Extracting the dynamics of behavior in sensory decision-making experiments

Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexi...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 109; no. 4; pp. 597 - 610.e6
Main Authors Roy, Nicholas A., Bak, Ji Hyun, Akrami, Athena, Brody, Carlos D., Pillow, Jonathan W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.02.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2020.12.004

Cover

Loading…
Abstract Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks. [Display omitted] •Dynamic model for time-varying sensory decision-making behavior•Visualize changes in behavioral strategies of mice, rats, and humans across training•Infer how quickly different parameters change between trials and between sessions•Colab notebook reproduces all figures and analyses, facilitating application to new data Roy et al. present a method for inferring the time course of behavioral strategies in sensory decision-making tasks, which they use to analyze how behavior evolves during training in rats, mice, and humans.
AbstractList Decision-making strategies evolve during training, and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function, fit after training is complete. Here we present PsyTrack , a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks, and show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice, and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks. Roy et al. present a method for inferring the time course of behavioral strategies in sensory decision-making tasks, which they use to analyze how behavior evolves during training in rats, mice, & humans.
SummaryDecision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks.
Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks.Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks.
Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks.
Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks. [Display omitted] •Dynamic model for time-varying sensory decision-making behavior•Visualize changes in behavioral strategies of mice, rats, and humans across training•Infer how quickly different parameters change between trials and between sessions•Colab notebook reproduces all figures and analyses, facilitating application to new data Roy et al. present a method for inferring the time course of behavioral strategies in sensory decision-making tasks, which they use to analyze how behavior evolves during training in rats, mice, and humans.
Author Roy, Nicholas A.
Akrami, Athena
Bak, Ji Hyun
Brody, Carlos D.
Pillow, Jonathan W.
AuthorAffiliation d Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK
e Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
f Dept. of Psychology, Princeton University, Princeton, NJ 08544, USA
b Korea Institute for Advanced Study, Seoul 02455, South Korea
g Current address: DeepMind, London N1C 4AG, UK
i Lead Contact
c Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
a Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
h Current address: University of California, San Francisco, San Francisco, CA 94158, USA
AuthorAffiliation_xml – name: e Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
– name: d Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK
– name: c Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
– name: h Current address: University of California, San Francisco, San Francisco, CA 94158, USA
– name: a Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
– name: i Lead Contact
– name: f Dept. of Psychology, Princeton University, Princeton, NJ 08544, USA
– name: b Korea Institute for Advanced Study, Seoul 02455, South Korea
– name: g Current address: DeepMind, London N1C 4AG, UK
Author_xml – sequence: 1
  givenname: Nicholas A.
  orcidid: 0000-0002-4277-2928
  surname: Roy
  fullname: Roy, Nicholas A.
  email: nicholas.roy.42@gmail.com
  organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
– sequence: 2
  givenname: Ji Hyun
  orcidid: 0000-0002-5700-7823
  surname: Bak
  fullname: Bak, Ji Hyun
  organization: Korea Institute for Advanced Study, Seoul 02455, South Korea
– sequence: 3
  givenname: Athena
  surname: Akrami
  fullname: Akrami, Athena
  organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
– sequence: 4
  givenname: Carlos D.
  orcidid: 0000-0002-4201-561X
  surname: Brody
  fullname: Brody, Carlos D.
  organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
– sequence: 5
  givenname: Jonathan W.
  surname: Pillow
  fullname: Pillow, Jonathan W.
  email: pillow@princeton.edu
  organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33412101$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URNPCP0BoJDZsJvg9YxZIVVVeqsQG1pZj32kcZuxge6Lm3-MoKYIuYGXJ_s7xufdcoLMQAyD0kuAlwUS-3SwDzCmGJcW0XtElxvwJWhCsupYTpc7QAvdKtpJ27Bxd5LzBmHChyDN0zhgntLos0Jeb-5KMLT7cNWUNjdsHM3mbmzg0K1ibnY-p8aHJEHJM-8aB9dnH0E7mx0ED91tIfoJQ8nP0dDBjhhen8xJ9_3Dz7fpTe_v14-frq9vWckVKa4RzzhoG2BpMTeeM4aYb1NAp7AjjSvW8p1gw5eQKeE1PXQ-SciYGgcGwS_T-6LudVxM4W_9OZtTbGsOkvY7G679fgl_ru7jTXa86KkQ1eHMySPHnDLnoyWcL42gCxDlryjspZC_xAX39CN3EOYU6XqUUFlIxQSv16s9Ev6M8rLkC746ATTHnBIO2vphS91gD-lETrA-d6o0-dqoPnWpCde20ivkj8YP_f2SnNUHtYuch6Ww9BAvOJ7BFu-j_bfAL4nO-gg
CitedBy_id crossref_primary_10_1167_jov_21_13_5
crossref_primary_10_1073_pnas_2417025122
crossref_primary_10_1016_j_neuron_2022_07_005
crossref_primary_10_1038_s41593_021_01007_z
crossref_primary_10_1016_j_cell_2022_08_019
crossref_primary_10_7554_eLife_63711
crossref_primary_10_1016_j_celrep_2022_111190
crossref_primary_10_3758_s13428_023_02244_9
crossref_primary_10_1016_j_cub_2024_09_045
crossref_primary_10_1016_j_neuron_2024_02_008
crossref_primary_10_1371_journal_pcbi_1011985
crossref_primary_10_1371_journal_pcbi_1011104
crossref_primary_10_1016_j_neuron_2022_05_012
crossref_primary_10_1016_j_plrev_2023_07_006
crossref_primary_10_1080_1528008X_2023_2235717
crossref_primary_10_7554_eLife_86491
crossref_primary_10_1016_j_anbehav_2024_02_016
crossref_primary_10_1038_s41467_024_44880_5
crossref_primary_10_1038_s41583_025_00916_3
crossref_primary_10_1038_s41593_023_01567_2
crossref_primary_10_1016_j_neuroimage_2025_121134
crossref_primary_10_1523_JNEUROSCI_0231_23_2024
crossref_primary_10_1016_j_cub_2024_04_017
crossref_primary_10_1016_j_neuroimage_2022_119610
crossref_primary_10_7554_eLife_64978
crossref_primary_10_1016_j_neuron_2024_06_016
crossref_primary_10_1038_s41467_022_29807_2
crossref_primary_10_1371_journal_pbio_3002410
crossref_primary_10_1038_s41593_022_01021_9
crossref_primary_10_1016_j_ibneur_2022_05_006
crossref_primary_10_1073_pnas_2113961119
crossref_primary_10_1016_j_neuron_2021_01_025
crossref_primary_10_1167_jov_24_2_5
crossref_primary_10_1371_journal_pcbi_1011950
crossref_primary_10_1007_s10071_023_01769_y
crossref_primary_10_1371_journal_pcbi_1011430
crossref_primary_10_3389_fnins_2022_794681
crossref_primary_10_1016_j_conb_2023_102759
crossref_primary_10_1093_cercor_bhae328
crossref_primary_10_1523_ENEURO_0327_24_2024
crossref_primary_10_1038_s41562_022_01510_8
Cites_doi 10.1073/pnas.1315171111
10.1016/j.neuron.2016.12.041
10.1038/nn.3410
10.1038/nn.2123
10.1146/annurev.neuro.29.051605.113038
10.1073/pnas.1211606110
10.1038/nn.3043
10.1523/JNEUROSCI.2908-03.2004
10.1126/science.1455246
10.1126/science.1151564
10.1016/j.cobeha.2016.04.003
10.1016/j.jmp.2008.12.005
10.1038/s41467-018-06561-y
10.1523/JNEUROSCI.2978-14.2015
10.1109/MCSE.2007.55
10.1523/JNEUROSCI.6689-10.2011
10.1016/j.celrep.2017.08.047
10.1038/nature25510
10.1167/18.12.4
10.1371/journal.pone.0088678
10.1901/jeab.2005.23-05
10.1177/1534582305280030
10.1111/1467-9280.00067
10.1152/jn.00402.2014
10.1167/14.7.9
10.1126/science.1233912
10.1016/j.neuron.2016.12.003
10.1007/BF00115009
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020. Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020. Elsevier Inc.
CorporateAuthor The International Brain Laboratory
International Brain Laboratory
CorporateAuthor_xml – name: The International Brain Laboratory
– name: International Brain Laboratory
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2020.12.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Nursing & Allied Health Premium
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 610.e6
ExternalDocumentID PMC7897255
33412101
10_1016_j_neuron_2020_12_004
S0896627320309636
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Howard Hughes Medical Institute
– fundername: Wellcome Trust
  grantid: 209558
– fundername: NINDS NIH HHS
  grantid: R01 NS104899
– fundername: Wellcome Trust
  grantid: 216324
– fundername: NIBIB NIH HHS
  grantid: R01 EB026946
– fundername: NINDS NIH HHS
  grantid: U19 NS104648
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M2M
M2O
M3Z
M41
N9A
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
RIG
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c491t-a5dddca3e0ca02a7daa4a7f9f790d1349984820539d6be42732d8e62435f50ea3
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 14:33:00 EDT 2025
Thu Jul 10 23:46:10 EDT 2025
Fri Jul 25 11:05:34 EDT 2025
Mon Jul 21 06:01:47 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Tue Jul 01 01:16:25 EDT 2025
Fri Feb 23 02:48:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords sensory decision making
behavioral dynamics
learning
psychophysics
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-a5dddca3e0ca02a7daa4a7f9f790d1349984820539d6be42732d8e62435f50ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
Conceptualization, N.A.R., J.H.B., J.W.P.; Methodology, N.A.R., J.H.B., J.W.P.; Software, N.A.R.; Formal Analysis, N.A.R.; Investigation, N.A.R., I.B.L., A.A.; Resources, I.B.L., A.A., C.D.B., J.W.P.; Data Curation, N.A.R., I.B.L., A.A.; Writing – Original Draft, N.A.R.; Writing – Review & Editing, N.A.R., J.H.B., I.B.L., A.A., C.D.B., J.W.P.; Visualization, N.A.R.; Supervision, J.W.P.; Project Administration, N.A.R., J.W.P.; Funding Acquisition, I.B.L., J.W.P.
ORCID 0000-0002-4201-561X
0000-0002-4277-2928
0000-0002-5700-7823
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7897255
PMID 33412101
PQID 2490569352
PQPubID 2031076
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897255
proquest_miscellaneous_2476568605
proquest_journals_2490569352
pubmed_primary_33412101
crossref_citationtrail_10_1016_j_neuron_2020_12_004
crossref_primary_10_1016_j_neuron_2020_12_004
elsevier_sciencedirect_doi_10_1016_j_neuron_2020_12_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-17
PublicationDateYYYYMMDD 2021-02-17
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Murphy, Mondragon, Murphy (bib29) 2008; 319
Usher, Tsetsos, Yu, Lagnado (bib50) 2013; 18
Corrado, Sugrue, Seung, Newsome (bib13) 2005; 84
Carandini, Churchland (bib10) 2013; 16
Aguillon-Rodriguez, Angelaki, Bayer, Bonacchi, Carandini, Cazettes, Chapuis, Churchland, Dan (bib24) 2020
Carandini (bib9) 2012; 15
Jones, Oliphant, Peterson (bib25) 2001
Hunter (bib22) 2007; 9
Smith, Frank, Wirth, Yanike, Hu, Kubota, Graybiel, Suzuki, Brown (bib44) 2004; 24
Kattner, Cochrane, Green (bib26) 2017; 17
Green, Swets (bib19) 1966
Nassar, Frank (bib30) 2016; 11
Roy, Bak, Pillow (bib40) 2018
Bak, Choi, Akrami, Witten, Pillow (bib4) 2016; 30
Suzuki, Brown (bib47) 2005; 4
Rybicki, Hummer (bib41) 1991; 245
Frund, Wichmann, Macke (bib17) 2014; 14
Piet, Hady, Brody (bib36) 2018; 9
Samejima, Doya, Ueda, Kimura (bib43) 2004; 16
Churchland, Kiani, Shadlen (bib11) 2008; 11
Sahani, Linden (bib42) 2003; 15
Daw (bib15) 2011
Pisupati, Chartarifsky-Lynn, Khanal, Churchland (bib37) 2019
Burgess, Lak, Steinmetz, Zatka-Haas, Bai Reddy, Jacobs, Linden, Paton, Ranson, Schröder (bib7) 2017; 20
Wu, Roy, Keeley, Pillow (bib51) 2017; 30
Ratcliff, Rouder (bib38) 1998; 9
Niv, Daniel, Geana, Gershman, Leong, Radulescu, Wilson (bib33) 2015; 35
Busse, Ayaz, Dhruv, Katzner, Saleem, Schölvinck, Zaharia, Carandini (bib8) 2011; 31
Tipping (bib49) 2001; 1
Gold, Shadlen (bib18) 2007; 30
Niv (bib32) 2020
Lu, Williamson, Kaufman (bib28) 1992; 258
Papadimitriou, Ferdoash, Snyder (bib35) 2015; 113
Brunton, Botvinick, Brody (bib6) 2013; 340
Nocedal, Wright (bib34) 2006
Bak, Pillow (bib3) 2018; 18
Sutton (bib45) 1988; 3
Bishop (bib5) 2006
Niv (bib31) 2009; 53
Fassihi, Akrami, Esmaeili, Diamond (bib16) 2014; 111
Daw, Courville (bib14) 2008; 20
Krakauer, Ghazanfar, Gomez-Marin, MacIver, Poeppel (bib27) 2017; 93
Roy, Bak, Akrami, Brody, Pillow (bib39) 2018; 31
Cohen, Schneidman (bib12) 2013; 110
Akrami, Kopec, Diamond, Brody (bib1) 2018; 554
Guo, Hires, Li, O’Connor, Komiyama, Ophir, Huber, Bonardi, Morandell, Gutnisky (bib20) 2014; 9
Sutton, Barto (bib46) 2018
Ashwood, Roy, Bak, Pillow (bib2) 2020; 34
Hanks, Summerfield (bib21) 2017; 93
Bonacchi, Chapuis, Churchland, Harris, Rossant, Sasaki, Shen, Steinmetz, Walker (bib23) 2019
Bak (10.1016/j.neuron.2020.12.004_bib3) 2018; 18
Brunton (10.1016/j.neuron.2020.12.004_bib6) 2013; 340
Niv (10.1016/j.neuron.2020.12.004_bib32) 2020
Green (10.1016/j.neuron.2020.12.004_bib19) 1966
Murphy (10.1016/j.neuron.2020.12.004_bib29) 2008; 319
Sutton (10.1016/j.neuron.2020.12.004_bib45) 1988; 3
Ratcliff (10.1016/j.neuron.2020.12.004_bib38) 1998; 9
Frund (10.1016/j.neuron.2020.12.004_bib17) 2014; 14
Hanks (10.1016/j.neuron.2020.12.004_bib21) 2017; 93
Aguillon-Rodriguez (10.1016/j.neuron.2020.12.004_bib24) 2020
Papadimitriou (10.1016/j.neuron.2020.12.004_bib35) 2015; 113
Usher (10.1016/j.neuron.2020.12.004_bib50) 2013; 18
Piet (10.1016/j.neuron.2020.12.004_bib36) 2018; 9
Jones (10.1016/j.neuron.2020.12.004_bib25) 2001
Cohen (10.1016/j.neuron.2020.12.004_bib12) 2013; 110
Churchland (10.1016/j.neuron.2020.12.004_bib11) 2008; 11
Daw (10.1016/j.neuron.2020.12.004_bib14) 2008; 20
Samejima (10.1016/j.neuron.2020.12.004_bib43) 2004; 16
Sahani (10.1016/j.neuron.2020.12.004_bib42) 2003; 15
Burgess (10.1016/j.neuron.2020.12.004_bib7) 2017; 20
Gold (10.1016/j.neuron.2020.12.004_bib18) 2007; 30
Carandini (10.1016/j.neuron.2020.12.004_bib9) 2012; 15
Fassihi (10.1016/j.neuron.2020.12.004_bib16) 2014; 111
Hunter (10.1016/j.neuron.2020.12.004_bib22) 2007; 9
Pisupati (10.1016/j.neuron.2020.12.004_bib37) 2019
Lu (10.1016/j.neuron.2020.12.004_bib28) 1992; 258
Sutton (10.1016/j.neuron.2020.12.004_bib46) 2018
Bak (10.1016/j.neuron.2020.12.004_bib4) 2016; 30
Akrami (10.1016/j.neuron.2020.12.004_bib1) 2018; 554
Nassar (10.1016/j.neuron.2020.12.004_bib30) 2016; 11
Niv (10.1016/j.neuron.2020.12.004_bib31) 2009; 53
Bonacchi (10.1016/j.neuron.2020.12.004_bib23) 2019
Rybicki (10.1016/j.neuron.2020.12.004_bib41) 1991; 245
Tipping (10.1016/j.neuron.2020.12.004_bib49) 2001; 1
Wu (10.1016/j.neuron.2020.12.004_bib51) 2017; 30
Kattner (10.1016/j.neuron.2020.12.004_bib26) 2017; 17
Suzuki (10.1016/j.neuron.2020.12.004_bib47) 2005; 4
Daw (10.1016/j.neuron.2020.12.004_bib15) 2011
Roy (10.1016/j.neuron.2020.12.004_bib39) 2018; 31
Roy (10.1016/j.neuron.2020.12.004_bib40) 2018
Krakauer (10.1016/j.neuron.2020.12.004_bib27) 2017; 93
Ashwood (10.1016/j.neuron.2020.12.004_bib2) 2020; 34
Busse (10.1016/j.neuron.2020.12.004_bib8) 2011; 31
Nocedal (10.1016/j.neuron.2020.12.004_bib34) 2006
Guo (10.1016/j.neuron.2020.12.004_bib20) 2014; 9
Niv (10.1016/j.neuron.2020.12.004_bib33) 2015; 35
Smith (10.1016/j.neuron.2020.12.004_bib44) 2004; 24
Carandini (10.1016/j.neuron.2020.12.004_bib10) 2013; 16
Corrado (10.1016/j.neuron.2020.12.004_bib13) 2005; 84
Bishop (10.1016/j.neuron.2020.12.004_bib5) 2006
33600750 - Neuron. 2021 Feb 17;109(4):561-563
References_xml – volume: 18
  start-page: 4
  year: 2018
  ident: bib3
  article-title: Adaptive stimulus selection for multi-alternative psychometric functions with lapses
  publication-title: J. Vision
– volume: 93
  start-page: 15
  year: 2017
  end-page: 31
  ident: bib21
  article-title: Perceptual decision making in rodents, monkeys, and humans
  publication-title: Neuron
– volume: 34
  start-page: 33
  year: 2020
  ident: bib2
  article-title: Inferring learning rules from animal decision-making
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 369
  year: 2008
  end-page: 376
  ident: bib14
  article-title: The pigeon as particle filter
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: bib24
  article-title: A standardized and reproducible method to measure decision-making in mice
  publication-title: bioRxiv
– year: 2006
  ident: bib5
  article-title: Pattern Recognition and Machine Learning
– volume: 340
  start-page: 95
  year: 2013
  end-page: 98
  ident: bib6
  article-title: Rats and humans can optimally accumulate evidence for decision-making
  publication-title: Science
– volume: 111
  start-page: 2331
  year: 2014
  end-page: 2336
  ident: bib16
  article-title: Tactile perception and working memory in rats and humans
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 827873
  year: 2019
  ident: bib23
  article-title: Data architecture and visualization for a large-scale neuroscience collaboration
  publication-title: BioRxiv
– volume: 110
  start-page: 684
  year: 2013
  end-page: 689
  ident: bib12
  article-title: High-order feature-based mixture models of classification learning predict individual learning curves and enable personalized teaching
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 67
  year: 2005
  end-page: 95
  ident: bib47
  article-title: Behavioral and neurophysiological analyses of dynamic learning processes
  publication-title: Behav. Cogn. Neurosci. Rev.
– year: 2011
  ident: bib15
  article-title: Trial-by-trial data analysis using computational models
  publication-title: Decision Making, Affect, and Learning: Attention and Performance XXIII
– volume: 14
  start-page: 9
  year: 2014
  ident: bib17
  article-title: Quantifying the effect of intertrial dependence on perceptual decisions
  publication-title: J. Vision
– volume: 113
  start-page: 567
  year: 2015
  end-page: 577
  ident: bib35
  article-title: Ghosts in the machine: memory interference from the previous trial
  publication-title: J. Neurophysiol.
– volume: 30
  start-page: 535
  year: 2007
  end-page: 574
  ident: bib18
  article-title: The neural basis of decision making
  publication-title: Annu. Rev. Neurosci.
– year: 2020
  ident: bib32
  article-title: The primacy of behavioral research for understanding the brain
  publication-title: PsyArXiv
– volume: 15
  start-page: 317
  year: 2003
  end-page: 324
  ident: bib42
  article-title: Evidence optimization techniques for estimating stimulus-response functions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 693
  year: 2008
  end-page: 702
  ident: bib11
  article-title: Decision-making with multiple alternatives
  publication-title: Nat. Neurosci.
– year: 1966
  ident: bib19
  article-title: Signal Detection Theory and Psychophysics
– volume: 3
  start-page: 9
  year: 1988
  end-page: 44
  ident: bib45
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Mach. Learn.
– volume: 30
  start-page: 1947
  year: 2016
  end-page: 1955
  ident: bib4
  article-title: Adaptive optimal training of animal behavior
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 24
  start-page: 447
  year: 2004
  end-page: 461
  ident: bib44
  article-title: Dynamic analysis of learning in behavioral experiments
  publication-title: J. Neurosci.
– volume: 16
  start-page: 824
  year: 2013
  end-page: 831
  ident: bib10
  article-title: Probing perceptual decisions in rodents
  publication-title: Nat. Neurosci.
– year: 2018
  ident: bib46
  article-title: Reinforcement Learning: An Introduction
– volume: 11
  start-page: 49
  year: 2016
  end-page: 54
  ident: bib30
  article-title: Taming the beast: extracting generalizable knowledge from computational models of cognition
  publication-title: Curr. Opin. Behav. Sci.
– start-page: 135
  year: 2006
  end-page: 163
  ident: bib34
  article-title: Quasi-Newton methods
  publication-title: Numerical Optimization
– volume: 35
  start-page: 8145
  year: 2015
  end-page: 8157
  ident: bib33
  article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms
  publication-title: J. Neurosci.
– volume: 245
  start-page: 171
  year: 1991
  end-page: 181
  ident: bib41
  article-title: An accelerated lambda iteration method for multilevel radiative transfer. I-Non-overlapping lines with background continuum; Appendix B
  publication-title: Astron. Astrophys.
– volume: 20
  start-page: 2513
  year: 2017
  end-page: 2524
  ident: bib7
  article-title: High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice
  publication-title: Cell Rep.
– volume: 17
  start-page: 3
  year: 2017
  ident: bib26
  article-title: Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks
  publication-title: J. Vis.
– volume: 16
  start-page: 1335
  year: 2004
  end-page: 1342
  ident: bib43
  article-title: Estimating internal variables and parameters of a learning agent by a particle filter
  publication-title: Adv. Neural Inf. Process.Syst.
– year: 2001
  ident: bib25
  publication-title: SciPy: open source scientific tools for Python
– volume: 258
  start-page: 1668
  year: 1992
  end-page: 1670
  ident: bib28
  article-title: Behavioral lifetime of human auditory sensory memory predicted by physiological measures
  publication-title: Science
– volume: 93
  start-page: 480
  year: 2017
  end-page: 490
  ident: bib27
  article-title: Neuroscience needs behavior: correcting a reductionist bias
  publication-title: Neuron
– volume: 53
  start-page: 139
  year: 2009
  end-page: 154
  ident: bib31
  article-title: Reinforcement learning in the brain
  publication-title: J. Math. Psychol.
– volume: 15
  start-page: 507
  year: 2012
  end-page: 509
  ident: bib9
  article-title: From circuits to behavior: a bridge too far?
  publication-title: Nat. Neurosci.
– volume: 18
  year: 2013
  ident: bib50
  article-title: Dynamics of decision-making: from evidence accumulation to preference and belief
  publication-title: Front. Psychol.
– volume: 30
  start-page: 3499
  year: 2017
  end-page: 3508
  ident: bib51
  article-title: Gaussian process based nonlinear latent structure discovery in multivariate spike train data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 5695
  year: 2018
  end-page: 5705
  ident: bib39
  article-title: Efficient inference for time-varying behavior during learning
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 554
  start-page: 368
  year: 2018
  end-page: 372
  ident: bib1
  article-title: Posterior parietal cortex represents sensory history and mediates its effects on behaviour
  publication-title: Nature
– volume: 9
  start-page: 347
  year: 1998
  end-page: 356
  ident: bib38
  article-title: Modeling response times for two-choice decisions
  publication-title: Psychol. Sci.
– volume: 319
  start-page: 1849
  year: 2008
  end-page: 1851
  ident: bib29
  article-title: Rule learning by rats
  publication-title: Science
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: bib49
  article-title: Sparse bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: bib40
  article-title: PsyTrack: open source dynamic behavioral fitting tool for Python
– start-page: 613828
  year: 2019
  ident: bib37
  article-title: Lapses in perceptual decisions reflect exploration
  publication-title: bioRxiv
– volume: 9
  start-page: e88678
  year: 2014
  ident: bib20
  article-title: Procedures for behavioral experiments in head-fixed mice
  publication-title: PLOS ONE
– volume: 9
  start-page: 4265
  year: 2018
  ident: bib36
  article-title: Rats adopt the optimal timescale for evidence integration in a dynamic environment
  publication-title: Nat. Commun.
– volume: 31
  start-page: 11351
  year: 2011
  end-page: 11361
  ident: bib8
  article-title: The detection of visual contrast in the behaving mouse
  publication-title: J. Neurosci.
– volume: 84
  start-page: 581
  year: 2005
  end-page: 617
  ident: bib13
  article-title: Linear-Nonlinear-Poisson models of primate choice dynamics
  publication-title: J. Exp. Anal. Behav.
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: bib22
  article-title: Matplotlib: A 2d graphics environment
  publication-title: Comput. Sci. Eng.
– volume: 111
  start-page: 2331
  year: 2014
  ident: 10.1016/j.neuron.2020.12.004_bib16
  article-title: Tactile perception and working memory in rats and humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315171111
– volume: 93
  start-page: 480
  year: 2017
  ident: 10.1016/j.neuron.2020.12.004_bib27
  article-title: Neuroscience needs behavior: correcting a reductionist bias
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.12.041
– volume: 16
  start-page: 824
  year: 2013
  ident: 10.1016/j.neuron.2020.12.004_bib10
  article-title: Probing perceptual decisions in rodents
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3410
– volume: 11
  start-page: 693
  year: 2008
  ident: 10.1016/j.neuron.2020.12.004_bib11
  article-title: Decision-making with multiple alternatives
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2123
– volume: 30
  start-page: 535
  year: 2007
  ident: 10.1016/j.neuron.2020.12.004_bib18
  article-title: The neural basis of decision making
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.29.051605.113038
– volume: 16
  start-page: 1335
  year: 2004
  ident: 10.1016/j.neuron.2020.12.004_bib43
  article-title: Estimating internal variables and parameters of a learning agent by a particle filter
  publication-title: Adv. Neural Inf. Process.Syst.
– volume: 110
  start-page: 684
  year: 2013
  ident: 10.1016/j.neuron.2020.12.004_bib12
  article-title: High-order feature-based mixture models of classification learning predict individual learning curves and enable personalized teaching
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1211606110
– volume: 15
  start-page: 507
  year: 2012
  ident: 10.1016/j.neuron.2020.12.004_bib9
  article-title: From circuits to behavior: a bridge too far?
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3043
– volume: 24
  start-page: 447
  year: 2004
  ident: 10.1016/j.neuron.2020.12.004_bib44
  article-title: Dynamic analysis of learning in behavioral experiments
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2908-03.2004
– volume: 258
  start-page: 1668
  year: 1992
  ident: 10.1016/j.neuron.2020.12.004_bib28
  article-title: Behavioral lifetime of human auditory sensory memory predicted by physiological measures
  publication-title: Science
  doi: 10.1126/science.1455246
– volume: 319
  start-page: 1849
  year: 2008
  ident: 10.1016/j.neuron.2020.12.004_bib29
  article-title: Rule learning by rats
  publication-title: Science
  doi: 10.1126/science.1151564
– volume: 20
  start-page: 369
  year: 2008
  ident: 10.1016/j.neuron.2020.12.004_bib14
  article-title: The pigeon as particle filter
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 33
  year: 2020
  ident: 10.1016/j.neuron.2020.12.004_bib2
  article-title: Inferring learning rules from animal decision-making
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.neuron.2020.12.004_bib40
– volume: 11
  start-page: 49
  year: 2016
  ident: 10.1016/j.neuron.2020.12.004_bib30
  article-title: Taming the beast: extracting generalizable knowledge from computational models of cognition
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2016.04.003
– year: 2006
  ident: 10.1016/j.neuron.2020.12.004_bib5
– year: 1966
  ident: 10.1016/j.neuron.2020.12.004_bib19
– start-page: 827873
  year: 2019
  ident: 10.1016/j.neuron.2020.12.004_bib23
  article-title: Data architecture and visualization for a large-scale neuroscience collaboration
  publication-title: BioRxiv
– volume: 53
  start-page: 139
  year: 2009
  ident: 10.1016/j.neuron.2020.12.004_bib31
  article-title: Reinforcement learning in the brain
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2008.12.005
– volume: 18
  year: 2013
  ident: 10.1016/j.neuron.2020.12.004_bib50
  article-title: Dynamics of decision-making: from evidence accumulation to preference and belief
  publication-title: Front. Psychol.
– volume: 31
  start-page: 5695
  year: 2018
  ident: 10.1016/j.neuron.2020.12.004_bib39
  article-title: Efficient inference for time-varying behavior during learning
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 9
  start-page: 4265
  year: 2018
  ident: 10.1016/j.neuron.2020.12.004_bib36
  article-title: Rats adopt the optimal timescale for evidence integration in a dynamic environment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06561-y
– year: 2018
  ident: 10.1016/j.neuron.2020.12.004_bib46
– volume: 35
  start-page: 8145
  year: 2015
  ident: 10.1016/j.neuron.2020.12.004_bib33
  article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2978-14.2015
– year: 2020
  ident: 10.1016/j.neuron.2020.12.004_bib32
  article-title: The primacy of behavioral research for understanding the brain
  publication-title: PsyArXiv
– volume: 9
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuron.2020.12.004_bib22
  article-title: Matplotlib: A 2d graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 31
  start-page: 11351
  year: 2011
  ident: 10.1016/j.neuron.2020.12.004_bib8
  article-title: The detection of visual contrast in the behaving mouse
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6689-10.2011
– volume: 20
  start-page: 2513
  year: 2017
  ident: 10.1016/j.neuron.2020.12.004_bib7
  article-title: High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.08.047
– volume: 554
  start-page: 368
  year: 2018
  ident: 10.1016/j.neuron.2020.12.004_bib1
  article-title: Posterior parietal cortex represents sensory history and mediates its effects on behaviour
  publication-title: Nature
  doi: 10.1038/nature25510
– volume: 18
  start-page: 4
  year: 2018
  ident: 10.1016/j.neuron.2020.12.004_bib3
  article-title: Adaptive stimulus selection for multi-alternative psychometric functions with lapses
  publication-title: J. Vision
  doi: 10.1167/18.12.4
– volume: 15
  start-page: 317
  year: 2003
  ident: 10.1016/j.neuron.2020.12.004_bib42
  article-title: Evidence optimization techniques for estimating stimulus-response functions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: e88678
  year: 2014
  ident: 10.1016/j.neuron.2020.12.004_bib20
  article-title: Procedures for behavioral experiments in head-fixed mice
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0088678
– volume: 245
  start-page: 171
  year: 1991
  ident: 10.1016/j.neuron.2020.12.004_bib41
  article-title: An accelerated lambda iteration method for multilevel radiative transfer. I-Non-overlapping lines with background continuum; Appendix B
  publication-title: Astron. Astrophys.
– year: 2011
  ident: 10.1016/j.neuron.2020.12.004_bib15
  article-title: Trial-by-trial data analysis using computational models
– volume: 84
  start-page: 581
  year: 2005
  ident: 10.1016/j.neuron.2020.12.004_bib13
  article-title: Linear-Nonlinear-Poisson models of primate choice dynamics
  publication-title: J. Exp. Anal. Behav.
  doi: 10.1901/jeab.2005.23-05
– year: 2020
  ident: 10.1016/j.neuron.2020.12.004_bib24
  article-title: A standardized and reproducible method to measure decision-making in mice
  publication-title: bioRxiv
– volume: 4
  start-page: 67
  year: 2005
  ident: 10.1016/j.neuron.2020.12.004_bib47
  article-title: Behavioral and neurophysiological analyses of dynamic learning processes
  publication-title: Behav. Cogn. Neurosci. Rev.
  doi: 10.1177/1534582305280030
– start-page: 135
  year: 2006
  ident: 10.1016/j.neuron.2020.12.004_bib34
  article-title: Quasi-Newton methods
– volume: 1
  start-page: 211
  year: 2001
  ident: 10.1016/j.neuron.2020.12.004_bib49
  article-title: Sparse bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: 10.1016/j.neuron.2020.12.004_bib25
– volume: 9
  start-page: 347
  year: 1998
  ident: 10.1016/j.neuron.2020.12.004_bib38
  article-title: Modeling response times for two-choice decisions
  publication-title: Psychol. Sci.
  doi: 10.1111/1467-9280.00067
– volume: 17
  start-page: 3
  year: 2017
  ident: 10.1016/j.neuron.2020.12.004_bib26
  article-title: Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks
  publication-title: J. Vis.
– volume: 30
  start-page: 1947
  year: 2016
  ident: 10.1016/j.neuron.2020.12.004_bib4
  article-title: Adaptive optimal training of animal behavior
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 113
  start-page: 567
  year: 2015
  ident: 10.1016/j.neuron.2020.12.004_bib35
  article-title: Ghosts in the machine: memory interference from the previous trial
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00402.2014
– volume: 14
  start-page: 9
  year: 2014
  ident: 10.1016/j.neuron.2020.12.004_bib17
  article-title: Quantifying the effect of intertrial dependence on perceptual decisions
  publication-title: J. Vision
  doi: 10.1167/14.7.9
– volume: 30
  start-page: 3499
  year: 2017
  ident: 10.1016/j.neuron.2020.12.004_bib51
  article-title: Gaussian process based nonlinear latent structure discovery in multivariate spike train data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 340
  start-page: 95
  year: 2013
  ident: 10.1016/j.neuron.2020.12.004_bib6
  article-title: Rats and humans can optimally accumulate evidence for decision-making
  publication-title: Science
  doi: 10.1126/science.1233912
– start-page: 613828
  year: 2019
  ident: 10.1016/j.neuron.2020.12.004_bib37
  article-title: Lapses in perceptual decisions reflect exploration
  publication-title: bioRxiv
– volume: 93
  start-page: 15
  year: 2017
  ident: 10.1016/j.neuron.2020.12.004_bib21
  article-title: Perceptual decision making in rodents, monkeys, and humans
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.12.003
– volume: 3
  start-page: 9
  year: 1988
  ident: 10.1016/j.neuron.2020.12.004_bib45
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Mach. Learn.
  doi: 10.1007/BF00115009
– reference: 33600750 - Neuron. 2021 Feb 17;109(4):561-563
SSID ssj0014591
Score 2.5398498
Snippet Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to...
SummaryDecision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making...
Decision-making strategies evolve during training, and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 597
SubjectTerms Acoustic Stimulation - methods
Adult
Animals
Auditory discrimination learning
Auditory Perception - physiology
Behavior
behavioral dynamics
Bias
Decision making
Decision Making - physiology
Experiments
Female
Generalized linear models
Humans
Laboratories
Learning
Male
Mice
Mice, Inbred C57BL
Photic Stimulation - methods
Psychomotor Performance - physiology
psychophysics
Quantitative psychology
Rats
Rats, Long-Evans
Reaction Time - physiology
sensory decision making
Sensory integration
Sensory stimuli
Statistical analysis
Variables
Visual Perception - physiology
Young Adult
Title Extracting the dynamics of behavior in sensory decision-making experiments
URI https://dx.doi.org/10.1016/j.neuron.2020.12.004
https://www.ncbi.nlm.nih.gov/pubmed/33412101
https://www.proquest.com/docview/2490569352
https://www.proquest.com/docview/2476568605
https://pubmed.ncbi.nlm.nih.gov/PMC7897255
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB5KRfBFtPXHaS0RxLdwuSR72TyepaW06INavLeQ3WT1it0rvSt4_70z2ezqqVDwdXcCu5n8-CaZ-T6AN0IHXPQmFUf_FlwXlea-MDWvakpllNHWgc4h33-Ynl7os3kx34GjvhaG0irz2t-t6Wm1zk_GuTfH14vF-JMoLbGXK0m3BFNFtNtKl6mIb_5uuEnQRaeah8acrPvyuZTjlTgjiQVVinQomOXa_rE9_Q0__8yi_G1bOnkEDzOeZLPukx_DTmz3YH_WYix9tWFvWcrwTEfne3C_E57c7MPZ8Y91Ko9qvzJEgCx0uvQrtmxYX7jPFi1bYZC7vNmwkJV4-FUSr2K_dAFWT-Di5Pjz0SnPqgq81nayRleEEGqvoqi9kN4E77U3jW2MFYHICm2pERYUyoZpFTV1cCjjVCKuagoRvXoKu-2yjc-BxUlVCdXIEEyto_JlpSkEK0WQlib3CFTfma7OlOOkfPHd9blll65zgSMXuIl06IIR8KHVdUe5cYe96f3ktoaOw13hjpYHvVtdnrorh_EogkKLwHQEr4fXOOnoJsW3cXlLNgZxcImh4AiedaNg-FSFuADjaPx5szU-BgMi9N5-0y6-JWJvU1qDId6L__6hl_BAUs4NCdaYA9hd39zGVwia1tUh3Judf_xyfphmx0-7WxgX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RTxQxEJ4gxsiLUVA5Ba2J8W1zvW53u31EAjkQeBGSe2u62y6ekT3CHYn3753pdldOSEh83U6TbqfTftPOzAfwmUuHm96oTFC_WSKzUiY2U1VSVhTKKLyuHN1Dnp7l4wt5PMkma7Df5cJQWGXc-9s9PezW8cswzubwejodfueFpurlqaBXgjzNn8BTRAOK-BuOJl_7pwSZtbR5KJ2QeJc_F4K8QtFIKoMqeLgVjHxtD5xP9_Hnv2GUd86lw5fwIgJKtteO-RWs-WYTtvYadKavluwLCyGe4e58E561zJPLLTg--L0I-VHNJUMIyFxLTD9ns5p1mfts2rA5ermzmyVzkYonuQrsVewvMcD8NVwcHpzvj5NIq5BUUo8WqAvnXGVTzyvLhVXOWmlVrWuluaNqhbqQiAuyVLu89JJm2BU-Fwis6ox7m76B9WbW-G1gflSWPK2Fc6qSPrVFKckHK7gTmqx7AGk3maaKNceJ-uKX6YLLfppWBYZUYEbCoAoGkPS9rtuaG4_Iq05PZmXtGDwWHum506nVRNudG3RIERVqRKYD-NQ3o9XRU4pt_OyWZBQC4QJ9wQG8bVdBP9QUgQE60vjzamV99AJU0Xu1pZn-CJW9VaEV-njv_vuHPsLz8fnpiTk5Ovv2HjYEBeAQe43agfXFza3fRQS1KD8EC_kD-cYZkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+the+dynamics+of+behavior+in+sensory+decision-making+experiments&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Roy%2C+Nicholas+A.&rft.au=Bak%2C+Ji+Hyun&rft.au=Akrami%2C+Athena&rft.au=Brody%2C+Carlos+D.&rft.date=2021-02-17&rft.issn=0896-6273&rft.volume=109&rft.issue=4&rft.spage=597&rft.epage=610.e6&rft_id=info:doi/10.1016%2Fj.neuron.2020.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuron_2020_12_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon