DeePMD-kit v2: A software package for deep potential models
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material scien...
Saved in:
Published in | The Journal of chemical physics Vol. 159; no. 5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
07.08.2023
American Institute of Physics (AIP) AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments. |
---|---|
AbstractList | DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments. DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments. |
Author | Shi, Shaochen Yang, Jiabin Huang, Jiameng Zhang, Duo Li, Yifan Muraoka, Koki Zhang, Yuzhi Goodall, Rhys E. A. Liang, Wenshuo Ye, Haotian Bore, Sigbjørn Løland Tisi, Davide Yao, Sikai Han, Jiequn York, Darrin M. Ding, Ye Rynik, Marián Liu, Jie Wentzcovitch, Renata Chen, Yixiao Zhang, Jingchao Wang, Yingze Jia, Weile E, Weinan Tuo, Ping Lin, Yinnian Mo, Pinghui Xia, Yu Wang, Yibo Cai, Chun Chang, Junhan Zeng, Jinzhe Singh, Anurag Kumar Car, Roberto Zhang, Linfeng Xu, Jiayan Huang, Li’ang Zhu, Jia-Xin Luo, Chenxing Li, Zeyu Wang, Bo Yuan, Fengbo Li, Ziyao Lu, Denghui Bao, Han Wang, Han Zeng, Qiyu |
Author_xml | – sequence: 1 givenname: Jinzhe surname: Zeng fullname: Zeng, Jinzhe organization: Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University – sequence: 2 givenname: Duo surname: Zhang fullname: Zhang, Duo organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 3 givenname: Denghui surname: Lu fullname: Lu, Denghui organization: HEDPS, CAPT, College of Engineering, Peking University – sequence: 4 givenname: Pinghui surname: Mo fullname: Mo, Pinghui organization: College of Electrical and Information Engineering, Hunan University – sequence: 5 givenname: Zeyu surname: Li fullname: Li, Zeyu organization: Yuanpei College, Peking University – sequence: 6 givenname: Yixiao surname: Chen fullname: Chen, Yixiao organization: Program in Applied and Computational Mathematics, Princeton University – sequence: 7 givenname: Marián surname: Rynik fullname: Rynik, Marián organization: Department of Experimental Physics, Comenius University – sequence: 8 givenname: Li’ang surname: Huang fullname: Huang, Li’ang organization: Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University – sequence: 9 givenname: Ziyao surname: Li fullname: Li, Ziyao organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 10 givenname: Shaochen surname: Shi fullname: Shi, Shaochen organization: ByteDance Research, Zhonghang Plaza – sequence: 11 givenname: Yingze surname: Wang fullname: Wang, Yingze organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 12 givenname: Haotian surname: Ye fullname: Ye, Haotian organization: Yuanpei College, Peking University – sequence: 13 givenname: Ping surname: Tuo fullname: Tuo, Ping organization: AI for Science Institute – sequence: 14 givenname: Jiabin surname: Yang fullname: Yang, Jiabin organization: Baidu, Inc – sequence: 15 givenname: Ye surname: Ding fullname: Ding, Ye organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 16 givenname: Yifan surname: Li fullname: Li, Yifan organization: Department of Chemistry, Princeton University – sequence: 17 givenname: Davide surname: Tisi fullname: Tisi, Davide organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 18 givenname: Qiyu surname: Zeng fullname: Zeng, Qiyu organization: Department of Physics, National University of Defense Technology – sequence: 19 givenname: Han surname: Bao fullname: Bao, Han organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 20 givenname: Yu surname: Xia fullname: Xia, Yu organization: ByteDance Research, Zhonghang Plaza – sequence: 21 givenname: Jiameng surname: Huang fullname: Huang, Jiameng organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 22 givenname: Koki surname: Muraoka fullname: Muraoka, Koki organization: Department of Chemical System Engineering, The University of Tokyo – sequence: 23 givenname: Yibo surname: Wang fullname: Wang, Yibo organization: DP Technology – sequence: 24 givenname: Junhan surname: Chang fullname: Chang, Junhan organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 25 givenname: Fengbo surname: Yuan fullname: Yuan, Fengbo organization: DP Technology – sequence: 26 givenname: Sigbjørn Løland surname: Bore fullname: Bore, Sigbjørn Løland organization: Hylleraas Centre for Quantum Molecular Sciences and Department of Chemistry, University of Oslo – sequence: 27 givenname: Chun surname: Cai fullname: Cai, Chun organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 28 givenname: Yinnian surname: Lin fullname: Lin, Yinnian organization: Wangxuan Institute of Computer Technology, Peking University – sequence: 29 givenname: Bo surname: Wang fullname: Wang, Bo organization: Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University – sequence: 30 givenname: Jiayan surname: Xu fullname: Xu, Jiayan organization: School of Chemistry and Chemical Engineering, Queen’s University Belfast – sequence: 31 givenname: Jia-Xin surname: Zhu fullname: Zhu, Jia-Xin organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 32 givenname: Chenxing surname: Luo fullname: Luo, Chenxing organization: Department of Applied Physics and Applied Mathematics, Columbia University – sequence: 33 givenname: Yuzhi surname: Zhang fullname: Zhang, Yuzhi organization: DP Technology – sequence: 34 givenname: Rhys E. A. surname: Goodall fullname: Goodall, Rhys E. A. organization: Independent Researcher – sequence: 35 givenname: Wenshuo surname: Liang fullname: Liang, Wenshuo organization: DP Technology – sequence: 36 givenname: Anurag Kumar surname: Singh fullname: Singh, Anurag Kumar organization: Department of Data Science, Indian Institute of Technology – sequence: 37 givenname: Sikai surname: Yao fullname: Yao, Sikai organization: DP Technology – sequence: 38 givenname: Jingchao surname: Zhang fullname: Zhang, Jingchao organization: NVIDIA AI Technology Center (NVAITC) – sequence: 39 givenname: Renata surname: Wentzcovitch fullname: Wentzcovitch, Renata organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 40 givenname: Jiequn surname: Han fullname: Han, Jiequn organization: Center for Computational Mathematics, Flatiron Institute – sequence: 41 givenname: Jie surname: Liu fullname: Liu, Jie organization: College of Electrical and Information Engineering, Hunan University – sequence: 42 givenname: Weile surname: Jia fullname: Jia, Weile organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 43 givenname: Darrin M. surname: York fullname: York, Darrin M. organization: Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University – sequence: 44 givenname: Weinan surname: E fullname: E, Weinan organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 45 givenname: Roberto surname: Car fullname: Car, Roberto organization: Department of Chemistry, Princeton University – sequence: 46 givenname: Linfeng surname: Zhang fullname: Zhang, Linfeng email: linfeng.zhang.zlf@gmail.com organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China – sequence: 47 givenname: Han surname: Wang fullname: Wang, Han organization: 37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37526163$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1994160$$D View this record in Osti.gov |
BookMark | eNp9kV9PFDEUxRuDkQV98AuYib6gycBtp9Np9cEQ8F-C0Qd9bjqdO1CYbZe2C_Hb22V3iRJjH9qH_u7JOffskR0fPBLynMIhBdEctYdA21YAPCIzClLVnVCwQ2YAjNZKgNgleyldAgDtGH9CdpuuZYKKZkbenSJ-_3paX7lc3bC31XGVwphvTcRqYeyVOcdqDLEaEBfVImT02ZmpmocBp_SUPB7NlPDZ5t0nPz9--HHyuT779unLyfFZbbmiue7swLHvlbKSGdUPFHsmlZHCMsGHQQ2dgUFBx3veGSk7ZqCX49hAY4ToO9rsk_dr3cWyn-Ngi4loJr2Ibm7iLx2M03__eHehz8ONpsB5KxpRFF6uFULKTifrMtoLG7xHmzVVilMBBarWkI2uYF77EE3RkC0rtxJ3Tg42TmK4XmLKeu6SxWkyHsMyaSY5F5JStVJ79QC9DMvoy57uqEa05RTqxZ_R7jNtCyrA662pkFLE8R6hoFfl61Zvyi_s0QO2BDXZhdVW3PTPiTfribQl_yP_GzWguPM |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1016_j_commatsci_2024_113486 crossref_primary_10_1021_acs_jpclett_4c02934 crossref_primary_10_1002_med_22008 crossref_primary_10_1016_j_commatsci_2024_113402 crossref_primary_10_1063_5_0222355 crossref_primary_10_1063_5_0227523 crossref_primary_10_1038_s44286_023_00010_4 crossref_primary_10_1063_5_0217688 crossref_primary_10_1021_acs_jctc_3c01115 crossref_primary_10_1021_acs_jpclett_4c00113 crossref_primary_10_1016_j_commatsci_2023_112715 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126152 crossref_primary_10_1021_acs_chemrev_3c00307 crossref_primary_10_1016_j_solmat_2025_113505 crossref_primary_10_1021_acs_jctc_4c00594 crossref_primary_10_1103_PhysRevB_110_014112 crossref_primary_10_1002_chem_202401148 crossref_primary_10_1039_D4NR03305A crossref_primary_10_1073_pnas_2407295121 crossref_primary_10_1021_acs_jpcb_4c08461 crossref_primary_10_1038_s41567_024_02761_0 crossref_primary_10_1063_5_0188905 crossref_primary_10_1063_5_0238266 crossref_primary_10_1016_j_actamat_2025_120856 crossref_primary_10_1103_PhysRevB_110_165159 crossref_primary_10_1016_j_synbio_2024_07_004 crossref_primary_10_1103_PhysRevB_108_235159 crossref_primary_10_3390_pr12112407 crossref_primary_10_1016_j_energy_2024_133799 crossref_primary_10_1103_PhysRevResearch_7_L012007 crossref_primary_10_1007_s11426_024_2402_2 crossref_primary_10_1021_acsomega_4c04782 crossref_primary_10_1021_acs_jpca_4c06669 crossref_primary_10_1063_5_0197757 crossref_primary_10_1021_jacs_4c06641 crossref_primary_10_1021_acsnano_4c00733 crossref_primary_10_1039_D4CC05117C crossref_primary_10_1063_5_0228461 crossref_primary_10_1140_epjp_s13360_024_05685_z crossref_primary_10_1002_wcms_70010 crossref_primary_10_1103_PhysRevB_111_064103 crossref_primary_10_1021_acs_jctc_4c01176 crossref_primary_10_1002_smll_202404274 crossref_primary_10_1039_D4SC01422G crossref_primary_10_1063_5_0173250 crossref_primary_10_1103_PhysRevB_110_064322 crossref_primary_10_1016_j_ceramint_2024_09_181 crossref_primary_10_1021_acs_jcim_4c01714 crossref_primary_10_1021_acs_jpcc_4c04604 crossref_primary_10_1103_PhysRevE_111_L023401 crossref_primary_10_1016_j_egyai_2024_100454 crossref_primary_10_1016_j_jmrt_2024_11_067 crossref_primary_10_1016_j_actamat_2024_120364 crossref_primary_10_1016_j_molliq_2023_123659 crossref_primary_10_1021_acscatal_4c01920 crossref_primary_10_1021_acs_jpcc_4c01988 crossref_primary_10_1103_PhysRevB_109_094101 crossref_primary_10_1002_anie_202407892 crossref_primary_10_1088_2515_7639_ad4c06 crossref_primary_10_1002_adfm_202408870 crossref_primary_10_1039_D4DD00209A crossref_primary_10_1039_D4SC06530A crossref_primary_10_1063_5_0234287 crossref_primary_10_1016_j_cpc_2024_109446 crossref_primary_10_1021_acs_jctc_4c00457 crossref_primary_10_1063_5_0237399 crossref_primary_10_1103_PhysRevLett_132_167301 crossref_primary_10_7498_aps_72_20231258 crossref_primary_10_1021_jacs_4c18769 crossref_primary_10_1021_acs_jctc_4c00907 crossref_primary_10_1021_acs_langmuir_3c03060 crossref_primary_10_5802_crchim_315 crossref_primary_10_1063_5_0243420 crossref_primary_10_1016_j_actamat_2024_120135 crossref_primary_10_1038_s41524_024_01441_0 crossref_primary_10_1016_j_cpc_2025_109512 crossref_primary_10_1021_acs_jpcc_4c07342 crossref_primary_10_1021_acs_jctc_3c01203 crossref_primary_10_1021_acs_jpcc_4c00028 crossref_primary_10_1063_5_0249882 crossref_primary_10_1002_ange_202407892 crossref_primary_10_1021_acs_jced_3c00580 crossref_primary_10_1063_5_0240030 crossref_primary_10_1126_science_ads4369 crossref_primary_10_1039_D4SC06422D crossref_primary_10_1021_acs_jctc_4c00587 crossref_primary_10_1021_acs_jpclett_4c02771 crossref_primary_10_1029_2024GL109793 crossref_primary_10_1002_jcc_27353 crossref_primary_10_1021_acs_chemmater_3c02726 crossref_primary_10_1029_2024JH000434 crossref_primary_10_1038_s41524_023_01168_4 crossref_primary_10_1063_5_0167238 crossref_primary_10_1063_5_0239284 crossref_primary_10_1016_j_actamat_2023_119364 crossref_primary_10_1039_D4CP02989E crossref_primary_10_1016_j_actamat_2024_120408 crossref_primary_10_1016_j_actamat_2024_120661 crossref_primary_10_1021_acs_jcim_4c01473 crossref_primary_10_1073_pnas_2322040121 crossref_primary_10_1063_5_0179161 crossref_primary_10_1007_s40843_024_2999_8 crossref_primary_10_1021_acs_jpca_4c00750 crossref_primary_10_1021_acs_jpcb_4c01466 crossref_primary_10_1021_acs_jpcc_4c07596 crossref_primary_10_1063_5_0255515 crossref_primary_10_1021_acs_jcim_4c02042 crossref_primary_10_1021_acs_langmuir_4c05004 crossref_primary_10_1021_jacs_4c03445 crossref_primary_10_1021_acs_jpca_4c04959 crossref_primary_10_1063_5_0215869 crossref_primary_10_1021_jacsau_4c00957 crossref_primary_10_1039_D4CP01483A crossref_primary_10_1002_jcc_27269 crossref_primary_10_1021_acs_jpcc_3c05522 crossref_primary_10_1063_5_0230101 crossref_primary_10_1021_acs_jctc_4c01005 crossref_primary_10_1021_acs_jctc_4c01487 crossref_primary_10_1038_s43246_025_00745_y crossref_primary_10_3389_fmats_2024_1369034 crossref_primary_10_3390_ma18030659 crossref_primary_10_1063_5_0237773 crossref_primary_10_1016_j_cossms_2025_101214 crossref_primary_10_1021_acs_jctc_4c00953 crossref_primary_10_1063_5_0158075 crossref_primary_10_1140_epjp_s13360_024_05348_z crossref_primary_10_1021_acs_jcim_4c00273 crossref_primary_10_1021_acs_jpclett_4c00605 crossref_primary_10_1002_qua_70036 crossref_primary_10_1016_j_commatsci_2024_113459 crossref_primary_10_1021_acs_chemmater_4c02454 crossref_primary_10_1063_5_0243641 crossref_primary_10_1016_j_ces_2025_121494 crossref_primary_10_1088_1742_6596_2713_1_012071 crossref_primary_10_1103_PhysRevB_109_115129 crossref_primary_10_1063_5_0204064 crossref_primary_10_1002_adfm_202311599 crossref_primary_10_1038_s41524_024_01493_2 crossref_primary_10_1063_5_0211276 crossref_primary_10_1002_adma_202402369 crossref_primary_10_1021_acs_jpcc_3c07010 crossref_primary_10_1088_1361_648X_ad9657 crossref_primary_10_1103_PhysRevB_110_235410 crossref_primary_10_1016_j_actamat_2024_120429 crossref_primary_10_1063_5_0236394 crossref_primary_10_1016_j_jeurceramsoc_2024_01_007 crossref_primary_10_1063_5_0222015 crossref_primary_10_1103_PhysRevResearch_6_013292 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125404 crossref_primary_10_1021_acs_jpclett_3c03158 crossref_primary_10_1063_5_0219764 crossref_primary_10_1039_D4SC04957H crossref_primary_10_1063_5_0247559 crossref_primary_10_1016_j_mser_2024_100857 crossref_primary_10_1021_acs_chemmater_4c01152 crossref_primary_10_1149_1945_7111_ad4ac9 crossref_primary_10_1039_D4DD00353E crossref_primary_10_3390_molecules29112703 crossref_primary_10_1021_acs_jctc_4c00253 crossref_primary_10_1002_jcc_70032 crossref_primary_10_1021_acs_jpcc_4c03444 crossref_primary_10_1063_5_0230440 crossref_primary_10_1063_5_0236427 crossref_primary_10_20517_jmi_2024_22 crossref_primary_10_1021_acsphyschemau_3c00076 crossref_primary_10_1021_acs_jpclett_3c02112 crossref_primary_10_1111_jace_20356 crossref_primary_10_1016_j_commatsci_2024_113155 crossref_primary_10_1021_prechem_4c00060 crossref_primary_10_1016_j_cemconres_2024_107501 crossref_primary_10_1063_5_0166858 crossref_primary_10_1088_0256_307X_40_11_116301 crossref_primary_10_1039_D4CP04195J crossref_primary_10_1063_5_0228003 crossref_primary_10_1038_s41524_024_01481_6 crossref_primary_10_20517_jmi_2024_14 crossref_primary_10_1021_acscatal_4c04571 crossref_primary_10_1116_6_0004027 crossref_primary_10_1021_prechem_4c00056 crossref_primary_10_1021_acsami_4c00618 crossref_primary_10_1021_prechem_4c00051 crossref_primary_10_1016_j_actamat_2024_120608 crossref_primary_10_1103_PhysRevMaterials_8_103601 crossref_primary_10_1021_acs_jctc_4c00824 crossref_primary_10_1103_PhysRevB_110_054109 crossref_primary_10_1016_j_mtcomm_2025_111868 crossref_primary_10_1063_5_0189448 |
Cites_doi | 10.1021/acs.jcim.0c00451 10.1021/acs.chemrev.0c01111 10.1039/d2cp00710j 10.1088/1741-4326/ac888b 10.1073/pnas.2203397119 10.1063/5.0067565 10.1016/j.softx.2015.06.001 10.1021/acs.jctc.2c00697 10.1038/s43588-022-00265-6 10.1021/acs.jctc.2c00102 10.1016/j.cpc.2023.108842 10.1016/j.cattod.2021.03.018 10.1103/physrevlett.121.265701 10.1103/physrevlett.104.136403 10.1021/acs.jctc.8b00149 10.1016/j.mtphys.2020.100181 10.1021/acs.jctc.2c01172 10.1063/5.0139281 10.1039/c1cp22168j 10.1038/s43588-022-00349-3 10.1039/c9sc05116c 10.1021/acs.jcim.2c00879 10.1038/s41467-022-29939-5 10.1103/physrevlett.92.255701 10.1063/1.4952647 10.1016/j.cpc.2020.107624 10.1038/s41586-020-2649-2 10.1021/ct500799g 10.1016/j.cpc.2020.107206 10.1021/acs.accounts.0c00868 10.26434/chemrxiv-2022-2c7gv 10.1038/s41524-022-00830-7 10.1103/physrevmaterials.3.023804 10.1063/5.0138367 10.1103/physrevb.102.041121 10.1021/acs.jpclett.0c02547 10.1006/jcph.1995.1039 10.1021/acs.jcim.8b00462 10.1038/s41586-018-0337-2 10.1016/j.cpc.2019.04.014 10.1103/physrevb.102.214113 10.1088/2632-2153/abc940 10.1021/acs.jctc.8b00770 10.1063/5.0126333 10.1021/acs.jctc.9b00401 10.1088/2632-2153/abc9fe 10.1093/bib/bbab158 10.1021/acs.jpcb.0c01370 10.1103/physrevlett.120.143001 10.1021/ct049941i 10.1109/99.660313 10.1021/acs.jctc.2c00725 10.1038/ncomms13890 10.1093/bioinformatics/btu829 10.1021/acs.jpclett.9b02037 10.1039/d0cp01893g 10.1093/nsr/nwad128 10.1021/acs.jctc.2c00010 10.1021/acs.jctc.1c00647 10.1063/1.5019667 10.1371/journal.pcbi.1005659 10.1038/s41467-023-36329-y 10.1016/j.cpc.2021.108171 10.1039/c6sc05720a 10.1016/j.cpc.2019.02.007 10.1103/physrevlett.98.146401 10.1073/pnas.2207294119 10.1016/j.carbon.2021.09.062 10.1021/acscatal.0c04525 10.1021/acs.jpclett.2c00647 10.1103/physrevb.50.17953 10.1016/j.cpc.2018.03.016 10.1063/5.0142843 10.1038/s41467-022-28538-8 10.1063/1.464397 10.1145/1365490.1365500 10.1063/5.0083669 10.1039/d2cp02820d 10.1146/annurev-physchem-042018-052331 10.1103/physrevb.99.014104 10.1039/d2dd00008c 10.1021/jacs.2c03099 10.18653/v1/D15-1166 10.1088/1361-648X/aa680e 10.1021/acs.jpclett.8b03026 10.1038/s41467-022-30687-9 10.1103/physrevb.105.144106 10.1063/1.5098061 10.1063/5.0080766 10.1088/2752-5724/ac681d 10.1021/ar500103g 10.1021/acs.jpcc.1c01411 10.1039/d2cp04105g 10.1038/s41467-020-19497-z 10.1103/physrevb.102.115155 10.1126/science.abd7716 10.1063/1.3553717 10.1063/5.0011521 10.1063/5.0023265 10.1038/s41467-023-38855-1 10.1021/acs.accounts.7b00010 10.1016/j.commatsci.2015.07.004 10.1103/PhysRevE.102.052125 10.1016/j.cpc.2018.09.020 10.1021/ct5007983 10.1016/j.cpc.2020.107688 10.1021/acs.jctc.6b00198 10.1103/physrevlett.77.3865 10.1021/acs.chemrev.0c00665 10.1088/1361-648x/aa7c5c 10.1021/acs.jctc.8b00908 10.1002/jcc.26411 10.1021/acs.jctc.9b00181 10.1021/acs.jpca.2c06201 10.1063/1.4966192 10.1126/sciadv.1603015 10.1063/1.5019779 10.1016/j.cpc.2022.108520 10.1021/acs.jctc.1c00565 10.1021/acs.jctc.2c00151 10.1109/mcse.2021.3083216 10.1080/00268976.2019.1652366 10.1016/j.jcp.2014.12.018 10.1038/s41524-022-00773-z 10.1039/d1sc03564a 10.1021/acs.energyfuels.0c03211 10.1063/5.0106617 10.1007/s41061-021-00339-5 10.1021/acs.jctc.3c00386 10.1103/physrevlett.126.236001 10.1002/andp.19213690304 10.1021/acs.jctc.1c00201 10.1103/physrevb.104.224202 10.1063/1.478522 10.1021/acs.jpclett.1c02328 10.1039/c9cp05091d 10.1073/pnas.2015440117 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). info:eu-repo/semantics/openAccess 2023 Author(s). 2023 Author(s) |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). – notice: info:eu-repo/semantics/openAccess – notice: 2023 Author(s). 2023 Author(s) |
CorporateAuthor | Princeton Univ., NJ (United States) |
CorporateAuthor_xml | – sequence: 0 name: Princeton Univ., NJ (United States) |
DBID | AJDQP AAYXX CITATION NPM 8FD H8D L7M 7X8 3HK OIOZB OTOTI 5PM |
DOI | 10.1063/5.0155600 |
DatabaseName | AIP Open Access Journals CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic NORA - Norwegian Open Research Archives OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
DocumentTitleAlternate | Zeng et al |
EISSN | 1089-7690 |
ExternalDocumentID | PMC10445636 1994160 10852_109671 37526163 10_1063_5_0155600 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: 209718 funderid: https://doi.org/10.13039/100000001 – fundername: U.S. Department of Energy grantid: DE-SC0019394; DE-SC0019759 funderid: https://doi.org/10.13039/100000015 – fundername: National Key Research and Development Program of China grantid: 2022YFA1004300 funderid: https://doi.org/10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 12122103 funderid: https://doi.org/10.13039/501100001809 – fundername: National Institutes of Health grantid: GM107485 funderid: https://doi.org/10.13039/100000002 – fundername: Research Council of Norway grantid: 262695 – fundername: Hunan Provincial Science and Technology Department grantid: 2021RC4026 funderid: https://doi.org/10.13039/501100002767 – fundername: Slovak Science Grant Agency grantid: 1/0640/20 – fundername: Slovak Research and Development Agency grantid: APVV-19-0371 – fundername: NIGMS NIH HHS grantid: R01 GM107485 – fundername: ; ; grantid: 2022YFA1004300 – fundername: ; grantid: GM107485 – fundername: ; grantid: 262695 – grantid: DE-SC0019394; DE-SC0019759 – grantid: 1/0640/20 – fundername: ; ; grantid: 2021RC4026 – fundername: ; grantid: 209718 – fundername: ; grantid: APVV-19-0371 – fundername: ; ; grantid: 12122103 |
GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 .GJ 0ZJ 186 2WC 3HK 3O- 41~ 6TJ 9M8 AAYJJ ABDEX ABRJW ACBNA AETEA AFDAS AFFNX AFMIJ AI. EJD F20 G8K H~9 MVM NEUPN NHB OHT P0- QZG RDFOP ROL T9H UBC UE8 UQL VH1 VOH X7L XFK XJT XOL ZCG ZGI ZHY ZXP OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c491t-7cd4ebb99c82a9bd1eb289a86c264dd9d7a0d9074b47a8872a0b8ff303a66b713 |
IEDL.DBID | AJDQP |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Aug 21 18:36:41 EDT 2025 Thu Dec 05 06:37:23 EST 2024 Sun Mar 31 03:17:35 EDT 2024 Fri Jul 11 02:30:47 EDT 2025 Mon Jun 30 06:01:07 EDT 2025 Mon Jul 21 05:56:35 EDT 2025 Sun Jul 06 05:07:51 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 Fri Jun 21 00:10:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-7cd4ebb99c82a9bd1eb289a86c264dd9d7a0d9074b47a8872a0b8ff303a66b713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 NFR/262695 USDOE Office of Science (SC) National Institutes of Health (NIH) Research Council of Norway SC0019394; GM107485; 2209718; APVV-19-0371; 2021RC4026; 262695; SC0019759; 2022YFA1004300; 12122103; 2138259; 2138286; 2138307; 2137603; 2138296; CHE190067; CHE20002 National Science Foundation (NSF) National Natural Science Foundation of China (NSFC) National Key Research and Development Program of China Slovak Research and Development Agency Science and Technology Innovation Program of Hunan Province Electronic mail: linfeng.zhang.zlf@gmail.com |
ORCID | 0009-0001-3921-4415 0009-0009-3429-0476 0000-0001-5243-2647 0009-0001-6255-5867 0000-0001-5663-9426 0000-0003-0272-9500 0009-0009-4591-8644 0000-0001-9591-2659 0000-0003-4116-6851 0009-0002-3949-8785 0000-0001-8539-8326 0009-0005-8486-0626 0009-0008-1709-7239 0000-0001-8201-5887 0000-0002-9071-2516 0000-0003-3217-0592 0009-0004-2304-0213 0009-0005-1986-2879 0009-0001-4185-9677 0000-0002-8620-4885 0000-0002-2733-9253 0000-0001-9897-5778 0000-0003-0977-3635 0009-0004-9087-9414 0009-0002-9701-8145 0000-0003-3457-403X 0000-0003-0646-8803 0000-0002-9193-7055 0000-0001-7229-6101 0000-0002-3471-4728 0009-0008-4381-0544 0000-0001-5623-1148 0000-0003-3490-0974 0000-0001-8663-3551 0000-0002-5841-1107 0000-0002-3553-7313 0009-0006-5745-1525 0000-0002-6589-1700 0000-0002-1515-8172 0000-0001-6242-0439 0000-0001-5289-6062 0000-0002-6477-5900 0000-0003-3195-0773 0000-0003-1830-7978 0000-0002-8470-5846 0009000162555867 0000000182015887 0000000290712516 0000000291937055 0000000156231148 0000000258411107 0009000817097239 0000000331950773 0000000265891700 0000000152896062 0009000141859677 0000000341166851 0000000186633551 0000000332170592 0009000423040213 0009000657451525 0009000843810544 0000000227339253 0009000139214415 0000000306468803 0000000309773635 0000000284705846 0000000172296101 0000000234714728 0000000152432647 0009000584860626 0000000286204885 0009000239498785 0009000297018145 0000000156639426 0000000318307978 000000033457403X 0009000490879414 0000000185398326 0000000198975778 0009000934290476 0000000302729500 0009000945918644 0000000235537313 0000000334900974 0000000195912659 0000000215158172 0009000519862879 0000000162420439 0000000264775900 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0155600 |
PMID | 37526163 |
PQID | 2844365555 |
PQPubID | 2050685 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_2844681190 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10445636 osti_scitechconnect_1994160 proquest_journals_2844365555 pubmed_primary_37526163 scitation_primary_10_1063_5_0155600 cristin_nora_10852_109671 crossref_primary_10_1063_5_0155600 crossref_citationtrail_10_1063_5_0155600 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-07 |
PublicationDateYYYYMMDD | 2023-08-07 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2023 |
Publisher | American Institute of Physics American Institute of Physics (AIP) AIP Publishing LLC |
Publisher_xml | – sequence: 0 name: American Institute of Physics (AIP) – name: American Institute of Physics – name: AIP Publishing LLC |
References | Zhang, Hu, Jiang (c11) 2019; 10 Zeng, Tao, Giese, York (c72) 2023; 19 Balyakin, Rempel, Ryltsev, Rempel (c60) 2020; 102 Tisi, Zhang, Bertossa, Wang, Car, Baroni (c66) 2021; 104 Haghighatlari, Li, Guan, Zhang, Das, Stein, Heidar-Zadeh, Liu, Head-Gordon, Bertels (c22) 2022; 1 Takamoto, Shinagawa, Motoki, Nakago, Li, Kurata, Watanabe, Yayama, Iriguchi, Asano, Onodera, Ishii, Kudo, Ono, Sawada, Ishitani, Ong, Yamaguchi, Kataoka, Hayashi, Charoenphakdee, Ibuka (c18) 2022; 13 Zhai, Caruso, Bore, Luo, Paesani (c70) 2023; 158 Galib, Limmer (c84) 2021; 371 Malosso, Zhang, Car, Baroni, Tisi (c67) 2022; 8 Ko, Zhang, Santra, Wang, E, DiStasio, Car (c61) 2019; 117 Butler, Davies, Cartwright, Isayev, Walsh (c44) 2018; 559 Zhang, Lin, Wang, Car, E (c103) 2019; 3 Schütt, Sauceda, Kindermans, Tkatchenko, Müller (c7) 2018; 148 Mo, Li, Zhao, Zhang, Shi, Li, Liu (c110) 2022; 8 Manzhos, Carrington (c48) 2021; 121 Unke, Meuwly (c13) 2019; 15 Wang, Han, Li, He (c81) 2020; 124 Zhang, Gao, Liu, Zhang, Wang, Chen (c119) 2020; 27 Unke, Chmiela, Sauceda, Gastegger, Poltavsky, Schütt, Tkatchenko, Müller (c46) 2021; 121 Noé, Tkatchenko, Müller, Clementi (c45) 2020; 71 Zeng, Cao, Xu, Zhu, Zhang (c77) 2020; 11 Li, Wang, Zou, Ye, Xu, Gong, Duan, Xu (c166) 2022; 2 Schütt, Kessel, Gastegger, Nicoli, Tkatchenko, Müller (c30) 2019; 15 Dral, Ge, Xue, Hou, Pinheiro, Huang, Barbatti (c34) 2021; 379 Chen, Ong (c24) 2022; 2 Gao, Ramezanghorbani, Isayev, Smith, Roitberg (c33) 2020; 60 Barnes, Marin-Rimoldi, Ellis, Crawford (c159) 2021; 261 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (c128) 2020; 585 Behler, Parrinello (c1) 2007; 98 Lu, Wang, Chen, Lin, Car, E, Jia, Zhang (c108) 2021; 259 Novikov, Gubaev, Podryabinkin, Shapeev (c39) 2021; 2 Liu, Liu, Cao, Chen (c76) 2023; 25 Giese, Zeng, York (c100) 2022; 126 Khajehpasha, Finkler, Kühne, Ghasemi (c16) 2022; 105 Adamo, Barone (c172) 1999; 110 Bonati, Parrinello (c57) 2018; 121 Zhang, Wang, Muniz, Panagiotopoulos, Car, E (c53) 2022; 156 Kovács, van der Oord, Kucera, Allen, Cole, Ortner, Csányi (c26) 2021; 17 Martínez (c101) 2017; 50 Zubatiuk, Isayev (c15) 2021; 54 Thompson, Aktulga, Berger, Bolintineanu, Brown, Crozier, in’t Veld, Kohlmeyer, Moore, Nguyen, Shan, Stevens, Tranchida, Trott, Plimpton (c140) 2022; 271 de la Puente, David, Gomez, Laage (c86) 2022; 144 Li, Lee, Luo (c59) 2020; 12 Kapil, Rossi, Marsalek, Petraglia, Litman, Spura, Cheng, Cuzzocrea, Meißner, Wilkins, Helfrecht, Juda, Bienvenue, Fang, Kessler, Poltavsky, Vandenbrande, Wieme, Corminboeuf, Kühne, Manolopoulos, Markland, Richardson, Tkatchenko, Tribello, Speybroeck, Ceriotti (c151) 2019; 236 Wang, Shen, Yang, Xie, Zhang, Chen, Ho, Wang, Wang (c58) 2022; 186 Chmiela, Tkatchenko, Sauceda, Poltavsky, Schütt, Müller (c5) 2017; 3 Giese, Panteva, Chen, York (c94) 2015; 11 Chu, Luo, Chen (c79) 2022; 13 Chanussot, Das, Goyal, Lavril, Shuaibi, Riviere, Tran, Heras-Domingo, Ho, Hu, Palizhati, Sriram, Wood, Yoon, Parikh, Zitnick, Ulissi (c115) 2021; 11 Zhang, Yue, Panagiotopoulos, Klein, Wu (c73) 2022; 13 Schütt, Hessmann, Gebauer, Lederer, Gastegger (c37) 2023; 158 Vega, Abascal (c91) 2011; 13 Snyder, Kim, Pan, Shao, Pu (c27) 2022; 24 Zhang, Wang, Chen, Zeng, Zhang, Han, E (c107) 2020; 253 Lee, Cerutti, Mermelstein, Lin, LeGrand, Giese, Roitberg, Case, Walker, York (c120) 2018; 58 Achar, Zhang, Johnson (c56) 2021; 125 Zhuang, Bi, Cheng (c85) 2022; 157 Wang, Guo, Zhang, Wang, Xue (c123) 2019; 114 Ewald (c158) 1921; 369 Zhang, Wang, Car, E (c88) 2021; 126 Wang, Li, Yang, Chen, Wang, Chang, Chen, Zhang, Yu (c165) 2022 Wang, Zhang, Han, E (c29) 2018; 228 Giese, York (c163) 2019; 15 Dagum, Menon (c134) 1998; 5 Matusalem, Santos Rego, de Koning (c69) 2022; 119 Tsai, Lee, Ganguly, Giese, Ebert, Labute, Merz, York (c160) 2023; 19 Giese, Zeng, Ekesan, York (c75) 2022; 18 Chen, Zhang, Wang, E (c164) 2023; 282 Ganguly, Tsai, Fernández-Pendás, Lee, Giese, York (c162) 2022; 62 Zhang, Lin, Wang, Car, E (c170) 2019; 3 Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (c6) 2017; 8 Cao, Zeng, Wang, Zhu, Zhang (c104) 2022; 24 Yanxon, Zagaceta, Tang, Matteson, Zhu (c40) 2021; 2 Chen, Liu, Fang, Dral, Cui (c90) 2018; 9 Zhang, Han, Wang, Car, E (c9) 2018; 120 Drautz (c25) 2019; 99 Singraber, Behler, Dellago (c35) 2019; 15 Smith, Isayev, Roitberg (c12) 2017; 8 Zhang, Chen, Wu, Wang, E, Car (c105) 2020; 102 Zhang, Xia, Jiang (c36) 2022; 156 Calegari Andrade, Ko, Zhang, Car, Selloni (c83) 2020; 11 Glick, Metcalf, Koutsoukas, Spronk, Cheney, Sherrill (c14) 2020; 153 Pinheiro, Ge, Ferré, Dral, Barbatti (c47) 2021; 12 Lu, Jiang, Chen, Zhang, Jia, Wang, Chen (c109) 2022; 18 Mardirossian, Head-Gordon (c175) 2016; 144 Giese, York (c99) 2017; 29 Plimpton (c150) 1995; 117 Xu, Zhang, Zhang, Chen, Santra, Wu (c62) 2020; 102 Batzner, Musaelian, Sun, Geiger, Mailoa, Kornbluth, Molinari, Smidt, Kozinsky (c21) 2022; 13 Gartner, Zhang, Piaggi, Car, Panagiotopoulos, Debenedetti (c65) 2020; 117 Chmiela, Sauceda, Poltavsky, Müller, Tkatchenko (c31) 2019; 240 Shi, Doyle, Beck (c68) 2021; 12 Zeng, Zhang, Wang, Zhu (c78) 2021; 35 Rego, Koes (c168) 2015; 31 Giese, York (c97) 2016; 12 Dalcin, Fang (c139) 2021; 23 Thompson, Swiler, Trott, Foiles, Tucker (c28) 2015; 285 Piaggi, Weis, Panagiotopoulos, Debenedetti, Car (c156) 2022; 119 Nam, Gao, York (c96) 2005; 1 Laosi, Gao, Han, Ding, Shuning, Wang, Qiuhan, Wang, Xing, Sun (c149) 2023; 10 Larsen, Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Jensen, Kermode, Kitchin, Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (c148) 2017; 29 Wang, Wang, Zhang, Dai, Wang (c50) 2022; 62 Zeng, Tao, Giese, York (c89) 2023; 158 Zeng, Giese, Ekesan, York (c52) 2021; 17 Han, Wang, Wei, Liu, Li (c82) 2021; 22 Blöchl (c173) 1994; 50 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (c152) 2015; 1–2 Li, Liu, Chen, Lin, Ren, Lin, Yang, He (c155) 2016; 112 Nickolls, Buck, Garland, Skadron (c126) 2008; 6 Behler (c3) 2011; 134 Eastman, Swails, Chodera, McGibbon, Zhao, Beauchamp, Wang, Simmonett, Harrigan, Stern (c153) 2017; 13 Zeng, Cao, Chin, Ren, Zhang, Zhu (c102) 2020; 22 Zhang, Zhang, Xu, Tang, Santra, Wu (c64) 2020; 102 Giese, Panteva, Chen, York (c95) 2015; 11 Musaelian, Batzner, Johansson, Sun, Owen, Kornbluth, Kozinsky (c19) 2023; 14 Pan, Yang, Van, Epifanovsky, Ho, Huang, Pu, Mei, Nam, Shao (c17) 2021; 17 Achar, Wardzala, Bernasconi, Zhang, Johnson (c157) 2022; 18 Perdew, Burke, Ernzerhof (c174) 1996; 77 Behler (c43) 2016; 145 Andreani, Romanelli, Parmentier, Senesi, Kolesnikov, Ko, Calegari Andrade, Car (c63) 2020; 11 Niblett, Galib, Limmer (c87) 2021; 155 Bore, Paesani (c71) 2023; 14 Lee, Yoo, Jeong, Han (c32) 2019; 242 Chen, Jørgensen, Li, Hammer (c8) 2018; 14 Yang, Bonati, Polino, Parrinello (c74) 2022; 387 Fan, Wang, Ying, Song, Wang, Wang, Zeng, Xu, Lindgren, Rahm, Gabourie, Liu, Dong, Wu, Chen, Zhong, Sun, Erhart, Su, Ala-Nissila (c38) 2022; 157 Gastegger, Schwiedrzik, Bittermann, Berzsenyi, Marquetand (c4) 2018; 148 Najibi, Goerigk (c176) 2020; 41 Bartók, Payne, Kondor, Csányi (c2) 2010; 104 Wen, Zhang, Wang, E, Srolovitz (c55) 2022; 1 Darden, York, Pedersen (c93) 1993; 98 Sanz, Vega, Abascal, MacDowell (c92) 2004; 92 Giese, Huang, Chen, York (c98) 2014; 47 Sommers, Andrade, Zhang, Wang, Car (c106) 2020; 22 Lee, Tsai, Ganguly, York (c161) 2023; 19 (2023122821375967000_c13) 2019; 15 (2023122821375967000_c27) 2022; 24 (2023122821375967000_c68) 2021; 12 (2023122821375967000_c156) 2022; 119 (2023122821375967000_c79) 2022; 13 (2023122821375967000_c76) 2023; 25 (2023122821375967000_c88) 2021; 126 (2023122821375967000_c149) 2023; 10 (2023122821375967000_c65) 2020; 117 (2023122821375967000_c123) 2019; 114 2023122821375967000_c167 (2023122821375967000_c36) 2022; 156 (2023122821375967000_c175) 2016; 144 (2023122821375967000_c163) 2019; 15 (2023122821375967000_c102) 2020; 22 (2023122821375967000_c4) 2018; 148 Bromley (2023122821375967000_c122) 1985 (2023122821375967000_c7) 2018; 148 (2023122821375967000_c80) 2022 (2023122821375967000_c48) 2021; 121 (2023122821375967000_c20) 2021 (2023122821375967000_c22) 2022; 1 (2023122821375967000_c107) 2020; 253 (2023122821375967000_c169) 2023 (2023122821375967000_c171) 2023 (2023122821375967000_c8) 2018; 14 (2023122821375967000_c61) 2019; 117 (2023122821375967000_c91) 2011; 13 (2023122821375967000_c3) 2011; 134 (2023122821375967000_c5) 2017; 3 (2023122821375967000_c148) 2017; 29 (2023122821375967000_c143) 2022 (2023122821375967000_c43) 2016; 145 (2023122821375967000_c18) 2022; 13 AMD, Inc. (2023122821375967000_c127) 2023 (2023122821375967000_c147) 2018 (2023122821375967000_c166) 2022; 2 (2023122821375967000_c53) 2022; 156 (2023122821375967000_c9) 2018; 120 (2023122821375967000_c55) 2022; 1 (2023122821375967000_c78) 2021; 35 (2023122821375967000_c144) 2015 (2023122821375967000_c30) 2019; 15 (2023122821375967000_c152) 2015; 1–2 (2023122821375967000_c6) 2017; 8 (2023122821375967000_c31) 2019; 240 (2023122821375967000_c11) 2019; 10 (2023122821375967000_c101) 2017; 50 (2023122821375967000_c158) 1921; 369 Gordon (2023122821375967000_c113) 2011 (2023122821375967000_c63) 2020; 11 (2023122821375967000_c47) 2021; 12 (2023122821375967000_c93) 1993; 98 (2023122821375967000_c44) 2018; 559 (2023122821375967000_c90) 2018; 9 (2023122821375967000_c108) 2021; 259 (2023122821375967000_c120) 2018; 58 (2023122821375967000_c119) 2020; 27 (2023122821375967000_c146) 2009 (2023122821375967000_c134) 1998; 5 (2023122821375967000_c136) 2002 (2023122821375967000_c98) 2014; 47 (2023122821375967000_c95) 2015; 11 (2023122821375967000_c109) 2022; 18 (2023122821375967000_c25) 2019; 99 Wang (2023122821375967000_c54) 2023 (2023122821375967000_c115) 2021; 11 (2023122821375967000_c57) 2018; 121 (2023122821375967000_c155) 2016; 112 (2023122821375967000_c64) 2020; 102 2023122821375967000_c114 (2023122821375967000_c23) 2021 (2023122821375967000_c45) 2020; 71 Dral (2023122821375967000_c49) 2022 (2023122821375967000_c89) 2023; 158 (2023122821375967000_c170) 2019; 3 (2023122821375967000_c99) 2017; 29 (2023122821375967000_c35) 2019; 15 (2023122821375967000_c58) 2022; 186 (2023122821375967000_c32) 2019; 242 (2023122821375967000_c62) 2020; 102 2023122821375967000_c116 (2023122821375967000_c52) 2021; 17 (2023122821375967000_c111) 2016 (2023122821375967000_c159) 2021; 261 (2023122821375967000_c150) 1995; 117 (2023122821375967000_c104) 2022; 24 (2023122821375967000_c59) 2020; 12 (2023122821375967000_c129) 2013 (2023122821375967000_c17) 2021; 17 (2023122821375967000_c153) 2017; 13 (2023122821375967000_c97) 2016; 12 (2023122821375967000_c161) 2023; 19 (2023122821375967000_c142) 2023 (2023122821375967000_c1) 2007; 98 (2023122821375967000_c69) 2022; 119 (2023122821375967000_c106) 2020; 22 (2023122821375967000_c110) 2022; 8 2023122821375967000_c124 2023122821375967000_c125 (2023122821375967000_c162) 2022; 62 2023122821375967000_c51 (2023122821375967000_c15) 2021; 54 2023122821375967000_c121 (2023122821375967000_c75) 2022; 18 (2023122821375967000_c60) 2020; 102 (2023122821375967000_c37) 2023; 158 (2023122821375967000_c139) 2021; 23 (2023122821375967000_c118) 2015 (2023122821375967000_c176) 2020; 41 (2023122821375967000_c29) 2018; 228 (2023122821375967000_c145) 2016 (2023122821375967000_c157) 2022; 18 (2023122821375967000_c128) 2020; 585 (2023122821375967000_c105) 2020; 102 (2023122821375967000_c50) 2022; 62 (2023122821375967000_c71) 2023; 14 (2023122821375967000_c140) 2022; 271 Kranzlmüller (2023122821375967000_c135) 2004 (2023122821375967000_c96) 2005; 1 (2023122821375967000_c83) 2020; 11 (2023122821375967000_c112) 2010 2023122821375967000_c137 (2023122821375967000_c77) 2020; 11 (2023122821375967000_c132) 2018 (2023122821375967000_c12) 2017; 8 (2023122821375967000_c173) 1994; 50 (2023122821375967000_c81) 2020; 124 (2023122821375967000_c84) 2021; 371 (2023122821375967000_c16) 2022; 105 (2023122821375967000_c72) 2023; 19 (2023122821375967000_c56) 2021; 125 (2023122821375967000_c87) 2021; 155 (2023122821375967000_c174) 1996; 77 (2023122821375967000_c126) 2008; 6 2023122821375967000_c138 (2023122821375967000_c67) 2022; 8 (2023122821375967000_c74) 2022; 387 (2023122821375967000_c34) 2021; 379 (2023122821375967000_c92) 2004; 92 Bengio (2023122821375967000_c10) 2018 (2023122821375967000_c21) 2022; 13 (2023122821375967000_c41) 2020 (2023122821375967000_c46) 2021; 121 Google, Inc. (2023122821375967000_c133) 2023 (2023122821375967000_c39) 2021; 2 (2023122821375967000_c160) 2023; 19 (2023122821375967000_c24) 2022; 2 (2023122821375967000_c40) 2021; 2 (2023122821375967000_c85) 2022; 157 (2023122821375967000_c42) 2022 (2023122821375967000_c103) 2019; 3 (2023122821375967000_c168) 2015; 31 (2023122821375967000_c33) 2020; 60 (2023122821375967000_c82) 2021; 22 (2023122821375967000_c172) 1999; 110 (2023122821375967000_c73) 2022; 13 (2023122821375967000_c38) 2022; 157 (2023122821375967000_c86) 2022; 144 (2023122821375967000_c151) 2019; 236 (2023122821375967000_c154) 2023 (2023122821375967000_c141) 2020 (2023122821375967000_c164) 2023; 282 (2023122821375967000_c14) 2020; 153 (2023122821375967000_c130) 2015 (2023122821375967000_c19) 2023; 14 (2023122821375967000_c26) 2021; 17 (2023122821375967000_c2) 2010; 104 (2023122821375967000_c66) 2021; 104 (2023122821375967000_c131) 2018 (2023122821375967000_c70) 2023; 158 (2023122821375967000_c94) 2015; 11 (2023122821375967000_c28) 2015; 285 (2023122821375967000_c100) 2022; 126 Guyon (2023122821375967000_c117) 2017 (2023122821375967000_c165) 2022 |
References_xml | – volume: 98 start-page: 10089 year: 1993 ident: c93 article-title: Particle mesh Ewald: An ·log(N) method for Ewald sums in large systems publication-title: J. Chem. Phys. – volume: 102 start-page: 115155 year: 2020 ident: c64 article-title: Isotope effects in x-ray absorption spectra of liquid water publication-title: Phys. Rev. B – volume: 24 start-page: 25134 year: 2022 ident: c27 article-title: Facilitating QM/MM free energy simulations by Gaussian process regression with derivative observations publication-title: Phys. Chem. Chem. Phys. – volume: 62 start-page: 126013 year: 2022 ident: c50 article-title: A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment publication-title: Nucl. Fusion – volume: 47 start-page: 2812 year: 2014 ident: c98 article-title: Recent advances toward a general purpose linear-scaling quantum force field publication-title: Acc. Chem. Res. – volume: 3 start-page: 023804 year: 2019 ident: c170 article-title: Active learning of uniformly accurate interatomic potentials for materials simulation publication-title: Phys. Rev. Mater. – volume: 121 start-page: 10142 year: 2021 ident: c46 article-title: Machine learning force fields publication-title: Chem. Rev. – volume: 18 start-page: 5559 year: 2022 ident: c109 article-title: DP compress: A model compression scheme for generating efficient deep potential models publication-title: J. Chem. Theory Comput. – volume: 121 start-page: 10187 year: 2021 ident: c48 article-title: Neural network potential energy surfaces for small molecules and reactions publication-title: Chem. Rev. – volume: 156 start-page: 124107 year: 2022 ident: c53 article-title: A deep potential model with long-range electrostatic interactions publication-title: J. Chem. Phys. – volume: 6 start-page: 40 year: 2008 ident: c126 article-title: Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for? publication-title: Queue – volume: 2 start-page: 027001 year: 2021 ident: c40 article-title: PyXtal_FF: A python library for automated force field generation publication-title: Mach. Learn.: Sci. Technol. – volume: 156 start-page: 114801 year: 2022 ident: c36 article-title: REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems publication-title: J. Chem. Phys. – volume: 121 start-page: 265701 year: 2018 ident: c57 article-title: Silicon liquid structure and crystal nucleation from deep metadynamics publication-title: Phys. Rev. Lett. – volume: 71 start-page: 361 year: 2020 ident: c45 article-title: Machine learning for molecular simulation publication-title: Annu. Rev. Phys. Chem. – volume: 8 start-page: 107 year: 2022 ident: c110 article-title: Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture publication-title: npj Comput. Mater. – volume: 119 start-page: e2203397119 year: 2022 ident: c69 article-title: Plastic deformation of superionic water ices publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 158 start-page: 144801 year: 2023 ident: c37 article-title: SchNetPack 2.0: A neural network toolbox for atomistic machine learning publication-title: J. Chem. Phys. – volume: 371 start-page: 921 year: 2021 ident: c84 article-title: Reactive uptake of N O by atmospheric aerosol is dominated by interfacial processes publication-title: Science – volume: 148 start-page: 241722 year: 2018 ident: c7 article-title: SchNet—A deep learning architecture for molecules and materials publication-title: J. Chem. Phys. – volume: 24 start-page: 11801 year: 2022 ident: c104 article-title: neural network MD simulation of thermal decomposition of high energy material CL-20/TNT publication-title: Phys. Chem. Chem. Phys. – volume: 271 start-page: 108171 year: 2022 ident: c140 article-title: LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales publication-title: Comput. Phys. Commun. – volume: 1–2 start-page: 19 year: 2015 ident: c152 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX – volume: 124 start-page: 3027 year: 2020 ident: c81 article-title: Combining the fragmentation approach and neural network potential energy surfaces of fragments for accurate calculation of protein energy publication-title: J. Phys. Chem. B – volume: 117 start-page: 1 year: 1995 ident: c150 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. – volume: 13 start-page: e1005659 year: 2017 ident: c153 article-title: OpenMM 7: Rapid development of high performance algorithms for molecular dynamics publication-title: PLoS Comput. Biol. – volume: 126 start-page: 8519 year: 2022 ident: c100 article-title: Multireference generalization of the weighted thermodynamic perturbation method publication-title: J. Phys. Chem. A – volume: 157 start-page: 164701 year: 2022 ident: c85 article-title: Resolving the odd–even oscillation of water dissociation at rutile TiO (110)–water interface by machine learning accelerated molecular dynamics publication-title: J. Chem. Phys. – volume: 12 start-page: 100181 year: 2020 ident: c59 article-title: A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases publication-title: Mater. Today Phys. – volume: 14 start-page: 3349 year: 2023 ident: c71 article-title: Realistic phase diagram of water from “first principles” data-driven quantum simulations publication-title: Nat Commun – volume: 585 start-page: 357 year: 2020 ident: c128 article-title: Array programming with NumPy publication-title: Nature – volume: 54 start-page: 1575 year: 2021 ident: c15 article-title: Development of multimodal machine learning potentials: Toward a physics-aware artificial intelligence publication-title: Acc. Chem. Res. – volume: 98 start-page: 146401 year: 2007 ident: c1 article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces publication-title: Phys. Rev. Lett. – volume: 117 start-page: 3269 year: 2019 ident: c61 article-title: Isotope effects in liquid water via deep potential molecular dynamics publication-title: Mol. Phys. – volume: 99 start-page: 014104 year: 2019 ident: c25 article-title: Atomic cluster expansion for accurate and transferable interatomic potentials publication-title: Phys. Rev. B – volume: 228 start-page: 178 year: 2018 ident: c29 article-title: DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics publication-title: Comput. Phys. Commun. – volume: 387 start-page: 143 year: 2022 ident: c74 article-title: Using metadynamics to build neural network potentials for reactive events: The case of urea decomposition in water publication-title: Catal. Today – volume: 158 start-page: 124110 year: 2023 ident: c89 article-title: Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states publication-title: J. Chem. Phys. – volume: 25 start-page: 983 year: 2023 ident: c76 article-title: Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: A study by deep potential molecular dynamics publication-title: Phys. Chem. Chem. Phys. – volume: 102 start-page: 041121 year: 2020 ident: c105 article-title: Deep neural network for the dielectric response of insulators publication-title: Phys. Rev. B – volume: 120 start-page: 143001 year: 2018 ident: c9 article-title: Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics publication-title: Phys. Rev. Lett. – volume: 13 start-page: 2991 year: 2022 ident: c18 article-title: Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements publication-title: Nat. Commun. – volume: 13 start-page: 2453 year: 2022 ident: c21 article-title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials publication-title: Nat. Commun. – volume: 157 start-page: 114801 year: 2022 ident: c38 article-title: GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations publication-title: J. Chem. Phys. – volume: 11 start-page: 6059 year: 2021 ident: c115 article-title: Open catalyst 2020 (OC20) dataset and community challenges publication-title: ACS Catal. – volume: 12 start-page: 14396 year: 2021 ident: c47 article-title: Choosing the right molecular machine learning potential publication-title: Chem. Sci. – volume: 31 start-page: 1322 year: 2015 ident: c168 article-title: 3Dmol.js: Molecular visualization with WebGL publication-title: Bioinformatics – volume: 126 start-page: 236001 year: 2021 ident: c88 article-title: Phase diagram of a deep potential water model publication-title: Phys. Rev. Lett. – volume: 19 start-page: 640 year: 2023 ident: c160 article-title: AMBER free energy tools: A new framework for the design of optimized alchemical transformation pathways publication-title: J. Chem. Theory Comput. – volume: 148 start-page: 241709 year: 2018 ident: c4 article-title: wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials publication-title: J. Chem. Phys. – volume: 18 start-page: 3593 year: 2022 ident: c157 article-title: Combined deep learning and classical potential approach for modeling diffusion in UiO-66 publication-title: J. Chem. Theory Comput. – volume: 1 start-page: 022601 year: 2022 ident: c55 article-title: Deep potentials for materials science publication-title: Mater. Futures – volume: 110 start-page: 6158 year: 1999 ident: c172 article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model publication-title: J. Chem. Phys. – volume: 11 start-page: 436 year: 2015 ident: c94 article-title: Multipolar Ewald methods, 1: Theory, accuracy, and performance publication-title: J. Chem. Theory Comput. – volume: 282 start-page: 108520 year: 2023 ident: c164 article-title: DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models publication-title: Comput. Phys. Commun. – volume: 117 start-page: 26040 year: 2020 ident: c65 article-title: Signatures of a liquid–liquid transition in an ab initio deep neural network model for water publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 451 year: 2015 ident: c95 article-title: Multipolar Ewald methods, 2: Applications using a quantum mechanical force field publication-title: J. Chem. Theory Comput. – volume: 104 start-page: 136403 year: 2010 ident: c2 article-title: Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons publication-title: Phys. Rev. Lett. – volume: 8 start-page: 139 year: 2022 ident: c67 article-title: Viscosity in water from first-principles and deep-neural-network simulations publication-title: npj Comput. Mater. – volume: 134 start-page: 074106 year: 2011 ident: c3 article-title: Atom-centered symmetry functions for constructing high-dimensional neural network potentials publication-title: J. Chem. Phys. – volume: 242 start-page: 95 year: 2019 ident: c32 article-title: SIMPLE-NN: An efficient package for training and executing neural- network interatomic potentials publication-title: Comput. Phys. Commun. – volume: 60 start-page: 3408 year: 2020 ident: c33 article-title: TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials publication-title: J. Chem. Inf. Model. – volume: 3 start-page: 023804 year: 2019 ident: c103 article-title: Active learning of uniformly accurate interatomic potentials for materials simulation publication-title: Phys. Rev. Mater. – volume: 41 start-page: 2562 year: 2020 ident: c176 article-title: DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries publication-title: J. Comput. Chem. – volume: 11 start-page: 9461 year: 2020 ident: c63 article-title: Hydrogen dynamics in supercritical water probed by neutron scattering and computer simulations publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 5713 year: 2020 ident: c77 article-title: Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation publication-title: Nat. Commun. – volume: 104 start-page: 224202 year: 2021 ident: c66 article-title: Heat transport in liquid water from first-principles and deep neural network simulations publication-title: Phys. Rev. B – volume: 125 start-page: 14874 year: 2021 ident: c56 article-title: Efficiently trained deep learning potential for graphane publication-title: J. Phys. Chem. C – volume: 155 start-page: 164101 year: 2021 ident: c87 article-title: Learning intermolecular forces at liquid-vapor interfaces publication-title: J. Chem. Phys. – volume: 27 start-page: 122704 year: 2020 ident: c119 article-title: Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics publication-title: Phys. Plasmas – volume: 379 start-page: 27 year: 2021 ident: c34 article-title: MLatom 2: An integrative platform for atomistic machine learning publication-title: Top. Curr. Chem. – volume: 102 start-page: 052125 year: 2020 ident: c60 article-title: Deep machine learning interatomic potential for liquid silica publication-title: Phys. Rev. E – volume: 12 start-page: 10310 year: 2021 ident: c68 article-title: Condensed phase water molecular multipole moments from deep neural network models trained on simulation data publication-title: J. Phys. Chem. Lett. – volume: 22 start-page: bbab158 year: 2021 ident: c82 article-title: Machine learning builds full-QM precision protein force fields in seconds publication-title: Briefings Bioinf. – volume: 285 start-page: 316 year: 2015 ident: c28 article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials publication-title: J. Comput. Phys. – volume: 14 start-page: 579 year: 2023 ident: c19 article-title: Learning local equivariant representations for large-scale atomistic dynamics publication-title: Nat. Commun. – volume: 102 start-page: 214113 year: 2020 ident: c62 article-title: Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional publication-title: Phys. Rev. B – volume: 8 start-page: 3192 year: 2017 ident: c12 article-title: ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost publication-title: Chem. Sci. – volume: 19 start-page: 472 year: 2023 ident: c161 article-title: ACES: Optimized alchemically enhanced sampling publication-title: J. Chem. Theory Comput. – volume: 15 start-page: 448 year: 2019 ident: c30 article-title: SchNetPack: A deep learning toolbox for atomistic systems publication-title: J. Chem. Theory Comput. – volume: 29 start-page: 383002 year: 2017 ident: c99 article-title: Quantum mechanical force fields for condensed phase molecular simulations publication-title: J. Phys.: Condens. Matter – volume: 15 start-page: 5543 year: 2019 ident: c163 article-title: Development of a robust indirect approach for MM → QM free energy calculations that combines force-matched reference potential and Bennett’s acceptance ratio methods publication-title: J. Chem. Theory Comput. – volume: 13 start-page: 4052 year: 2022 ident: c79 article-title: Exploring complex reaction networks using neural network-based molecular dynamics simulation publication-title: J. Phys. Chem. Lett. – volume: 153 start-page: 044112 year: 2020 ident: c14 article-title: AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials publication-title: J. Chem. Phys. – volume: 11 start-page: 2335 year: 2020 ident: c83 article-title: Free energy of proton transfer at the water-TiO interface from deep potential molecular dynamics publication-title: Chem. Sci. – volume: 13 start-page: 19663 year: 2011 ident: c91 article-title: Simulating water with rigid non-polarizable models: A general perspective publication-title: Phys. Chem. Chem. Phys. – volume: 58 start-page: 2043 year: 2018 ident: c120 article-title: GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features publication-title: J. Chem. Inf. Model. – volume: 2 start-page: 367 year: 2022 ident: c166 article-title: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation publication-title: Nat. Comput. Sci. – volume: 17 start-page: 6993 year: 2021 ident: c52 article-title: Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution publication-title: J. Chem. Theory Comput. – volume: 92 start-page: 255701 year: 2004 ident: c92 article-title: Phase diagram of water from computer simulation publication-title: Phys. Rev. Lett. – volume: 144 start-page: 10524 year: 2022 ident: c86 article-title: Acids at the edge: Why nitric and formic acid dissociations at air–water interfaces depend on depth and on interface specific area publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 6702 year: 2018 ident: c90 article-title: Deep learning for nonadiabatic excited-state dynamics publication-title: J. Phys. Chem. Lett. – volume: 236 start-page: 214 year: 2019 ident: c151 article-title: i-PI 2.0: A universal force engine for advanced molecular simulations publication-title: Comput. Phys. Commun. – volume: 77 start-page: 3865 year: 1996 ident: c174 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 23 start-page: 47 year: 2021 ident: c139 article-title: mpi4py: Status update after 12 years of development publication-title: Comput. Sci. Eng. – volume: 158 start-page: 084111 year: 2023 ident: c70 article-title: A ‘short blanket’ dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions? publication-title: J. Chem. Phys. – volume: 2 start-page: 025002 year: 2021 ident: c39 article-title: The MLIP package: Moment tensor potentials with MPI and active learning publication-title: Mach. Learn.: Sci. Technol. – volume: 3 start-page: e1603015 year: 2017 ident: c5 article-title: Machine learning of accurate energy-conserving molecular force fields publication-title: Sci. Adv. – volume: 22 start-page: 683 year: 2020 ident: c102 article-title: ReacNetGenerator: An automatic reaction network generator for reactive molecular dynamics simulations publication-title: Phys. Chem. Chem. Phys. – volume: 105 start-page: 144106 year: 2022 ident: c16 article-title: CENT2: Improved charge equilibration via neural network technique publication-title: Phys. Rev. B – volume: 559 start-page: 547 year: 2018 ident: c44 article-title: Machine learning for molecular and materials science publication-title: Nature – volume: 13 start-page: 822 year: 2022 ident: c73 article-title: Dissolving salt is not equivalent to applying a pressure on water publication-title: Nat. Commun. – volume: 62 start-page: 6069 year: 2022 ident: c162 article-title: AMBER drug discovery boost tools: Automated workflow for production free-energy simulation setup and analysis (ProFESSA) publication-title: J. Chem. Inf. Model. – volume: 8 start-page: 13890 year: 2017 ident: c6 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nat. Commun. – volume: 259 start-page: 107624 year: 2021 ident: c108 article-title: 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with accuracy publication-title: Comput. Phys. Commun. – volume: 17 start-page: 7696 year: 2021 ident: c26 article-title: Linear atomic cluster expansion force fields for organic molecules: Beyond RMSE publication-title: J. Chem. Theory Comput. – volume: 12 start-page: 2611 year: 2016 ident: c97 article-title: Ambient-potential composite Ewald method for quantum mechanical/molecular mechanical molecular dynamics simulation publication-title: J. Chem. Theory Comput. – volume: 2 start-page: 718 year: 2022 ident: c24 article-title: A universal graph deep learning interatomic potential for the periodic table publication-title: Nat. Comput. Sci. – volume: 22 start-page: 10592 year: 2020 ident: c106 article-title: Raman spectrum and polarizability of liquid water from deep neural networks publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 1827 year: 2019 ident: c35 article-title: Library-based LAMMPS implementation of high-dimensional neural network potentials publication-title: J. Chem. Theory Comput. – volume: 5 start-page: 46 year: 1998 ident: c134 article-title: OpenMP: An industry standard API for shared-memory programming publication-title: IEEE Comput. Sci. Eng. – volume: 10 start-page: 4962 year: 2019 ident: c11 article-title: Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation publication-title: J. Phys. Chem. Lett. – volume: 186 start-page: 1 year: 2022 ident: c58 article-title: A deep learning interatomic potential developed for atomistic simulation of carbon materials publication-title: Carbon – volume: 19 start-page: 1261 year: 2023 ident: c72 article-title: QD : A quantum deep potential interaction model for drug discovery publication-title: J. Chem. Theory Comput. – year: 2022 ident: c165 article-title: DMFF: An open-source automatic differentiable platform for molecular force field development and molecular dynamics simulation publication-title: Physical Chemistry – volume: 15 start-page: 3678 year: 2019 ident: c13 article-title: PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges publication-title: J. Chem. Theory Comput. – volume: 144 start-page: 214110 year: 2016 ident: c175 article-title: B97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation publication-title: J. Chem. Phys. – volume: 35 start-page: 762 year: 2021 ident: c78 article-title: Exploring the chemical space of linear alkane pyrolysis via deep potential GENerator publication-title: Energy Fuels – volume: 112 start-page: 503 year: 2016 ident: c155 article-title: Large-scale simulations based on systematically improvable atomic basis publication-title: Comput. Mater. Sci. – volume: 17 start-page: 5745 year: 2021 ident: c17 article-title: Machine-learning-assisted free energy simulation of solution-phase and enzyme reactions publication-title: J. Chem. Theory Comput. – volume: 253 start-page: 107206 year: 2020 ident: c107 article-title: DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models publication-title: Comput. Phys. Commun. – volume: 261 start-page: 107688 year: 2021 ident: c159 article-title: The MolSSI driver interface project: A framework for standardized, on-the-fly interoperability between computational molecular sciences codes publication-title: Comput. Phys. Commun. – volume: 29 start-page: 273002 year: 2017 ident: c148 article-title: The atomic simulation environment—A python library for working with atoms publication-title: J. Phys.: Condens. Matter – volume: 114 start-page: 244101 year: 2019 ident: c123 article-title: Deep learning inter-atomic potential model for accurate irradiation damage simulations publication-title: Appl. Phys. Lett. – volume: 50 start-page: 652 year: 2017 ident: c101 article-title: Ab initio reactive computer aided molecular design publication-title: Acc. Chem. Res. – volume: 240 start-page: 38 year: 2019 ident: c31 article-title: sGDML: Constructing accurate and data efficient molecular force fields using machine learning publication-title: Comput. Phys. Commun. – volume: 1 start-page: 333 year: 2022 ident: c22 article-title: NewtonNet: A Newtonian message passing network for deep learning of interatomic potentials and forces publication-title: Digital Discovery – volume: 1 start-page: 2 year: 2005 ident: c96 article-title: An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations publication-title: J. Chem. Theory Comput. – volume: 10 start-page: nwad128 year: 2023 ident: c149 article-title: MAGUS: Machine learning and graph theory assisted universal structure searcher publication-title: Natl. Sci. Rev. – volume: 14 start-page: 3933 year: 2018 ident: c8 article-title: Atomic energies from a convolutional neural network publication-title: J. Chem. Theory Comput. – volume: 119 start-page: e2207294119 year: 2022 ident: c156 article-title: Homogeneous ice nucleation in an ab initio machine-learning model of water publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 4304 year: 2022 ident: c75 article-title: Combined QM/MM, machine learning path integral approach to compute free energy profiles and kinetic isotope effects in RNA cleavage reactions publication-title: J. Chem. Theory Comput. – volume: 369 start-page: 253 year: 1921 ident: c158 article-title: Die berechnung optischer und elektrostatischer gitterpotentiale publication-title: Ann. Phys. – volume: 50 start-page: 17953 year: 1994 ident: c173 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 145 start-page: 170901 year: 2016 ident: c43 article-title: Perspective: Machine learning potentials for atomistic simulations publication-title: J. Chem. Phys. – volume: 60 start-page: 3408 year: 2020 ident: 2023122821375967000_c33 article-title: TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00451 – volume: 121 start-page: 10142 year: 2021 ident: 2023122821375967000_c46 article-title: Machine learning force fields publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01111 – volume: 24 start-page: 11801 year: 2022 ident: 2023122821375967000_c104 article-title: Ab initio neural network MD simulation of thermal decomposition of high energy material CL-20/TNT publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d2cp00710j – year: 2023 ident: 2023122821375967000_c171 article-title: Hybrid Monte Carlo-molecular dynamics simulation of order-disorder transition in refractory high entropy alloys using deep potential model reliable in the full concentration space – volume: 62 start-page: 126013 year: 2022 ident: 2023122821375967000_c50 article-title: A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac888b – volume: 119 start-page: e2203397119 year: 2022 ident: 2023122821375967000_c69 article-title: Plastic deformation of superionic water ices publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2203397119 – year: 2020 ident: 2023122821375967000_c141 – volume: 155 start-page: 164101 year: 2021 ident: 2023122821375967000_c87 article-title: Learning intermolecular forces at liquid-vapor interfaces publication-title: J. Chem. Phys. doi: 10.1063/5.0067565 – volume: 1–2 start-page: 19 year: 2015 ident: 2023122821375967000_c152 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 19 start-page: 472 year: 2023 ident: 2023122821375967000_c161 article-title: ACES: Optimized alchemically enhanced sampling publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00697 – volume: 2 start-page: 367 year: 2022 ident: 2023122821375967000_c166 article-title: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00265-6 – volume: 18 start-page: 5559 year: 2022 ident: 2023122821375967000_c109 article-title: DP compress: A model compression scheme for generating efficient deep potential models publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00102 – volume-title: Computer Physics Communications ident: 2023122821375967000_c167 article-title: DeepFlame: A deep learning empowered open-source platform for reacting flow simulations doi: 10.1016/j.cpc.2023.108842 – volume: 387 start-page: 143 year: 2022 ident: 2023122821375967000_c74 article-title: Using metadynamics to build neural network potentials for reactive events: The case of urea decomposition in water publication-title: Catal. Today doi: 10.1016/j.cattod.2021.03.018 – volume: 121 start-page: 265701 year: 2018 ident: 2023122821375967000_c57 article-title: Silicon liquid structure and crystal nucleation from ab initio deep metadynamics publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.121.265701 – volume: 104 start-page: 136403 year: 2010 ident: 2023122821375967000_c2 article-title: Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.104.136403 – start-page: 6790 year: 2021 ident: 2023122821375967000_c23 article-title: GemNet: Universal directional graph neural networks for molecules – volume: 14 start-page: 3933 year: 2018 ident: 2023122821375967000_c8 article-title: Atomic energies from a convolutional neural network publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00149 – volume: 12 start-page: 100181 year: 2020 ident: 2023122821375967000_c59 article-title: A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2020.100181 – volume: 19 start-page: 1261 year: 2023 ident: 2023122821375967000_c72 article-title: QDπ: A quantum deep potential interaction model for drug discovery publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c01172 – volume: 158 start-page: 124110 year: 2023 ident: 2023122821375967000_c89 article-title: Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states publication-title: J. Chem. Phys. doi: 10.1063/5.0139281 – volume: 13 start-page: 19663 year: 2011 ident: 2023122821375967000_c91 article-title: Simulating water with rigid non-polarizable models: A general perspective publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22168j – volume: 2 start-page: 718 year: 2022 ident: 2023122821375967000_c24 article-title: A universal graph deep learning interatomic potential for the periodic table publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00349-3 – volume: 11 start-page: 2335 year: 2020 ident: 2023122821375967000_c83 article-title: Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics publication-title: Chem. Sci. doi: 10.1039/c9sc05116c – volume: 62 start-page: 6069 year: 2022 ident: 2023122821375967000_c162 article-title: AMBER drug discovery boost tools: Automated workflow for production free-energy simulation setup and analysis (ProFESSA) publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c00879 – volume: 13 start-page: 2453 year: 2022 ident: 2023122821375967000_c21 article-title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials publication-title: Nat. Commun. doi: 10.1038/s41467-022-29939-5 – volume: 92 start-page: 255701 year: 2004 ident: 2023122821375967000_c92 article-title: Phase diagram of water from computer simulation publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.92.255701 – volume: 144 start-page: 214110 year: 2016 ident: 2023122821375967000_c175 article-title: ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation publication-title: J. Chem. Phys. doi: 10.1063/1.4952647 – start-page: 315 year: 2011 ident: 2023122821375967000_c113 article-title: Deep sparse rectifier neural networks – volume: 259 start-page: 107624 year: 2021 ident: 2023122821375967000_c108 article-title: 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107624 – volume: 585 start-page: 357 year: 2020 ident: 2023122821375967000_c128 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 11 start-page: 451 year: 2015 ident: 2023122821375967000_c95 article-title: Multipolar Ewald methods, 2: Applications using a quantum mechanical force field publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500799g – volume: 253 start-page: 107206 year: 2020 ident: 2023122821375967000_c107 article-title: DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107206 – volume: 54 start-page: 1575 year: 2021 ident: 2023122821375967000_c15 article-title: Development of multimodal machine learning potentials: Toward a physics-aware artificial intelligence publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00868 – start-page: 205 year: 2022 ident: 2023122821375967000_c42 article-title: Extending the limit of molecular dynamics with ab initio accuracy to 10 billion atoms – year: 2022 ident: 2023122821375967000_c165 article-title: DMFF: An open-source automatic differentiable platform for molecular force field development and molecular dynamics simulation publication-title: Physical Chemistry doi: 10.26434/chemrxiv-2022-2c7gv – volume: 8 start-page: 139 year: 2022 ident: 2023122821375967000_c67 article-title: Viscosity in water from first-principles and deep-neural-network simulations publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00830-7 – volume: 3 start-page: 023804 year: 2019 ident: 2023122821375967000_c103 article-title: Active learning of uniformly accurate interatomic potentials for materials simulation publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.3.023804 – volume: 158 start-page: 144801 year: 2023 ident: 2023122821375967000_c37 article-title: SchNetPack 2.0: A neural network toolbox for atomistic machine learning publication-title: J. Chem. Phys. doi: 10.1063/5.0138367 – volume: 102 start-page: 041121 year: 2020 ident: 2023122821375967000_c105 article-title: Deep neural network for the dielectric response of insulators publication-title: Phys. Rev. B doi: 10.1103/physrevb.102.041121 – volume: 11 start-page: 9461 year: 2020 ident: 2023122821375967000_c63 article-title: Hydrogen dynamics in supercritical water probed by neutron scattering and computer simulations publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02547 – volume: 117 start-page: 1 year: 1995 ident: 2023122821375967000_c150 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 58 start-page: 2043 year: 2018 ident: 2023122821375967000_c120 article-title: GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00462 – ident: 2023122821375967000_c137 – volume: 559 start-page: 547 year: 2018 ident: 2023122821375967000_c44 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – year: 2009 ident: 2023122821375967000_c146 – volume: 242 start-page: 95 year: 2019 ident: 2023122821375967000_c32 article-title: SIMPLE-NN: An efficient package for training and executing neural- network interatomic potentials publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.04.014 – volume: 102 start-page: 214113 year: 2020 ident: 2023122821375967000_c62 article-title: Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional publication-title: Phys. Rev. B doi: 10.1103/physrevb.102.214113 – volume: 2 start-page: 027001 year: 2021 ident: 2023122821375967000_c40 article-title: PyXtal_FF: A python library for automated force field generation publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/abc940 – volume: 15 start-page: 1827 year: 2019 ident: 2023122821375967000_c35 article-title: Library-based LAMMPS implementation of high-dimensional neural network potentials publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00770 – volume: 157 start-page: 164701 year: 2022 ident: 2023122821375967000_c85 article-title: Resolving the odd–even oscillation of water dissociation at rutile TiO2(110)–water interface by machine learning accelerated molecular dynamics publication-title: J. Chem. Phys. doi: 10.1063/5.0126333 – volume: 15 start-page: 5543 year: 2019 ident: 2023122821375967000_c163 article-title: Development of a robust indirect approach for MM → QM free energy calculations that combines force-matched reference potential and Bennett’s acceptance ratio methods publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00401 – year: 2023 ident: 2023122821375967000_c169 – volume: 2 start-page: 025002 year: 2021 ident: 2023122821375967000_c39 article-title: The MLIP package: Moment tensor potentials with MPI and active learning publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/abc9fe – volume: 22 start-page: bbab158 year: 2021 ident: 2023122821375967000_c82 article-title: Machine learning builds full-QM precision protein force fields in seconds publication-title: Briefings Bioinf. doi: 10.1093/bib/bbab158 – start-page: 9377 year: 2021 ident: 2023122821375967000_c20 article-title: Equivariant message passing for the prediction of tensorial properties and molecular spectra – volume: 124 start-page: 3027 year: 2020 ident: 2023122821375967000_c81 article-title: Combining the fragmentation approach and neural network potential energy surfaces of fragments for accurate calculation of protein energy publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c01370 – start-page: 97 year: 2004 ident: 2023122821375967000_c135 article-title: Open MPI: Goals, concept, and design of a next generation MPI implementation – volume: 120 start-page: 143001 year: 2018 ident: 2023122821375967000_c9 article-title: Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.120.143001 – volume: 1 start-page: 2 year: 2005 ident: 2023122821375967000_c96 article-title: An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations publication-title: J. Chem. Theory Comput. doi: 10.1021/ct049941i – volume: 5 start-page: 46 year: 1998 ident: 2023122821375967000_c134 article-title: OpenMP: An industry standard API for shared-memory programming publication-title: IEEE Comput. Sci. Eng. doi: 10.1109/99.660313 – volume: 19 start-page: 640 year: 2023 ident: 2023122821375967000_c160 article-title: AMBER free energy tools: A new framework for the design of optimized alchemical transformation pathways publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00725 – volume: 8 start-page: 13890 year: 2017 ident: 2023122821375967000_c6 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nat. Commun. doi: 10.1038/ncomms13890 – volume: 31 start-page: 1322 year: 2015 ident: 2023122821375967000_c168 article-title: 3Dmol.js: Molecular visualization with WebGL publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu829 – volume: 10 start-page: 4962 year: 2019 ident: 2023122821375967000_c11 article-title: Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02037 – volume: 22 start-page: 10592 year: 2020 ident: 2023122821375967000_c106 article-title: Raman spectrum and polarizability of liquid water from deep neural networks publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d0cp01893g – volume: 10 start-page: nwad128 year: 2023 ident: 2023122821375967000_c149 article-title: MAGUS: Machine learning and graph theory assisted universal structure searcher publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwad128 – ident: 2023122821375967000_c138 – volume: 18 start-page: 3593 year: 2022 ident: 2023122821375967000_c157 article-title: Combined deep learning and classical potential approach for modeling diffusion in UiO-66 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00010 – volume: 17 start-page: 7696 year: 2021 ident: 2023122821375967000_c26 article-title: Linear atomic cluster expansion force fields for organic molecules: Beyond RMSE publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.1c00647 – volume: 148 start-page: 241709 year: 2018 ident: 2023122821375967000_c4 article-title: wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials publication-title: J. Chem. Phys. doi: 10.1063/1.5019667 – year: 2018 ident: 2023122821375967000_c147 – volume: 13 start-page: e1005659 year: 2017 ident: 2023122821375967000_c153 article-title: OpenMM 7: Rapid development of high performance algorithms for molecular dynamics publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005659 – volume: 14 start-page: 579 year: 2023 ident: 2023122821375967000_c19 article-title: Learning local equivariant representations for large-scale atomistic dynamics publication-title: Nat. Commun. doi: 10.1038/s41467-023-36329-y – volume: 271 start-page: 108171 year: 2022 ident: 2023122821375967000_c140 article-title: LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 – volume: 8 start-page: 3192 year: 2017 ident: 2023122821375967000_c12 article-title: ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost publication-title: Chem. Sci. doi: 10.1039/c6sc05720a – volume: 240 start-page: 38 year: 2019 ident: 2023122821375967000_c31 article-title: sGDML: Constructing accurate and data efficient molecular force fields using machine learning publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.02.007 – ident: 2023122821375967000_c124 article-title: Adam: A method for stochastic optimization – volume: 98 start-page: 146401 year: 2007 ident: 2023122821375967000_c1 article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.98.146401 – volume: 119 start-page: e2207294119 year: 2022 ident: 2023122821375967000_c156 article-title: Homogeneous ice nucleation in an ab initio machine-learning model of water publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2207294119 – volume: 186 start-page: 1 year: 2022 ident: 2023122821375967000_c58 article-title: A deep learning interatomic potential developed for atomistic simulation of carbon materials publication-title: Carbon doi: 10.1016/j.carbon.2021.09.062 – volume: 11 start-page: 6059 year: 2021 ident: 2023122821375967000_c115 article-title: Open catalyst 2020 (OC20) dataset and community challenges publication-title: ACS Catal. doi: 10.1021/acscatal.0c04525 – start-page: 7 year: 2002 ident: 2023122821375967000_c136 article-title: MPICH2: A new start for MPI implementations – volume: 13 start-page: 4052 year: 2022 ident: 2023122821375967000_c79 article-title: Exploring complex reaction networks using neural network-based molecular dynamics simulation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00647 – volume: 50 start-page: 17953 year: 1994 ident: 2023122821375967000_c173 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/physrevb.50.17953 – volume: 228 start-page: 178 year: 2018 ident: 2023122821375967000_c29 article-title: DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.03.016 – volume: 158 start-page: 084111 year: 2023 ident: 2023122821375967000_c70 article-title: A ‘short blanket’ dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions? publication-title: J. Chem. Phys. doi: 10.1063/5.0142843 – volume: 13 start-page: 822 year: 2022 ident: 2023122821375967000_c73 article-title: Dissolving salt is not equivalent to applying a pressure on water publication-title: Nat. Commun. doi: 10.1038/s41467-022-28538-8 – volume: 98 start-page: 10089 year: 1993 ident: 2023122821375967000_c93 article-title: Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 6 start-page: 40 year: 2008 ident: 2023122821375967000_c126 article-title: Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for? publication-title: Queue doi: 10.1145/1365490.1365500 – volume: 156 start-page: 124107 year: 2022 ident: 2023122821375967000_c53 article-title: A deep potential model with long-range electrostatic interactions publication-title: J. Chem. Phys. doi: 10.1063/5.0083669 – year: 2015 ident: 2023122821375967000_c130 – year: 2018 ident: 2023122821375967000_c132 – volume: 24 start-page: 25134 year: 2022 ident: 2023122821375967000_c27 article-title: Facilitating ab initio QM/MM free energy simulations by Gaussian process regression with derivative observations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d2cp02820d – volume: 71 start-page: 361 year: 2020 ident: 2023122821375967000_c45 article-title: Machine learning for molecular simulation publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-042018-052331 – start-page: 4436 volume-title: Advances in Neural Information Processing Systems year: 2018 ident: 2023122821375967000_c10 article-title: End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems – volume: 99 start-page: 014104 year: 2019 ident: 2023122821375967000_c25 article-title: Atomic cluster expansion for accurate and transferable interatomic potentials publication-title: Phys. Rev. B doi: 10.1103/physrevb.99.014104 – volume: 1 start-page: 333 year: 2022 ident: 2023122821375967000_c22 article-title: NewtonNet: A Newtonian message passing network for deep learning of interatomic potentials and forces publication-title: Digital Discovery doi: 10.1039/d2dd00008c – start-page: 279 volume-title: Quantum Chemistry in the Age of Machine Learning year: 2022 ident: 2023122821375967000_c49 article-title: Neural network potentials – volume: 144 start-page: 10524 year: 2022 ident: 2023122821375967000_c86 article-title: Acids at the edge: Why nitric and formic acid dissociations at air–water interfaces depend on depth and on interface specific area publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03099 – start-page: 1412 volume-title: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing year: 2015 ident: 2023122821375967000_c118 article-title: Effective approaches to attention-based neural machine translation doi: 10.18653/v1/D15-1166 – volume: 29 start-page: 273002 year: 2017 ident: 2023122821375967000_c148 article-title: The atomic simulation environment—A python library for working with atoms publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/aa680e – volume: 9 start-page: 6702 year: 2018 ident: 2023122821375967000_c90 article-title: Deep learning for nonadiabatic excited-state dynamics publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03026 – year: 2023 ident: 2023122821375967000_c142 – year: 2023 ident: 2023122821375967000_c133 – volume: 13 start-page: 2991 year: 2022 ident: 2023122821375967000_c18 article-title: Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements publication-title: Nat. Commun. doi: 10.1038/s41467-022-30687-9 – year: 2023 ident: 2023122821375967000_c154 article-title: Implementation and validation of an openmm plugin for the deep potential representation of potential energy – volume: 105 start-page: 144106 year: 2022 ident: 2023122821375967000_c16 article-title: CENT2: Improved charge equilibration via neural network technique publication-title: Phys. Rev. B doi: 10.1103/physrevb.105.144106 – volume: 114 start-page: 244101 year: 2019 ident: 2023122821375967000_c123 article-title: Deep learning inter-atomic potential model for accurate irradiation damage simulations publication-title: Appl. Phys. Lett. doi: 10.1063/1.5098061 – volume: 3 start-page: 023804 year: 2019 ident: 2023122821375967000_c170 article-title: Active learning of uniformly accurate interatomic potentials for materials simulation publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.3.023804 – volume: 156 start-page: 114801 year: 2022 ident: 2023122821375967000_c36 article-title: REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems publication-title: J. Chem. Phys. doi: 10.1063/5.0080766 – volume: 1 start-page: 022601 year: 2022 ident: 2023122821375967000_c55 article-title: Deep potentials for materials science publication-title: Mater. Futures doi: 10.1088/2752-5724/ac681d – volume: 47 start-page: 2812 year: 2014 ident: 2023122821375967000_c98 article-title: Recent advances toward a general purpose linear-scaling quantum force field publication-title: Acc. Chem. Res. doi: 10.1021/ar500103g – volume: 125 start-page: 14874 year: 2021 ident: 2023122821375967000_c56 article-title: Efficiently trained deep learning potential for graphane publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c01411 – volume: 25 start-page: 983 year: 2023 ident: 2023122821375967000_c76 article-title: Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: A study by deep potential molecular dynamics publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d2cp04105g – volume: 11 start-page: 5713 year: 2020 ident: 2023122821375967000_c77 article-title: Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation publication-title: Nat. Commun. doi: 10.1038/s41467-020-19497-z – volume: 102 start-page: 115155 year: 2020 ident: 2023122821375967000_c64 article-title: Isotope effects in x-ray absorption spectra of liquid water publication-title: Phys. Rev. B doi: 10.1103/physrevb.102.115155 – volume: 371 start-page: 921 year: 2021 ident: 2023122821375967000_c84 article-title: Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes publication-title: Science doi: 10.1126/science.abd7716 – volume: 134 start-page: 074106 year: 2011 ident: 2023122821375967000_c3 article-title: Atom-centered symmetry functions for constructing high-dimensional neural network potentials publication-title: J. Chem. Phys. doi: 10.1063/1.3553717 – volume-title: Python and HDF5: Unlocking Scientific Data year: 2013 ident: 2023122821375967000_c129 – volume: 153 start-page: 044112 year: 2020 ident: 2023122821375967000_c14 article-title: AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials publication-title: J. Chem. Phys. doi: 10.1063/5.0011521 – ident: 2023122821375967000_c116 – volume: 27 start-page: 122704 year: 2020 ident: 2023122821375967000_c119 article-title: Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics publication-title: Phys. Plasmas doi: 10.1063/5.0023265 – volume: 14 start-page: 3349 year: 2023 ident: 2023122821375967000_c71 article-title: Realistic phase diagram of water from “first principles” data-driven quantum simulations publication-title: Nat Commun doi: 10.1038/s41467-023-38855-1 – volume: 50 start-page: 652 year: 2017 ident: 2023122821375967000_c101 article-title: Ab initio reactive computer aided molecular design publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00010 – volume: 112 start-page: 503 year: 2016 ident: 2023122821375967000_c155 article-title: Large-scale ab initio simulations based on systematically improvable atomic basis publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.07.004 – year: 2020 ident: 2023122821375967000_c41 article-title: Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning – volume: 102 start-page: 052125 year: 2020 ident: 2023122821375967000_c60 article-title: Deep machine learning interatomic potential for liquid silica publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.102.052125 – volume: 236 start-page: 214 year: 2019 ident: 2023122821375967000_c151 article-title: i-PI 2.0: A universal force engine for advanced molecular simulations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.09.020 – volume: 11 start-page: 436 year: 2015 ident: 2023122821375967000_c94 article-title: Multipolar Ewald methods, 1: Theory, accuracy, and performance publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5007983 – volume: 261 start-page: 107688 year: 2021 ident: 2023122821375967000_c159 article-title: The MolSSI driver interface project: A framework for standardized, on-the-fly interoperability between computational molecular sciences codes publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107688 – volume: 12 start-page: 2611 year: 2016 ident: 2023122821375967000_c97 article-title: Ambient-potential composite Ewald method for ab initio quantum mechanical/molecular mechanical molecular dynamics simulation publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00198 – volume: 77 start-page: 3865 year: 1996 ident: 2023122821375967000_c174 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.77.3865 – volume: 121 start-page: 10187 year: 2021 ident: 2023122821375967000_c48 article-title: Neural network potential energy surfaces for small molecules and reactions publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00665 – volume: 29 start-page: 383002 year: 2017 ident: 2023122821375967000_c99 article-title: Quantum mechanical force fields for condensed phase molecular simulations publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648x/aa7c5c – ident: 2023122821375967000_c51 – volume: 15 start-page: 448 year: 2019 ident: 2023122821375967000_c30 article-title: SchNetPack: A deep learning toolbox for atomistic systems publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00908 – volume: 41 start-page: 2562 year: 2020 ident: 2023122821375967000_c176 article-title: DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries publication-title: J. Comput. Chem. doi: 10.1002/jcc.26411 – volume: 15 start-page: 3678 year: 2019 ident: 2023122821375967000_c13 article-title: PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00181 – volume: 126 start-page: 8519 year: 2022 ident: 2023122821375967000_c100 article-title: Multireference generalization of the weighted thermodynamic perturbation method publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.2c06201 – volume: 145 start-page: 170901 year: 2016 ident: 2023122821375967000_c43 article-title: Perspective: Machine learning potentials for atomistic simulations publication-title: J. Chem. Phys. doi: 10.1063/1.4966192 – ident: 2023122821375967000_c125 – start-page: 263 year: 2016 ident: 2023122821375967000_c145 article-title: Foundations of JSON schema – start-page: 1 volume-title: A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules year: 2023 ident: 2023122821375967000_c54 article-title: Learning DeePMD-kit: A guide to building deep potential models – volume: 3 start-page: e1603015 year: 2017 ident: 2023122821375967000_c5 article-title: Machine learning of accurate energy-conserving molecular force fields publication-title: Sci. Adv. doi: 10.1126/sciadv.1603015 – start-page: 807 year: 2010 ident: 2023122821375967000_c112 article-title: Rectified linear units improve restricted Boltzmann machines – volume: 148 start-page: 241722 year: 2018 ident: 2023122821375967000_c7 article-title: SchNet—A deep learning architecture for molecules and materials publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – volume: 282 start-page: 108520 year: 2023 ident: 2023122821375967000_c164 article-title: DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2022.108520 – volume: 17 start-page: 5745 year: 2021 ident: 2023122821375967000_c17 article-title: Machine-learning-assisted free energy simulation of solution-phase and enzyme reactions publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.1c00565 – start-page: 630 year: 2016 ident: 2023122821375967000_c111 article-title: Identity mappings in deep residual networks – volume: 18 start-page: 4304 year: 2022 ident: 2023122821375967000_c75 article-title: Combined QM/MM, machine learning path integral approach to compute free energy profiles and kinetic isotope effects in RNA cleavage reactions publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00151 – volume: 23 start-page: 47 year: 2021 ident: 2023122821375967000_c139 article-title: mpi4py: Status update after 12 years of development publication-title: Comput. Sci. Eng. doi: 10.1109/mcse.2021.3083216 – volume: 117 start-page: 3269 year: 2019 ident: 2023122821375967000_c61 article-title: Isotope effects in liquid water via deep potential molecular dynamics publication-title: Mol. Phys. doi: 10.1080/00268976.2019.1652366 – year: 2017 ident: 2023122821375967000_c117 article-title: Attention is all you need – volume: 285 start-page: 316 year: 2015 ident: 2023122821375967000_c28 article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.12.018 – volume: 8 start-page: 107 year: 2022 ident: 2023122821375967000_c110 article-title: Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00773-z – volume: 12 start-page: 14396 year: 2021 ident: 2023122821375967000_c47 article-title: Choosing the right molecular machine learning potential publication-title: Chem. Sci. doi: 10.1039/d1sc03564a – volume: 35 start-page: 762 year: 2021 ident: 2023122821375967000_c78 article-title: Exploring the chemical space of linear alkane pyrolysis via deep potential GENerator publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c03211 – year: 2023 ident: 2023122821375967000_c127 – volume: 157 start-page: 114801 year: 2022 ident: 2023122821375967000_c38 article-title: GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations publication-title: J. Chem. Phys. doi: 10.1063/5.0106617 – year: 2022 ident: 2023122821375967000_c143 – year: 2015 ident: 2023122821375967000_c144 – volume: 379 start-page: 27 year: 2021 ident: 2023122821375967000_c34 article-title: MLatom 2: An integrative platform for atomistic machine learning publication-title: Top. Curr. Chem. doi: 10.1007/s41061-021-00339-5 – ident: 2023122821375967000_c121 doi: 10.1021/acs.jctc.3c00386 – year: 2018 ident: 2023122821375967000_c131 – volume: 126 start-page: 236001 year: 2021 ident: 2023122821375967000_c88 article-title: Phase diagram of a deep potential water model publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.126.236001 – volume: 369 start-page: 253 year: 1921 ident: 2023122821375967000_c158 article-title: Die berechnung optischer und elektrostatischer gitterpotentiale publication-title: Ann. Phys. doi: 10.1002/andp.19213690304 – volume: 17 start-page: 6993 year: 2021 ident: 2023122821375967000_c52 article-title: Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.1c00201 – volume: 104 start-page: 224202 year: 2021 ident: 2023122821375967000_c66 article-title: Heat transport in liquid water from first-principles and deep neural network simulations publication-title: Phys. Rev. B doi: 10.1103/physrevb.104.224202 – ident: 2023122821375967000_c114 – volume: 110 start-page: 6158 year: 1999 ident: 2023122821375967000_c172 article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 12 start-page: 10310 year: 2021 ident: 2023122821375967000_c68 article-title: Condensed phase water molecular multipole moments from deep neural network models trained on ab initio simulation data publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02328 – volume-title: chemrxiv-2022-qp8fc year: 2022 ident: 2023122821375967000_c80 article-title: Growth of polycyclic aromatic hydrocarbon and soot inception by in silico simulation – volume: 22 start-page: 683 year: 2020 ident: 2023122821375967000_c102 article-title: ReacNetGenerator: An automatic reaction network generator for reactive molecular dynamics simulations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c9cp05091d – volume: 117 start-page: 26040 year: 2020 ident: 2023122821375967000_c65 article-title: Signatures of a liquid–liquid transition in an ab initio deep neural network model for water publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2015440117 – start-page: 93 volume-title: Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter year: 1985 ident: 2023122821375967000_c122 article-title: The stopping and range of ions in matter |
SSID | ssj0001724 |
Score | 2.7299743 |
Snippet | DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential... |
SourceID | pubmedcentral osti cristin proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Application programming interface artificial neural networks computer software deep learning Graphical user interface Graphics processing units Machine learning MATHEMATICS AND COMPUTING Molecular dynamics Open source software peptides Physics Software packages Tensile properties User interfaces |
Title | DeePMD-kit v2: A software package for deep potential models |
URI | http://dx.doi.org/10.1063/5.0155600 https://www.ncbi.nlm.nih.gov/pubmed/37526163 https://www.proquest.com/docview/2844365555 https://www.proquest.com/docview/2844681190 http://hdl.handle.net/10852/109671 https://www.osti.gov/servlets/purl/1994160 https://pubmed.ncbi.nlm.nih.gov/PMC10445636 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSxxBEC50RcxLSLwy8aCNPvjS6Fx9JE-Lq4hkxZAIvjV9DYoyu7hj8vdTPRcuKjiP0zXDTH1dXV9RRRXAAW6DIvEmp9YUhmZWplS7mFFvXVK4esZxCBTHl-z8Oru4yW8WYP-NDD5Lj0JbzTz45UVYSpAciwEsDS9Gv676Axd9cNtsOaaBkHcNhJ4_jPTW1lZTzjmgwQRvvUYuX9ZIrqBLarLjzxzQ2Sf42DJHMmyg_gwLvlyFlZNuYNsqLNfVnHa2Bj9G3l-NR_T-riJ_k-9kSGZ42v7Tj55giHyPRwhBrkqc91MynVShYAjfXA_Fma3D9dnpn5Nz2k5JoDaTcUW5dZk3RkorEi2NizFWFlILZpHrOCcd18cuhMAm4xqPlEQfG1EU6Lo0YwZj1A0YlJPSfwEiPTfGJbLgGGUIJLQIlhY511mhC3x5BFGrRFXiBg3NRfMk5LAZjyM47NSqOkWFKRcPqk5zs1TlqsUigm-96LTpqfGa0FbARgWte3trQ9mPrVRoZRwzXN3uIFOt0c0UetosZTleEez1ywhCyIHo0k-eGhkmYqRBEWw2CPffkPIc40mWRiDmsO8FQivu-ZXy7rZuyY1BLTLRlEWw32-Tt__t67uktuBDmG1fVxvybRhUj09-BxlQZXbRAkbjn793W0v4D65a_mg |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BVmi5ICivtAXM48DFtHnZCZxWXaqldKsitVJvll9Rt62yUZOFv884cUJXFIkc40kUz9ie79NMZgA-4DIoIqtSqlWhaKLzmEoTMmq1iQrT9jh2RHF-zGZnyeF5eu5zc9y_MPgR9Se5qNog_qWudr0C6TVizlX1p-AAi3ddwc3Ueez7sIFsnGUj2JgcTn-cDEcxemdfhjmkDqr3pYVuP4zAV7f7qVxzTaMl3roLdv6dPTlGZ9XFzW-5poPH8MhjSjLp5vAE7tlyE8b7fSu3TXjQ5nnq-il8mVp7Mp_Sq0VDfkafyYTUeA7_kjeWIHm-wsOFIIolxtqKVMvGpRLhm9t2OfUzODv4ero_o75_AtVJHjaUa5NYpfJcZ5HMlQmRRWe5zJhGFGRMbrjcM44cq4RLPGwiuaeyokCnJhlTyF6fw6hclvYlkNxypUyUFxz5R4ZQF80os5TLpJAFvjyAwCtRlLh0XdnRNHLRbcbDAD72ahW9olz_i2vRBsBZLFLhbRHAu0G06qpt3CW07WwjnNatvtAuIUg3whU5DhmO7vQmE3471gJ9cBKzFK8A3g7DaAQXHZGlXa46GZaFCJACeNFZePiGmKfINFkcQLZm-0HAFeleHykXF22xbqS7iFFjFsD7YZn8e25b_yX1Bsaz0_mROPp2_H0bHkaIu9qcRL4Do-ZmZV8hTmrUa78bfgNoUwnk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeePMD-kit+v2%3A+A+software+package+for+deep+potential+models&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zeng%2C+Jinzhe&rft.au=Zhang%2C+Duo&rft.au=Lu%2C+Denghui&rft.au=Mo%2C+Pinghui&rft.date=2023-08-07&rft.pub=American+Institute+of+Physics+%28AIP%29&rft.issn=0021-9606&rft.volume=159&rft.issue=5&rft_id=info:doi/10.1063%2F5.0155600&rft.externalDocID=1994160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |