Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses

In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 11; no. 2; pp. e03364 - 19
Main Authors Chow, Nancy A., Muñoz, José F., Gade, Lalitha, Berkow, Elizabeth L., Li, Xiao, Welsh, Rory M., Forsberg, Kaitlin, Lockhart, Shawn R., Adam, Rodney, Alanio, Alexandre, Alastruey-Izquierdo, Ana, Althawadi, Sahar, Araúz, Ana Belén, Ben-Ami, Ronen, Bharat, Amrita, Calvo, Belinda, Desnos-Ollivier, Marie, Escandón, Patricia, Gardam, Dianne, Gunturu, Revathi, Heath, Christopher H., Kurzai, Oliver, Martin, Ronny, Litvintseva, Anastasia P., Cuomo, Christina A.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 28.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology. Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris . IMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology.
AbstractList Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. aurisIMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology.Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. aurisIMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology.
In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology. Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris . IMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology.
has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in as the most widespread mutation associated with azole resistance and S639P in for echinocandin resistance. Copy number variants in predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in In less than a decade, has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other species, is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new introductions. Through a global collaboration, we assessed genome evolution of isolates of from 19 countries. Here, we described estimated timing of the expansion of each clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology.
ABSTRACT Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris. IMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology.
Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris.
In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology. Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris .
Author Kurzai, Oliver
Martin, Ronny
Berkow, Elizabeth L.
Litvintseva, Anastasia P.
Heath, Christopher H.
Althawadi, Sahar
Escandón, Patricia
Araúz, Ana Belén
Desnos-Ollivier, Marie
Cuomo, Christina A.
Li, Xiao
Alanio, Alexandre
Gardam, Dianne
Adam, Rodney
Alastruey-Izquierdo, Ana
Gade, Lalitha
Bharat, Amrita
Forsberg, Kaitlin
Gunturu, Revathi
Welsh, Rory M.
Calvo, Belinda
Muñoz, José F.
Ben-Ami, Ronen
Chow, Nancy A.
Lockhart, Shawn R.
Author_xml – sequence: 1
  givenname: Nancy A.
  surname: Chow
  fullname: Chow, Nancy A.
  organization: Mycotic Diseases Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
– sequence: 2
  givenname: José F.
  orcidid: 0000-0003-4987-7957
  surname: Muñoz
  fullname: Muñoz, José F.
  organization: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
– sequence: 3
  givenname: Lalitha
  surname: Gade
  fullname: Gade, Lalitha
  organization: Mycotic Diseases Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
– sequence: 4
  givenname: Elizabeth L.
  surname: Berkow
  fullname: Berkow, Elizabeth L.
  organization: Mycotic Diseases Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
– sequence: 5
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
– sequence: 6
  givenname: Rory M.
  surname: Welsh
  fullname: Welsh, Rory M.
  organization: Mycotic Diseases Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
– sequence: 7
  givenname: Kaitlin
  surname: Forsberg
  fullname: Forsberg, Kaitlin
  organization: Mycotic Diseases Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
– sequence: 8
  givenname: Shawn R.
  surname: Lockhart
  fullname: Lockhart, Shawn R.
  organization: Mycotic Diseases Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
– sequence: 9
  givenname: Rodney
  surname: Adam
  fullname: Adam, Rodney
  organization: Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
– sequence: 10
  givenname: Alexandre
  orcidid: 0000-0001-9726-3082
  surname: Alanio
  fullname: Alanio, Alexandre
  organization: Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Paris, France, Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France, Université Paris Diderot, Université de Paris, Paris, France
– sequence: 11
  givenname: Ana
  orcidid: 0000-0001-8651-4405
  surname: Alastruey-Izquierdo
  fullname: Alastruey-Izquierdo, Ana
  organization: Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
– sequence: 12
  givenname: Sahar
  surname: Althawadi
  fullname: Althawadi, Sahar
  organization: Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
– sequence: 13
  givenname: Ana Belén
  surname: Araúz
  fullname: Araúz, Ana Belén
  organization: Hospital Santo Tomás, Panama City, Panama
– sequence: 14
  givenname: Ronen
  surname: Ben-Ami
  fullname: Ben-Ami, Ronen
  organization: Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
– sequence: 15
  givenname: Amrita
  surname: Bharat
  fullname: Bharat, Amrita
  organization: National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
– sequence: 16
  givenname: Belinda
  surname: Calvo
  fullname: Calvo, Belinda
  organization: Department of Infectious Diseases, School of Medicine, Universidad del Zulia, Maracaibo, Venezuela
– sequence: 17
  givenname: Marie
  orcidid: 0000-0002-9137-0466
  surname: Desnos-Ollivier
  fullname: Desnos-Ollivier, Marie
  organization: Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Paris, France
– sequence: 18
  givenname: Patricia
  surname: Escandón
  fullname: Escandón, Patricia
  organization: Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
– sequence: 19
  givenname: Dianne
  surname: Gardam
  fullname: Gardam, Dianne
  organization: Department of Microbiology, PathWest Laboratory Medicine FSH Network, Fiona Stanley Hospital, Murdoch, Australia
– sequence: 20
  givenname: Revathi
  surname: Gunturu
  fullname: Gunturu, Revathi
  organization: Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
– sequence: 21
  givenname: Christopher H.
  orcidid: 0000-0001-7850-6931
  surname: Heath
  fullname: Heath, Christopher H.
  organization: Department of Microbiology, PathWest Laboratory Medicine FSH Network, Fiona Stanley Hospital, Murdoch, Australia, Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Australia, Infectious Diseases, Royal Perth Hospital, Perth, Australia, Faculty of Health & Medical Sciences, University of Western Australia, Crawley, Washington, Australia
– sequence: 22
  givenname: Oliver
  orcidid: 0000-0002-7277-2646
  surname: Kurzai
  fullname: Kurzai, Oliver
  organization: German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology–Hans-Knöll-Institute, Jena, Germany, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
– sequence: 23
  givenname: Ronny
  surname: Martin
  fullname: Martin, Ronny
  organization: German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology–Hans-Knöll-Institute, Jena, Germany, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
– sequence: 24
  givenname: Anastasia P.
  surname: Litvintseva
  fullname: Litvintseva, Anastasia P.
  organization: Mycotic Diseases Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
– sequence: 25
  givenname: Christina A.
  orcidid: 0000-0002-5778-960X
  surname: Cuomo
  fullname: Cuomo, Christina A.
  organization: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32345637$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-03243537$$DView record in HAL
BookMark eNptkkFv2zAMhY2hw9p1Pe46-LiLO1G0ZesyIAuypECA7dCeBVqWExWylVl20P77KUnbrcN0oSA-fnwC-T45631vkuQjsGsAXn3pvll_zRBFnoF8k1xwKFhWFgBnh7uAjAOX58lVCPcsHkSokL1LzpFjXggsL5Lt7UDa9pt03Jp0sfduGq3vaXhMVzaMPkbqm3TpfE0uXTzsqA8xn_o2nceEbSilabAhvQsHyE-_mxwdCOnS9L6zOp315B6DCR-Sty25YK6e4mVy931xO19l6x_Lm_lsnelcwpgR6ArLWlQ1soIXUFGRlwW1CKXQQopGFII04w200DJsjSiaPGeCaVHpWtR4mdycuI2ne7UbbBc_ozxZdXzww0bRMFrtjGqYETnwGknynCRIo3NCLFsCLLDKI-vribWb6s402vTjQO4V9HWmt1u18XtVQlVJWUVAdgJs_ylbzdZqR2E006AY8jz2K_cQ9Z-fGg7-12TCqDobtHGOeuOnoDhKgQxlKaL009_eXujPo40CPAn04EMYTKu0HY-ziVatU8DUYYfUYYfUcYcUyD-OX6qewf_X_waKEchL
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e17026
crossref_primary_10_1038_s41591_021_01383_w
crossref_primary_10_1080_1040841X_2022_2080527
crossref_primary_10_1016_j_apsb_2022_08_001
crossref_primary_10_70099_BJ_2024_03_01_23
crossref_primary_10_1128_mbio_03538_24
crossref_primary_10_5005_jacm_11020_0005
crossref_primary_10_1021_acsinfecdis_1c00590
crossref_primary_10_1038_s41586_024_08419_4
crossref_primary_10_1128_spectrum_03807_22
crossref_primary_10_1128_AAC_01624_21
crossref_primary_10_4236_jbm_2024_121012
crossref_primary_10_1093_g3journal_jkac224
crossref_primary_10_1093_genetics_iyad100
crossref_primary_10_3390_jof9050529
crossref_primary_10_1007_s00253_022_12189_2
crossref_primary_10_1016_j_crmicr_2025_100354
crossref_primary_10_3201_eid2910_230181
crossref_primary_10_1128_mbio_00146_24
crossref_primary_10_3201_eid2704_204361
crossref_primary_10_3389_fcimb_2023_1033707
crossref_primary_10_1093_emph_eoab021
crossref_primary_10_3389_fpubh_2023_1198213
crossref_primary_10_3390_pathogens10101303
crossref_primary_10_1111_myc_13752
crossref_primary_10_1093_ofid_ofaa158
crossref_primary_10_3390_jof7080661
crossref_primary_10_1038_s41564_022_01112_0
crossref_primary_10_1128_mbio_00518_22
crossref_primary_10_1128_mbio_02688_23
crossref_primary_10_1093_clinchem_hvae185
crossref_primary_10_1128_mbio_00799_22
crossref_primary_10_1038_s41564_024_01811_w
crossref_primary_10_1007_s10096_022_04497_2
crossref_primary_10_1128_spectrum_02065_24
crossref_primary_10_1016_j_mycmed_2021_101176
crossref_primary_10_1128_mBio_01476_21
crossref_primary_10_1128_spectrum_01717_21
crossref_primary_10_3390_jof7020140
crossref_primary_10_1111_myc_13765
crossref_primary_10_3390_jof11010035
crossref_primary_10_17517_ksutfd_1451439
crossref_primary_10_1007_s12281_023_00479_9
crossref_primary_10_1093_ofid_ofac559
crossref_primary_10_3389_fcimb_2021_662563
crossref_primary_10_1093_gbe_evad130
crossref_primary_10_2147_IDR_S467418
crossref_primary_10_1007_s11046_021_00593_7
crossref_primary_10_1007_s15010_024_02232_x
crossref_primary_10_1007_s40588_021_00169_5
crossref_primary_10_1016_j_funbio_2024_01_005
crossref_primary_10_1186_s12866_024_03605_w
crossref_primary_10_3390_jof8121285
crossref_primary_10_1128_spectrum_01833_22
crossref_primary_10_1016_j_ajic_2023_02_006
crossref_primary_10_1128_aac_00570_24
crossref_primary_10_1038_s41467_022_32249_5
crossref_primary_10_1071_MA22057
crossref_primary_10_1128_jcm_00525_24
crossref_primary_10_1038_s41579_024_01062_w
crossref_primary_10_1038_s41467_020_20183_3
crossref_primary_10_3390_pharmaceutics13091333
crossref_primary_10_1128_msphere_00124_22
crossref_primary_10_3314_mmj_24_00019
crossref_primary_10_1093_cid_ciab327
crossref_primary_10_7705_biomedica_7082
crossref_primary_10_1016_j_ijregi_2024_100460
crossref_primary_10_1080_21505594_2021_1908765
crossref_primary_10_1111_myc_13704
crossref_primary_10_1016_S2666_5247_24_00101_0
crossref_primary_10_7883_yoken_JJID_2022_068
crossref_primary_10_1016_j_jiph_2024_01_003
crossref_primary_10_3201_eid3103_241195
crossref_primary_10_1128_mbio_02730_22
crossref_primary_10_3389_fcimb_2023_1211626
crossref_primary_10_3201_eid2903_221082
crossref_primary_10_1016_j_chom_2020_12_002
crossref_primary_10_1038_s41579_023_00960_9
crossref_primary_10_3390_jof7030240
crossref_primary_10_1128_jcm_01528_23
crossref_primary_10_3390_cimb46060362
crossref_primary_10_3390_jof10010086
crossref_primary_10_1007_s40588_022_00181_3
crossref_primary_10_1007_s11046_024_00832_7
crossref_primary_10_3389_fmicb_2023_1287003
crossref_primary_10_3390_healthcare11030425
crossref_primary_10_1016_j_gde_2022_101942
crossref_primary_10_1128_AAC_01124_20
crossref_primary_10_3390_jof9100979
crossref_primary_10_1146_annurev_micro_032521_015858
crossref_primary_10_1016_j_fgb_2023_103797
crossref_primary_10_3390_stresses4040041
crossref_primary_10_1128_mBio_03333_20
crossref_primary_10_3390_diseases10030058
crossref_primary_10_1128_JCM_03220_20
crossref_primary_10_1038_s41564_021_00915_x
crossref_primary_10_1128_spectrum_03540_23
crossref_primary_10_1038_s41579_022_00720_1
crossref_primary_10_1021_acs_jmedchem_1c01807
crossref_primary_10_3389_fmed_2022_1008527
crossref_primary_10_1128_AAC_01652_21
crossref_primary_10_1128_aac_00933_23
crossref_primary_10_3390_jof6030146
crossref_primary_10_1080_21505594_2021_1927609
crossref_primary_10_1128_mSphere_00287_21
crossref_primary_10_1016_j_mib_2024_102506
crossref_primary_10_1155_2022_2599136
crossref_primary_10_1128_aac_01619_23
crossref_primary_10_3389_fcimb_2023_1136217
crossref_primary_10_3390_jof9060663
crossref_primary_10_3390_microorganisms12112153
crossref_primary_10_1111_myc_13723
crossref_primary_10_1128_mmbr_00029_23
crossref_primary_10_3390_antibiotics9090568
crossref_primary_10_1093_mmy_myaf019
crossref_primary_10_3390_jof9080837
crossref_primary_10_1093_mmy_myae042
crossref_primary_10_1007_s11046_024_00877_8
crossref_primary_10_1016_S2666_5247_24_00135_6
crossref_primary_10_1093_genetics_iyab029
crossref_primary_10_3390_jof9100955
crossref_primary_10_1128_mbio_03052_22
crossref_primary_10_1177_20499361251313841
crossref_primary_10_3389_fmicb_2022_919501
crossref_primary_10_1093_ofid_ofad681
crossref_primary_10_1080_21501203_2025_2467118
crossref_primary_10_3389_fmicb_2023_1134755
crossref_primary_10_3389_fgene_2020_00554
crossref_primary_10_1080_22221751_2022_2125349
crossref_primary_10_1016_j_ajem_2024_07_062
crossref_primary_10_3390_jof9080820
crossref_primary_10_7326_M21_2013
crossref_primary_10_1128_mbio_03080_23
crossref_primary_10_1007_s15010_024_02378_8
crossref_primary_10_1111_mec_16966
crossref_primary_10_1099_mgen_0_000979
crossref_primary_10_1128_spectrum_02388_23
crossref_primary_10_1016_j_jhin_2022_06_009
crossref_primary_10_1128_aac_00955_23
crossref_primary_10_1016_j_jiph_2022_12_012
crossref_primary_10_3390_jof7020081
crossref_primary_10_1111_myc_13470
crossref_primary_10_3390_jof9020267
crossref_primary_10_1128_mbio_00842_22
crossref_primary_10_3390_jof7090754
crossref_primary_10_1007_s12281_023_00451_7
crossref_primary_10_1016_j_watres_2023_119617
crossref_primary_10_3389_fmicb_2021_702839
crossref_primary_10_7326_M21_3456
crossref_primary_10_1042_BST20211123
crossref_primary_10_1128_mBio_00360_21
crossref_primary_10_1017_ice_2022_204
crossref_primary_10_1111_myc_13477
crossref_primary_10_3390_jof10060392
crossref_primary_10_3390_jof7030214
crossref_primary_10_20411_pai_v7i2_535
crossref_primary_10_1093_femsyr_foae008
crossref_primary_10_3389_fmicb_2021_770635
crossref_primary_10_1080_22221751_2022_2100280
crossref_primary_10_3389_fcimb_2022_887754
crossref_primary_10_3390_jof9020129
crossref_primary_10_3390_jof8100990
crossref_primary_10_1128_mbio_03164_24
crossref_primary_10_1016_j_ijid_2023_06_014
crossref_primary_10_1007_s11046_023_00787_1
crossref_primary_10_1128_spectrum_02645_22
crossref_primary_10_1093_jac_dkad139
crossref_primary_10_1093_mmy_myae124
crossref_primary_10_15406_jbmoa_2024_12_00371
crossref_primary_10_1038_s41467_021_27545_5
crossref_primary_10_1016_S2666_5247_20_30090_2
crossref_primary_10_1080_22221751_2021_1944323
crossref_primary_10_1016_j_ijmmb_2024_100594
crossref_primary_10_1038_s41564_023_01547_z
crossref_primary_10_1111_apm_13336
crossref_primary_10_1099_jmm_0_001318
crossref_primary_10_1128_JCM_02252_20
crossref_primary_10_1128_spectrum_03260_24
crossref_primary_10_3390_hygiene4030030
crossref_primary_10_1016_j_cmi_2023_03_016
crossref_primary_10_7705_biomedica_6943
crossref_primary_10_1128_mBio_03328_20
crossref_primary_10_1016_j_jgar_2020_06_003
crossref_primary_10_3390_jof7010001
crossref_primary_10_1038_s41564_024_01854_z
crossref_primary_10_1080_14787210_2024_2448844
crossref_primary_10_3390_microbiolres16010015
crossref_primary_10_3390_microorganisms9102177
crossref_primary_10_1128_mra_00512_24
crossref_primary_10_1016_j_ijantimicag_2022_106558
crossref_primary_10_1093_mmy_myab079
crossref_primary_10_1128_aac_02276_21
crossref_primary_10_1111_myc_13665
crossref_primary_10_1128_spectrum_01786_24
crossref_primary_10_1128_aac_01419_22
crossref_primary_10_1016_j_micres_2024_127797
crossref_primary_10_1128_mbio_01376_23
crossref_primary_10_3389_fcimb_2021_742062
crossref_primary_10_3390_antibiotics9120877
crossref_primary_10_1016_S2666_5247_20_30124_5
crossref_primary_10_3390_jof9010031
crossref_primary_10_1007_s40588_023_00188_4
crossref_primary_10_1007_s12281_024_00487_3
crossref_primary_10_1016_j_micres_2020_126621
crossref_primary_10_1128_Spectrum_00013_21
crossref_primary_10_2478_am_2023_0003
crossref_primary_10_1056_NEJMra2402635
crossref_primary_10_1099_mgen_0_001233
crossref_primary_10_23934_2223_9022_2024_13_2_258_263
crossref_primary_10_5812_jjm_154207
crossref_primary_10_1016_j_riam_2021_03_004
crossref_primary_10_1128_msphere_00577_23
crossref_primary_10_3390_jof9111101
crossref_primary_10_1073_pnas_2211424119
crossref_primary_10_1128_Spectrum_01585_21
crossref_primary_10_1016_j_cll_2024_10_005
crossref_primary_10_1016_j_jiac_2023_04_014
crossref_primary_10_1016_j_jhin_2023_12_019
crossref_primary_10_1093_cid_ciae411
crossref_primary_10_1128_AAC_00684_20
crossref_primary_10_1093_mmy_myad116
crossref_primary_10_1007_s40475_024_00338_8
crossref_primary_10_1016_j_jiac_2023_03_018
crossref_primary_10_1111_myc_13445
crossref_primary_10_1111_myc_13443
crossref_primary_10_3390_jof8080787
crossref_primary_10_5694_mja2_50612
crossref_primary_10_3390_jof9020168
crossref_primary_10_3390_ph18040460
crossref_primary_10_1016_j_jgar_2023_06_012
crossref_primary_10_3390_microorganisms13030652
crossref_primary_10_1016_j_cmi_2023_04_025
crossref_primary_10_1038_s44259_024_00043_6
crossref_primary_10_1128_mSphere_00973_20
crossref_primary_10_3390_microorganisms12050927
crossref_primary_10_1016_j_lanmic_2024_07_012
crossref_primary_10_1128_AAC_00517_21
crossref_primary_10_1093_mmy_myad103
crossref_primary_10_1016_j_csbj_2022_06_030
crossref_primary_10_1128_aac_00067_22
crossref_primary_10_3390_jof9020176
crossref_primary_10_1128_JCM_02355_20
crossref_primary_10_1016_j_ijantimicag_2023_107010
crossref_primary_10_1016_j_mib_2022_102208
crossref_primary_10_1128_iai_00274_23
crossref_primary_10_1128_spectrum_02086_23
Cites_doi 10.1038/s41467-018-07779-6
10.3201/eid2404.171715
10.1099/mgen.0.000093
10.1093/ve/vew007
10.1126/science.1123061
10.3201/eid2007.131765
10.1093/molbev/msu136
10.1093/jac/23.2.294
10.1016/j.nmni.2016.07.003
10.1111/myc.12781
10.1093/jac/dkx480
10.1093/bioinformatics/bts606
10.1111/j.1470-9465.2004.00841.x
10.1128/mSphere.00499-17
10.1038/s41426-018-0045-x
10.3201/eid2509.190262
10.1016/j.mycmed.2018.02.011
10.3201/eid2501.181321
10.4161/fly.19695
10.1016/j.scitotenv.2019.136285
10.1016/j.ijid.2019.06.001
10.1101/2020.02.18.955534
10.1128/aac.36.3.690
10.1111/j.1365-294X.2011.05178.x
10.1093/cid/ciy411
10.1016/j.fgb.2019.103243
10.1093/bioinformatics/btu033
10.1371/journal.pone.0030377
10.1128/JCM.00319-11
10.1126/science.aar1965
10.1159/000084979
10.1101/754143
10.1093/sysbio/syy032
10.1007/s10096-013-2027-1
10.1007/bf01963937
10.1016/j.mib.2019.05.008
10.1128/AAC.00238-18
10.3201/eid2507.180491
10.1016/S1473-3099(18)30597-8
10.1093/mmy/myw147
10.1093/cid/ciw691
10.1101/gr.114876.110
10.1016/j.envint.2015.07.022
10.1186/1471-2148-7-214
10.1016/j.jinf.2016.07.008
10.1016/j.jhin.2019.06.011
10.1093/bioinformatics/btr026
10.15585/mmwr.mm6619a7
10.3201/eid2509.190686
10.1186/s13756-016-0132-5
10.3390/jof5030058
10.1101/gr.107524.110
10.1007/s00294-019-00976-w
10.1128/AAC.00791-17
10.1128/JCM.00007-19
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1128/mBio.03364-19
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Evolutionary History of Candida auris
EISSN 2150-7511
EndPage 19
ExternalDocumentID oai_doaj_org_article_d0e6412b3a924a919ec4a337fa135384
PMC7188998
oai_HAL_pasteur_03243537v1
32345637
10_1128_mBio_03364_19
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI110818
– fundername: ;
– fundername: ;
  grantid: U19AI110818
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c491t-a1c837b68b3052518a5475af3176c696d656ac02d1f1f03fe65d44060c68cb6b3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:24:50 EDT 2025
Thu Aug 21 18:08:13 EDT 2025
Fri May 09 12:12:05 EDT 2025
Fri Jul 11 00:27:49 EDT 2025
Wed Feb 19 02:11:54 EST 2025
Tue Jul 01 01:52:43 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Candida auris
population genetics
emerging species
genome analysis
antifungal resistance
Language English
License Attribution: http://creativecommons.org/licenses/by
This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-a1c837b68b3052518a5475af3176c696d656ac02d1f1f03fe65d44060c68cb6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC7188998
Nancy A. Chow and José F. Muñoz contributed equally to this work. The order of the co-first authors was assigned alphabetically.
Anastasia P. Litvintseva and Christina A. Cuomo contributed equally to this work. Co-senior authorship was assigned based on the co-first authorship and the equal contributions of both groups.
Present address: Xiao Li, Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China.
ORCID 0000-0002-9137-0466
0000-0003-4987-7957
0000-0001-7850-6931
0000-0001-8651-4405
0000-0001-9726-3082
0000-0002-7277-2646
0000-0002-5778-960X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.03364-19
PMID 32345637
PQID 2396303976
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d0e6412b3a924a919ec4a337fa135384
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7188998
hal_primary_oai_HAL_pasteur_03243537v1
proquest_miscellaneous_2396303976
pubmed_primary_32345637
crossref_citationtrail_10_1128_mBio_03364_19
crossref_primary_10_1128_mBio_03364_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200428
PublicationDateYYYYMMDD 2020-04-28
PublicationDate_xml – month: 4
  year: 2020
  text: 20200428
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2020
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
Miltgen G (e_1_3_2_27_2) 2019
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_15_2
  doi: 10.1038/s41467-018-07779-6
– ident: e_1_3_2_10_2
  doi: 10.3201/eid2404.171715
– ident: e_1_3_2_31_2
  doi: 10.1099/mgen.0.000093
– ident: e_1_3_2_51_2
  doi: 10.1093/ve/vew007
– ident: e_1_3_2_50_2
  doi: 10.1126/science.1123061
– ident: e_1_3_2_5_2
  doi: 10.3201/eid2007.131765
– ident: e_1_3_2_55_2
  doi: 10.1093/molbev/msu136
– ident: e_1_3_2_40_2
  doi: 10.1093/jac/23.2.294
– ident: e_1_3_2_8_2
  doi: 10.1016/j.nmni.2016.07.003
– ident: e_1_3_2_11_2
  doi: 10.1111/myc.12781
– ident: e_1_3_2_25_2
  doi: 10.1093/jac/dkx480
– ident: e_1_3_2_54_2
  doi: 10.1093/bioinformatics/bts606
– ident: e_1_3_2_36_2
  doi: 10.1111/j.1470-9465.2004.00841.x
– ident: e_1_3_2_34_2
  doi: 10.1128/mSphere.00499-17
– ident: e_1_3_2_18_2
  doi: 10.1038/s41426-018-0045-x
– ident: e_1_3_2_20_2
  doi: 10.3201/eid2509.190262
– ident: e_1_3_2_26_2
  doi: 10.1016/j.mycmed.2018.02.011
– ident: e_1_3_2_57_2
  doi: 10.3201/eid2501.181321
– ident: e_1_3_2_48_2
  doi: 10.4161/fly.19695
– ident: e_1_3_2_38_2
  doi: 10.1016/j.scitotenv.2019.136285
– ident: e_1_3_2_28_2
  doi: 10.1016/j.ijid.2019.06.001
– ident: e_1_3_2_32_2
  doi: 10.1101/2020.02.18.955534
– ident: e_1_3_2_39_2
  doi: 10.1128/aac.36.3.690
– ident: e_1_3_2_35_2
  doi: 10.1111/j.1365-294X.2011.05178.x
– ident: e_1_3_2_19_2
  doi: 10.1093/cid/ciy411
– start-page: CO-098
  volume-title: 39eme Reunion Interdisciplinaire de Chimiothérapie anti-infectieuse
  year: 2019
  ident: e_1_3_2_27_2
– ident: e_1_3_2_23_2
  doi: 10.1016/j.fgb.2019.103243
– ident: e_1_3_2_49_2
  doi: 10.1093/bioinformatics/btu033
– ident: e_1_3_2_43_2
  doi: 10.1371/journal.pone.0030377
– ident: e_1_3_2_3_2
  doi: 10.1128/JCM.00319-11
– ident: e_1_3_2_33_2
  doi: 10.1126/science.aar1965
– ident: e_1_3_2_44_2
  doi: 10.1159/000084979
– ident: e_1_3_2_30_2
  doi: 10.1101/754143
– ident: e_1_3_2_53_2
  doi: 10.1093/sysbio/syy032
– ident: e_1_3_2_4_2
  doi: 10.1007/s10096-013-2027-1
– ident: e_1_3_2_41_2
  doi: 10.1007/bf01963937
– ident: e_1_3_2_2_2
  doi: 10.1016/j.mib.2019.05.008
– ident: e_1_3_2_24_2
  doi: 10.1128/AAC.00238-18
– ident: e_1_3_2_13_2
  doi: 10.3201/eid2507.180491
– ident: e_1_3_2_22_2
  doi: 10.1016/S1473-3099(18)30597-8
– ident: e_1_3_2_46_2
– ident: e_1_3_2_21_2
  doi: 10.1093/mmy/myw147
– ident: e_1_3_2_14_2
  doi: 10.1093/cid/ciw691
– ident: e_1_3_2_56_2
  doi: 10.1101/gr.114876.110
– ident: e_1_3_2_37_2
  doi: 10.1016/j.envint.2015.07.022
– ident: e_1_3_2_52_2
  doi: 10.1186/1471-2148-7-214
– ident: e_1_3_2_7_2
  doi: 10.1016/j.jinf.2016.07.008
– ident: e_1_3_2_12_2
  doi: 10.1016/j.jhin.2019.06.011
– ident: e_1_3_2_45_2
  doi: 10.1093/bioinformatics/btr026
– ident: e_1_3_2_6_2
  doi: 10.15585/mmwr.mm6619a7
– ident: e_1_3_2_17_2
  doi: 10.3201/eid2509.190686
– ident: e_1_3_2_9_2
  doi: 10.1186/s13756-016-0132-5
– ident: e_1_3_2_42_2
  doi: 10.3390/jof5030058
– ident: e_1_3_2_47_2
  doi: 10.1101/gr.107524.110
– ident: e_1_3_2_29_2
  doi: 10.1007/s00294-019-00976-w
– ident: e_1_3_2_58_2
  doi: 10.1128/AAC.00791-17
– ident: e_1_3_2_16_2
  doi: 10.1128/JCM.00007-19
SSID ssj0000331830
Score 2.6473725
Snippet In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive...
has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India,...
Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from...
ABSTRACT Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e03364
SubjectTerms Antifungal Agents
Antifungal Agents - pharmacology
antifungal resistance
Azoles
Azoles - pharmacology
Biological Evolution
Candida
Candida - classification
Candida - drug effects
Candida - genetics
Candida - isolation & purification
Candida auris
Candidiasis, Invasive
Candidiasis, Invasive - drug therapy
Candidiasis, Invasive - epidemiology
Drug Resistance, Fungal
Drug Resistance, Fungal - genetics
Echinocandins
Echinocandins - pharmacology
Ecological and Evolutionary Science
emerging species
Fluconazole
Fluconazole - pharmacology
Genes, Fungal
Genetics, Population
Genetics, Population - methods
genome analysis
Genome, Fungal
Humans
Life Sciences
Metagenomics
Microbiology and Parasitology
Molecular Epidemiology
Mutation
Mycology
Phylogeny
Phylogeography
population genetics
Whole Genome Sequencing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37YvIogn2-08Okkfd5dZB1Hx4MLeQpJOmAXtWeaxOP_eqqRnmFHEi9d0SLpTX1JfpZOvCHmTdJQoeFoH7Xktu9TVJnpd-8CddwBrlu-tff6iphfy42V7uZfqC8-EFXngMnDHfROVZNwLB5GC61gXg3RC6OQwY4PJSqDg8_aCqbwGC8RqsxXV5Ob4x-nV_D0UK1mjqs6eE8pa_eBaZngS8k-a-ftpyT33c36P3B15Iz0p73uf3IrDA3K7ZJLcPCQz8DkBvBAFPkcnNyOe3GJDiw7Ihrqhp0Xgn05-whKAu2R0nugZ3mvpHUV5oSXNJwjo111WL_oh5nvLtIiXxOUjcnE--XY2rcckCnWQHVvVjgWIQb0yXmDKOmZcK3XrEvAGFVSneiB0LjS8Z4mlRqSo2l6Cl2-CMsErLx6To2E-xKeEGt_pwHXTo0oXUI3OcExZFhJXpnUxVuTddlRtGBXGMdHFd5sjDW4sGsFmI1jWVeTtrvp1kdb4W8VTNNGuEipi5wLAiR1xYv-FE-gNDHzQxvTkk712MJnWC-iLA3EU-oZV5PUWAxamGv4_cUOcr5eWC1itGiRwFXlSMLFrT3ABVFToiugDtBx0ePhkuJplOW9gBxj0PvsfX_mc3OG4IdDImpsX5Gi1WMeXwJpW_lWeIL8AxVUUQg
  priority: 102
  providerName: Directory of Open Access Journals
Title Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses
URI https://www.ncbi.nlm.nih.gov/pubmed/32345637
https://www.proquest.com/docview/2396303976
https://pasteur.hal.science/pasteur-03243537
https://pubmed.ncbi.nlm.nih.gov/PMC7188998
https://doaj.org/article/d0e6412b3a924a919ec4a337fa135384
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQERIXxJulpTIS4kRK_IjtHBBqq21XiCIOrLS3yHacbqWSlOxu1f33zDjZhRSQuOSQWLbkeX3jeL4h5E2lg0TC08RrxxOZV3ligtOJ89w6C2rNYt3a2Rc1mcpPs2z2i1Ko38DFX1M77Cc1bS8Pbn6sP4LBf-gKYMz770cXzUEqhJIJEoDehaCk0UbPeqQfnbJA5cUTFw4YJwGHnW8YN2_PMIhQkcgf4s4cr0n-iUFvX6X8LTadPCQPelBJDzsteETuhPoxude1mVw_IXMISB5CFAWwR8fXvbLZdk07kpA1tXVJO_Z_Or4B_4BHaLSp6DEWvZSWIvfQgsbrBfTrtuUXPQ2xqJl2zCZh8ZRMT8bfjidJ32Eh8TJny8QyDwmqU8YJ7GfHjM2kzmwFoEJ5lasS0J71KS9ZxapUVEFlpQQIkHplvFNOPCM7dVOHF4Qal2vPdVoihRfgkNxw7GfmK65MZkMYkXebXS18Tz-OXTAui5iGcFOgEIoohILlI_J2O_yq493418AjFNF2ENJlxxdNe1701leUaVCScScspJs2Z3nw0gqhK4ttP4yE1UDAgzkmh5-LKwuWtmphLQ6oUuhrNiKvNzpQgB3izxVbh2a1KLgAV5YiuhuR551ObOcTXABOFXpE9EBbBgsOv9QX88j1DdABM-KX_7sdu-Q-xxOBVCbc7JGdZbsKrwA2Ld1-PG6A5-mM7Ufj-AnscRXy
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracing+the+Evolutionary+History+and+Global+Expansion+of+Candida+auris+Using+Population+Genomic+Analyses&rft.jtitle=mBio&rft.au=Chow%2C+Nancy+A.&rft.au=Mu%C3%B1oz%2C+Jos%C3%A9+F.&rft.au=Gade%2C+Lalitha&rft.au=Berkow%2C+Elizabeth+L.&rft.date=2020-04-28&rft.issn=2161-2129&rft.eissn=2150-7511&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.03364-19&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_03364_19
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon