page: 1955 ident: bib4 article-title: Adaptive optimal training of animal behavior publication-title: Adv. Neural Inf. Process. Syst – volume: 24 start-page: 447 year: 2004 end-page: 461 ident: bib44 article-title: Dynamic analysis of learning in behavioral experiments publication-title: J. Neurosci. – volume: 16 start-page: 824 year: 2013 end-page: 831 ident: bib10 article-title: Probing perceptual decisions in rodents publication-title: Nat. Neurosci. – year: 2018 ident: bib46 article-title: Reinforcement Learning: An Introduction – volume: 11 start-page: 49 year: 2016 end-page: 54 ident: bib30 article-title: Taming the beast: extracting generalizable knowledge from computational models of cognition publication-title: Curr. Opin. Behav. Sci. – start-page: 135 year: 2006 end-page: 163 ident: bib34 article-title: Quasi-Newton methods publication-title: Numerical Optimization – volume: 35 start-page: 8145 year: 2015 end-page: 8157 ident: bib33 article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms publication-title: J. Neurosci. – volume: 245 start-page: 171 year: 1991 end-page: 181 ident: bib41 article-title: An accelerated lambda iteration method for multilevel radiative transfer. I-Non-overlapping lines with background continuum; Appendix B publication-title: Astron. Astrophys. – volume: 20 start-page: 2513 year: 2017 end-page: 2524 ident: bib7 article-title: High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice publication-title: Cell Rep. – volume: 17 start-page: 3 year: 2017 ident: bib26 article-title: Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks publication-title: J. Vis. – volume: 16 start-page: 1335 year: 2004 end-page: 1342 ident: bib43 article-title: Estimating internal variables and parameters of a learning agent by a particle filter publication-title: Adv. Neural Inf. Process.Syst. – year: 2001 ident: bib25 publication-title: SciPy: open source scientific tools for Python – volume: 258 start-page: 1668 year: 1992 end-page: 1670 ident: bib28 article-title: Behavioral lifetime of human auditory sensory memory predicted by physiological measures publication-title: Science – volume: 93 start-page: 480 year: 2017 end-page: 490 ident: bib27 article-title: Neuroscience needs behavior: correcting a reductionist bias publication-title: Neuron – volume: 53 start-page: 139 year: 2009 end-page: 154 ident: bib31 article-title: Reinforcement learning in the brain publication-title: J. Math. Psychol. – volume: 15 start-page: 507 year: 2012 end-page: 509 ident: bib9 article-title: From circuits to behavior: a bridge too far? publication-title: Nat. Neurosci. – volume: 18 year: 2013 ident: bib50 article-title: Dynamics of decision-making: from evidence accumulation to preference and belief publication-title: Front. Psychol. – volume: 30 start-page: 3499 year: 2017 end-page: 3508 ident: bib51 article-title: Gaussian process based nonlinear latent structure discovery in multivariate spike train data publication-title: Adv. Neural Inf. Process. Syst. – volume: 31 start-page: 5695 year: 2018 end-page: 5705 ident: bib39 article-title: Efficient inference for time-varying behavior during learning publication-title: Adv. Neural Inf. Process Syst. – volume: 554 start-page: 368 year: 2018 end-page: 372 ident: bib1 article-title: Posterior parietal cortex represents sensory history and mediates its effects on behaviour publication-title: Nature – volume: 9 start-page: 347 year: 1998 end-page: 356 ident: bib38 article-title: Modeling response times for two-choice decisions publication-title: Psychol. Sci. – volume: 319 start-page: 1849 year: 2008 end-page: 1851 ident: bib29 article-title: Rule learning by rats publication-title: Science – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: bib49 article-title: Sparse bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – year: 2018 ident: bib40 article-title: PsyTrack: open source dynamic behavioral fitting tool for Python – start-page: 613828 year: 2019 ident: bib37 article-title: Lapses in perceptual decisions reflect exploration publication-title: bioRxiv – volume: 9 start-page: e88678 year: 2014 ident: bib20 article-title: Procedures for behavioral experiments in head-fixed mice publication-title: PLOS ONE – volume: 9 start-page: 4265 year: 2018 ident: bib36 article-title: Rats adopt the optimal timescale for evidence integration in a dynamic environment publication-title: Nat. Commun. – volume: 31 start-page: 11351 year: 2011 end-page: 11361 ident: bib8 article-title: The detection of visual contrast in the behaving mouse publication-title: J. Neurosci. – volume: 84 start-page: 581 year: 2005 end-page: 617 ident: bib13 article-title: Linear-Nonlinear-Poisson models of primate choice dynamics publication-title: J. Exp. Anal. Behav. – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: bib22 article-title: Matplotlib: A 2d graphics environment publication-title: Comput. Sci. Eng. – volume: 111 start-page: 2331 year: 2014 ident: 10.1016/j.neuron.2020.12.004_bib16 article-title: Tactile perception and working memory in rats and humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315171111 – volume: 93 start-page: 480 year: 2017 ident: 10.1016/j.neuron.2020.12.004_bib27 article-title: Neuroscience needs behavior: correcting a reductionist bias publication-title: Neuron doi: 10.1016/j.neuron.2016.12.041 – volume: 16 start-page: 824 year: 2013 ident: 10.1016/j.neuron.2020.12.004_bib10 article-title: Probing perceptual decisions in rodents publication-title: Nat. Neurosci. doi: 10.1038/nn.3410 – volume: 11 start-page: 693 year: 2008 ident: 10.1016/j.neuron.2020.12.004_bib11 article-title: Decision-making with multiple alternatives publication-title: Nat. Neurosci. doi: 10.1038/nn.2123 – volume: 30 start-page: 535 year: 2007 ident: 10.1016/j.neuron.2020.12.004_bib18 article-title: The neural basis of decision making publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.29.051605.113038 – volume: 16 start-page: 1335 year: 2004 ident: 10.1016/j.neuron.2020.12.004_bib43 article-title: Estimating internal variables and parameters of a learning agent by a particle filter publication-title: Adv. Neural Inf. Process.Syst. – volume: 110 start-page: 684 year: 2013 ident: 10.1016/j.neuron.2020.12.004_bib12 article-title: High-order feature-based mixture models of classification learning predict individual learning curves and enable personalized teaching publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1211606110 – volume: 15 start-page: 507 year: 2012 ident: 10.1016/j.neuron.2020.12.004_bib9 article-title: From circuits to behavior: a bridge too far? publication-title: Nat. Neurosci. doi: 10.1038/nn.3043 – volume: 24 start-page: 447 year: 2004 ident: 10.1016/j.neuron.2020.12.004_bib44 article-title: Dynamic analysis of learning in behavioral experiments publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2908-03.2004 – volume: 258 start-page: 1668 year: 1992 ident: 10.1016/j.neuron.2020.12.004_bib28 article-title: Behavioral lifetime of human auditory sensory memory predicted by physiological measures publication-title: Science doi: 10.1126/science.1455246 – volume: 319 start-page: 1849 year: 2008 ident: 10.1016/j.neuron.2020.12.004_bib29 article-title: Rule learning by rats publication-title: Science doi: 10.1126/science.1151564 – volume: 20 start-page: 369 year: 2008 ident: 10.1016/j.neuron.2020.12.004_bib14 article-title: The pigeon as particle filter publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 33 year: 2020 ident: 10.1016/j.neuron.2020.12.004_bib2 article-title: Inferring learning rules from animal decision-making publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: 10.1016/j.neuron.2020.12.004_bib40 – volume: 11 start-page: 49 year: 2016 ident: 10.1016/j.neuron.2020.12.004_bib30 article-title: Taming the beast: extracting generalizable knowledge from computational models of cognition publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2016.04.003 – year: 2006 ident: 10.1016/j.neuron.2020.12.004_bib5 – year: 1966 ident: 10.1016/j.neuron.2020.12.004_bib19 – start-page: 827873 year: 2019 ident: 10.1016/j.neuron.2020.12.004_bib23 article-title: Data architecture and visualization for a large-scale neuroscience collaboration publication-title: BioRxiv – volume: 53 start-page: 139 year: 2009 ident: 10.1016/j.neuron.2020.12.004_bib31 article-title: Reinforcement learning in the brain publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2008.12.005 – volume: 18 year: 2013 ident: 10.1016/j.neuron.2020.12.004_bib50 article-title: Dynamics of decision-making: from evidence accumulation to preference and belief publication-title: Front. Psychol. – volume: 31 start-page: 5695 year: 2018 ident: 10.1016/j.neuron.2020.12.004_bib39 article-title: Efficient inference for time-varying behavior during learning publication-title: Adv. Neural Inf. Process Syst. – volume: 9 start-page: 4265 year: 2018 ident: 10.1016/j.neuron.2020.12.004_bib36 article-title: Rats adopt the optimal timescale for evidence integration in a dynamic environment publication-title: Nat. Commun. doi: 10.1038/s41467-018-06561-y – year: 2018 ident: 10.1016/j.neuron.2020.12.004_bib46 – volume: 35 start-page: 8145 year: 2015 ident: 10.1016/j.neuron.2020.12.004_bib33 article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2978-14.2015 – year: 2020 ident: 10.1016/j.neuron.2020.12.004_bib32 article-title: The primacy of behavioral research for understanding the brain publication-title: PsyArXiv – volume: 9 start-page: 90 year: 2007 ident: 10.1016/j.neuron.2020.12.004_bib22 article-title: Matplotlib: A 2d graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 31 start-page: 11351 year: 2011 ident: 10.1016/j.neuron.2020.12.004_bib8 article-title: The detection of visual contrast in the behaving mouse publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6689-10.2011 – volume: 20 start-page: 2513 year: 2017 ident: 10.1016/j.neuron.2020.12.004_bib7 article-title: High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.08.047 – volume: 554 start-page: 368 year: 2018 ident: 10.1016/j.neuron.2020.12.004_bib1 article-title: Posterior parietal cortex represents sensory history and mediates its effects on behaviour publication-title: Nature doi: 10.1038/nature25510 – volume: 18 start-page: 4 year: 2018 ident: 10.1016/j.neuron.2020.12.004_bib3 article-title: Adaptive stimulus selection for multi-alternative psychometric functions with lapses publication-title: J. Vision doi: 10.1167/18.12.4 – volume: 15 start-page: 317 year: 2003 ident: 10.1016/j.neuron.2020.12.004_bib42 article-title: Evidence optimization techniques for estimating stimulus-response functions publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: e88678 year: 2014 ident: 10.1016/j.neuron.2020.12.004_bib20 article-title: Procedures for behavioral experiments in head-fixed mice publication-title: PLOS ONE doi: 10.1371/journal.pone.0088678 – volume: 245 start-page: 171 year: 1991 ident: 10.1016/j.neuron.2020.12.004_bib41 article-title: An accelerated lambda iteration method for multilevel radiative transfer. I-Non-overlapping lines with background continuum; Appendix B publication-title: Astron. Astrophys. – year: 2011 ident: 10.1016/j.neuron.2020.12.004_bib15 article-title: Trial-by-trial data analysis using computational models – volume: 84 start-page: 581 year: 2005 ident: 10.1016/j.neuron.2020.12.004_bib13 article-title: Linear-Nonlinear-Poisson models of primate choice dynamics publication-title: J. Exp. Anal. Behav. doi: 10.1901/jeab.2005.23-05 – year: 2020 ident: 10.1016/j.neuron.2020.12.004_bib24 article-title: A standardized and reproducible method to measure decision-making in mice publication-title: bioRxiv – volume: 4 start-page: 67 year: 2005 ident: 10.1016/j.neuron.2020.12.004_bib47 article-title: Behavioral and neurophysiological analyses of dynamic learning processes publication-title: Behav. Cogn. Neurosci. Rev. doi: 10.1177/1534582305280030 – start-page: 135 year: 2006 ident: 10.1016/j.neuron.2020.12.004_bib34 article-title: Quasi-Newton methods – volume: 1 start-page: 211 year: 2001 ident: 10.1016/j.neuron.2020.12.004_bib49 article-title: Sparse bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – year: 2001 ident: 10.1016/j.neuron.2020.12.004_bib25 – volume: 9 start-page: 347 year: 1998 ident: 10.1016/j.neuron.2020.12.004_bib38 article-title: Modeling response times for two-choice decisions publication-title: Psychol. Sci. doi: 10.1111/1467-9280.00067 – volume: 17 start-page: 3 year: 2017 ident: 10.1016/j.neuron.2020.12.004_bib26 article-title: Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks publication-title: J. Vis. – volume: 30 start-page: 1947 year: 2016 ident: 10.1016/j.neuron.2020.12.004_bib4 article-title: Adaptive optimal training of animal behavior publication-title: Adv. Neural Inf. Process. Syst – volume: 113 start-page: 567 year: 2015 ident: 10.1016/j.neuron.2020.12.004_bib35 article-title: Ghosts in the machine: memory interference from the previous trial publication-title: J. Neurophysiol. doi: 10.1152/jn.00402.2014 – volume: 14 start-page: 9 year: 2014 ident: 10.1016/j.neuron.2020.12.004_bib17 article-title: Quantifying the effect of intertrial dependence on perceptual decisions publication-title: J. Vision doi: 10.1167/14.7.9 – volume: 30 start-page: 3499 year: 2017 ident: 10.1016/j.neuron.2020.12.004_bib51 article-title: Gaussian process based nonlinear latent structure discovery in multivariate spike train data publication-title: Adv. Neural Inf. Process. Syst. – volume: 340 start-page: 95 year: 2013 ident: 10.1016/j.neuron.2020.12.004_bib6 article-title: Rats and humans can optimally accumulate evidence for decision-making publication-title: Science doi: 10.1126/science.1233912 – start-page: 613828 year: 2019 ident: 10.1016/j.neuron.2020.12.004_bib37 article-title: Lapses in perceptual decisions reflect exploration publication-title: bioRxiv – volume: 93 start-page: 15 year: 2017 ident: 10.1016/j.neuron.2020.12.004_bib21 article-title: Perceptual decision making in rodents, monkeys, and humans publication-title: Neuron doi: 10.1016/j.neuron.2016.12.003 – volume: 3 start-page: 9 year: 1988 ident: 10.1016/j.neuron.2020.12.004_bib45 article-title: Learning to predict by the methods of temporal differences publication-title: Mach. Learn. doi: 10.1007/BF00115009 – reference: 33600750 - Neuron. 2021 Feb 17;109(4):561-563 |
SSID | ssj0014591 |
Score | 2.5398498 |
Snippet | Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to... SummaryDecision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making... Decision-making strategies evolve during training, and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 597 |
SubjectTerms | Acoustic Stimulation - methods Adult Animals Auditory discrimination learning Auditory Perception - physiology Behavior behavioral dynamics Bias Decision making Decision Making - physiology Experiments Female Generalized linear models Humans Laboratories Learning Male Mice Mice, Inbred C57BL Photic Stimulation - methods Psychomotor Performance - physiology psychophysics Quantitative psychology Rats Rats, Long-Evans Reaction Time - physiology sensory decision making Sensory integration Sensory stimuli Statistical analysis Variables Visual Perception - physiology Young Adult |
Title | Extracting the dynamics of behavior in sensory decision-making experiments |
URI | https://dx.doi.org/10.1016/j.neuron.2020.12.004 https://www.ncbi.nlm.nih.gov/pubmed/33412101 https://www.proquest.com/docview/2490569352 https://www.proquest.com/docview/2476568605 https://pubmed.ncbi.nlm.nih.gov/PMC7897255 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB5KRfBFtPXHaS0RxLdwuSR72TyepaW06INavLeQ3WT1it0rvSt4_70z2ezqqVDwdXcCu5n8-CaZ-T6AN0IHXPQmFUf_FlwXlea-MDWvakpllNHWgc4h33-Ynl7os3kx34GjvhaG0irz2t-t6Wm1zk_GuTfH14vF-JMoLbGXK0m3BFNFtNtKl6mIb_5uuEnQRaeah8acrPvyuZTjlTgjiQVVinQomOXa_rE9_Q0__8yi_G1bOnkEDzOeZLPukx_DTmz3YH_WYix9tWFvWcrwTEfne3C_E57c7MPZ8Y91Ko9qvzJEgCx0uvQrtmxYX7jPFi1bYZC7vNmwkJV4-FUSr2K_dAFWT-Di5Pjz0SnPqgq81nayRleEEGqvoqi9kN4E77U3jW2MFYHICm2pERYUyoZpFTV1cCjjVCKuagoRvXoKu-2yjc-BxUlVCdXIEEyto_JlpSkEK0WQlib3CFTfma7OlOOkfPHd9blll65zgSMXuIl06IIR8KHVdUe5cYe96f3ktoaOw13hjpYHvVtdnrorh_EogkKLwHQEr4fXOOnoJsW3cXlLNgZxcImh4AiedaNg-FSFuADjaPx5szU-BgMi9N5-0y6-JWJvU1qDId6L__6hl_BAUs4NCdaYA9hd39zGVwia1tUh3Judf_xyfphmx0-7WxgX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RTxQxEJ4gxsiLUVA5Ba2J8W1zvW53u31EAjkQeBGSe2u62y6ekT3CHYn3753pdldOSEh83U6TbqfTftPOzAfwmUuHm96oTFC_WSKzUiY2U1VSVhTKKLyuHN1Dnp7l4wt5PMkma7Df5cJQWGXc-9s9PezW8cswzubwejodfueFpurlqaBXgjzNn8BTRAOK-BuOJl_7pwSZtbR5KJ2QeJc_F4K8QtFIKoMqeLgVjHxtD5xP9_Hnv2GUd86lw5fwIgJKtteO-RWs-WYTtvYadKavluwLCyGe4e58E561zJPLLTg--L0I-VHNJUMIyFxLTD9ns5p1mfts2rA5ermzmyVzkYonuQrsVewvMcD8NVwcHpzvj5NIq5BUUo8WqAvnXGVTzyvLhVXOWmlVrWuluaNqhbqQiAuyVLu89JJm2BU-Fwis6ox7m76B9WbW-G1gflSWPK2Fc6qSPrVFKckHK7gTmqx7AGk3maaKNceJ-uKX6YLLfppWBYZUYEbCoAoGkPS9rtuaG4_Iq05PZmXtGDwWHum506nVRNudG3RIERVqRKYD-NQ3o9XRU4pt_OyWZBQC4QJ9wQG8bVdBP9QUgQE60vjzamV99AJU0Xu1pZn-CJW9VaEV-njv_vuHPsLz8fnpiTk5Ovv2HjYEBeAQe43agfXFza3fRQS1KD8EC_kD-cYZkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+the+dynamics+of+behavior+in+sensory+decision-making+experiments&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Roy%2C+Nicholas+A.&rft.au=Bak%2C+Ji+Hyun&rft.au=Akrami%2C+Athena&rft.au=Brody%2C+Carlos+D.&rft.date=2021-02-17&rft.issn=0896-6273&rft.volume=109&rft.issue=4&rft.spage=597&rft.epage=610.e6&rft_id=info:doi/10.1016%2Fj.neuron.2020.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuron_2020_12_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |