Fx-Net and PureNet: Convolutional Neural Network architecture for discrimination of Chronic Obstructive Pulmonary Disease from smokers and healthy subjects through electronic nose signals

As one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection, the world's leading cause of cancer death. One of the methods is to analyze the Volatile Organic Compounds (VOCs) in exhaled breath usi...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 148; p. 105913
Main Authors Avian, Cries, Mahali, Muhammad Izzuddin, Putro, Nur Achmad Sulistyo, Prakosa, Setya Widyawan, Leu, Jenq-Shiou
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2022
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection, the world's leading cause of cancer death. One of the methods is to analyze the Volatile Organic Compounds (VOCs) in exhaled breath using electronic noses (E-noses), which have become emerging tools for analyzing breath because of their potential and promising technology for diagnosing. However, the signal processing of the E-Nose sensor becomes vital in exposing information about the subject condition, which most researchers strive to accomplish. We proposed a Convolutional Neural Network (CNN) architecture to classify COPD in smokers and non-smokers, healthy subjects, and smokers from E-Nose signals to contribute to this field. Two models were constructed following E-Nose signal processing state-of-the-arts. One was by combined feature extraction and classifier, and the second was by CNN, which directly processed the raw signal. In addition, various feature extraction and classifier (Machine Learning and CNN) used in prior research were investigated. Using 3K and 5K Fold cross-validation results demonstrated that our proposed models outperformed in Kernel Principal Component Analysis (KPCA) with Fx-ConvNet and Pure-ConvNet. They all reached maximum F1-Score with zero standard deviation values indicating a consistent result. Further experiments also showed that KPCA contributed to the increasing performance of some classifiers with average F1-Score 0.933 and 0.068 as standard deviation values. •CNN architecture is designed for discrimination of COPD from smokers and healthy subjects.•Two architectures were built following the state-of-the-art model's technique.•Kernel principal component analysis assigned to extract E-Nose signal on first CNN model.•Explored all combinations of feature extraction and machine learning, also prior CNN model for model comparison.•Both proposed models have outperformed performance compared to the state-of-the-art.
AbstractList AbstractAs one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection, the world's leading cause of cancer death. One of the methods is to analyze the Volatile Organic Compounds (VOCs) in exhaled breath using electronic noses (E-noses), which have become emerging tools for analyzing breath because of their potential and promising technology for diagnosing. However, the signal processing of the E-Nose sensor becomes vital in exposing information about the subject condition, which most researchers strive to accomplish. We proposed a Convolutional Neural Network (CNN) architecture to classify COPD in smokers and non-smokers, healthy subjects, and smokers from E-Nose signals to contribute to this field. Two models were constructed following E-Nose signal processing state-of-the-arts. One was by combined feature extraction and classifier, and the second was by CNN, which directly processed the raw signal. In addition, various feature extraction and classifier (Machine Learning and CNN) used in prior research were investigated. Using 3K and 5K Fold cross-validation results demonstrated that our proposed models outperformed in Kernel Principal Component Analysis (KPCA) with Fx-ConvNet and Pure-ConvNet. They all reached maximum F1-Score with zero standard deviation values indicating a consistent result. Further experiments also showed that KPCA contributed to the increasing performance of some classifiers with average F1-Score 0.933 and 0.068 as standard deviation values.
As one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection, the world's leading cause of cancer death. One of the methods is to analyze the Volatile Organic Compounds (VOCs) in exhaled breath using electronic noses (E-noses), which have become emerging tools for analyzing breath because of their potential and promising technology for diagnosing. However, the signal processing of the E-Nose sensor becomes vital in exposing information about the subject condition, which most researchers strive to accomplish. We proposed a Convolutional Neural Network (CNN) architecture to classify COPD in smokers and non-smokers, healthy subjects, and smokers from E-Nose signals to contribute to this field. Two models were constructed following E-Nose signal processing state-of-the-arts. One was by combined feature extraction and classifier, and the second was by CNN, which directly processed the raw signal. In addition, various feature extraction and classifier (Machine Learning and CNN) used in prior research were investigated. Using 3K and 5K Fold cross-validation results demonstrated that our proposed models outperformed in Kernel Principal Component Analysis (KPCA) with Fx-ConvNet and Pure-ConvNet. They all reached maximum F1-Score with zero standard deviation values indicating a consistent result. Further experiments also showed that KPCA contributed to the increasing performance of some classifiers with average F1-Score 0.933 and 0.068 as standard deviation values. •CNN architecture is designed for discrimination of COPD from smokers and healthy subjects.•Two architectures were built following the state-of-the-art model's technique.•Kernel principal component analysis assigned to extract E-Nose signal on first CNN model.•Explored all combinations of feature extraction and machine learning, also prior CNN model for model comparison.•Both proposed models have outperformed performance compared to the state-of-the-art.
As one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection, the world's leading cause of cancer death. One of the methods is to analyze the Volatile Organic Compounds (VOCs) in exhaled breath using electronic noses (E-noses), which have become emerging tools for analyzing breath because of their potential and promising technology for diagnosing. However, the signal processing of the E-Nose sensor becomes vital in exposing information about the subject condition, which most researchers strive to accomplish. We proposed a Convolutional Neural Network (CNN) architecture to classify COPD in smokers and non-smokers, healthy subjects, and smokers from E-Nose signals to contribute to this field. Two models were constructed following E-Nose signal processing state-of-the-arts. One was by combined feature extraction and classifier, and the second was by CNN, which directly processed the raw signal. In addition, various feature extraction and classifier (Machine Learning and CNN) used in prior research were investigated. Using 3K and 5K Fold cross-validation results demonstrated that our proposed models outperformed in Kernel Principal Component Analysis (KPCA) with Fx-ConvNet and Pure-ConvNet. They all reached maximum F1-Score with zero standard deviation values indicating a consistent result. Further experiments also showed that KPCA contributed to the increasing performance of some classifiers with average F1-Score 0.933 and 0.068 as standard deviation values.As one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection, the world's leading cause of cancer death. One of the methods is to analyze the Volatile Organic Compounds (VOCs) in exhaled breath using electronic noses (E-noses), which have become emerging tools for analyzing breath because of their potential and promising technology for diagnosing. However, the signal processing of the E-Nose sensor becomes vital in exposing information about the subject condition, which most researchers strive to accomplish. We proposed a Convolutional Neural Network (CNN) architecture to classify COPD in smokers and non-smokers, healthy subjects, and smokers from E-Nose signals to contribute to this field. Two models were constructed following E-Nose signal processing state-of-the-arts. One was by combined feature extraction and classifier, and the second was by CNN, which directly processed the raw signal. In addition, various feature extraction and classifier (Machine Learning and CNN) used in prior research were investigated. Using 3K and 5K Fold cross-validation results demonstrated that our proposed models outperformed in Kernel Principal Component Analysis (KPCA) with Fx-ConvNet and Pure-ConvNet. They all reached maximum F1-Score with zero standard deviation values indicating a consistent result. Further experiments also showed that KPCA contributed to the increasing performance of some classifiers with average F1-Score 0.933 and 0.068 as standard deviation values.
As one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection, the world's leading cause of cancer death. One of the methods is to analyze the Volatile Organic Compounds (VOCs) in exhaled breath using electronic noses (E-noses), which have become emerging tools for analyzing breath because of their potential and promising technology for diagnosing. However, the signal processing of the E-Nose sensor becomes vital in exposing information about the subject condition, which most researchers strive to accomplish. We proposed a Convolutional Neural Network (CNN) architecture to classify COPD in smokers and non-smokers, healthy subjects, and smokers from E-Nose signals to contribute to this field. Two models were constructed following E-Nose signal processing state-of-the-arts. One was by combined feature extraction and classifier, and the second was by CNN, which directly processed the raw signal. In addition, various feature extraction and classifier (Machine Learning and CNN) used in prior research were investigated. Using 3K and 5K Fold cross-validation results demonstrated that our proposed models outperformed in Kernel Principal Component Analysis (KPCA) with Fx-ConvNet and Pure-ConvNet. They all reached maximum F1-Score with zero standard deviation values indicating a consistent result. Further experiments also showed that KPCA contributed to the increasing performance of some classifiers with average F1-Score 0.933 and 0.068 as standard deviation values.
ArticleNumber 105913
Author Prakosa, Setya Widyawan
Mahali, Muhammad Izzuddin
Avian, Cries
Putro, Nur Achmad Sulistyo
Leu, Jenq-Shiou
Author_xml – sequence: 1
  givenname: Cries
  surname: Avian
  fullname: Avian, Cries
  organization: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan
– sequence: 2
  givenname: Muhammad Izzuddin
  surname: Mahali
  fullname: Mahali, Muhammad Izzuddin
  organization: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan
– sequence: 3
  givenname: Nur Achmad Sulistyo
  surname: Putro
  fullname: Putro, Nur Achmad Sulistyo
  organization: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan
– sequence: 4
  givenname: Setya Widyawan
  surname: Prakosa
  fullname: Prakosa, Setya Widyawan
  organization: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan
– sequence: 5
  givenname: Jenq-Shiou
  surname: Leu
  fullname: Leu, Jenq-Shiou
  email: jsleu@mail.ntust.edu.tw
  organization: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan
BookMark eNqNkt2O0zAQhSO0SHQX3sESN9ykjO38crECCgtIq10k4NpKnMnWbRIX2yn02Xg5Jg0CqRJSr8a2zvk8nuPL6GKwA0YR47DkwLOXm6W2_a42tsdmKUAIOk5LLh9FC17kZQypTC6iBQCHOClE-iS69H4DAAlIWES_bn7GdxhYNTTs8-iQ1q_Yyg57243B2KHq2B2O7ljCD-u2rHJ6bQLqQGrWWsca47UzvRmqycBsy1ZrZwej2X3tgxt1MHskeNcTzh3YO-Ox8uR1tme-t1t0_nj_GqsurA_Mj_WG-J4F4owPa4YdbWfkYMnpzQM15p9Gj1sq-OxPvYq-3bz_uvoY395_-LR6cxvrpOQhLiHREmSRSplxLhB4qtsqTVCjzjXHWmIj6wy5aHhb1yXkLeZFC3ndosxEKq-iFzN35-z3EX1QPT0Zu64a0I5eiRxAcsJLkj4_kW7s6KZmJ1VSZJLzSXU9q7Sz3jtslTbhOL3gKtMpDmrKVm3Uv2zVlK2asyVAcQLYUQI03HOsb2cr0sT2Bp3y2uCgsTGOpqwaa86BXJ9AdGconqrb4gH93zdz5YUC9WX6fdPnEwIgS7OEAK__Dzivh98GAPa2
CitedBy_id crossref_primary_10_1016_j_microc_2025_113083
crossref_primary_10_1016_j_snb_2023_134551
crossref_primary_10_1016_j_sajce_2023_12_001
crossref_primary_10_3390_s24092818
crossref_primary_10_1016_j_foodchem_2023_138207
crossref_primary_10_3390_app14031007
crossref_primary_10_3390_s24237868
crossref_primary_10_1016_j_jtice_2025_105981
crossref_primary_10_1089_jmf_2024_k_0004
crossref_primary_10_1093_bib_bbad202
crossref_primary_10_1016_j_bspc_2023_105447
crossref_primary_10_1021_acssensors_4c01584
crossref_primary_10_1007_s12065_024_00933_8
crossref_primary_10_1109_JSEN_2024_3375595
crossref_primary_10_1016_j_talanta_2024_127140
crossref_primary_10_3390_agriculture12101540
Cites_doi 10.1016/j.mayocp.2018.05.026
10.1016/j.chest.2018.01.049
10.1186/1471-2466-13-35
10.1016/j.pdpdt.2021.102203
10.1097/j.pbj.0000000000000042
10.3390/bios10080084
10.1128/CMR.00020-13
10.1016/S0140-6736(19)31721-0
10.1109/JSEN.2021.3061616
10.1016/j.lungcan.2021.02.006
10.1016/j.aca.2019.05.024
10.1183/16000617.0011-2019
10.1088/1752-7163/ac1326
10.1016/j.fbr.2021.03.005
10.1016/j.clinms.2018.02.003
10.1016/j.acra.2020.01.020
10.21037/jtd.2016.10.30
10.1016/S0263-7863(99)00079-4
10.1016/j.jtho.2018.01.024
10.1109/JSEN.2021.3075703
10.1145/2907070
10.1186/s40749-015-0010-1
10.3390/cancers12061629
10.1109/ACCESS.2020.3023971
10.1007/s12652-020-01963-7
10.1016/j.jpba.2020.113524
10.1016/j.snb.2017.09.040
10.1016/j.rmed.2020.105938
10.1109/ACCESS.2019.2929094
10.1038/s41598-020-78418-8
10.1111/j.1365-2222.2011.03800.x
10.1164/rccm.200906-0939OC
10.1016/j.snb.2017.08.057
10.21037/qims.2020.01.08
10.1172/jci.insight.132781
10.1016/j.patrec.2008.08.010
10.1016/j.lungcan.2015.08.017
10.1016/j.snb.2021.130915
10.1109/TNNLS.2019.2909686
10.1016/j.sna.2020.111874
10.1109/JSEN.2021.3100390
10.18653/v1/W18-6219
10.1016/j.bspc.2021.103099
10.1016/j.bspc.2021.102908
10.1016/j.rmed.2018.07.015
10.3390/biology10090864
10.1016/j.snb.2020.128921
10.21037/jtd.2019.10.54
10.1016/j.dib.2021.106767
10.1038/s42256-020-00257-z
10.1016/j.aci.2018.08.003
10.1155/2019/2025636
10.1088/1752-7155/9/4/046001
10.1186/s40537-019-0192-5
10.3390/s18010157
10.3390/app11188764
10.1016/j.compbiomed.2021.104294
10.3390/cancers12061672
10.1016/j.patrec.2019.10.029
10.1016/j.heliyon.2020.e03402
10.1371/journal.pone.0188290
10.1016/j.jtho.2017.06.073
10.1183/09031936.00126011
10.1016/j.neucom.2021.07.009
ContentType Journal Article
Copyright 2022 Elsevier Ltd
2022. Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: 2022. Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.105913
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105913
ExternalDocumentID 10_1016_j_compbiomed_2022_105913
S0010482522006564
1_s2_0_S0010482522006564
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c491t-904c30385336112e015cfa54ecec7c1eb3ed3b6e12d1fbb907fe78f07bfe36253
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Fri Jul 11 09:23:01 EDT 2025
Wed Aug 13 09:24:50 EDT 2025
Tue Jul 01 03:28:52 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Fri Feb 23 02:38:35 EST 2024
Tue Feb 25 20:03:25 EST 2025
Tue Aug 26 20:14:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Chronic obstructive pulmonary disease (COPD)
Kernel principal component analysis
Convolutional neural network
Lung cancer
Electronic nose
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-904c30385336112e015cfa54ecec7c1eb3ed3b6e12d1fbb907fe78f07bfe36253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2704863113
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2700315333
proquest_journals_2704863113
crossref_citationtrail_10_1016_j_compbiomed_2022_105913
crossref_primary_10_1016_j_compbiomed_2022_105913
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105913
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522006564
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers in biology and medicine
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Li, Cheng, Shen, Chen, Wang, Wen, Chen (bib14) 2020; 190
Cazzola, Segreti, Capuano, Bergamini, Martinelli, Calzetta, Rogliani, Ciaprini, Ora, Paolesse, Di Natale, D'Amico (bib28) 2015; 1
Kang, Liu, Hou, Zhang (bib69) 2017; 12
Chen, Wang, Duan (bib48) 2021; 461
Veronesi, Baldwin, Henschke, Ghislandi, Iavicoli, Oudkerk, De Koning, Shemesh, Field, Zulueta, Horgan, Navarrete, Infante, Novellis, Murray, Peled, Rampinelli, Rocco, Witold, Scagliotti, Tammemagi, Bertolaccini, Triphuridet, Yip, Rossi, Senan, Ferrante, Brain, van der Aalst, Bonomo, Consonni, Van Meerbeeck, Maisonneuve, Novello, Devaraj, Saghir, Pelosi (bib23) 2020; 12
Attia, Noseworthy, Lopez-Jimenez, Asirvatham, Deshmukh, Gersh, Carter, Yao, Rabinstein, Erickson, Kapa, Friedman (bib78) 2019; 394
Bakiler, Güney (bib50) 2021; 69
Fan, Chow (bib65) 2020; 31
Sekine, Katsura, Koh, Hiroshima, Fujisawa (bib6) 2012; 39
Binson, Subramoniam, Mathew (bib38) 2021; 15
Baldini, Billeci, Sansone, Conte, Domenici, Tonacci (bib42) 2020; 10
Shi, Jia, Yuan, Jia, Liu, Men (bib64) 2020; 32
Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma, Santamaría, Fadhel, Al-Amidie, Farhan (bib46) 2021
Sethi, Nanda, Chakraborty (bib29) 2013; 26
Hegde, Yu, Agrawal, Yan, Pellauer, Fletcher (bib71) 2018
Branco, Torgo, Ribeiro (bib73) 2016; 49
Zhang, Cheng, Luo, He, Wong, Hung (bib49) 2021; 21
Zhao, Zheng, Xu, Deng (bib63) 2019; 7
El-Khoury, Schritz, Kim, Lesur, Sertamo, Bernardin, Petritis, Pirrotte, Selinsky, Whiteaker, Zhang, Kennedy, Lin, Lee, Yan, Tran, Inge, Chalabi, Decker, Bjerkvig, Paulovich, Berchem, Kim (bib2) 2020; 12
Geirhos, Jacobsen, Michaelis, Zemel, Brendel, Bethge, Wichmann (bib67) 2020; 2
Shlomi, Abud, Liran, Bar, Gai-Mor, Ilouze, Onn, Ben-Nun, Haick, Peled (bib44) 2017; 12
Wang, Li, Li (bib72) 2017
Wilson, de Torres (bib12) 2020; 10
Seliya, Abdollah Zadeh, Khoshgoftaar (bib62) 2021
Wilson (bib31) 2018
Fens, Roldaan, van der Schee, Boksem, Zwinderman, Bel, Sterk (bib55) 2011; 41
Meng, Kuppannagari, Kannan, Prasanna (bib70) 2021
Johnson, Khoshgoftaar (bib80) 2019; 6
Kanwade, Bairagi (bib26) 2019; 31
Hotel, Poli, Mer-Calfati, Scorsone, Saada (bib33) 2018; 255
Durham, Adcock (bib10) 2015; 90
Sakumura, Koyama, Tokutake, Hida, Sato, Itoh, Akamatsu, Shin (bib16) 2017
Zarrin, Jamal, Guha, Wessel, Kissinger, Wenger (bib21) 2018; 8
Hendrick, Hidayat, Horng, Wang (bib45) 2021; 21
Bregy, Nussbaumer-Ochsner, Martinez-Lozano Sinues, García-Gómez, Suter, Gaisl, Stebler, Gaugg, Kohler, Zenobi (bib15) 2018; 7
Arditi, Tokdemir, Suh (bib66) 2001; 19
Wang, Diao, Wang, Zhan, Zhang, Li, Li (bib52) 2020; 307
Ratiu, Ligor, Bocos-Bintintan, Mayhew, Buszewski (bib4) 2021; 10
Carr, Jacobson, Lynch, Foreman, Flenaugh, Hersh, Sciurba, Wilson, Sieren, Mulhall, Kim, Kinsey, Bowler (bib9) 2018; 153
Wang, Zhang, Wu, Jiang, Chen, Zeng, Yang, Su, Hu, Yang (bib54) 2022; 351
Papadopoulos, Iakovakis, Klingelhoefer, Bostantjopoulou, Chaudhuri, Kyritsis, Hadjidimitriou, Charisis, Hadjileontiadis, Delopoulos (bib79) 2020; 10
Zarrin, Roeckendorf, Wenger (bib20) 2020; 8
Gadekallu, Khare, Bhattacharya, Singh, Maddikunta, Srivastava (bib75) 2020
Liu, Wang, Liu, Jiang, Wang, Chen, Ju, Zhang (bib58) 2020; 8
Vogelmeier, Román-Rodríguez, Singh, Han, Rodríguez-Roisin, Ferguson (bib7) 2020; 166
Chen, Muhammad, Madeeha, Fu, Xu, Hu, Liu, Ying, Chen, Yurievna (bib27) 2021; 154
Chang, Lee, Ban, Oh, Jung, Kim, Park, Persaud, Jheon (bib39) 2018; 255
Sharma, Newman, Aronow (bib25) 2015; 11
Ferri, Hernández-Orallo, Modroiu (bib74) 2009; 30
Tan, Yong, Liam (bib36) 2016; 8
Akopov, Papayan (bib22) 2021; 33
Avian, Prakosa, Faisal, Leu (bib47) 2022; 71
Fens, Zwinderman, Van Der Schee, De Nijs, Dijkers, Roldaan, Cheung, Bel, Sterk (bib56) 2009; 180
Aggogeri, Pellegrini, Tagliani (bib61) 2021; 11
van de Goor, van Hooren, Dingemans, Kremer, Kross (bib43) 2018; 13
Parris, O'Farrell, Fong, Yang (bib11) 2019; 11
Kim, Oh, Il Kim, Ban, Kwon, Oh, Kim, Kim, Lim (bib17) 2013; 13
Hashoul, Haick (bib30) 2019; 28
Mota, Teixeira-Santos, Cavaleiro Rufo (bib41) 2021; 37
Otoum, Liu, Nayak (bib77) 2022; 33
De Vries, Brinkman, Van Der Schee, Fens, Dijkers, Bootsma, De Jongh, Sterk (bib35) 2015; 9
Farraia, Cavaleiro Rufo, Paciência, Mendes, Delgado, Moreira (bib40) 2019; 4
Durán Acevedo, Cuastumal Vasquez, Carrillo Gómez (bib57) 2021; 35
Wasilewski, Migoń, Gębicki, Kamysz (bib32) 2019; 1077
Hou, Hu, Li, Ma, Wang, Meng, Guo, Zhang (bib8) 2019; 2019
Heffler, Crimi, Mancuso, Campisi, Puggioni, Brussino, Crimi (bib18) 2018; 142
Thara, Prema, Xiong (bib59) 2019; 128
Rodriguez Gamboa, da Silva, Ismael, Albarracin E., Duran A. (bib51) 2021; 327
Binson, Subramoniam, Sunny, Mathew (bib5) 2021; 21
Bodduluri, Nakhmani, Reinhardt, Wilson, McDonald, Rudraraju, Jaeger, Bhakta, Castaldi, Sciurba, Zhang, Bangalore, Bhatt (bib19) 2020; 5
Tirzïte, Bukovskis, Strazda, Jurka, Taivans (bib37) 2019; 13
Ambartsoumian, Popowich (bib68) 2018
Ahmad, Mayya (bib3) 2020; 6
Mirza, Clay, Koslow, Scanlon (bib13) 2018; 93
Cainap, Balacescu, Cainap, Pop (bib1) 2021; 10
Cultivation (bib60) 2022; 12
Du, Li, Sidorenkov, Vonder, Cai, de Bock, Guan, Xia, Zhou, Zhang, Rook, Vliegenthart, Heuvelmans, Dorrius, van Ooijen, Groen, van der Harst, Xiao, Ye, Xie, Wang, Oudkerk, Fan, Liu (bib24) 2021; 28
Chen, Liu, Nie, Lu, Fu, He, Li, Pi, Liu (bib34) 2021; 131
Tharwat (bib76) 2018; 17
Peng, Zhao, Pan, Ye (bib53) 2018; 18
Binson (10.1016/j.compbiomed.2022.105913_bib5) 2021; 21
Gadekallu (10.1016/j.compbiomed.2022.105913_bib75) 2020
Fens (10.1016/j.compbiomed.2022.105913_bib56) 2009; 180
Cultivation (10.1016/j.compbiomed.2022.105913_bib60) 2022; 12
Aggogeri (10.1016/j.compbiomed.2022.105913_bib61) 2021; 11
Ambartsoumian (10.1016/j.compbiomed.2022.105913_bib68) 2018
Binson (10.1016/j.compbiomed.2022.105913_bib38) 2021; 15
Avian (10.1016/j.compbiomed.2022.105913_bib47) 2022; 71
Geirhos (10.1016/j.compbiomed.2022.105913_bib67) 2020; 2
Durham (10.1016/j.compbiomed.2022.105913_bib10) 2015; 90
Tirzïte (10.1016/j.compbiomed.2022.105913_bib37) 2019; 13
Peng (10.1016/j.compbiomed.2022.105913_bib53) 2018; 18
Sakumura (10.1016/j.compbiomed.2022.105913_bib16) 2017
Kanwade (10.1016/j.compbiomed.2022.105913_bib26) 2019; 31
Papadopoulos (10.1016/j.compbiomed.2022.105913_bib79) 2020; 10
Bakiler (10.1016/j.compbiomed.2022.105913_bib50) 2021; 69
Chen (10.1016/j.compbiomed.2022.105913_bib48) 2021; 461
Shlomi (10.1016/j.compbiomed.2022.105913_bib44) 2017; 12
Ratiu (10.1016/j.compbiomed.2022.105913_bib4) 2021; 10
Fan (10.1016/j.compbiomed.2022.105913_bib65) 2020; 31
Seliya (10.1016/j.compbiomed.2022.105913_bib62) 2021
Attia (10.1016/j.compbiomed.2022.105913_bib78) 2019; 394
Chen (10.1016/j.compbiomed.2022.105913_bib27) 2021; 154
Hendrick (10.1016/j.compbiomed.2022.105913_bib45) 2021; 21
Hegde (10.1016/j.compbiomed.2022.105913_bib71) 2018
Akopov (10.1016/j.compbiomed.2022.105913_bib22) 2021; 33
Meng (10.1016/j.compbiomed.2022.105913_bib70) 2021
Thara (10.1016/j.compbiomed.2022.105913_bib59) 2019; 128
Zhao (10.1016/j.compbiomed.2022.105913_bib63) 2019; 7
Bregy (10.1016/j.compbiomed.2022.105913_bib15) 2018; 7
Baldini (10.1016/j.compbiomed.2022.105913_bib42) 2020; 10
Kim (10.1016/j.compbiomed.2022.105913_bib17) 2013; 13
Zarrin (10.1016/j.compbiomed.2022.105913_bib20) 2020; 8
Sharma (10.1016/j.compbiomed.2022.105913_bib25) 2015; 11
Alzubaidi (10.1016/j.compbiomed.2022.105913_bib46) 2021
Veronesi (10.1016/j.compbiomed.2022.105913_bib23) 2020; 12
Rodriguez Gamboa (10.1016/j.compbiomed.2022.105913_bib51) 2021; 327
Wang (10.1016/j.compbiomed.2022.105913_bib72) 2017
Wilson (10.1016/j.compbiomed.2022.105913_bib31) 2018
Ahmad (10.1016/j.compbiomed.2022.105913_bib3) 2020; 6
Wilson (10.1016/j.compbiomed.2022.105913_bib12) 2020; 10
Vogelmeier (10.1016/j.compbiomed.2022.105913_bib7) 2020; 166
Wang (10.1016/j.compbiomed.2022.105913_bib54) 2022; 351
Bodduluri (10.1016/j.compbiomed.2022.105913_bib19) 2020; 5
Farraia (10.1016/j.compbiomed.2022.105913_bib40) 2019; 4
Kang (10.1016/j.compbiomed.2022.105913_bib69) 2017; 12
Otoum (10.1016/j.compbiomed.2022.105913_bib77) 2022; 33
Cainap (10.1016/j.compbiomed.2022.105913_bib1) 2021; 10
Branco (10.1016/j.compbiomed.2022.105913_bib73) 2016; 49
Ferri (10.1016/j.compbiomed.2022.105913_bib74) 2009; 30
Tan (10.1016/j.compbiomed.2022.105913_bib36) 2016; 8
Zhang (10.1016/j.compbiomed.2022.105913_bib49) 2021; 21
Heffler (10.1016/j.compbiomed.2022.105913_bib18) 2018; 142
De Vries (10.1016/j.compbiomed.2022.105913_bib35) 2015; 9
Hashoul (10.1016/j.compbiomed.2022.105913_bib30) 2019; 28
Parris (10.1016/j.compbiomed.2022.105913_bib11) 2019; 11
Fens (10.1016/j.compbiomed.2022.105913_bib55) 2011; 41
van de Goor (10.1016/j.compbiomed.2022.105913_bib43) 2018; 13
Wang (10.1016/j.compbiomed.2022.105913_bib52) 2020; 307
Cazzola (10.1016/j.compbiomed.2022.105913_bib28) 2015; 1
Tharwat (10.1016/j.compbiomed.2022.105913_bib76) 2018; 17
Sekine (10.1016/j.compbiomed.2022.105913_bib6) 2012; 39
Durán Acevedo (10.1016/j.compbiomed.2022.105913_bib57) 2021; 35
Zarrin (10.1016/j.compbiomed.2022.105913_bib21) 2018; 8
Du (10.1016/j.compbiomed.2022.105913_bib24) 2021; 28
Mota (10.1016/j.compbiomed.2022.105913_bib41) 2021; 37
Johnson (10.1016/j.compbiomed.2022.105913_bib80) 2019; 6
Chang (10.1016/j.compbiomed.2022.105913_bib39) 2018; 255
Chen (10.1016/j.compbiomed.2022.105913_bib34) 2021; 131
Mirza (10.1016/j.compbiomed.2022.105913_bib13) 2018; 93
Sethi (10.1016/j.compbiomed.2022.105913_bib29) 2013; 26
Li (10.1016/j.compbiomed.2022.105913_bib14) 2020; 190
Liu (10.1016/j.compbiomed.2022.105913_bib58) 2020; 8
Wasilewski (10.1016/j.compbiomed.2022.105913_bib32) 2019; 1077
Arditi (10.1016/j.compbiomed.2022.105913_bib66) 2001; 19
Hou (10.1016/j.compbiomed.2022.105913_bib8) 2019; 2019
Carr (10.1016/j.compbiomed.2022.105913_bib9) 2018; 153
Shi (10.1016/j.compbiomed.2022.105913_bib64) 2020; 32
Hotel (10.1016/j.compbiomed.2022.105913_bib33) 2018; 255
El-Khoury (10.1016/j.compbiomed.2022.105913_bib2) 2020; 12
References_xml – volume: 21
  start-page: 11184
  year: 2021
  end-page: 11191
  ident: bib45
  article-title: Non-invasive method for tuberculosis exhaled breath classification using electronic nose
  publication-title: IEEE Sensor. J.
– volume: 32
  year: 2020
  ident: bib64
  article-title: Origin traceability of rice based on an electronic nose coupled with a feature reduction strategy
  publication-title: Meas. Sci. Technol.
– volume: 1
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib28
  article-title: Analysis of exhaled breath fingerprints and volatile organic compounds in COPD
  publication-title: COPD Res. Pract.
– volume: 39
  start-page: 1230
  year: 2012
  end-page: 1240
  ident: bib6
  article-title: Early detection of COPD is important for lung cancer surveillance
  publication-title: Eur. Respir. J.
– volume: 461
  start-page: 129
  year: 2021
  end-page: 136
  ident: bib48
  article-title: A mixed-kernel, variable-dimension memristive CNN for electronic nose recognition
  publication-title: Neurocomputing
– start-page: 17
  year: 2017
  ident: bib16
  article-title: Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm
  publication-title: Sensors
– volume: 69
  year: 2021
  ident: bib50
  article-title: Estimation of concentration values of different gases based on long short-term memory by using electronic nose
  publication-title: Biomed. Signal Process Control
– volume: 154
  start-page: 197
  year: 2021
  end-page: 205
  ident: bib27
  article-title: Calculated indices of volatile organic compounds (VOCs) in exhalation for lung cancer screening and early detection
  publication-title: Lung Cancer
– volume: 7
  start-page: 29
  year: 2018
  end-page: 35
  ident: bib15
  article-title: Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath
  publication-title: Clin. Mass Spectrom.
– start-page: 18
  year: 2018
  ident: bib31
  article-title: Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases
  publication-title: Sensors
– volume: 2019
  year: 2019
  ident: bib8
  article-title: Cigarette smoke induced lung barrier dysfunction, emt, and tissue remodeling: a possible link between COPD and lung cancer
  publication-title: BioMed Res. Int.
– volume: 11
  start-page: S2155
  year: 2019
  end-page: S2172
  ident: bib11
  article-title: Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis
  publication-title: J. Thorac. Dis.
– volume: 11
  start-page: 1033
  year: 2015
  end-page: 1043
  ident: bib25
  article-title: Lung cancer screening: history, current perspectives, and future directions
  publication-title: Arch. Med. Sci.
– volume: 31
  start-page: 749
  year: 2020
  end-page: 761
  ident: bib65
  article-title: Exactly robust kernel principal component analysis
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– year: 2017
  ident: bib72
  article-title: Real-time meets approximate computing: an elastic CNN inference accelerator with adaptive trade-off between QoS and QoR
  publication-title: Proc. - Des. Autom. Conf.
– volume: 71
  year: 2022
  ident: bib47
  article-title: Estimating finger joint angles on surface EMG using manifold learning and long short-term memory with attention mechanism
  publication-title: Biomed. Signal Process Control
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib79
  article-title: Unobtrusive detection of Parkinson's disease from multi-modal and in-the-wild sensor data using deep learning techniques
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib2
  article-title: Identification of a blood-based protein biomarker panel for lung cancer detection
  publication-title: Cancers
– volume: 131
  year: 2021
  ident: bib34
  article-title: Recognizing lung cancer and stages using a self-developed electronic nose system
  publication-title: Comput. Biol. Med.
– volume: 307
  year: 2020
  ident: bib52
  article-title: An optimized deep convolutional neural network for dendrobium classification based on electronic nose
  publication-title: Sensors Actuators, A Phys.
– volume: 33
  year: 2021
  ident: bib22
  article-title: Photodynamic theranostics of central lung cancer: present state and future prospects
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 24
  ident: bib23
  article-title: Recommendations for implementing lung cancer screening with low-dose computed tomography in Europe
  publication-title: Cancers
– volume: 49
  start-page: 1
  year: 2016
  end-page: 50
  ident: bib73
  article-title: A survey of predictive modeling on imbalanced domains
  publication-title: ACM Comput. Surv.
– volume: 10
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib1
  article-title: Next generation sequencing technology in lung cancer diagnosis
  publication-title: Biology
– volume: 21
  start-page: 16170
  year: 2021
  end-page: 16182
  ident: bib49
  article-title: Channel attention convolutional neural network for Chinese baijiu detection with E-nose
  publication-title: IEEE Sensor. J.
– volume: 28
  year: 2019
  ident: bib30
  article-title: Sensors for detecting pulmonary diseases from exhaled breath
  publication-title: Eur. Respir. Rev.
– year: 2020
  ident: bib75
  article-title: Deep neural networks to predict diabetic retinopathy
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 21
  start-page: 20886
  year: 2021
  end-page: 20895
  ident: bib5
  article-title: Prediction of pulmonary diseases with electronic nose using SVM and XGBoost
  publication-title: IEEE Sensor. J.
– volume: 2
  start-page: 665
  year: 2020
  end-page: 673
  ident: bib67
  article-title: Shortcut learning in deep neural networks
  publication-title: Nat. Mach. Intell.
– volume: 28
  start-page: 36
  year: 2021
  end-page: 45
  ident: bib24
  article-title: Computed tomography screening for early lung cancer, COPD and cardiovascular disease in shanghai: rationale and design of a population-based comparative study
  publication-title: Acad. Radiol.
– volume: 6
  year: 2020
  ident: bib3
  article-title: A new tool to predict lung cancer based on risk factors
  publication-title: Heliyon
– volume: 394
  start-page: 861
  year: 2019
  end-page: 867
  ident: bib78
  article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
  publication-title: Lancet
– volume: 15
  year: 2021
  ident: bib38
  article-title: Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose
  publication-title: J. Breath Res.
– volume: 37
  start-page: 59
  year: 2021
  end-page: 70
  ident: bib41
  article-title: Detection and identification of fungal species by electronic nose technology: a systematic review
  publication-title: Fungal Biol. Rev.
– volume: 351
  year: 2022
  ident: bib54
  article-title: Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning
  publication-title: Sensor. Actuator. B Chem.
– volume: 13
  year: 2019
  ident: bib37
  article-title: Detection of lung cancer with electronic nose and logistic regression analysis
  publication-title: J. Breath Res.
– volume: 35
  start-page: 4
  year: 2021
  end-page: 9
  ident: bib57
  article-title: Electronic nose dataset for COPD detection from smokers and healthy people through exhaled breath analysis
  publication-title: Data Brief
– volume: 41
  start-page: 1371
  year: 2011
  end-page: 1378
  ident: bib55
  article-title: External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease
  publication-title: Clin. Exp. Allergy
– volume: 10
  start-page: 533
  year: 2020
  end-page: 536
  ident: bib12
  article-title: Lung cancer screening: how do we make it better?
  publication-title: Quant. Imag. Med. Surg.
– volume: 6
  year: 2019
  ident: bib80
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data.
– start-page: 130
  year: 2018
  end-page: 139
  ident: bib68
  article-title: Self-attention: a better building block for sentiment analysis neural network classifiers, wassa 2018 - 9th work. Comput. Approaches to subj
  publication-title: Sentim. Soc. Media Anal. Proc. Work.
– volume: 31
  start-page: 506
  year: 2019
  end-page: 513
  ident: bib26
  article-title: Classification of COPD and normal lung airways using feature extraction of electromyographic signals
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– volume: 5
  year: 2020
  ident: bib19
  article-title: Deep neural network analyses of spirometry for structural phenotyping of chronic obstructive pulmonary disease
  publication-title: JCI Insight
– volume: 128
  start-page: 544
  year: 2019
  end-page: 550
  ident: bib59
  article-title: Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques
  publication-title: Pattern Recogn. Lett.
– volume: 8
  start-page: 168053
  year: 2020
  end-page: 168060
  ident: bib20
  article-title: In-vitro classification of saliva samples of COPD patients and healthy controls using machine learning tools
  publication-title: IEEE Access
– start-page: 183
  year: 2021
  end-page: 193
  ident: bib70
  article-title: DYNAMAP: dynamic algorithm mapping framework for low latency CNN inference
  publication-title: FPGA ’21 2021 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays
– volume: 9
  year: 2015
  ident: bib35
  article-title: Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis
  publication-title: J. Breath Res.
– volume: 12
  start-page: 1544
  year: 2017
  end-page: 1551
  ident: bib44
  article-title: Detection of lung cancer and EGFR mutation by electronic nose system
  publication-title: J. Thorac. Oncol.
– volume: 327
  year: 2021
  ident: bib51
  article-title: Validation of the rapid detection approach for enhancing the electronic nose systems performance, using different deep learning models and support vector machines
  publication-title: Sensor. Actuator. B Chem.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib53
  article-title: Gas classification using deep convolutional neural networks
  publication-title: Sensors
– year: 2021
  ident: bib62
  article-title: A Literature Review on One-Class Classification and its Potential Applications in Big Data
– volume: 13
  year: 2013
  ident: bib17
  article-title: Differences in classification of COPD group using COPD assessment test (CAT) or modified Medical Research Council (mMRC) dyspnea scores: a cross-sectional analyses
  publication-title: BMC Pulm. Med.
– volume: 26
  start-page: 462
  year: 2013
  end-page: 475
  ident: bib29
  article-title: Clinical application of volatile organic compound analysis for detecting infectious diseases
  publication-title: Clin. Microbiol. Rev.
– volume: 180
  start-page: 1076
  year: 2009
  end-page: 1082
  ident: bib56
  article-title: Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 4
  start-page: e42
  year: 2019
  ident: bib40
  article-title: The electronic nose technology in clinical diagnosis: a systematic review
  publication-title: Porto Biomed. J.
– volume: 11
  year: 2021
  ident: bib61
  article-title: Recent advances on machine learning applications in machining processes
  publication-title: Appl. Sci.
– volume: 90
  start-page: 121
  year: 2015
  end-page: 127
  ident: bib10
  article-title: The relationship between COPD and lung cancer
  publication-title: Lung Cancer
– volume: 166
  year: 2020
  ident: bib7
  article-title: Goals of COPD treatment: focus on symptoms and exacerbations
  publication-title: Respir. Med.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 21
  ident: bib69
  article-title: 3D multi-view convolutional neural networks for lung nodule classification
  publication-title: PLoS One
– volume: 10
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib42
  article-title: Electronic nose as a novel method for diagnosing cancer: a systematic review
  publication-title: Biosensors
– year: 2021
  ident: bib46
  article-title: Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions
– volume: 33
  start-page: 1
  year: 2022
  end-page: 14
  ident: bib77
  article-title: DL-IDS: a deep learning–based intrusion detection framework for securing IoT
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 7
  start-page: 99263
  year: 2019
  end-page: 99272
  ident: bib63
  article-title: Fault diagnosis method based on principal component analysis and broad learning system
  publication-title: IEEE Access
– volume: 8
  year: 2018
  ident: bib21
  article-title: Design and fabrication of a BICMOS dielectric sensor for viscosity measurements: a possible solution for early detection of COPD
  publication-title: Biosensors
– volume: 1077
  start-page: 14
  year: 2019
  end-page: 29
  ident: bib32
  article-title: Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis
  publication-title: Anal. Chim. Acta
– volume: 19
  start-page: 265
  year: 2001
  end-page: 277
  ident: bib66
  article-title: Effect of learning on line-of-balance scheduling
  publication-title: Int. J. Proj. Manag.
– volume: 142
  start-page: 48
  year: 2018
  end-page: 52
  ident: bib18
  article-title: Misdiagnosis of asthma and COPD and underuse of spirometry in primary care unselected patients
  publication-title: Respir. Med.
– volume: 17
  start-page: 168
  year: 2018
  end-page: 192
  ident: bib76
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Informatics.
– volume: 255
  start-page: 800
  year: 2018
  end-page: 807
  ident: bib39
  article-title: Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system
  publication-title: Sensor. Actuator. B Chem.
– volume: 8
  start-page: 2772
  year: 2016
  end-page: 2783
  ident: bib36
  article-title: Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer
  publication-title: J. Thorac. Dis.
– volume: 13
  start-page: 676
  year: 2018
  end-page: 681
  ident: bib43
  article-title: Training and validating a portable electronic nose for lung cancer screening
  publication-title: J. Thorac. Oncol.
– volume: 12
  year: 2022
  ident: bib60
  article-title: A deep learning-based model to reduce costs and increase productivity in the case of small datasets : a case study in cotton cultivation
  publication-title: Agriculture
– volume: 93
  start-page: 1488
  year: 2018
  end-page: 1502
  ident: bib13
  article-title: COPD guidelines: a review of the 2018 gold report
  publication-title: Mayo Clin. Proc.
– volume: 190
  year: 2020
  ident: bib14
  article-title: Metabolomic analysis of lung cancer patients with chronic obstructive pulmonary disease using gas chromatography-mass spectrometry
  publication-title: J. Pharm. Biomed. Anal.
– start-page: 674
  year: 2018
  end-page: 687
  ident: bib71
  article-title: UCNN: exploiting computational reuse in deep neural networks via weight repetition
  publication-title: Proc. - Int. Symp. Comput. Archit.
– volume: 10
  start-page: 1
  year: 2021
  end-page: 41
  ident: bib4
  article-title: Volatile organic compounds in exhaled breath as fingerprints of lung cancer, asthma and COPD
  publication-title: J. Clin. Med.
– volume: 153
  start-page: 1326
  year: 2018
  end-page: 1335
  ident: bib9
  article-title: Features of COPD as predictors of lung cancer
  publication-title: Chest
– volume: 8
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib58
  article-title: What is the meaning of health literacy? A systematic review and qualitative synthesis
  publication-title: Fam. Med. Community Heal.
– volume: 255
  start-page: 2472
  year: 2018
  end-page: 2482
  ident: bib33
  article-title: A review of algorithms for SAW sensors e-nose based volatile compound identification
  publication-title: Sensor. Actuator. B Chem.
– volume: 30
  start-page: 27
  year: 2009
  end-page: 38
  ident: bib74
  article-title: An experimental comparison of performance measures for classification
  publication-title: Pattern Recogn. Lett.
– volume: 93
  start-page: 1488
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib13
  article-title: COPD guidelines: a review of the 2018 gold report
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2018.05.026
– volume: 153
  start-page: 1326
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib9
  article-title: Features of COPD as predictors of lung cancer
  publication-title: Chest
  doi: 10.1016/j.chest.2018.01.049
– volume: 13
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105913_bib17
  article-title: Differences in classification of COPD group using COPD assessment test (CAT) or modified Medical Research Council (mMRC) dyspnea scores: a cross-sectional analyses
  publication-title: BMC Pulm. Med.
  doi: 10.1186/1471-2466-13-35
– volume: 33
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib22
  article-title: Photodynamic theranostics of central lung cancer: present state and future prospects
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2021.102203
– volume: 4
  start-page: e42
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib40
  article-title: The electronic nose technology in clinical diagnosis: a systematic review
  publication-title: Porto Biomed. J.
  doi: 10.1097/j.pbj.0000000000000042
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib42
  article-title: Electronic nose as a novel method for diagnosing cancer: a systematic review
  publication-title: Biosensors
  doi: 10.3390/bios10080084
– volume: 26
  start-page: 462
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105913_bib29
  article-title: Clinical application of volatile organic compound analysis for detecting infectious diseases
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00020-13
– volume: 394
  start-page: 861
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib78
  article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31721-0
– volume: 21
  start-page: 11184
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib45
  article-title: Non-invasive method for tuberculosis exhaled breath classification using electronic nose
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2021.3061616
– volume: 154
  start-page: 197
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib27
  article-title: Calculated indices of volatile organic compounds (VOCs) in exhalation for lung cancer screening and early detection
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2021.02.006
– volume: 1077
  start-page: 14
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib32
  article-title: Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.05.024
– volume: 28
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib30
  article-title: Sensors for detecting pulmonary diseases from exhaled breath
  publication-title: Eur. Respir. Rev.
  doi: 10.1183/16000617.0011-2019
– volume: 15
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib38
  article-title: Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose
  publication-title: J. Breath Res.
  doi: 10.1088/1752-7163/ac1326
– volume: 37
  start-page: 59
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib41
  article-title: Detection and identification of fungal species by electronic nose technology: a systematic review
  publication-title: Fungal Biol. Rev.
  doi: 10.1016/j.fbr.2021.03.005
– volume: 7
  start-page: 29
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib15
  article-title: Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath
  publication-title: Clin. Mass Spectrom.
  doi: 10.1016/j.clinms.2018.02.003
– volume: 28
  start-page: 36
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib24
  article-title: Computed tomography screening for early lung cancer, COPD and cardiovascular disease in shanghai: rationale and design of a population-based comparative study
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2020.01.020
– start-page: 17
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105913_bib16
  article-title: Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm
  publication-title: Sensors
– volume: 8
  start-page: 2772
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105913_bib36
  article-title: Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2016.10.30
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib62
– volume: 19
  start-page: 265
  year: 2001
  ident: 10.1016/j.compbiomed.2022.105913_bib66
  article-title: Effect of learning on line-of-balance scheduling
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/S0263-7863(99)00079-4
– volume: 13
  start-page: 676
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib43
  article-title: Training and validating a portable electronic nose for lung cancer screening
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2018.01.024
– volume: 21
  start-page: 16170
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib49
  article-title: Channel attention convolutional neural network for Chinese baijiu detection with E-nose
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2021.3075703
– start-page: 674
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib71
  article-title: UCNN: exploiting computational reuse in deep neural networks via weight repetition
– volume: 49
  start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105913_bib73
  article-title: A survey of predictive modeling on imbalanced domains
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2907070
– volume: 33
  start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105913_bib77
  article-title: DL-IDS: a deep learning–based intrusion detection framework for securing IoT
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 1
  start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105913_bib28
  article-title: Analysis of exhaled breath fingerprints and volatile organic compounds in COPD
  publication-title: COPD Res. Pract.
  doi: 10.1186/s40749-015-0010-1
– start-page: 18
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib31
  article-title: Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases
  publication-title: Sensors
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib2
  article-title: Identification of a blood-based protein biomarker panel for lung cancer detection
  publication-title: Cancers
  doi: 10.3390/cancers12061629
– volume: 8
  start-page: 168053
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib20
  article-title: In-vitro classification of saliva samples of COPD patients and healthy controls using machine learning tools
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023971
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib75
  article-title: Deep neural networks to predict diabetic retinopathy
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-01963-7
– volume: 190
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib14
  article-title: Metabolomic analysis of lung cancer patients with chronic obstructive pulmonary disease using gas chromatography-mass spectrometry
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2020.113524
– volume: 255
  start-page: 2472
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib33
  article-title: A review of algorithms for SAW sensors e-nose based volatile compound identification
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.09.040
– volume: 166
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib7
  article-title: Goals of COPD treatment: focus on symptoms and exacerbations
  publication-title: Respir. Med.
  doi: 10.1016/j.rmed.2020.105938
– volume: 31
  start-page: 506
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib26
  article-title: Classification of COPD and normal lung airways using feature extraction of electromyographic signals
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– volume: 7
  start-page: 99263
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib63
  article-title: Fault diagnosis method based on principal component analysis and broad learning system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929094
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib79
  article-title: Unobtrusive detection of Parkinson's disease from multi-modal and in-the-wild sensor data using deep learning techniques
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78418-8
– volume: 41
  start-page: 1371
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105913_bib55
  article-title: External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease
  publication-title: Clin. Exp. Allergy
  doi: 10.1111/j.1365-2222.2011.03800.x
– volume: 180
  start-page: 1076
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105913_bib56
  article-title: Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200906-0939OC
– volume: 255
  start-page: 800
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib39
  article-title: Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.08.057
– volume: 32
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib64
  article-title: Origin traceability of rice based on an electronic nose coupled with a feature reduction strategy
  publication-title: Meas. Sci. Technol.
– volume: 10
  start-page: 533
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib12
  article-title: Lung cancer screening: how do we make it better?
  publication-title: Quant. Imag. Med. Surg.
  doi: 10.21037/qims.2020.01.08
– volume: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib19
  article-title: Deep neural network analyses of spirometry for structural phenotyping of chronic obstructive pulmonary disease
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.132781
– volume: 30
  start-page: 27
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105913_bib74
  article-title: An experimental comparison of performance measures for classification
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2008.08.010
– volume: 90
  start-page: 121
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105913_bib10
  article-title: The relationship between COPD and lung cancer
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.08.017
– volume: 351
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105913_bib54
  article-title: Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2021.130915
– volume: 31
  start-page: 749
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib65
  article-title: Exactly robust kernel principal component analysis
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2019.2909686
– volume: 307
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib52
  article-title: An optimized deep convolutional neural network for dendrobium classification based on electronic nose
  publication-title: Sensors Actuators, A Phys.
  doi: 10.1016/j.sna.2020.111874
– volume: 21
  start-page: 20886
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib5
  article-title: Prediction of pulmonary diseases with electronic nose using SVM and XGBoost
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2021.3100390
– start-page: 183
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib70
  article-title: DYNAMAP: dynamic algorithm mapping framework for low latency CNN inference
– volume: 12
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105913_bib60
  article-title: A deep learning-based model to reduce costs and increase productivity in the case of small datasets : a case study in cotton cultivation
  publication-title: Agriculture
– start-page: 130
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib68
  article-title: Self-attention: a better building block for sentiment analysis neural network classifiers, wassa 2018 - 9th work. Comput. Approaches to subj
  publication-title: Sentim. Soc. Media Anal. Proc. Work.
  doi: 10.18653/v1/W18-6219
– volume: 71
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105913_bib47
  article-title: Estimating finger joint angles on surface EMG using manifold learning and long short-term memory with attention mechanism
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.103099
– volume: 69
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib50
  article-title: Estimation of concentration values of different gases based on long short-term memory by using electronic nose
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.102908
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib58
  article-title: What is the meaning of health literacy? A systematic review and qualitative synthesis
  publication-title: Fam. Med. Community Heal.
– volume: 142
  start-page: 48
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib18
  article-title: Misdiagnosis of asthma and COPD and underuse of spirometry in primary care unselected patients
  publication-title: Respir. Med.
  doi: 10.1016/j.rmed.2018.07.015
– volume: 10
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib1
  article-title: Next generation sequencing technology in lung cancer diagnosis
  publication-title: Biology
  doi: 10.3390/biology10090864
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib46
– volume: 327
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib51
  article-title: Validation of the rapid detection approach for enhancing the electronic nose systems performance, using different deep learning models and support vector machines
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2020.128921
– volume: 11
  start-page: S2155
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib11
  article-title: Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2019.10.54
– volume: 35
  start-page: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib57
  article-title: Electronic nose dataset for COPD detection from smokers and healthy people through exhaled breath analysis
  publication-title: Data Brief
  doi: 10.1016/j.dib.2021.106767
– year: 2017
  ident: 10.1016/j.compbiomed.2022.105913_bib72
  article-title: Real-time meets approximate computing: an elastic CNN inference accelerator with adaptive trade-off between QoS and QoR
– volume: 13
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib37
  article-title: Detection of lung cancer with electronic nose and logistic regression analysis
  publication-title: J. Breath Res.
– volume: 8
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib21
  article-title: Design and fabrication of a BICMOS dielectric sensor for viscosity measurements: a possible solution for early detection of COPD
  publication-title: Biosensors
– volume: 11
  start-page: 1033
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105913_bib25
  article-title: Lung cancer screening: history, current perspectives, and future directions
  publication-title: Arch. Med. Sci.
– volume: 2
  start-page: 665
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib67
  article-title: Shortcut learning in deep neural networks
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00257-z
– volume: 17
  start-page: 168
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib76
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Informatics.
  doi: 10.1016/j.aci.2018.08.003
– volume: 10
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib4
  article-title: Volatile organic compounds in exhaled breath as fingerprints of lung cancer, asthma and COPD
  publication-title: J. Clin. Med.
– volume: 2019
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib8
  article-title: Cigarette smoke induced lung barrier dysfunction, emt, and tissue remodeling: a possible link between COPD and lung cancer
  publication-title: BioMed Res. Int.
  doi: 10.1155/2019/2025636
– volume: 9
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105913_bib35
  article-title: Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis
  publication-title: J. Breath Res.
  doi: 10.1088/1752-7155/9/4/046001
– volume: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib80
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data.
  doi: 10.1186/s40537-019-0192-5
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105913_bib53
  article-title: Gas classification using deep convolutional neural networks
  publication-title: Sensors
  doi: 10.3390/s18010157
– volume: 11
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib61
  article-title: Recent advances on machine learning applications in machining processes
  publication-title: Appl. Sci.
  doi: 10.3390/app11188764
– volume: 131
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib34
  article-title: Recognizing lung cancer and stages using a self-developed electronic nose system
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104294
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib23
  article-title: Recommendations for implementing lung cancer screening with low-dose computed tomography in Europe
  publication-title: Cancers
  doi: 10.3390/cancers12061672
– volume: 128
  start-page: 544
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105913_bib59
  article-title: Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.10.029
– volume: 6
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105913_bib3
  article-title: A new tool to predict lung cancer based on risk factors
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e03402
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105913_bib69
  article-title: 3D multi-view convolutional neural networks for lung nodule classification
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0188290
– volume: 12
  start-page: 1544
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105913_bib44
  article-title: Detection of lung cancer and EGFR mutation by electronic nose system
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2017.06.073
– volume: 39
  start-page: 1230
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105913_bib6
  article-title: Early detection of COPD is important for lung cancer surveillance
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00126011
– volume: 461
  start-page: 129
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105913_bib48
  article-title: A mixed-kernel, variable-dimension memristive CNN for electronic nose recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.009
SSID ssj0004030
Score 2.4325418
Snippet As one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection,...
AbstractAs one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105913
SubjectTerms Artificial neural networks
Chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD)
Classifiers
Computer architecture
Convolutional neural network
Electronic nose
Electronic noses
Feature extraction
Internal Medicine
Kernel principal component analysis
Lung cancer
Lung diseases
Machine learning
Mortality
Neural networks
Obstructive lung disease
Other
Principal components analysis
Sensors
Signal processing
Smoking
Standard deviation
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcqHtBeJsaGKAN0k_YaiGMnTsfTVKjQpLI9gMSblTi2xMYSRFo0XvhifLndxU7LBpMq7SlNk4ut3uXud71_jH1EKyOEi_PI5DKNJELWKLdZha6K4ISnE-eoGnl6lp1eyC-X6eWAjftaGEqrDLrf6_ROW4dvDsOveXhzdUU1vuhKoIOTkFecZtQTVEpFUn7wsEzzwEV9GQrqG7o7ZPP4HC9K2_Zl7ugpJgkNvR1x8S8T9Zey7izQZIO9DtARPvvdvWEDW2-y9WkIjr9lj5Nf0ZmdQVFX8G1-a_HzJxg39V2QLqSlVhzdocv9hqdRBED0ClSj6-d8EQE0DkLzXPhahk6zdxYffo3CW9zew7EP7wAVqUD7s_mBYLJb35dX3kM7L-mPnhbCPCBYjt2BukFKyh_BN-Adu5icnI9PozCbITJyxGfRKJZGUFRRiAwhm0VUYVyRSmusUYaji24rUWaWJxV3ZYkuuLMqd7EqnUWbmYottlY3td1mkJtKiaoohFOxdAivcoN6x6gCkZPLcjdkqmeHNqFxOc3PuNZ9htp3vWSkJkZqz8gh4wvKG9-8YwWaUc9x3RenojrVaGFWoFUv0do26IVWc90mOtbPZHfIjhaUf4j_iuvu9qKpF0sliropCk6XPywuo_KgiFBR22be3UNTPoQQO_-1gffsFZ353LtdtoYCafcQrM3K_e5t_A0L2EIN
  priority: 102
  providerName: Elsevier
Title Fx-Net and PureNet: Convolutional Neural Network architecture for discrimination of Chronic Obstructive Pulmonary Disease from smokers and healthy subjects through electronic nose signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522006564
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522006564
https://dx.doi.org/10.1016/j.compbiomed.2022.105913
https://www.proquest.com/docview/2704863113
https://www.proquest.com/docview/2700315333
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RVkJcEE8RWqJB4mrIem2vUw6olIYAaqiASrmt7PXuAYpd6qSiF_4Yf44Z7zpBCFAutiV7vJJnPPPNzgvgCVkZKd0oj0yepFFCkDXKbVaRqyIF4-nYOa5GPp5l09Pk7Tydhw23NqRV9jqxU9RVY3iP_FmsuDmcFEK-OP8W8dQojq6GERpbsMOty1iq1Vyt6yJH0pegkK5JyBUKmTw-v4tTtn2JO3mJccwDb8dC_ss8_aGoO-szuQU3A2zEA8_n23DN1nfg-nEIjN-Fn5Pv0cwusKgrPFleWLrex8OmvgySRbTchqM7dXnf-HsEAQm5Itfn-hlfTICNw9A4F9-XocvspaWXn9GXKC6u8JUP7SAXqGD7tflCQLJb35dWXmG7LHmTp8UwCwjXI3ewboiSc0dI-u_B6eTo0-E0CnMZIpOMxSIajxIjOaIoZUZwzRKiMK5IE2usUUaQe24rWWZWxJVwZUnut7MqdyNVOkv2MpX3YbtuavsAMDeVklVRSEfsdQStckM6x6iCUJPLcjcA1bNDm9C0nGdnnOk-O-2zXjNSMyO1Z-QAxIry3Dfu2IBm3HNc94WppEo1WZcNaNXfaG0bdEKrhW5jPdIfu5ZIJI0x7-akWTKA5yvKAHs8nNlw3b1eNPVqqfXPMoDHq9ukODgaVNS2WXbP8IQPKeXD_79iF27wej6xbg-2SeLsI0Jii3IIW09_iGH309Exn7wews7Bm3fTGZ1fHs1OPvwCRxM77g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQRcEE8RKDBIcLTwPmI7VBVCLSGlTUCilXpb7PXuoRS71ElL_hR_gD_HjHedIAQol55syR6v5Jmd-WbnxdhztDJSujiLTKb6kULIGmU2KdFVkZzwtHCOqpHHk2R0pN4f94_X2I-uFobSKjud2CrqsjZ0Rv5SpNQcTnIuX599i2hqFEVXuxEaXiz27fwSXbZme28X-ftCiOHbw51RFKYKREYN-DQaxMpIiodJmSDYsGgPjcv7yhprUsPRubSlLBLLRcldUaDz6GyauTgtnEVtT1MiUOVvKImWnCrTh--WdZix9CUvqNsUul4hc8jnk1GKuC-pR69UCBqwO-DyX-bwD8PQWrvhLXYzwFR44-XqNluz1R12bRwC8XfZz-H3aGKnkFclfJydW7x_BTt1dREkGWmp7Ud7afPM4feIBSBSBqoH9jPFiABqB6FRL3woQlfbC4sfP8U_n5_PYdeHkoAKYqD5Wn9B4Nqu70s559DMCjpUaiDMHoLliB-oaqSkXBXcbffY0ZVw7D5br-rKPmCQmTKVZZ5Lh-LkEMplBnWcSXNEaS7JXI-lHTu0CU3SaVbHqe6y4U70kpGaGKk9I3uMLyjPfKOQFWgGHcd1VwiLqlujNVuBNv0brW2CDmo0143Qsf7UtmBCaRR0etRPVI9tLSgDzPLwacV1NzvR1Iullpuzx54tHqOiouhTXtl61r5DE0WklA___4mn7ProcHygD_Ym-4_YDVrbJ_VtsnWUPvsYUeC0eNJuPWCfr3qv_wL1iHQu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqVRxQTxFoMAgwdGq1-vYDgghaBq1lIYIqNTbYq93D1DsUieF_DX4c8x41wlCgHLpKZGS8Uqe1zc7L4DH5GWktGEW6CweBDFB1iAzSUmhihSMpyNruRv5aJLsH8evTwYnG_Cj64XhssrOJraGuqw135HvRCkPh5NCyB3ryyKmo_GLs68Bb5DiTGu3TsOJyKFZfKPwrXl-MCJeP4mi8d6H3f3AbxgIdDwUs2AYxlpybkzKhICHId-obT6IjTY61YICTVPKIjEiKoUtCgokrUkzG6aFNWT5eWMEmf_NlKOiHmy-2ptM3626MkPpGmDI0sUUiPk6IlddxgXjrsGeYtQo4nW7QyH_5Rz_cBOt7xtfg6setOJLJ2XXYcNUN2DryKflb8LP8fdgYmaYVyVO5-eGvj_F3bq68HJNtDwEpP1oq87x9_wFEm5G7g52G8aYAGuLfmwvvi38jNsLQw8_pXefny9w5BJLyO0x2HypPxOMbc93jZ0LbOYFXzE16DcR4WrhD1Y1UXLlCuneLTi-FJ7dhl5VV-YOYKbLVJZ5Li0JlyVgl2myeDrNCbPZJLN9SDt2KO1HpvPmjlPV1cZ9UitGKmakcozsg1hSnrmxIWvQDDuOq64tlgy5It-2Bm36N1rTeIvUKKGaSIXqfTuQiaQx4rukQRL34dmS0oMuB6bWPHe7E021PGqlqn14tPyZzBbnovLK1PP2P7xfREp59_-PeAhbpOfqzcHk8B5c4aNdhd829Ej4zH2ChLPigdc9hI-Xre6_ADJuecA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fx-Net+and+PureNet%3A+Convolutional+Neural+Network+architecture+for+discrimination+of+Chronic+Obstructive+Pulmonary+Disease+from+smokers+and+healthy+subjects+through+electronic+nose+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Avian%2C+Cries&rft.au=Mahali%2C+Muhammad+Izzuddin&rft.au=Putro%2C+Nur+Achmad+Sulistyo&rft.au=Prakosa%2C+Setya+Widyawan&rft.date=2022-09-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=148&rft.spage=105913&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105913&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon