DeePMD-kit v2: A software package for deep potential models

DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material scien...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 159; no. 5
Main Authors Zeng, Jinzhe, Zhang, Duo, Lu, Denghui, Mo, Pinghui, Li, Zeyu, Chen, Yixiao, Rynik, Marián, Huang, Li’ang, Li, Ziyao, Shi, Shaochen, Wang, Yingze, Ye, Haotian, Tuo, Ping, Yang, Jiabin, Ding, Ye, Li, Yifan, Tisi, Davide, Zeng, Qiyu, Bao, Han, Xia, Yu, Huang, Jiameng, Muraoka, Koki, Wang, Yibo, Chang, Junhan, Yuan, Fengbo, Bore, Sigbjørn Løland, Cai, Chun, Lin, Yinnian, Wang, Bo, Xu, Jiayan, Zhu, Jia-Xin, Luo, Chenxing, Zhang, Yuzhi, Goodall, Rhys E. A., Liang, Wenshuo, Singh, Anurag Kumar, Yao, Sikai, Zhang, Jingchao, Wentzcovitch, Renata, Han, Jiequn, Liu, Jie, Jia, Weile, York, Darrin M., E, Weinan, Car, Roberto, Zhang, Linfeng, Wang, Han
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 07.08.2023
American Institute of Physics (AIP)
AIP Publishing LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.
AbstractList DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.
Author Shi, Shaochen
Yang, Jiabin
Huang, Jiameng
Zhang, Duo
Li, Yifan
Muraoka, Koki
Zhang, Yuzhi
Goodall, Rhys E. A.
Liang, Wenshuo
Ye, Haotian
Bore, Sigbjørn Løland
Tisi, Davide
Yao, Sikai
Han, Jiequn
York, Darrin M.
Ding, Ye
Rynik, Marián
Liu, Jie
Wentzcovitch, Renata
Chen, Yixiao
Zhang, Jingchao
Wang, Yingze
Jia, Weile
E, Weinan
Tuo, Ping
Lin, Yinnian
Mo, Pinghui
Xia, Yu
Wang, Yibo
Cai, Chun
Chang, Junhan
Zeng, Jinzhe
Singh, Anurag Kumar
Car, Roberto
Zhang, Linfeng
Xu, Jiayan
Huang, Li’ang
Zhu, Jia-Xin
Luo, Chenxing
Li, Zeyu
Wang, Bo
Yuan, Fengbo
Li, Ziyao
Lu, Denghui
Bao, Han
Wang, Han
Zeng, Qiyu
Author_xml – sequence: 1
  givenname: Jinzhe
  surname: Zeng
  fullname: Zeng, Jinzhe
  organization: Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University
– sequence: 2
  givenname: Duo
  surname: Zhang
  fullname: Zhang, Duo
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 3
  givenname: Denghui
  surname: Lu
  fullname: Lu, Denghui
  organization: HEDPS, CAPT, College of Engineering, Peking University
– sequence: 4
  givenname: Pinghui
  surname: Mo
  fullname: Mo, Pinghui
  organization: College of Electrical and Information Engineering, Hunan University
– sequence: 5
  givenname: Zeyu
  surname: Li
  fullname: Li, Zeyu
  organization: Yuanpei College, Peking University
– sequence: 6
  givenname: Yixiao
  surname: Chen
  fullname: Chen, Yixiao
  organization: Program in Applied and Computational Mathematics, Princeton University
– sequence: 7
  givenname: Marián
  surname: Rynik
  fullname: Rynik, Marián
  organization: Department of Experimental Physics, Comenius University
– sequence: 8
  givenname: Li’ang
  surname: Huang
  fullname: Huang, Li’ang
  organization: Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University
– sequence: 9
  givenname: Ziyao
  surname: Li
  fullname: Li, Ziyao
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 10
  givenname: Shaochen
  surname: Shi
  fullname: Shi, Shaochen
  organization: ByteDance Research, Zhonghang Plaza
– sequence: 11
  givenname: Yingze
  surname: Wang
  fullname: Wang, Yingze
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 12
  givenname: Haotian
  surname: Ye
  fullname: Ye, Haotian
  organization: Yuanpei College, Peking University
– sequence: 13
  givenname: Ping
  surname: Tuo
  fullname: Tuo, Ping
  organization: AI for Science Institute
– sequence: 14
  givenname: Jiabin
  surname: Yang
  fullname: Yang, Jiabin
  organization: Baidu, Inc
– sequence: 15
  givenname: Ye
  surname: Ding
  fullname: Ding, Ye
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 16
  givenname: Yifan
  surname: Li
  fullname: Li, Yifan
  organization: Department of Chemistry, Princeton University
– sequence: 17
  givenname: Davide
  surname: Tisi
  fullname: Tisi, Davide
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 18
  givenname: Qiyu
  surname: Zeng
  fullname: Zeng, Qiyu
  organization: Department of Physics, National University of Defense Technology
– sequence: 19
  givenname: Han
  surname: Bao
  fullname: Bao, Han
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 20
  givenname: Yu
  surname: Xia
  fullname: Xia, Yu
  organization: ByteDance Research, Zhonghang Plaza
– sequence: 21
  givenname: Jiameng
  surname: Huang
  fullname: Huang, Jiameng
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 22
  givenname: Koki
  surname: Muraoka
  fullname: Muraoka, Koki
  organization: Department of Chemical System Engineering, The University of Tokyo
– sequence: 23
  givenname: Yibo
  surname: Wang
  fullname: Wang, Yibo
  organization: DP Technology
– sequence: 24
  givenname: Junhan
  surname: Chang
  fullname: Chang, Junhan
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 25
  givenname: Fengbo
  surname: Yuan
  fullname: Yuan, Fengbo
  organization: DP Technology
– sequence: 26
  givenname: Sigbjørn Løland
  surname: Bore
  fullname: Bore, Sigbjørn Løland
  organization: Hylleraas Centre for Quantum Molecular Sciences and Department of Chemistry, University of Oslo
– sequence: 27
  givenname: Chun
  surname: Cai
  fullname: Cai, Chun
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 28
  givenname: Yinnian
  surname: Lin
  fullname: Lin, Yinnian
  organization: Wangxuan Institute of Computer Technology, Peking University
– sequence: 29
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University
– sequence: 30
  givenname: Jiayan
  surname: Xu
  fullname: Xu, Jiayan
  organization: School of Chemistry and Chemical Engineering, Queen’s University Belfast
– sequence: 31
  givenname: Jia-Xin
  surname: Zhu
  fullname: Zhu, Jia-Xin
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 32
  givenname: Chenxing
  surname: Luo
  fullname: Luo, Chenxing
  organization: Department of Applied Physics and Applied Mathematics, Columbia University
– sequence: 33
  givenname: Yuzhi
  surname: Zhang
  fullname: Zhang, Yuzhi
  organization: DP Technology
– sequence: 34
  givenname: Rhys E. A.
  surname: Goodall
  fullname: Goodall, Rhys E. A.
  organization: Independent Researcher
– sequence: 35
  givenname: Wenshuo
  surname: Liang
  fullname: Liang, Wenshuo
  organization: DP Technology
– sequence: 36
  givenname: Anurag Kumar
  surname: Singh
  fullname: Singh, Anurag Kumar
  organization: Department of Data Science, Indian Institute of Technology
– sequence: 37
  givenname: Sikai
  surname: Yao
  fullname: Yao, Sikai
  organization: DP Technology
– sequence: 38
  givenname: Jingchao
  surname: Zhang
  fullname: Zhang, Jingchao
  organization: NVIDIA AI Technology Center (NVAITC)
– sequence: 39
  givenname: Renata
  surname: Wentzcovitch
  fullname: Wentzcovitch, Renata
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 40
  givenname: Jiequn
  surname: Han
  fullname: Han, Jiequn
  organization: Center for Computational Mathematics, Flatiron Institute
– sequence: 41
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: College of Electrical and Information Engineering, Hunan University
– sequence: 42
  givenname: Weile
  surname: Jia
  fullname: Jia, Weile
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 43
  givenname: Darrin M.
  surname: York
  fullname: York, Darrin M.
  organization: Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University
– sequence: 44
  givenname: Weinan
  surname: E
  fullname: E, Weinan
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 45
  givenname: Roberto
  surname: Car
  fullname: Car, Roberto
  organization: Department of Chemistry, Princeton University
– sequence: 46
  givenname: Linfeng
  surname: Zhang
  fullname: Zhang, Linfeng
  email: linfeng.zhang.zlf@gmail.com
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
– sequence: 47
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37526163$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1994160$$D View this record in Osti.gov
BookMark eNp9kV9PFDEUxRuDkQV98AuYib6gycBtp9Np9cEQ8F-C0Qd9bjqdO1CYbZe2C_Hb22V3iRJjH9qH_u7JOffskR0fPBLynMIhBdEctYdA21YAPCIzClLVnVCwQ2YAjNZKgNgleyldAgDtGH9CdpuuZYKKZkbenSJ-_3paX7lc3bC31XGVwphvTcRqYeyVOcdqDLEaEBfVImT02ZmpmocBp_SUPB7NlPDZ5t0nPz9--HHyuT779unLyfFZbbmiue7swLHvlbKSGdUPFHsmlZHCMsGHQQ2dgUFBx3veGSk7ZqCX49hAY4ToO9rsk_dr3cWyn-Ngi4loJr2Ibm7iLx2M03__eHehz8ONpsB5KxpRFF6uFULKTifrMtoLG7xHmzVVilMBBarWkI2uYF77EE3RkC0rtxJ3Tg42TmK4XmLKeu6SxWkyHsMyaSY5F5JStVJ79QC9DMvoy57uqEa05RTqxZ_R7jNtCyrA662pkFLE8R6hoFfl61Zvyi_s0QO2BDXZhdVW3PTPiTfribQl_yP_GzWguPM
CODEN JCPSA6
CitedBy_id crossref_primary_10_1016_j_commatsci_2024_113486
crossref_primary_10_1021_acs_jpclett_4c02934
crossref_primary_10_1002_med_22008
crossref_primary_10_1016_j_commatsci_2024_113402
crossref_primary_10_1063_5_0222355
crossref_primary_10_1063_5_0227523
crossref_primary_10_1038_s44286_023_00010_4
crossref_primary_10_1063_5_0217688
crossref_primary_10_1021_acs_jctc_3c01115
crossref_primary_10_1021_acs_jpclett_4c00113
crossref_primary_10_1016_j_commatsci_2023_112715
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126152
crossref_primary_10_1021_acs_chemrev_3c00307
crossref_primary_10_1016_j_solmat_2025_113505
crossref_primary_10_1021_acs_jctc_4c00594
crossref_primary_10_1103_PhysRevB_110_014112
crossref_primary_10_1002_chem_202401148
crossref_primary_10_1039_D4NR03305A
crossref_primary_10_1073_pnas_2407295121
crossref_primary_10_1021_acs_jpcb_4c08461
crossref_primary_10_1038_s41567_024_02761_0
crossref_primary_10_1063_5_0188905
crossref_primary_10_1063_5_0238266
crossref_primary_10_1016_j_actamat_2025_120856
crossref_primary_10_1103_PhysRevB_110_165159
crossref_primary_10_1016_j_synbio_2024_07_004
crossref_primary_10_1103_PhysRevB_108_235159
crossref_primary_10_3390_pr12112407
crossref_primary_10_1016_j_energy_2024_133799
crossref_primary_10_1103_PhysRevResearch_7_L012007
crossref_primary_10_1007_s11426_024_2402_2
crossref_primary_10_1021_acsomega_4c04782
crossref_primary_10_1021_acs_jpca_4c06669
crossref_primary_10_1063_5_0197757
crossref_primary_10_1021_jacs_4c06641
crossref_primary_10_1021_acsnano_4c00733
crossref_primary_10_1039_D4CC05117C
crossref_primary_10_1063_5_0228461
crossref_primary_10_1140_epjp_s13360_024_05685_z
crossref_primary_10_1002_wcms_70010
crossref_primary_10_1103_PhysRevB_111_064103
crossref_primary_10_1021_acs_jctc_4c01176
crossref_primary_10_1002_smll_202404274
crossref_primary_10_1039_D4SC01422G
crossref_primary_10_1063_5_0173250
crossref_primary_10_1103_PhysRevB_110_064322
crossref_primary_10_1016_j_ceramint_2024_09_181
crossref_primary_10_1021_acs_jcim_4c01714
crossref_primary_10_1021_acs_jpcc_4c04604
crossref_primary_10_1103_PhysRevE_111_L023401
crossref_primary_10_1016_j_egyai_2024_100454
crossref_primary_10_1016_j_jmrt_2024_11_067
crossref_primary_10_1016_j_actamat_2024_120364
crossref_primary_10_1016_j_molliq_2023_123659
crossref_primary_10_1021_acscatal_4c01920
crossref_primary_10_1021_acs_jpcc_4c01988
crossref_primary_10_1103_PhysRevB_109_094101
crossref_primary_10_1002_anie_202407892
crossref_primary_10_1088_2515_7639_ad4c06
crossref_primary_10_1002_adfm_202408870
crossref_primary_10_1039_D4DD00209A
crossref_primary_10_1039_D4SC06530A
crossref_primary_10_1063_5_0234287
crossref_primary_10_1016_j_cpc_2024_109446
crossref_primary_10_1021_acs_jctc_4c00457
crossref_primary_10_1063_5_0237399
crossref_primary_10_1103_PhysRevLett_132_167301
crossref_primary_10_7498_aps_72_20231258
crossref_primary_10_1021_jacs_4c18769
crossref_primary_10_1021_acs_jctc_4c00907
crossref_primary_10_1021_acs_langmuir_3c03060
crossref_primary_10_5802_crchim_315
crossref_primary_10_1063_5_0243420
crossref_primary_10_1016_j_actamat_2024_120135
crossref_primary_10_1038_s41524_024_01441_0
crossref_primary_10_1016_j_cpc_2025_109512
crossref_primary_10_1021_acs_jpcc_4c07342
crossref_primary_10_1021_acs_jctc_3c01203
crossref_primary_10_1021_acs_jpcc_4c00028
crossref_primary_10_1063_5_0249882
crossref_primary_10_1002_ange_202407892
crossref_primary_10_1021_acs_jced_3c00580
crossref_primary_10_1063_5_0240030
crossref_primary_10_1126_science_ads4369
crossref_primary_10_1039_D4SC06422D
crossref_primary_10_1021_acs_jctc_4c00587
crossref_primary_10_1021_acs_jpclett_4c02771
crossref_primary_10_1029_2024GL109793
crossref_primary_10_1002_jcc_27353
crossref_primary_10_1021_acs_chemmater_3c02726
crossref_primary_10_1029_2024JH000434
crossref_primary_10_1038_s41524_023_01168_4
crossref_primary_10_1063_5_0167238
crossref_primary_10_1063_5_0239284
crossref_primary_10_1016_j_actamat_2023_119364
crossref_primary_10_1039_D4CP02989E
crossref_primary_10_1016_j_actamat_2024_120408
crossref_primary_10_1016_j_actamat_2024_120661
crossref_primary_10_1021_acs_jcim_4c01473
crossref_primary_10_1073_pnas_2322040121
crossref_primary_10_1063_5_0179161
crossref_primary_10_1007_s40843_024_2999_8
crossref_primary_10_1021_acs_jpca_4c00750
crossref_primary_10_1021_acs_jpcb_4c01466
crossref_primary_10_1021_acs_jpcc_4c07596
crossref_primary_10_1063_5_0255515
crossref_primary_10_1021_acs_jcim_4c02042
crossref_primary_10_1021_acs_langmuir_4c05004
crossref_primary_10_1021_jacs_4c03445
crossref_primary_10_1021_acs_jpca_4c04959
crossref_primary_10_1063_5_0215869
crossref_primary_10_1021_jacsau_4c00957
crossref_primary_10_1039_D4CP01483A
crossref_primary_10_1002_jcc_27269
crossref_primary_10_1021_acs_jpcc_3c05522
crossref_primary_10_1063_5_0230101
crossref_primary_10_1021_acs_jctc_4c01005
crossref_primary_10_1021_acs_jctc_4c01487
crossref_primary_10_1038_s43246_025_00745_y
crossref_primary_10_3389_fmats_2024_1369034
crossref_primary_10_3390_ma18030659
crossref_primary_10_1063_5_0237773
crossref_primary_10_1016_j_cossms_2025_101214
crossref_primary_10_1021_acs_jctc_4c00953
crossref_primary_10_1063_5_0158075
crossref_primary_10_1140_epjp_s13360_024_05348_z
crossref_primary_10_1021_acs_jcim_4c00273
crossref_primary_10_1021_acs_jpclett_4c00605
crossref_primary_10_1002_qua_70036
crossref_primary_10_1016_j_commatsci_2024_113459
crossref_primary_10_1021_acs_chemmater_4c02454
crossref_primary_10_1063_5_0243641
crossref_primary_10_1016_j_ces_2025_121494
crossref_primary_10_1088_1742_6596_2713_1_012071
crossref_primary_10_1103_PhysRevB_109_115129
crossref_primary_10_1063_5_0204064
crossref_primary_10_1002_adfm_202311599
crossref_primary_10_1038_s41524_024_01493_2
crossref_primary_10_1063_5_0211276
crossref_primary_10_1002_adma_202402369
crossref_primary_10_1021_acs_jpcc_3c07010
crossref_primary_10_1088_1361_648X_ad9657
crossref_primary_10_1103_PhysRevB_110_235410
crossref_primary_10_1016_j_actamat_2024_120429
crossref_primary_10_1063_5_0236394
crossref_primary_10_1016_j_jeurceramsoc_2024_01_007
crossref_primary_10_1063_5_0222015
crossref_primary_10_1103_PhysRevResearch_6_013292
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125404
crossref_primary_10_1021_acs_jpclett_3c03158
crossref_primary_10_1063_5_0219764
crossref_primary_10_1039_D4SC04957H
crossref_primary_10_1063_5_0247559
crossref_primary_10_1016_j_mser_2024_100857
crossref_primary_10_1021_acs_chemmater_4c01152
crossref_primary_10_1149_1945_7111_ad4ac9
crossref_primary_10_1039_D4DD00353E
crossref_primary_10_3390_molecules29112703
crossref_primary_10_1021_acs_jctc_4c00253
crossref_primary_10_1002_jcc_70032
crossref_primary_10_1021_acs_jpcc_4c03444
crossref_primary_10_1063_5_0230440
crossref_primary_10_1063_5_0236427
crossref_primary_10_20517_jmi_2024_22
crossref_primary_10_1021_acsphyschemau_3c00076
crossref_primary_10_1021_acs_jpclett_3c02112
crossref_primary_10_1111_jace_20356
crossref_primary_10_1016_j_commatsci_2024_113155
crossref_primary_10_1021_prechem_4c00060
crossref_primary_10_1016_j_cemconres_2024_107501
crossref_primary_10_1063_5_0166858
crossref_primary_10_1088_0256_307X_40_11_116301
crossref_primary_10_1039_D4CP04195J
crossref_primary_10_1063_5_0228003
crossref_primary_10_1038_s41524_024_01481_6
crossref_primary_10_20517_jmi_2024_14
crossref_primary_10_1021_acscatal_4c04571
crossref_primary_10_1116_6_0004027
crossref_primary_10_1021_prechem_4c00056
crossref_primary_10_1021_acsami_4c00618
crossref_primary_10_1021_prechem_4c00051
crossref_primary_10_1016_j_actamat_2024_120608
crossref_primary_10_1103_PhysRevMaterials_8_103601
crossref_primary_10_1021_acs_jctc_4c00824
crossref_primary_10_1103_PhysRevB_110_054109
crossref_primary_10_1016_j_mtcomm_2025_111868
crossref_primary_10_1063_5_0189448
Cites_doi 10.1021/acs.jcim.0c00451
10.1021/acs.chemrev.0c01111
10.1039/d2cp00710j
10.1088/1741-4326/ac888b
10.1073/pnas.2203397119
10.1063/5.0067565
10.1016/j.softx.2015.06.001
10.1021/acs.jctc.2c00697
10.1038/s43588-022-00265-6
10.1021/acs.jctc.2c00102
10.1016/j.cpc.2023.108842
10.1016/j.cattod.2021.03.018
10.1103/physrevlett.121.265701
10.1103/physrevlett.104.136403
10.1021/acs.jctc.8b00149
10.1016/j.mtphys.2020.100181
10.1021/acs.jctc.2c01172
10.1063/5.0139281
10.1039/c1cp22168j
10.1038/s43588-022-00349-3
10.1039/c9sc05116c
10.1021/acs.jcim.2c00879
10.1038/s41467-022-29939-5
10.1103/physrevlett.92.255701
10.1063/1.4952647
10.1016/j.cpc.2020.107624
10.1038/s41586-020-2649-2
10.1021/ct500799g
10.1016/j.cpc.2020.107206
10.1021/acs.accounts.0c00868
10.26434/chemrxiv-2022-2c7gv
10.1038/s41524-022-00830-7
10.1103/physrevmaterials.3.023804
10.1063/5.0138367
10.1103/physrevb.102.041121
10.1021/acs.jpclett.0c02547
10.1006/jcph.1995.1039
10.1021/acs.jcim.8b00462
10.1038/s41586-018-0337-2
10.1016/j.cpc.2019.04.014
10.1103/physrevb.102.214113
10.1088/2632-2153/abc940
10.1021/acs.jctc.8b00770
10.1063/5.0126333
10.1021/acs.jctc.9b00401
10.1088/2632-2153/abc9fe
10.1093/bib/bbab158
10.1021/acs.jpcb.0c01370
10.1103/physrevlett.120.143001
10.1021/ct049941i
10.1109/99.660313
10.1021/acs.jctc.2c00725
10.1038/ncomms13890
10.1093/bioinformatics/btu829
10.1021/acs.jpclett.9b02037
10.1039/d0cp01893g
10.1093/nsr/nwad128
10.1021/acs.jctc.2c00010
10.1021/acs.jctc.1c00647
10.1063/1.5019667
10.1371/journal.pcbi.1005659
10.1038/s41467-023-36329-y
10.1016/j.cpc.2021.108171
10.1039/c6sc05720a
10.1016/j.cpc.2019.02.007
10.1103/physrevlett.98.146401
10.1073/pnas.2207294119
10.1016/j.carbon.2021.09.062
10.1021/acscatal.0c04525
10.1021/acs.jpclett.2c00647
10.1103/physrevb.50.17953
10.1016/j.cpc.2018.03.016
10.1063/5.0142843
10.1038/s41467-022-28538-8
10.1063/1.464397
10.1145/1365490.1365500
10.1063/5.0083669
10.1039/d2cp02820d
10.1146/annurev-physchem-042018-052331
10.1103/physrevb.99.014104
10.1039/d2dd00008c
10.1021/jacs.2c03099
10.18653/v1/D15-1166
10.1088/1361-648X/aa680e
10.1021/acs.jpclett.8b03026
10.1038/s41467-022-30687-9
10.1103/physrevb.105.144106
10.1063/1.5098061
10.1063/5.0080766
10.1088/2752-5724/ac681d
10.1021/ar500103g
10.1021/acs.jpcc.1c01411
10.1039/d2cp04105g
10.1038/s41467-020-19497-z
10.1103/physrevb.102.115155
10.1126/science.abd7716
10.1063/1.3553717
10.1063/5.0011521
10.1063/5.0023265
10.1038/s41467-023-38855-1
10.1021/acs.accounts.7b00010
10.1016/j.commatsci.2015.07.004
10.1103/PhysRevE.102.052125
10.1016/j.cpc.2018.09.020
10.1021/ct5007983
10.1016/j.cpc.2020.107688
10.1021/acs.jctc.6b00198
10.1103/physrevlett.77.3865
10.1021/acs.chemrev.0c00665
10.1088/1361-648x/aa7c5c
10.1021/acs.jctc.8b00908
10.1002/jcc.26411
10.1021/acs.jctc.9b00181
10.1021/acs.jpca.2c06201
10.1063/1.4966192
10.1126/sciadv.1603015
10.1063/1.5019779
10.1016/j.cpc.2022.108520
10.1021/acs.jctc.1c00565
10.1021/acs.jctc.2c00151
10.1109/mcse.2021.3083216
10.1080/00268976.2019.1652366
10.1016/j.jcp.2014.12.018
10.1038/s41524-022-00773-z
10.1039/d1sc03564a
10.1021/acs.energyfuels.0c03211
10.1063/5.0106617
10.1007/s41061-021-00339-5
10.1021/acs.jctc.3c00386
10.1103/physrevlett.126.236001
10.1002/andp.19213690304
10.1021/acs.jctc.1c00201
10.1103/physrevb.104.224202
10.1063/1.478522
10.1021/acs.jpclett.1c02328
10.1039/c9cp05091d
10.1073/pnas.2015440117
ContentType Journal Article
Copyright Author(s)
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
info:eu-repo/semantics/openAccess
2023 Author(s). 2023 Author(s)
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
– notice: info:eu-repo/semantics/openAccess
– notice: 2023 Author(s). 2023 Author(s)
CorporateAuthor Princeton Univ., NJ (United States)
CorporateAuthor_xml – sequence: 0
  name: Princeton Univ., NJ (United States)
DBID AJDQP
AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
3HK
OIOZB
OTOTI
5PM
DOI 10.1063/5.0155600
DatabaseName AIP Open Access Journals
CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
NORA - Norwegian Open Research Archives
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
DocumentTitleAlternate Zeng et al
EISSN 1089-7690
ExternalDocumentID PMC10445636
1994160
10852_109671
37526163
10_1063_5_0155600
jcp
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 209718
  funderid: https://doi.org/10.13039/100000001
– fundername: U.S. Department of Energy
  grantid: DE-SC0019394; DE-SC0019759
  funderid: https://doi.org/10.13039/100000015
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1004300
  funderid: https://doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 12122103
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Institutes of Health
  grantid: GM107485
  funderid: https://doi.org/10.13039/100000002
– fundername: Research Council of Norway
  grantid: 262695
– fundername: Hunan Provincial Science and Technology Department
  grantid: 2021RC4026
  funderid: https://doi.org/10.13039/501100002767
– fundername: Slovak Science Grant Agency
  grantid: 1/0640/20
– fundername: Slovak Research and Development Agency
  grantid: APVV-19-0371
– fundername: NIGMS NIH HHS
  grantid: R01 GM107485
– fundername: ; ;
  grantid: 2022YFA1004300
– fundername: ;
  grantid: GM107485
– fundername: ;
  grantid: 262695
– grantid: DE-SC0019394; DE-SC0019759
– grantid: 1/0640/20
– fundername: ; ;
  grantid: 2021RC4026
– fundername: ;
  grantid: 209718
– fundername: ;
  grantid: APVV-19-0371
– fundername: ; ;
  grantid: 12122103
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
.GJ
0ZJ
186
2WC
3HK
3O-
41~
6TJ
9M8
AAYJJ
ABDEX
ABRJW
ACBNA
AETEA
AFDAS
AFFNX
AFMIJ
AI.
EJD
F20
G8K
H~9
MVM
NEUPN
NHB
OHT
P0-
QZG
RDFOP
ROL
T9H
UBC
UE8
UQL
VH1
VOH
X7L
XFK
XJT
XOL
ZCG
ZGI
ZHY
ZXP
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c491t-7cd4ebb99c82a9bd1eb289a86c264dd9d7a0d9074b47a8872a0b8ff303a66b713
IEDL.DBID AJDQP
ISSN 0021-9606
1089-7690
IngestDate Thu Aug 21 18:36:41 EDT 2025
Thu Dec 05 06:37:23 EST 2024
Sun Mar 31 03:17:35 EDT 2024
Fri Jul 11 02:30:47 EDT 2025
Mon Jun 30 06:01:07 EDT 2025
Mon Jul 21 05:56:35 EDT 2025
Sun Jul 06 05:07:51 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Fri Jun 21 00:10:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-7cd4ebb99c82a9bd1eb289a86c264dd9d7a0d9074b47a8872a0b8ff303a66b713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
NFR/262695
USDOE Office of Science (SC)
National Institutes of Health (NIH)
Research Council of Norway
SC0019394; GM107485; 2209718; APVV-19-0371; 2021RC4026; 262695; SC0019759; 2022YFA1004300; 12122103; 2138259; 2138286; 2138307; 2137603; 2138296; CHE190067; CHE20002
National Science Foundation (NSF)
National Natural Science Foundation of China (NSFC)
National Key Research and Development Program of China
Slovak Research and Development Agency
Science and Technology Innovation Program of Hunan Province
Electronic mail: linfeng.zhang.zlf@gmail.com
ORCID 0009-0001-3921-4415
0009-0009-3429-0476
0000-0001-5243-2647
0009-0001-6255-5867
0000-0001-5663-9426
0000-0003-0272-9500
0009-0009-4591-8644
0000-0001-9591-2659
0000-0003-4116-6851
0009-0002-3949-8785
0000-0001-8539-8326
0009-0005-8486-0626
0009-0008-1709-7239
0000-0001-8201-5887
0000-0002-9071-2516
0000-0003-3217-0592
0009-0004-2304-0213
0009-0005-1986-2879
0009-0001-4185-9677
0000-0002-8620-4885
0000-0002-2733-9253
0000-0001-9897-5778
0000-0003-0977-3635
0009-0004-9087-9414
0009-0002-9701-8145
0000-0003-3457-403X
0000-0003-0646-8803
0000-0002-9193-7055
0000-0001-7229-6101
0000-0002-3471-4728
0009-0008-4381-0544
0000-0001-5623-1148
0000-0003-3490-0974
0000-0001-8663-3551
0000-0002-5841-1107
0000-0002-3553-7313
0009-0006-5745-1525
0000-0002-6589-1700
0000-0002-1515-8172
0000-0001-6242-0439
0000-0001-5289-6062
0000-0002-6477-5900
0000-0003-3195-0773
0000-0003-1830-7978
0000-0002-8470-5846
0009000162555867
0000000182015887
0000000290712516
0000000291937055
0000000156231148
0000000258411107
0009000817097239
0000000331950773
0000000265891700
0000000152896062
0009000141859677
0000000341166851
0000000186633551
0000000332170592
0009000423040213
0009000657451525
0009000843810544
0000000227339253
0009000139214415
0000000306468803
0000000309773635
0000000284705846
0000000172296101
0000000234714728
0000000152432647
0009000584860626
0000000286204885
0009000239498785
0009000297018145
0000000156639426
0000000318307978
000000033457403X
0009000490879414
0000000185398326
0000000198975778
0009000934290476
0000000302729500
0009000945918644
0000000235537313
0000000334900974
0000000195912659
0000000215158172
0009000519862879
0000000162420439
0000000264775900
OpenAccessLink http://dx.doi.org/10.1063/5.0155600
PMID 37526163
PQID 2844365555
PQPubID 2050685
PageCount 24
ParticipantIDs proquest_miscellaneous_2844681190
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10445636
osti_scitechconnect_1994160
proquest_journals_2844365555
pubmed_primary_37526163
scitation_primary_10_1063_5_0155600
cristin_nora_10852_109671
crossref_primary_10_1063_5_0155600
crossref_citationtrail_10_1063_5_0155600
PublicationCentury 2000
PublicationDate 2023-08-07
PublicationDateYYYYMMDD 2023-08-07
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2023
Publisher American Institute of Physics
American Institute of Physics (AIP)
AIP Publishing LLC
Publisher_xml – sequence: 0
  name: American Institute of Physics (AIP)
– name: American Institute of Physics
– name: AIP Publishing LLC
References Zhang, Hu, Jiang (c11) 2019; 10
Zeng, Tao, Giese, York (c72) 2023; 19
Balyakin, Rempel, Ryltsev, Rempel (c60) 2020; 102
Tisi, Zhang, Bertossa, Wang, Car, Baroni (c66) 2021; 104
Haghighatlari, Li, Guan, Zhang, Das, Stein, Heidar-Zadeh, Liu, Head-Gordon, Bertels (c22) 2022; 1
Takamoto, Shinagawa, Motoki, Nakago, Li, Kurata, Watanabe, Yayama, Iriguchi, Asano, Onodera, Ishii, Kudo, Ono, Sawada, Ishitani, Ong, Yamaguchi, Kataoka, Hayashi, Charoenphakdee, Ibuka (c18) 2022; 13
Zhai, Caruso, Bore, Luo, Paesani (c70) 2023; 158
Galib, Limmer (c84) 2021; 371
Malosso, Zhang, Car, Baroni, Tisi (c67) 2022; 8
Ko, Zhang, Santra, Wang, E, DiStasio, Car (c61) 2019; 117
Butler, Davies, Cartwright, Isayev, Walsh (c44) 2018; 559
Zhang, Lin, Wang, Car, E (c103) 2019; 3
Schütt, Sauceda, Kindermans, Tkatchenko, Müller (c7) 2018; 148
Mo, Li, Zhao, Zhang, Shi, Li, Liu (c110) 2022; 8
Manzhos, Carrington (c48) 2021; 121
Unke, Meuwly (c13) 2019; 15
Wang, Han, Li, He (c81) 2020; 124
Zhang, Gao, Liu, Zhang, Wang, Chen (c119) 2020; 27
Unke, Chmiela, Sauceda, Gastegger, Poltavsky, Schütt, Tkatchenko, Müller (c46) 2021; 121
Noé, Tkatchenko, Müller, Clementi (c45) 2020; 71
Zeng, Cao, Xu, Zhu, Zhang (c77) 2020; 11
Li, Wang, Zou, Ye, Xu, Gong, Duan, Xu (c166) 2022; 2
Schütt, Kessel, Gastegger, Nicoli, Tkatchenko, Müller (c30) 2019; 15
Dral, Ge, Xue, Hou, Pinheiro, Huang, Barbatti (c34) 2021; 379
Chen, Ong (c24) 2022; 2
Gao, Ramezanghorbani, Isayev, Smith, Roitberg (c33) 2020; 60
Barnes, Marin-Rimoldi, Ellis, Crawford (c159) 2021; 261
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (c128) 2020; 585
Behler, Parrinello (c1) 2007; 98
Lu, Wang, Chen, Lin, Car, E, Jia, Zhang (c108) 2021; 259
Novikov, Gubaev, Podryabinkin, Shapeev (c39) 2021; 2
Liu, Liu, Cao, Chen (c76) 2023; 25
Giese, Zeng, York (c100) 2022; 126
Khajehpasha, Finkler, Kühne, Ghasemi (c16) 2022; 105
Adamo, Barone (c172) 1999; 110
Bonati, Parrinello (c57) 2018; 121
Zhang, Wang, Muniz, Panagiotopoulos, Car, E (c53) 2022; 156
Kovács, van der Oord, Kucera, Allen, Cole, Ortner, Csányi (c26) 2021; 17
Martínez (c101) 2017; 50
Zubatiuk, Isayev (c15) 2021; 54
Thompson, Aktulga, Berger, Bolintineanu, Brown, Crozier, in’t Veld, Kohlmeyer, Moore, Nguyen, Shan, Stevens, Tranchida, Trott, Plimpton (c140) 2022; 271
de la Puente, David, Gomez, Laage (c86) 2022; 144
Li, Lee, Luo (c59) 2020; 12
Kapil, Rossi, Marsalek, Petraglia, Litman, Spura, Cheng, Cuzzocrea, Meißner, Wilkins, Helfrecht, Juda, Bienvenue, Fang, Kessler, Poltavsky, Vandenbrande, Wieme, Corminboeuf, Kühne, Manolopoulos, Markland, Richardson, Tkatchenko, Tribello, Speybroeck, Ceriotti (c151) 2019; 236
Wang, Shen, Yang, Xie, Zhang, Chen, Ho, Wang, Wang (c58) 2022; 186
Chmiela, Tkatchenko, Sauceda, Poltavsky, Schütt, Müller (c5) 2017; 3
Giese, Panteva, Chen, York (c94) 2015; 11
Chu, Luo, Chen (c79) 2022; 13
Chanussot, Das, Goyal, Lavril, Shuaibi, Riviere, Tran, Heras-Domingo, Ho, Hu, Palizhati, Sriram, Wood, Yoon, Parikh, Zitnick, Ulissi (c115) 2021; 11
Zhang, Yue, Panagiotopoulos, Klein, Wu (c73) 2022; 13
Schütt, Hessmann, Gebauer, Lederer, Gastegger (c37) 2023; 158
Vega, Abascal (c91) 2011; 13
Snyder, Kim, Pan, Shao, Pu (c27) 2022; 24
Zhang, Wang, Chen, Zeng, Zhang, Han, E (c107) 2020; 253
Lee, Cerutti, Mermelstein, Lin, LeGrand, Giese, Roitberg, Case, Walker, York (c120) 2018; 58
Achar, Zhang, Johnson (c56) 2021; 125
Zhuang, Bi, Cheng (c85) 2022; 157
Wang, Guo, Zhang, Wang, Xue (c123) 2019; 114
Ewald (c158) 1921; 369
Zhang, Wang, Car, E (c88) 2021; 126
Wang, Li, Yang, Chen, Wang, Chang, Chen, Zhang, Yu (c165) 2022
Wang, Zhang, Han, E (c29) 2018; 228
Giese, York (c163) 2019; 15
Dagum, Menon (c134) 1998; 5
Matusalem, Santos Rego, de Koning (c69) 2022; 119
Tsai, Lee, Ganguly, Giese, Ebert, Labute, Merz, York (c160) 2023; 19
Giese, Zeng, Ekesan, York (c75) 2022; 18
Chen, Zhang, Wang, E (c164) 2023; 282
Ganguly, Tsai, Fernández-Pendás, Lee, Giese, York (c162) 2022; 62
Zhang, Lin, Wang, Car, E (c170) 2019; 3
Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (c6) 2017; 8
Cao, Zeng, Wang, Zhu, Zhang (c104) 2022; 24
Yanxon, Zagaceta, Tang, Matteson, Zhu (c40) 2021; 2
Chen, Liu, Fang, Dral, Cui (c90) 2018; 9
Zhang, Han, Wang, Car, E (c9) 2018; 120
Drautz (c25) 2019; 99
Singraber, Behler, Dellago (c35) 2019; 15
Smith, Isayev, Roitberg (c12) 2017; 8
Zhang, Chen, Wu, Wang, E, Car (c105) 2020; 102
Zhang, Xia, Jiang (c36) 2022; 156
Calegari Andrade, Ko, Zhang, Car, Selloni (c83) 2020; 11
Glick, Metcalf, Koutsoukas, Spronk, Cheney, Sherrill (c14) 2020; 153
Pinheiro, Ge, Ferré, Dral, Barbatti (c47) 2021; 12
Lu, Jiang, Chen, Zhang, Jia, Wang, Chen (c109) 2022; 18
Mardirossian, Head-Gordon (c175) 2016; 144
Giese, York (c99) 2017; 29
Plimpton (c150) 1995; 117
Xu, Zhang, Zhang, Chen, Santra, Wu (c62) 2020; 102
Batzner, Musaelian, Sun, Geiger, Mailoa, Kornbluth, Molinari, Smidt, Kozinsky (c21) 2022; 13
Gartner, Zhang, Piaggi, Car, Panagiotopoulos, Debenedetti (c65) 2020; 117
Chmiela, Sauceda, Poltavsky, Müller, Tkatchenko (c31) 2019; 240
Shi, Doyle, Beck (c68) 2021; 12
Zeng, Zhang, Wang, Zhu (c78) 2021; 35
Rego, Koes (c168) 2015; 31
Giese, York (c97) 2016; 12
Dalcin, Fang (c139) 2021; 23
Thompson, Swiler, Trott, Foiles, Tucker (c28) 2015; 285
Piaggi, Weis, Panagiotopoulos, Debenedetti, Car (c156) 2022; 119
Nam, Gao, York (c96) 2005; 1
Laosi, Gao, Han, Ding, Shuning, Wang, Qiuhan, Wang, Xing, Sun (c149) 2023; 10
Larsen, Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Jensen, Kermode, Kitchin, Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (c148) 2017; 29
Wang, Wang, Zhang, Dai, Wang (c50) 2022; 62
Zeng, Tao, Giese, York (c89) 2023; 158
Zeng, Giese, Ekesan, York (c52) 2021; 17
Han, Wang, Wei, Liu, Li (c82) 2021; 22
Blöchl (c173) 1994; 50
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (c152) 2015; 1–2
Li, Liu, Chen, Lin, Ren, Lin, Yang, He (c155) 2016; 112
Nickolls, Buck, Garland, Skadron (c126) 2008; 6
Behler (c3) 2011; 134
Eastman, Swails, Chodera, McGibbon, Zhao, Beauchamp, Wang, Simmonett, Harrigan, Stern (c153) 2017; 13
Zeng, Cao, Chin, Ren, Zhang, Zhu (c102) 2020; 22
Zhang, Zhang, Xu, Tang, Santra, Wu (c64) 2020; 102
Giese, Panteva, Chen, York (c95) 2015; 11
Musaelian, Batzner, Johansson, Sun, Owen, Kornbluth, Kozinsky (c19) 2023; 14
Pan, Yang, Van, Epifanovsky, Ho, Huang, Pu, Mei, Nam, Shao (c17) 2021; 17
Achar, Wardzala, Bernasconi, Zhang, Johnson (c157) 2022; 18
Perdew, Burke, Ernzerhof (c174) 1996; 77
Behler (c43) 2016; 145
Andreani, Romanelli, Parmentier, Senesi, Kolesnikov, Ko, Calegari Andrade, Car (c63) 2020; 11
Niblett, Galib, Limmer (c87) 2021; 155
Bore, Paesani (c71) 2023; 14
Lee, Yoo, Jeong, Han (c32) 2019; 242
Chen, Jørgensen, Li, Hammer (c8) 2018; 14
Yang, Bonati, Polino, Parrinello (c74) 2022; 387
Fan, Wang, Ying, Song, Wang, Wang, Zeng, Xu, Lindgren, Rahm, Gabourie, Liu, Dong, Wu, Chen, Zhong, Sun, Erhart, Su, Ala-Nissila (c38) 2022; 157
Gastegger, Schwiedrzik, Bittermann, Berzsenyi, Marquetand (c4) 2018; 148
Najibi, Goerigk (c176) 2020; 41
Bartók, Payne, Kondor, Csányi (c2) 2010; 104
Wen, Zhang, Wang, E, Srolovitz (c55) 2022; 1
Darden, York, Pedersen (c93) 1993; 98
Sanz, Vega, Abascal, MacDowell (c92) 2004; 92
Giese, Huang, Chen, York (c98) 2014; 47
Sommers, Andrade, Zhang, Wang, Car (c106) 2020; 22
Lee, Tsai, Ganguly, York (c161) 2023; 19
(2023122821375967000_c13) 2019; 15
(2023122821375967000_c27) 2022; 24
(2023122821375967000_c68) 2021; 12
(2023122821375967000_c156) 2022; 119
(2023122821375967000_c79) 2022; 13
(2023122821375967000_c76) 2023; 25
(2023122821375967000_c88) 2021; 126
(2023122821375967000_c149) 2023; 10
(2023122821375967000_c65) 2020; 117
(2023122821375967000_c123) 2019; 114
2023122821375967000_c167
(2023122821375967000_c36) 2022; 156
(2023122821375967000_c175) 2016; 144
(2023122821375967000_c163) 2019; 15
(2023122821375967000_c102) 2020; 22
(2023122821375967000_c4) 2018; 148
Bromley (2023122821375967000_c122) 1985
(2023122821375967000_c7) 2018; 148
(2023122821375967000_c80) 2022
(2023122821375967000_c48) 2021; 121
(2023122821375967000_c20) 2021
(2023122821375967000_c22) 2022; 1
(2023122821375967000_c107) 2020; 253
(2023122821375967000_c169) 2023
(2023122821375967000_c171) 2023
(2023122821375967000_c8) 2018; 14
(2023122821375967000_c61) 2019; 117
(2023122821375967000_c91) 2011; 13
(2023122821375967000_c3) 2011; 134
(2023122821375967000_c5) 2017; 3
(2023122821375967000_c148) 2017; 29
(2023122821375967000_c143) 2022
(2023122821375967000_c43) 2016; 145
(2023122821375967000_c18) 2022; 13
AMD, Inc. (2023122821375967000_c127) 2023
(2023122821375967000_c147) 2018
(2023122821375967000_c166) 2022; 2
(2023122821375967000_c53) 2022; 156
(2023122821375967000_c9) 2018; 120
(2023122821375967000_c55) 2022; 1
(2023122821375967000_c78) 2021; 35
(2023122821375967000_c144) 2015
(2023122821375967000_c30) 2019; 15
(2023122821375967000_c152) 2015; 1–2
(2023122821375967000_c6) 2017; 8
(2023122821375967000_c31) 2019; 240
(2023122821375967000_c11) 2019; 10
(2023122821375967000_c101) 2017; 50
(2023122821375967000_c158) 1921; 369
Gordon (2023122821375967000_c113) 2011
(2023122821375967000_c63) 2020; 11
(2023122821375967000_c47) 2021; 12
(2023122821375967000_c93) 1993; 98
(2023122821375967000_c44) 2018; 559
(2023122821375967000_c90) 2018; 9
(2023122821375967000_c108) 2021; 259
(2023122821375967000_c120) 2018; 58
(2023122821375967000_c119) 2020; 27
(2023122821375967000_c146) 2009
(2023122821375967000_c134) 1998; 5
(2023122821375967000_c136) 2002
(2023122821375967000_c98) 2014; 47
(2023122821375967000_c95) 2015; 11
(2023122821375967000_c109) 2022; 18
(2023122821375967000_c25) 2019; 99
Wang (2023122821375967000_c54) 2023
(2023122821375967000_c115) 2021; 11
(2023122821375967000_c57) 2018; 121
(2023122821375967000_c155) 2016; 112
(2023122821375967000_c64) 2020; 102
2023122821375967000_c114
(2023122821375967000_c23) 2021
(2023122821375967000_c45) 2020; 71
Dral (2023122821375967000_c49) 2022
(2023122821375967000_c89) 2023; 158
(2023122821375967000_c170) 2019; 3
(2023122821375967000_c99) 2017; 29
(2023122821375967000_c35) 2019; 15
(2023122821375967000_c58) 2022; 186
(2023122821375967000_c32) 2019; 242
(2023122821375967000_c62) 2020; 102
2023122821375967000_c116
(2023122821375967000_c52) 2021; 17
(2023122821375967000_c111) 2016
(2023122821375967000_c159) 2021; 261
(2023122821375967000_c150) 1995; 117
(2023122821375967000_c104) 2022; 24
(2023122821375967000_c59) 2020; 12
(2023122821375967000_c129) 2013
(2023122821375967000_c17) 2021; 17
(2023122821375967000_c153) 2017; 13
(2023122821375967000_c97) 2016; 12
(2023122821375967000_c161) 2023; 19
(2023122821375967000_c142) 2023
(2023122821375967000_c1) 2007; 98
(2023122821375967000_c69) 2022; 119
(2023122821375967000_c106) 2020; 22
(2023122821375967000_c110) 2022; 8
2023122821375967000_c124
2023122821375967000_c125
(2023122821375967000_c162) 2022; 62
2023122821375967000_c51
(2023122821375967000_c15) 2021; 54
2023122821375967000_c121
(2023122821375967000_c75) 2022; 18
(2023122821375967000_c60) 2020; 102
(2023122821375967000_c37) 2023; 158
(2023122821375967000_c139) 2021; 23
(2023122821375967000_c118) 2015
(2023122821375967000_c176) 2020; 41
(2023122821375967000_c29) 2018; 228
(2023122821375967000_c145) 2016
(2023122821375967000_c157) 2022; 18
(2023122821375967000_c128) 2020; 585
(2023122821375967000_c105) 2020; 102
(2023122821375967000_c50) 2022; 62
(2023122821375967000_c71) 2023; 14
(2023122821375967000_c140) 2022; 271
Kranzlmüller (2023122821375967000_c135) 2004
(2023122821375967000_c96) 2005; 1
(2023122821375967000_c83) 2020; 11
(2023122821375967000_c112) 2010
2023122821375967000_c137
(2023122821375967000_c77) 2020; 11
(2023122821375967000_c132) 2018
(2023122821375967000_c12) 2017; 8
(2023122821375967000_c173) 1994; 50
(2023122821375967000_c81) 2020; 124
(2023122821375967000_c84) 2021; 371
(2023122821375967000_c16) 2022; 105
(2023122821375967000_c72) 2023; 19
(2023122821375967000_c56) 2021; 125
(2023122821375967000_c87) 2021; 155
(2023122821375967000_c174) 1996; 77
(2023122821375967000_c126) 2008; 6
2023122821375967000_c138
(2023122821375967000_c67) 2022; 8
(2023122821375967000_c74) 2022; 387
(2023122821375967000_c34) 2021; 379
(2023122821375967000_c92) 2004; 92
Bengio (2023122821375967000_c10) 2018
(2023122821375967000_c21) 2022; 13
(2023122821375967000_c41) 2020
(2023122821375967000_c46) 2021; 121
Google, Inc. (2023122821375967000_c133) 2023
(2023122821375967000_c39) 2021; 2
(2023122821375967000_c160) 2023; 19
(2023122821375967000_c24) 2022; 2
(2023122821375967000_c40) 2021; 2
(2023122821375967000_c85) 2022; 157
(2023122821375967000_c42) 2022
(2023122821375967000_c103) 2019; 3
(2023122821375967000_c168) 2015; 31
(2023122821375967000_c33) 2020; 60
(2023122821375967000_c82) 2021; 22
(2023122821375967000_c172) 1999; 110
(2023122821375967000_c73) 2022; 13
(2023122821375967000_c38) 2022; 157
(2023122821375967000_c86) 2022; 144
(2023122821375967000_c151) 2019; 236
(2023122821375967000_c154) 2023
(2023122821375967000_c141) 2020
(2023122821375967000_c164) 2023; 282
(2023122821375967000_c14) 2020; 153
(2023122821375967000_c130) 2015
(2023122821375967000_c19) 2023; 14
(2023122821375967000_c26) 2021; 17
(2023122821375967000_c2) 2010; 104
(2023122821375967000_c66) 2021; 104
(2023122821375967000_c131) 2018
(2023122821375967000_c70) 2023; 158
(2023122821375967000_c94) 2015; 11
(2023122821375967000_c28) 2015; 285
(2023122821375967000_c100) 2022; 126
Guyon (2023122821375967000_c117) 2017
(2023122821375967000_c165) 2022
References_xml – volume: 98
  start-page: 10089
  year: 1993
  ident: c93
  article-title: Particle mesh Ewald: An ·log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
– volume: 102
  start-page: 115155
  year: 2020
  ident: c64
  article-title: Isotope effects in x-ray absorption spectra of liquid water
  publication-title: Phys. Rev. B
– volume: 24
  start-page: 25134
  year: 2022
  ident: c27
  article-title: Facilitating QM/MM free energy simulations by Gaussian process regression with derivative observations
  publication-title: Phys. Chem. Chem. Phys.
– volume: 62
  start-page: 126013
  year: 2022
  ident: c50
  article-title: A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment
  publication-title: Nucl. Fusion
– volume: 47
  start-page: 2812
  year: 2014
  ident: c98
  article-title: Recent advances toward a general purpose linear-scaling quantum force field
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 023804
  year: 2019
  ident: c170
  article-title: Active learning of uniformly accurate interatomic potentials for materials simulation
  publication-title: Phys. Rev. Mater.
– volume: 121
  start-page: 10142
  year: 2021
  ident: c46
  article-title: Machine learning force fields
  publication-title: Chem. Rev.
– volume: 18
  start-page: 5559
  year: 2022
  ident: c109
  article-title: DP compress: A model compression scheme for generating efficient deep potential models
  publication-title: J. Chem. Theory Comput.
– volume: 121
  start-page: 10187
  year: 2021
  ident: c48
  article-title: Neural network potential energy surfaces for small molecules and reactions
  publication-title: Chem. Rev.
– volume: 156
  start-page: 124107
  year: 2022
  ident: c53
  article-title: A deep potential model with long-range electrostatic interactions
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 40
  year: 2008
  ident: c126
  article-title: Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for?
  publication-title: Queue
– volume: 2
  start-page: 027001
  year: 2021
  ident: c40
  article-title: PyXtal_FF: A python library for automated force field generation
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 156
  start-page: 114801
  year: 2022
  ident: c36
  article-title: REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 265701
  year: 2018
  ident: c57
  article-title: Silicon liquid structure and crystal nucleation from deep metadynamics
  publication-title: Phys. Rev. Lett.
– volume: 71
  start-page: 361
  year: 2020
  ident: c45
  article-title: Machine learning for molecular simulation
  publication-title: Annu. Rev. Phys. Chem.
– volume: 8
  start-page: 107
  year: 2022
  ident: c110
  article-title: Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture
  publication-title: npj Comput. Mater.
– volume: 119
  start-page: e2203397119
  year: 2022
  ident: c69
  article-title: Plastic deformation of superionic water ices
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 158
  start-page: 144801
  year: 2023
  ident: c37
  article-title: SchNetPack 2.0: A neural network toolbox for atomistic machine learning
  publication-title: J. Chem. Phys.
– volume: 371
  start-page: 921
  year: 2021
  ident: c84
  article-title: Reactive uptake of N O by atmospheric aerosol is dominated by interfacial processes
  publication-title: Science
– volume: 148
  start-page: 241722
  year: 2018
  ident: c7
  article-title: SchNet—A deep learning architecture for molecules and materials
  publication-title: J. Chem. Phys.
– volume: 24
  start-page: 11801
  year: 2022
  ident: c104
  article-title: neural network MD simulation of thermal decomposition of high energy material CL-20/TNT
  publication-title: Phys. Chem. Chem. Phys.
– volume: 271
  start-page: 108171
  year: 2022
  ident: c140
  article-title: LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
  publication-title: Comput. Phys. Commun.
– volume: 1–2
  start-page: 19
  year: 2015
  ident: c152
  article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– volume: 124
  start-page: 3027
  year: 2020
  ident: c81
  article-title: Combining the fragmentation approach and neural network potential energy surfaces of fragments for accurate calculation of protein energy
  publication-title: J. Phys. Chem. B
– volume: 117
  start-page: 1
  year: 1995
  ident: c150
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: e1005659
  year: 2017
  ident: c153
  article-title: OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
  publication-title: PLoS Comput. Biol.
– volume: 126
  start-page: 8519
  year: 2022
  ident: c100
  article-title: Multireference generalization of the weighted thermodynamic perturbation method
  publication-title: J. Phys. Chem. A
– volume: 157
  start-page: 164701
  year: 2022
  ident: c85
  article-title: Resolving the odd–even oscillation of water dissociation at rutile TiO (110)–water interface by machine learning accelerated molecular dynamics
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 100181
  year: 2020
  ident: c59
  article-title: A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases
  publication-title: Mater. Today Phys.
– volume: 14
  start-page: 3349
  year: 2023
  ident: c71
  article-title: Realistic phase diagram of water from “first principles” data-driven quantum simulations
  publication-title: Nat Commun
– volume: 585
  start-page: 357
  year: 2020
  ident: c128
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 54
  start-page: 1575
  year: 2021
  ident: c15
  article-title: Development of multimodal machine learning potentials: Toward a physics-aware artificial intelligence
  publication-title: Acc. Chem. Res.
– volume: 98
  start-page: 146401
  year: 2007
  ident: c1
  article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces
  publication-title: Phys. Rev. Lett.
– volume: 117
  start-page: 3269
  year: 2019
  ident: c61
  article-title: Isotope effects in liquid water via deep potential molecular dynamics
  publication-title: Mol. Phys.
– volume: 99
  start-page: 014104
  year: 2019
  ident: c25
  article-title: Atomic cluster expansion for accurate and transferable interatomic potentials
  publication-title: Phys. Rev. B
– volume: 228
  start-page: 178
  year: 2018
  ident: c29
  article-title: DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
  publication-title: Comput. Phys. Commun.
– volume: 387
  start-page: 143
  year: 2022
  ident: c74
  article-title: Using metadynamics to build neural network potentials for reactive events: The case of urea decomposition in water
  publication-title: Catal. Today
– volume: 158
  start-page: 124110
  year: 2023
  ident: c89
  article-title: Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 983
  year: 2023
  ident: c76
  article-title: Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: A study by deep potential molecular dynamics
  publication-title: Phys. Chem. Chem. Phys.
– volume: 102
  start-page: 041121
  year: 2020
  ident: c105
  article-title: Deep neural network for the dielectric response of insulators
  publication-title: Phys. Rev. B
– volume: 120
  start-page: 143001
  year: 2018
  ident: c9
  article-title: Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 2991
  year: 2022
  ident: c18
  article-title: Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2453
  year: 2022
  ident: c21
  article-title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
  publication-title: Nat. Commun.
– volume: 157
  start-page: 114801
  year: 2022
  ident: c38
  article-title: GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 6059
  year: 2021
  ident: c115
  article-title: Open catalyst 2020 (OC20) dataset and community challenges
  publication-title: ACS Catal.
– volume: 12
  start-page: 14396
  year: 2021
  ident: c47
  article-title: Choosing the right molecular machine learning potential
  publication-title: Chem. Sci.
– volume: 31
  start-page: 1322
  year: 2015
  ident: c168
  article-title: 3Dmol.js: Molecular visualization with WebGL
  publication-title: Bioinformatics
– volume: 126
  start-page: 236001
  year: 2021
  ident: c88
  article-title: Phase diagram of a deep potential water model
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 640
  year: 2023
  ident: c160
  article-title: AMBER free energy tools: A new framework for the design of optimized alchemical transformation pathways
  publication-title: J. Chem. Theory Comput.
– volume: 148
  start-page: 241709
  year: 2018
  ident: c4
  article-title: wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials
  publication-title: J. Chem. Phys.
– volume: 18
  start-page: 3593
  year: 2022
  ident: c157
  article-title: Combined deep learning and classical potential approach for modeling diffusion in UiO-66
  publication-title: J. Chem. Theory Comput.
– volume: 1
  start-page: 022601
  year: 2022
  ident: c55
  article-title: Deep potentials for materials science
  publication-title: Mater. Futures
– volume: 110
  start-page: 6158
  year: 1999
  ident: c172
  article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 436
  year: 2015
  ident: c94
  article-title: Multipolar Ewald methods, 1: Theory, accuracy, and performance
  publication-title: J. Chem. Theory Comput.
– volume: 282
  start-page: 108520
  year: 2023
  ident: c164
  article-title: DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models
  publication-title: Comput. Phys. Commun.
– volume: 117
  start-page: 26040
  year: 2020
  ident: c65
  article-title: Signatures of a liquid–liquid transition in an ab initio deep neural network model for water
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 451
  year: 2015
  ident: c95
  article-title: Multipolar Ewald methods, 2: Applications using a quantum mechanical force field
  publication-title: J. Chem. Theory Comput.
– volume: 104
  start-page: 136403
  year: 2010
  ident: c2
  article-title: Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 139
  year: 2022
  ident: c67
  article-title: Viscosity in water from first-principles and deep-neural-network simulations
  publication-title: npj Comput. Mater.
– volume: 134
  start-page: 074106
  year: 2011
  ident: c3
  article-title: Atom-centered symmetry functions for constructing high-dimensional neural network potentials
  publication-title: J. Chem. Phys.
– volume: 242
  start-page: 95
  year: 2019
  ident: c32
  article-title: SIMPLE-NN: An efficient package for training and executing neural- network interatomic potentials
  publication-title: Comput. Phys. Commun.
– volume: 60
  start-page: 3408
  year: 2020
  ident: c33
  article-title: TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials
  publication-title: J. Chem. Inf. Model.
– volume: 3
  start-page: 023804
  year: 2019
  ident: c103
  article-title: Active learning of uniformly accurate interatomic potentials for materials simulation
  publication-title: Phys. Rev. Mater.
– volume: 41
  start-page: 2562
  year: 2020
  ident: c176
  article-title: DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries
  publication-title: J. Comput. Chem.
– volume: 11
  start-page: 9461
  year: 2020
  ident: c63
  article-title: Hydrogen dynamics in supercritical water probed by neutron scattering and computer simulations
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 5713
  year: 2020
  ident: c77
  article-title: Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation
  publication-title: Nat. Commun.
– volume: 104
  start-page: 224202
  year: 2021
  ident: c66
  article-title: Heat transport in liquid water from first-principles and deep neural network simulations
  publication-title: Phys. Rev. B
– volume: 125
  start-page: 14874
  year: 2021
  ident: c56
  article-title: Efficiently trained deep learning potential for graphane
  publication-title: J. Phys. Chem. C
– volume: 155
  start-page: 164101
  year: 2021
  ident: c87
  article-title: Learning intermolecular forces at liquid-vapor interfaces
  publication-title: J. Chem. Phys.
– volume: 27
  start-page: 122704
  year: 2020
  ident: c119
  article-title: Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics
  publication-title: Phys. Plasmas
– volume: 379
  start-page: 27
  year: 2021
  ident: c34
  article-title: MLatom 2: An integrative platform for atomistic machine learning
  publication-title: Top. Curr. Chem.
– volume: 102
  start-page: 052125
  year: 2020
  ident: c60
  article-title: Deep machine learning interatomic potential for liquid silica
  publication-title: Phys. Rev. E
– volume: 12
  start-page: 10310
  year: 2021
  ident: c68
  article-title: Condensed phase water molecular multipole moments from deep neural network models trained on simulation data
  publication-title: J. Phys. Chem. Lett.
– volume: 22
  start-page: bbab158
  year: 2021
  ident: c82
  article-title: Machine learning builds full-QM precision protein force fields in seconds
  publication-title: Briefings Bioinf.
– volume: 285
  start-page: 316
  year: 2015
  ident: c28
  article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
  publication-title: J. Comput. Phys.
– volume: 14
  start-page: 579
  year: 2023
  ident: c19
  article-title: Learning local equivariant representations for large-scale atomistic dynamics
  publication-title: Nat. Commun.
– volume: 102
  start-page: 214113
  year: 2020
  ident: c62
  article-title: Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 3192
  year: 2017
  ident: c12
  article-title: ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
  publication-title: Chem. Sci.
– volume: 19
  start-page: 472
  year: 2023
  ident: c161
  article-title: ACES: Optimized alchemically enhanced sampling
  publication-title: J. Chem. Theory Comput.
– volume: 15
  start-page: 448
  year: 2019
  ident: c30
  article-title: SchNetPack: A deep learning toolbox for atomistic systems
  publication-title: J. Chem. Theory Comput.
– volume: 29
  start-page: 383002
  year: 2017
  ident: c99
  article-title: Quantum mechanical force fields for condensed phase molecular simulations
  publication-title: J. Phys.: Condens. Matter
– volume: 15
  start-page: 5543
  year: 2019
  ident: c163
  article-title: Development of a robust indirect approach for MM → QM free energy calculations that combines force-matched reference potential and Bennett’s acceptance ratio methods
  publication-title: J. Chem. Theory Comput.
– volume: 13
  start-page: 4052
  year: 2022
  ident: c79
  article-title: Exploring complex reaction networks using neural network-based molecular dynamics simulation
  publication-title: J. Phys. Chem. Lett.
– volume: 153
  start-page: 044112
  year: 2020
  ident: c14
  article-title: AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 2335
  year: 2020
  ident: c83
  article-title: Free energy of proton transfer at the water-TiO interface from deep potential molecular dynamics
  publication-title: Chem. Sci.
– volume: 13
  start-page: 19663
  year: 2011
  ident: c91
  article-title: Simulating water with rigid non-polarizable models: A general perspective
  publication-title: Phys. Chem. Chem. Phys.
– volume: 58
  start-page: 2043
  year: 2018
  ident: c120
  article-title: GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features
  publication-title: J. Chem. Inf. Model.
– volume: 2
  start-page: 367
  year: 2022
  ident: c166
  article-title: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation
  publication-title: Nat. Comput. Sci.
– volume: 17
  start-page: 6993
  year: 2021
  ident: c52
  article-title: Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution
  publication-title: J. Chem. Theory Comput.
– volume: 92
  start-page: 255701
  year: 2004
  ident: c92
  article-title: Phase diagram of water from computer simulation
  publication-title: Phys. Rev. Lett.
– volume: 144
  start-page: 10524
  year: 2022
  ident: c86
  article-title: Acids at the edge: Why nitric and formic acid dissociations at air–water interfaces depend on depth and on interface specific area
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 6702
  year: 2018
  ident: c90
  article-title: Deep learning for nonadiabatic excited-state dynamics
  publication-title: J. Phys. Chem. Lett.
– volume: 236
  start-page: 214
  year: 2019
  ident: c151
  article-title: i-PI 2.0: A universal force engine for advanced molecular simulations
  publication-title: Comput. Phys. Commun.
– volume: 77
  start-page: 3865
  year: 1996
  ident: c174
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 47
  year: 2021
  ident: c139
  article-title: mpi4py: Status update after 12 years of development
  publication-title: Comput. Sci. Eng.
– volume: 158
  start-page: 084111
  year: 2023
  ident: c70
  article-title: A ‘short blanket’ dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 025002
  year: 2021
  ident: c39
  article-title: The MLIP package: Moment tensor potentials with MPI and active learning
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 3
  start-page: e1603015
  year: 2017
  ident: c5
  article-title: Machine learning of accurate energy-conserving molecular force fields
  publication-title: Sci. Adv.
– volume: 22
  start-page: 683
  year: 2020
  ident: c102
  article-title: ReacNetGenerator: An automatic reaction network generator for reactive molecular dynamics simulations
  publication-title: Phys. Chem. Chem. Phys.
– volume: 105
  start-page: 144106
  year: 2022
  ident: c16
  article-title: CENT2: Improved charge equilibration via neural network technique
  publication-title: Phys. Rev. B
– volume: 559
  start-page: 547
  year: 2018
  ident: c44
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
– volume: 13
  start-page: 822
  year: 2022
  ident: c73
  article-title: Dissolving salt is not equivalent to applying a pressure on water
  publication-title: Nat. Commun.
– volume: 62
  start-page: 6069
  year: 2022
  ident: c162
  article-title: AMBER drug discovery boost tools: Automated workflow for production free-energy simulation setup and analysis (ProFESSA)
  publication-title: J. Chem. Inf. Model.
– volume: 8
  start-page: 13890
  year: 2017
  ident: c6
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nat. Commun.
– volume: 259
  start-page: 107624
  year: 2021
  ident: c108
  article-title: 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with accuracy
  publication-title: Comput. Phys. Commun.
– volume: 17
  start-page: 7696
  year: 2021
  ident: c26
  article-title: Linear atomic cluster expansion force fields for organic molecules: Beyond RMSE
  publication-title: J. Chem. Theory Comput.
– volume: 12
  start-page: 2611
  year: 2016
  ident: c97
  article-title: Ambient-potential composite Ewald method for quantum mechanical/molecular mechanical molecular dynamics simulation
  publication-title: J. Chem. Theory Comput.
– volume: 2
  start-page: 718
  year: 2022
  ident: c24
  article-title: A universal graph deep learning interatomic potential for the periodic table
  publication-title: Nat. Comput. Sci.
– volume: 22
  start-page: 10592
  year: 2020
  ident: c106
  article-title: Raman spectrum and polarizability of liquid water from deep neural networks
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 1827
  year: 2019
  ident: c35
  article-title: Library-based LAMMPS implementation of high-dimensional neural network potentials
  publication-title: J. Chem. Theory Comput.
– volume: 5
  start-page: 46
  year: 1998
  ident: c134
  article-title: OpenMP: An industry standard API for shared-memory programming
  publication-title: IEEE Comput. Sci. Eng.
– volume: 10
  start-page: 4962
  year: 2019
  ident: c11
  article-title: Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation
  publication-title: J. Phys. Chem. Lett.
– volume: 186
  start-page: 1
  year: 2022
  ident: c58
  article-title: A deep learning interatomic potential developed for atomistic simulation of carbon materials
  publication-title: Carbon
– volume: 19
  start-page: 1261
  year: 2023
  ident: c72
  article-title: QD : A quantum deep potential interaction model for drug discovery
  publication-title: J. Chem. Theory Comput.
– year: 2022
  ident: c165
  article-title: DMFF: An open-source automatic differentiable platform for molecular force field development and molecular dynamics simulation
  publication-title: Physical Chemistry
– volume: 15
  start-page: 3678
  year: 2019
  ident: c13
  article-title: PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
  publication-title: J. Chem. Theory Comput.
– volume: 144
  start-page: 214110
  year: 2016
  ident: c175
  article-title: B97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
  publication-title: J. Chem. Phys.
– volume: 35
  start-page: 762
  year: 2021
  ident: c78
  article-title: Exploring the chemical space of linear alkane pyrolysis via deep potential GENerator
  publication-title: Energy Fuels
– volume: 112
  start-page: 503
  year: 2016
  ident: c155
  article-title: Large-scale simulations based on systematically improvable atomic basis
  publication-title: Comput. Mater. Sci.
– volume: 17
  start-page: 5745
  year: 2021
  ident: c17
  article-title: Machine-learning-assisted free energy simulation of solution-phase and enzyme reactions
  publication-title: J. Chem. Theory Comput.
– volume: 253
  start-page: 107206
  year: 2020
  ident: c107
  article-title: DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
  publication-title: Comput. Phys. Commun.
– volume: 261
  start-page: 107688
  year: 2021
  ident: c159
  article-title: The MolSSI driver interface project: A framework for standardized, on-the-fly interoperability between computational molecular sciences codes
  publication-title: Comput. Phys. Commun.
– volume: 29
  start-page: 273002
  year: 2017
  ident: c148
  article-title: The atomic simulation environment—A python library for working with atoms
  publication-title: J. Phys.: Condens. Matter
– volume: 114
  start-page: 244101
  year: 2019
  ident: c123
  article-title: Deep learning inter-atomic potential model for accurate irradiation damage simulations
  publication-title: Appl. Phys. Lett.
– volume: 50
  start-page: 652
  year: 2017
  ident: c101
  article-title: Ab initio reactive computer aided molecular design
  publication-title: Acc. Chem. Res.
– volume: 240
  start-page: 38
  year: 2019
  ident: c31
  article-title: sGDML: Constructing accurate and data efficient molecular force fields using machine learning
  publication-title: Comput. Phys. Commun.
– volume: 1
  start-page: 333
  year: 2022
  ident: c22
  article-title: NewtonNet: A Newtonian message passing network for deep learning of interatomic potentials and forces
  publication-title: Digital Discovery
– volume: 1
  start-page: 2
  year: 2005
  ident: c96
  article-title: An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations
  publication-title: J. Chem. Theory Comput.
– volume: 10
  start-page: nwad128
  year: 2023
  ident: c149
  article-title: MAGUS: Machine learning and graph theory assisted universal structure searcher
  publication-title: Natl. Sci. Rev.
– volume: 14
  start-page: 3933
  year: 2018
  ident: c8
  article-title: Atomic energies from a convolutional neural network
  publication-title: J. Chem. Theory Comput.
– volume: 119
  start-page: e2207294119
  year: 2022
  ident: c156
  article-title: Homogeneous ice nucleation in an ab initio machine-learning model of water
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 4304
  year: 2022
  ident: c75
  article-title: Combined QM/MM, machine learning path integral approach to compute free energy profiles and kinetic isotope effects in RNA cleavage reactions
  publication-title: J. Chem. Theory Comput.
– volume: 369
  start-page: 253
  year: 1921
  ident: c158
  article-title: Die berechnung optischer und elektrostatischer gitterpotentiale
  publication-title: Ann. Phys.
– volume: 50
  start-page: 17953
  year: 1994
  ident: c173
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 145
  start-page: 170901
  year: 2016
  ident: c43
  article-title: Perspective: Machine learning potentials for atomistic simulations
  publication-title: J. Chem. Phys.
– volume: 60
  start-page: 3408
  year: 2020
  ident: 2023122821375967000_c33
  article-title: TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00451
– volume: 121
  start-page: 10142
  year: 2021
  ident: 2023122821375967000_c46
  article-title: Machine learning force fields
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01111
– volume: 24
  start-page: 11801
  year: 2022
  ident: 2023122821375967000_c104
  article-title: Ab initio neural network MD simulation of thermal decomposition of high energy material CL-20/TNT
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d2cp00710j
– year: 2023
  ident: 2023122821375967000_c171
  article-title: Hybrid Monte Carlo-molecular dynamics simulation of order-disorder transition in refractory high entropy alloys using deep potential model reliable in the full concentration space
– volume: 62
  start-page: 126013
  year: 2022
  ident: 2023122821375967000_c50
  article-title: A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac888b
– volume: 119
  start-page: e2203397119
  year: 2022
  ident: 2023122821375967000_c69
  article-title: Plastic deformation of superionic water ices
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2203397119
– year: 2020
  ident: 2023122821375967000_c141
– volume: 155
  start-page: 164101
  year: 2021
  ident: 2023122821375967000_c87
  article-title: Learning intermolecular forces at liquid-vapor interfaces
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0067565
– volume: 1–2
  start-page: 19
  year: 2015
  ident: 2023122821375967000_c152
  article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 19
  start-page: 472
  year: 2023
  ident: 2023122821375967000_c161
  article-title: ACES: Optimized alchemically enhanced sampling
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00697
– volume: 2
  start-page: 367
  year: 2022
  ident: 2023122821375967000_c166
  article-title: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00265-6
– volume: 18
  start-page: 5559
  year: 2022
  ident: 2023122821375967000_c109
  article-title: DP compress: A model compression scheme for generating efficient deep potential models
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00102
– volume-title: Computer Physics Communications
  ident: 2023122821375967000_c167
  article-title: DeepFlame: A deep learning empowered open-source platform for reacting flow simulations
  doi: 10.1016/j.cpc.2023.108842
– volume: 387
  start-page: 143
  year: 2022
  ident: 2023122821375967000_c74
  article-title: Using metadynamics to build neural network potentials for reactive events: The case of urea decomposition in water
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2021.03.018
– volume: 121
  start-page: 265701
  year: 2018
  ident: 2023122821375967000_c57
  article-title: Silicon liquid structure and crystal nucleation from ab initio deep metadynamics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.121.265701
– volume: 104
  start-page: 136403
  year: 2010
  ident: 2023122821375967000_c2
  article-title: Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.104.136403
– start-page: 6790
  year: 2021
  ident: 2023122821375967000_c23
  article-title: GemNet: Universal directional graph neural networks for molecules
– volume: 14
  start-page: 3933
  year: 2018
  ident: 2023122821375967000_c8
  article-title: Atomic energies from a convolutional neural network
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00149
– volume: 12
  start-page: 100181
  year: 2020
  ident: 2023122821375967000_c59
  article-title: A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2020.100181
– volume: 19
  start-page: 1261
  year: 2023
  ident: 2023122821375967000_c72
  article-title: QDπ: A quantum deep potential interaction model for drug discovery
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c01172
– volume: 158
  start-page: 124110
  year: 2023
  ident: 2023122821375967000_c89
  article-title: Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0139281
– volume: 13
  start-page: 19663
  year: 2011
  ident: 2023122821375967000_c91
  article-title: Simulating water with rigid non-polarizable models: A general perspective
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22168j
– volume: 2
  start-page: 718
  year: 2022
  ident: 2023122821375967000_c24
  article-title: A universal graph deep learning interatomic potential for the periodic table
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00349-3
– volume: 11
  start-page: 2335
  year: 2020
  ident: 2023122821375967000_c83
  article-title: Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics
  publication-title: Chem. Sci.
  doi: 10.1039/c9sc05116c
– volume: 62
  start-page: 6069
  year: 2022
  ident: 2023122821375967000_c162
  article-title: AMBER drug discovery boost tools: Automated workflow for production free-energy simulation setup and analysis (ProFESSA)
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c00879
– volume: 13
  start-page: 2453
  year: 2022
  ident: 2023122821375967000_c21
  article-title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29939-5
– volume: 92
  start-page: 255701
  year: 2004
  ident: 2023122821375967000_c92
  article-title: Phase diagram of water from computer simulation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.92.255701
– volume: 144
  start-page: 214110
  year: 2016
  ident: 2023122821375967000_c175
  article-title: ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4952647
– start-page: 315
  year: 2011
  ident: 2023122821375967000_c113
  article-title: Deep sparse rectifier neural networks
– volume: 259
  start-page: 107624
  year: 2021
  ident: 2023122821375967000_c108
  article-title: 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107624
– volume: 585
  start-page: 357
  year: 2020
  ident: 2023122821375967000_c128
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 11
  start-page: 451
  year: 2015
  ident: 2023122821375967000_c95
  article-title: Multipolar Ewald methods, 2: Applications using a quantum mechanical force field
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500799g
– volume: 253
  start-page: 107206
  year: 2020
  ident: 2023122821375967000_c107
  article-title: DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107206
– volume: 54
  start-page: 1575
  year: 2021
  ident: 2023122821375967000_c15
  article-title: Development of multimodal machine learning potentials: Toward a physics-aware artificial intelligence
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00868
– start-page: 205
  year: 2022
  ident: 2023122821375967000_c42
  article-title: Extending the limit of molecular dynamics with ab initio accuracy to 10 billion atoms
– year: 2022
  ident: 2023122821375967000_c165
  article-title: DMFF: An open-source automatic differentiable platform for molecular force field development and molecular dynamics simulation
  publication-title: Physical Chemistry
  doi: 10.26434/chemrxiv-2022-2c7gv
– volume: 8
  start-page: 139
  year: 2022
  ident: 2023122821375967000_c67
  article-title: Viscosity in water from first-principles and deep-neural-network simulations
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00830-7
– volume: 3
  start-page: 023804
  year: 2019
  ident: 2023122821375967000_c103
  article-title: Active learning of uniformly accurate interatomic potentials for materials simulation
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.3.023804
– volume: 158
  start-page: 144801
  year: 2023
  ident: 2023122821375967000_c37
  article-title: SchNetPack 2.0: A neural network toolbox for atomistic machine learning
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0138367
– volume: 102
  start-page: 041121
  year: 2020
  ident: 2023122821375967000_c105
  article-title: Deep neural network for the dielectric response of insulators
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.102.041121
– volume: 11
  start-page: 9461
  year: 2020
  ident: 2023122821375967000_c63
  article-title: Hydrogen dynamics in supercritical water probed by neutron scattering and computer simulations
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02547
– volume: 117
  start-page: 1
  year: 1995
  ident: 2023122821375967000_c150
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 58
  start-page: 2043
  year: 2018
  ident: 2023122821375967000_c120
  article-title: GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00462
– ident: 2023122821375967000_c137
– volume: 559
  start-page: 547
  year: 2018
  ident: 2023122821375967000_c44
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– year: 2009
  ident: 2023122821375967000_c146
– volume: 242
  start-page: 95
  year: 2019
  ident: 2023122821375967000_c32
  article-title: SIMPLE-NN: An efficient package for training and executing neural- network interatomic potentials
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.04.014
– volume: 102
  start-page: 214113
  year: 2020
  ident: 2023122821375967000_c62
  article-title: Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.102.214113
– volume: 2
  start-page: 027001
  year: 2021
  ident: 2023122821375967000_c40
  article-title: PyXtal_FF: A python library for automated force field generation
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/abc940
– volume: 15
  start-page: 1827
  year: 2019
  ident: 2023122821375967000_c35
  article-title: Library-based LAMMPS implementation of high-dimensional neural network potentials
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00770
– volume: 157
  start-page: 164701
  year: 2022
  ident: 2023122821375967000_c85
  article-title: Resolving the odd–even oscillation of water dissociation at rutile TiO2(110)–water interface by machine learning accelerated molecular dynamics
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0126333
– volume: 15
  start-page: 5543
  year: 2019
  ident: 2023122821375967000_c163
  article-title: Development of a robust indirect approach for MM → QM free energy calculations that combines force-matched reference potential and Bennett’s acceptance ratio methods
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00401
– year: 2023
  ident: 2023122821375967000_c169
– volume: 2
  start-page: 025002
  year: 2021
  ident: 2023122821375967000_c39
  article-title: The MLIP package: Moment tensor potentials with MPI and active learning
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/abc9fe
– volume: 22
  start-page: bbab158
  year: 2021
  ident: 2023122821375967000_c82
  article-title: Machine learning builds full-QM precision protein force fields in seconds
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbab158
– start-page: 9377
  year: 2021
  ident: 2023122821375967000_c20
  article-title: Equivariant message passing for the prediction of tensorial properties and molecular spectra
– volume: 124
  start-page: 3027
  year: 2020
  ident: 2023122821375967000_c81
  article-title: Combining the fragmentation approach and neural network potential energy surfaces of fragments for accurate calculation of protein energy
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c01370
– start-page: 97
  year: 2004
  ident: 2023122821375967000_c135
  article-title: Open MPI: Goals, concept, and design of a next generation MPI implementation
– volume: 120
  start-page: 143001
  year: 2018
  ident: 2023122821375967000_c9
  article-title: Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.120.143001
– volume: 1
  start-page: 2
  year: 2005
  ident: 2023122821375967000_c96
  article-title: An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct049941i
– volume: 5
  start-page: 46
  year: 1998
  ident: 2023122821375967000_c134
  article-title: OpenMP: An industry standard API for shared-memory programming
  publication-title: IEEE Comput. Sci. Eng.
  doi: 10.1109/99.660313
– volume: 19
  start-page: 640
  year: 2023
  ident: 2023122821375967000_c160
  article-title: AMBER free energy tools: A new framework for the design of optimized alchemical transformation pathways
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00725
– volume: 8
  start-page: 13890
  year: 2017
  ident: 2023122821375967000_c6
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13890
– volume: 31
  start-page: 1322
  year: 2015
  ident: 2023122821375967000_c168
  article-title: 3Dmol.js: Molecular visualization with WebGL
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu829
– volume: 10
  start-page: 4962
  year: 2019
  ident: 2023122821375967000_c11
  article-title: Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02037
– volume: 22
  start-page: 10592
  year: 2020
  ident: 2023122821375967000_c106
  article-title: Raman spectrum and polarizability of liquid water from deep neural networks
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d0cp01893g
– volume: 10
  start-page: nwad128
  year: 2023
  ident: 2023122821375967000_c149
  article-title: MAGUS: Machine learning and graph theory assisted universal structure searcher
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwad128
– ident: 2023122821375967000_c138
– volume: 18
  start-page: 3593
  year: 2022
  ident: 2023122821375967000_c157
  article-title: Combined deep learning and classical potential approach for modeling diffusion in UiO-66
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00010
– volume: 17
  start-page: 7696
  year: 2021
  ident: 2023122821375967000_c26
  article-title: Linear atomic cluster expansion force fields for organic molecules: Beyond RMSE
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c00647
– volume: 148
  start-page: 241709
  year: 2018
  ident: 2023122821375967000_c4
  article-title: wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019667
– year: 2018
  ident: 2023122821375967000_c147
– volume: 13
  start-page: e1005659
  year: 2017
  ident: 2023122821375967000_c153
  article-title: OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005659
– volume: 14
  start-page: 579
  year: 2023
  ident: 2023122821375967000_c19
  article-title: Learning local equivariant representations for large-scale atomistic dynamics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36329-y
– volume: 271
  start-page: 108171
  year: 2022
  ident: 2023122821375967000_c140
  article-title: LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108171
– volume: 8
  start-page: 3192
  year: 2017
  ident: 2023122821375967000_c12
  article-title: ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
  publication-title: Chem. Sci.
  doi: 10.1039/c6sc05720a
– volume: 240
  start-page: 38
  year: 2019
  ident: 2023122821375967000_c31
  article-title: sGDML: Constructing accurate and data efficient molecular force fields using machine learning
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.02.007
– ident: 2023122821375967000_c124
  article-title: Adam: A method for stochastic optimization
– volume: 98
  start-page: 146401
  year: 2007
  ident: 2023122821375967000_c1
  article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.98.146401
– volume: 119
  start-page: e2207294119
  year: 2022
  ident: 2023122821375967000_c156
  article-title: Homogeneous ice nucleation in an ab initio machine-learning model of water
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2207294119
– volume: 186
  start-page: 1
  year: 2022
  ident: 2023122821375967000_c58
  article-title: A deep learning interatomic potential developed for atomistic simulation of carbon materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.09.062
– volume: 11
  start-page: 6059
  year: 2021
  ident: 2023122821375967000_c115
  article-title: Open catalyst 2020 (OC20) dataset and community challenges
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04525
– start-page: 7
  year: 2002
  ident: 2023122821375967000_c136
  article-title: MPICH2: A new start for MPI implementations
– volume: 13
  start-page: 4052
  year: 2022
  ident: 2023122821375967000_c79
  article-title: Exploring complex reaction networks using neural network-based molecular dynamics simulation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00647
– volume: 50
  start-page: 17953
  year: 1994
  ident: 2023122821375967000_c173
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.50.17953
– volume: 228
  start-page: 178
  year: 2018
  ident: 2023122821375967000_c29
  article-title: DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.03.016
– volume: 158
  start-page: 084111
  year: 2023
  ident: 2023122821375967000_c70
  article-title: A ‘short blanket’ dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0142843
– volume: 13
  start-page: 822
  year: 2022
  ident: 2023122821375967000_c73
  article-title: Dissolving salt is not equivalent to applying a pressure on water
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28538-8
– volume: 98
  start-page: 10089
  year: 1993
  ident: 2023122821375967000_c93
  article-title: Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 6
  start-page: 40
  year: 2008
  ident: 2023122821375967000_c126
  article-title: Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for?
  publication-title: Queue
  doi: 10.1145/1365490.1365500
– volume: 156
  start-page: 124107
  year: 2022
  ident: 2023122821375967000_c53
  article-title: A deep potential model with long-range electrostatic interactions
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0083669
– year: 2015
  ident: 2023122821375967000_c130
– year: 2018
  ident: 2023122821375967000_c132
– volume: 24
  start-page: 25134
  year: 2022
  ident: 2023122821375967000_c27
  article-title: Facilitating ab initio QM/MM free energy simulations by Gaussian process regression with derivative observations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d2cp02820d
– volume: 71
  start-page: 361
  year: 2020
  ident: 2023122821375967000_c45
  article-title: Machine learning for molecular simulation
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-042018-052331
– start-page: 4436
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: 2023122821375967000_c10
  article-title: End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems
– volume: 99
  start-page: 014104
  year: 2019
  ident: 2023122821375967000_c25
  article-title: Atomic cluster expansion for accurate and transferable interatomic potentials
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.99.014104
– volume: 1
  start-page: 333
  year: 2022
  ident: 2023122821375967000_c22
  article-title: NewtonNet: A Newtonian message passing network for deep learning of interatomic potentials and forces
  publication-title: Digital Discovery
  doi: 10.1039/d2dd00008c
– start-page: 279
  volume-title: Quantum Chemistry in the Age of Machine Learning
  year: 2022
  ident: 2023122821375967000_c49
  article-title: Neural network potentials
– volume: 144
  start-page: 10524
  year: 2022
  ident: 2023122821375967000_c86
  article-title: Acids at the edge: Why nitric and formic acid dissociations at air–water interfaces depend on depth and on interface specific area
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03099
– start-page: 1412
  volume-title: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
  year: 2015
  ident: 2023122821375967000_c118
  article-title: Effective approaches to attention-based neural machine translation
  doi: 10.18653/v1/D15-1166
– volume: 29
  start-page: 273002
  year: 2017
  ident: 2023122821375967000_c148
  article-title: The atomic simulation environment—A python library for working with atoms
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/1361-648X/aa680e
– volume: 9
  start-page: 6702
  year: 2018
  ident: 2023122821375967000_c90
  article-title: Deep learning for nonadiabatic excited-state dynamics
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03026
– year: 2023
  ident: 2023122821375967000_c142
– year: 2023
  ident: 2023122821375967000_c133
– volume: 13
  start-page: 2991
  year: 2022
  ident: 2023122821375967000_c18
  article-title: Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30687-9
– year: 2023
  ident: 2023122821375967000_c154
  article-title: Implementation and validation of an openmm plugin for the deep potential representation of potential energy
– volume: 105
  start-page: 144106
  year: 2022
  ident: 2023122821375967000_c16
  article-title: CENT2: Improved charge equilibration via neural network technique
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.105.144106
– volume: 114
  start-page: 244101
  year: 2019
  ident: 2023122821375967000_c123
  article-title: Deep learning inter-atomic potential model for accurate irradiation damage simulations
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5098061
– volume: 3
  start-page: 023804
  year: 2019
  ident: 2023122821375967000_c170
  article-title: Active learning of uniformly accurate interatomic potentials for materials simulation
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.3.023804
– volume: 156
  start-page: 114801
  year: 2022
  ident: 2023122821375967000_c36
  article-title: REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0080766
– volume: 1
  start-page: 022601
  year: 2022
  ident: 2023122821375967000_c55
  article-title: Deep potentials for materials science
  publication-title: Mater. Futures
  doi: 10.1088/2752-5724/ac681d
– volume: 47
  start-page: 2812
  year: 2014
  ident: 2023122821375967000_c98
  article-title: Recent advances toward a general purpose linear-scaling quantum force field
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500103g
– volume: 125
  start-page: 14874
  year: 2021
  ident: 2023122821375967000_c56
  article-title: Efficiently trained deep learning potential for graphane
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c01411
– volume: 25
  start-page: 983
  year: 2023
  ident: 2023122821375967000_c76
  article-title: Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: A study by deep potential molecular dynamics
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d2cp04105g
– volume: 11
  start-page: 5713
  year: 2020
  ident: 2023122821375967000_c77
  article-title: Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19497-z
– volume: 102
  start-page: 115155
  year: 2020
  ident: 2023122821375967000_c64
  article-title: Isotope effects in x-ray absorption spectra of liquid water
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.102.115155
– volume: 371
  start-page: 921
  year: 2021
  ident: 2023122821375967000_c84
  article-title: Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes
  publication-title: Science
  doi: 10.1126/science.abd7716
– volume: 134
  start-page: 074106
  year: 2011
  ident: 2023122821375967000_c3
  article-title: Atom-centered symmetry functions for constructing high-dimensional neural network potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553717
– volume-title: Python and HDF5: Unlocking Scientific Data
  year: 2013
  ident: 2023122821375967000_c129
– volume: 153
  start-page: 044112
  year: 2020
  ident: 2023122821375967000_c14
  article-title: AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0011521
– ident: 2023122821375967000_c116
– volume: 27
  start-page: 122704
  year: 2020
  ident: 2023122821375967000_c119
  article-title: Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0023265
– volume: 14
  start-page: 3349
  year: 2023
  ident: 2023122821375967000_c71
  article-title: Realistic phase diagram of water from “first principles” data-driven quantum simulations
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-38855-1
– volume: 50
  start-page: 652
  year: 2017
  ident: 2023122821375967000_c101
  article-title: Ab initio reactive computer aided molecular design
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00010
– volume: 112
  start-page: 503
  year: 2016
  ident: 2023122821375967000_c155
  article-title: Large-scale ab initio simulations based on systematically improvable atomic basis
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.07.004
– year: 2020
  ident: 2023122821375967000_c41
  article-title: Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning
– volume: 102
  start-page: 052125
  year: 2020
  ident: 2023122821375967000_c60
  article-title: Deep machine learning interatomic potential for liquid silica
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.052125
– volume: 236
  start-page: 214
  year: 2019
  ident: 2023122821375967000_c151
  article-title: i-PI 2.0: A universal force engine for advanced molecular simulations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.09.020
– volume: 11
  start-page: 436
  year: 2015
  ident: 2023122821375967000_c94
  article-title: Multipolar Ewald methods, 1: Theory, accuracy, and performance
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5007983
– volume: 261
  start-page: 107688
  year: 2021
  ident: 2023122821375967000_c159
  article-title: The MolSSI driver interface project: A framework for standardized, on-the-fly interoperability between computational molecular sciences codes
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107688
– volume: 12
  start-page: 2611
  year: 2016
  ident: 2023122821375967000_c97
  article-title: Ambient-potential composite Ewald method for ab initio quantum mechanical/molecular mechanical molecular dynamics simulation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00198
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023122821375967000_c174
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.77.3865
– volume: 121
  start-page: 10187
  year: 2021
  ident: 2023122821375967000_c48
  article-title: Neural network potential energy surfaces for small molecules and reactions
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00665
– volume: 29
  start-page: 383002
  year: 2017
  ident: 2023122821375967000_c99
  article-title: Quantum mechanical force fields for condensed phase molecular simulations
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/1361-648x/aa7c5c
– ident: 2023122821375967000_c51
– volume: 15
  start-page: 448
  year: 2019
  ident: 2023122821375967000_c30
  article-title: SchNetPack: A deep learning toolbox for atomistic systems
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00908
– volume: 41
  start-page: 2562
  year: 2020
  ident: 2023122821375967000_c176
  article-title: DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26411
– volume: 15
  start-page: 3678
  year: 2019
  ident: 2023122821375967000_c13
  article-title: PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00181
– volume: 126
  start-page: 8519
  year: 2022
  ident: 2023122821375967000_c100
  article-title: Multireference generalization of the weighted thermodynamic perturbation method
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c06201
– volume: 145
  start-page: 170901
  year: 2016
  ident: 2023122821375967000_c43
  article-title: Perspective: Machine learning potentials for atomistic simulations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4966192
– ident: 2023122821375967000_c125
– start-page: 263
  year: 2016
  ident: 2023122821375967000_c145
  article-title: Foundations of JSON schema
– start-page: 1
  volume-title: A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules
  year: 2023
  ident: 2023122821375967000_c54
  article-title: Learning DeePMD-kit: A guide to building deep potential models
– volume: 3
  start-page: e1603015
  year: 2017
  ident: 2023122821375967000_c5
  article-title: Machine learning of accurate energy-conserving molecular force fields
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603015
– start-page: 807
  year: 2010
  ident: 2023122821375967000_c112
  article-title: Rectified linear units improve restricted Boltzmann machines
– volume: 148
  start-page: 241722
  year: 2018
  ident: 2023122821375967000_c7
  article-title: SchNet—A deep learning architecture for molecules and materials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– volume: 282
  start-page: 108520
  year: 2023
  ident: 2023122821375967000_c164
  article-title: DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2022.108520
– volume: 17
  start-page: 5745
  year: 2021
  ident: 2023122821375967000_c17
  article-title: Machine-learning-assisted free energy simulation of solution-phase and enzyme reactions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c00565
– start-page: 630
  year: 2016
  ident: 2023122821375967000_c111
  article-title: Identity mappings in deep residual networks
– volume: 18
  start-page: 4304
  year: 2022
  ident: 2023122821375967000_c75
  article-title: Combined QM/MM, machine learning path integral approach to compute free energy profiles and kinetic isotope effects in RNA cleavage reactions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00151
– volume: 23
  start-page: 47
  year: 2021
  ident: 2023122821375967000_c139
  article-title: mpi4py: Status update after 12 years of development
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/mcse.2021.3083216
– volume: 117
  start-page: 3269
  year: 2019
  ident: 2023122821375967000_c61
  article-title: Isotope effects in liquid water via deep potential molecular dynamics
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2019.1652366
– year: 2017
  ident: 2023122821375967000_c117
  article-title: Attention is all you need
– volume: 285
  start-page: 316
  year: 2015
  ident: 2023122821375967000_c28
  article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.12.018
– volume: 8
  start-page: 107
  year: 2022
  ident: 2023122821375967000_c110
  article-title: Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00773-z
– volume: 12
  start-page: 14396
  year: 2021
  ident: 2023122821375967000_c47
  article-title: Choosing the right molecular machine learning potential
  publication-title: Chem. Sci.
  doi: 10.1039/d1sc03564a
– volume: 35
  start-page: 762
  year: 2021
  ident: 2023122821375967000_c78
  article-title: Exploring the chemical space of linear alkane pyrolysis via deep potential GENerator
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03211
– year: 2023
  ident: 2023122821375967000_c127
– volume: 157
  start-page: 114801
  year: 2022
  ident: 2023122821375967000_c38
  article-title: GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0106617
– year: 2022
  ident: 2023122821375967000_c143
– year: 2015
  ident: 2023122821375967000_c144
– volume: 379
  start-page: 27
  year: 2021
  ident: 2023122821375967000_c34
  article-title: MLatom 2: An integrative platform for atomistic machine learning
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-021-00339-5
– ident: 2023122821375967000_c121
  doi: 10.1021/acs.jctc.3c00386
– year: 2018
  ident: 2023122821375967000_c131
– volume: 126
  start-page: 236001
  year: 2021
  ident: 2023122821375967000_c88
  article-title: Phase diagram of a deep potential water model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.126.236001
– volume: 369
  start-page: 253
  year: 1921
  ident: 2023122821375967000_c158
  article-title: Die berechnung optischer und elektrostatischer gitterpotentiale
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19213690304
– volume: 17
  start-page: 6993
  year: 2021
  ident: 2023122821375967000_c52
  article-title: Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c00201
– volume: 104
  start-page: 224202
  year: 2021
  ident: 2023122821375967000_c66
  article-title: Heat transport in liquid water from first-principles and deep neural network simulations
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.104.224202
– ident: 2023122821375967000_c114
– volume: 110
  start-page: 6158
  year: 1999
  ident: 2023122821375967000_c172
  article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 12
  start-page: 10310
  year: 2021
  ident: 2023122821375967000_c68
  article-title: Condensed phase water molecular multipole moments from deep neural network models trained on ab initio simulation data
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02328
– volume-title: chemrxiv-2022-qp8fc
  year: 2022
  ident: 2023122821375967000_c80
  article-title: Growth of polycyclic aromatic hydrocarbon and soot inception by in silico simulation
– volume: 22
  start-page: 683
  year: 2020
  ident: 2023122821375967000_c102
  article-title: ReacNetGenerator: An automatic reaction network generator for reactive molecular dynamics simulations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c9cp05091d
– volume: 117
  start-page: 26040
  year: 2020
  ident: 2023122821375967000_c65
  article-title: Signatures of a liquid–liquid transition in an ab initio deep neural network model for water
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2015440117
– start-page: 93
  volume-title: Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter
  year: 1985
  ident: 2023122821375967000_c122
  article-title: The stopping and range of ions in matter
SSID ssj0001724
Score 2.7299743
Snippet DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential...
SourceID pubmedcentral
osti
cristin
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Application programming interface
artificial neural networks
computer software
deep learning
Graphical user interface
Graphics processing units
Machine learning
MATHEMATICS AND COMPUTING
Molecular dynamics
Open source software
peptides
Physics
Software packages
Tensile properties
User interfaces
Title DeePMD-kit v2: A software package for deep potential models
URI http://dx.doi.org/10.1063/5.0155600
https://www.ncbi.nlm.nih.gov/pubmed/37526163
https://www.proquest.com/docview/2844365555
https://www.proquest.com/docview/2844681190
http://hdl.handle.net/10852/109671
https://www.osti.gov/servlets/purl/1994160
https://pubmed.ncbi.nlm.nih.gov/PMC10445636
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSxxBEC50RcxLSLwy8aCNPvjS6Fx9JE-Lq4hkxZAIvjV9DYoyu7hj8vdTPRcuKjiP0zXDTH1dXV9RRRXAAW6DIvEmp9YUhmZWplS7mFFvXVK4esZxCBTHl-z8Oru4yW8WYP-NDD5Lj0JbzTz45UVYSpAciwEsDS9Gv676Axd9cNtsOaaBkHcNhJ4_jPTW1lZTzjmgwQRvvUYuX9ZIrqBLarLjzxzQ2Sf42DJHMmyg_gwLvlyFlZNuYNsqLNfVnHa2Bj9G3l-NR_T-riJ_k-9kSGZ42v7Tj55giHyPRwhBrkqc91MynVShYAjfXA_Fma3D9dnpn5Nz2k5JoDaTcUW5dZk3RkorEi2NizFWFlILZpHrOCcd18cuhMAm4xqPlEQfG1EU6Lo0YwZj1A0YlJPSfwEiPTfGJbLgGGUIJLQIlhY511mhC3x5BFGrRFXiBg3NRfMk5LAZjyM47NSqOkWFKRcPqk5zs1TlqsUigm-96LTpqfGa0FbARgWte3trQ9mPrVRoZRwzXN3uIFOt0c0UetosZTleEez1ywhCyIHo0k-eGhkmYqRBEWw2CPffkPIc40mWRiDmsO8FQivu-ZXy7rZuyY1BLTLRlEWw32-Tt__t67uktuBDmG1fVxvybRhUj09-BxlQZXbRAkbjn793W0v4D65a_mg
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BVmi5ICivtAXM48DFtHnZCZxWXaqldKsitVJvll9Rt62yUZOFv884cUJXFIkc40kUz9ie79NMZgA-4DIoIqtSqlWhaKLzmEoTMmq1iQrT9jh2RHF-zGZnyeF5eu5zc9y_MPgR9Se5qNog_qWudr0C6TVizlX1p-AAi3ddwc3Ueez7sIFsnGUj2JgcTn-cDEcxemdfhjmkDqr3pYVuP4zAV7f7qVxzTaMl3roLdv6dPTlGZ9XFzW-5poPH8MhjSjLp5vAE7tlyE8b7fSu3TXjQ5nnq-il8mVp7Mp_Sq0VDfkafyYTUeA7_kjeWIHm-wsOFIIolxtqKVMvGpRLhm9t2OfUzODv4ero_o75_AtVJHjaUa5NYpfJcZ5HMlQmRRWe5zJhGFGRMbrjcM44cq4RLPGwiuaeyokCnJhlTyF6fw6hclvYlkNxypUyUFxz5R4ZQF80os5TLpJAFvjyAwCtRlLh0XdnRNHLRbcbDAD72ahW9olz_i2vRBsBZLFLhbRHAu0G06qpt3CW07WwjnNatvtAuIUg3whU5DhmO7vQmE3471gJ9cBKzFK8A3g7DaAQXHZGlXa46GZaFCJACeNFZePiGmKfINFkcQLZm-0HAFeleHykXF22xbqS7iFFjFsD7YZn8e25b_yX1Bsaz0_mROPp2_H0bHkaIu9qcRL4Do-ZmZV8hTmrUa78bfgNoUwnk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeePMD-kit+v2%3A+A+software+package+for+deep+potential+models&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zeng%2C+Jinzhe&rft.au=Zhang%2C+Duo&rft.au=Lu%2C+Denghui&rft.au=Mo%2C+Pinghui&rft.date=2023-08-07&rft.pub=American+Institute+of+Physics+%28AIP%29&rft.issn=0021-9606&rft.volume=159&rft.issue=5&rft_id=info:doi/10.1063%2F5.0155600&rft.externalDocID=1994160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon