Generation of gravitational waves during early structure formation between cosmic inflation and reheating

In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m22/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of su...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2010; no. 4; p. 021
Main Authors Jedamzik, Karsten, Lemoine, Martin, Martin, Jérôme
Format Journal Article
LanguageEnglish
Published United States IOP Publishing 01.04.2010
Institute of Physics (IOP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m22/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors. Keywords->
AbstractList In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m{sup 2}φ{sup 2}/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors.
In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for quadratic chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors.
In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m22/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors. Keywords->
Author Lemoine, Martin
Jedamzik, Karsten
Martin, Jérôme
Author_xml – sequence: 1
  fullname: Jedamzik, Karsten
– sequence: 2
  fullname: Lemoine, Martin
– sequence: 3
  fullname: Martin, Jérôme
BackLink https://hal.science/hal-00460779$$DView record in HAL
https://www.osti.gov/biblio/22272856$$D View this record in Osti.gov
BookMark eNqFkVFrFDEQx4NUsK1-BCHggwiel2STzS4-laJt4cAXfQ6z2cldZC85k-yVfvvuuqUVKfqUzMzvP_PwOyMnIQYk5C1nnzhrmjWXWq204vVaMM7WTK6Z4C_I6WP_5I__K3KW80_GRF1VzSnxVxgwQfEx0OjoNsHRl98lDPQWjphpPyYfthQhDXc0lzTaMiakLqb9kuuw3CIGamPee0t9cMMygNDThDucqrB9TV46GDK-eXjPyY-vX75fXq82365uLi82KytbXlZactdZxZBr2cpKW2hEZYUTbdfLxgE427adglqoWnChe-hUp2tgDTInLa_Oybtlb8zFm2x9QbuzMQS0xQghtGhUPVEfFmoHgzkkv4d0ZyJ4c32xMXOPMVkzrdvjvPH9wh5S_DViLmbvs8VhgIBxzKZRXNaqbWdSLaRNMeeE7nE1Z2Z2ZWYPZvZgZleGSTO5mnKf_8rZBwslgR_-m_64pH08PB18DjWH3k04ewb_54V7szi3pg
CitedBy_id crossref_primary_10_1103_PhysRevD_107_043503
crossref_primary_10_1103_PhysRevLett_133_111002
crossref_primary_10_1142_S0218271815300037
crossref_primary_10_1103_PhysRevD_105_123023
crossref_primary_10_1088_1475_7516_2013_12_021
crossref_primary_10_1103_PhysRevD_92_103505
crossref_primary_10_1088_1475_7516_2020_05_003
crossref_primary_10_1103_PhysRevD_109_083529
crossref_primary_10_1088_1475_7516_2020_01_024
crossref_primary_10_1088_1475_7516_2011_04_027
crossref_primary_10_1134_S1547477113070030
crossref_primary_10_1088_1475_7516_2022_08_021
crossref_primary_10_1140_epjc_s10052_019_7571_0
crossref_primary_10_1103_PhysRevD_108_L081303
crossref_primary_10_1088_1475_7516_2011_11_015
crossref_primary_10_1088_1475_7516_2021_07_046
crossref_primary_10_1103_PhysRevD_101_083529
crossref_primary_10_1016_j_dark_2024_101653
crossref_primary_10_1103_PhysRevD_103_043516
crossref_primary_10_1088_1475_7516_2024_12_011
crossref_primary_10_1103_PhysRevD_82_023511
crossref_primary_10_1103_PhysRevD_106_023504
crossref_primary_10_1088_1475_7516_2019_10_071
crossref_primary_10_1103_PhysRevD_101_123533
crossref_primary_10_1103_PhysRevD_100_043532
crossref_primary_10_1093_mnras_stw621
crossref_primary_10_1016_j_newast_2021_101691
crossref_primary_10_1103_PhysRevD_106_023519
crossref_primary_10_1016_j_dark_2014_01_003
crossref_primary_10_1088_1475_7516_2020_07_030
crossref_primary_10_1103_PhysRevD_109_043521
crossref_primary_10_1103_PhysRevD_86_063523
crossref_primary_10_1103_PhysRevD_105_023516
crossref_primary_10_3847_1538_4357_ac3a6c
crossref_primary_10_3847_1538_4357_aa74be
crossref_primary_10_1103_PhysRevD_104_103510
crossref_primary_10_1155_2021_4742306
crossref_primary_10_1103_PhysRevD_111_055019
crossref_primary_10_1088_1475_7516_2025_02_009
crossref_primary_10_1088_1475_7516_2022_10_089
crossref_primary_10_1103_PhysRevD_90_023519
crossref_primary_10_1088_1475_7516_2024_10_006
crossref_primary_10_1103_PhysRevD_84_083503
crossref_primary_10_1103_PhysRevD_96_123524
crossref_primary_10_1103_PhysRevD_102_083528
crossref_primary_10_1088_1475_7516_2013_12_037
crossref_primary_10_1016_j_physletb_2012_06_040
crossref_primary_10_1103_PhysRevD_101_063519
crossref_primary_10_1103_PhysRevD_103_063525
crossref_primary_10_1103_PhysRevD_101_103526
crossref_primary_10_1088_1475_7516_2011_10_006
crossref_primary_10_1142_S0217751X2050013X
crossref_primary_10_1103_PhysRevD_100_063543
crossref_primary_10_1103_PhysRevLett_124_061301
crossref_primary_10_1103_PhysRevLett_131_011003
Cites_doi 10.1088/0264-9381/23/7/014
10.1103/PhysRevD.76.083002
10.1103/PhysRevD.77.043517
10.1103/PhysRevD.75.043507
10.1016/S0370-1573(99)00102-7
10.1103/PhysRevLett.99.221301
10.1103/PhysRevLett.69.2026
10.1103/PhysRevLett.98.061302
10.1103/PhysRevD.45.4514
10.1119/1.13627
10.1103/PhysRevD.66.024030
10.1103/PhysRevD.49.2837
10.1088/0264-9381/21/4/L05
10.1103/PhysRevD.56.653
10.1103/PhysRevD.47.4372
10.1086/511329
10.1088/0264-9381/23/8/S17
10.1088/1475-7516/2008/06/020
10.1088/0264-9381/26/11/114013
10.1103/PhysRevD.76.123517
10.1103/PhysRevD.79.083511
10.1103/PhysRevD.66.103505
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7TG
KL.
1XC
OTOTI
DOI 10.1088/1475-7516/2010/04/021
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Hyper Article en Ligne (HAL)
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList

Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1475-7516
EndPage 21
ExternalDocumentID 22272856
oai_HAL_hal_00460779v1
10_1088_1475_7516_2010_04_021
GroupedDBID 02O
1JI
1WK
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AALHV
ABQJV
ACGFS
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
J9A
KNG
KOT
LAP
M45
MGA
MV1
N5L
N9A
NT-
NT.
P2P
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
UCJ
UNR
VSI
W28
XPP
ZMT
AAJKP
AATNI
AAYXX
ABJNI
ABVAM
ACAFW
ACARI
ACGFO
ACHIP
ADEQX
ADWVK
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
ER.
IJHAN
JCGBZ
PJBAE
7TG
KL.
1XC
OTOTI
ID FETCH-LOGICAL-c491t-741fbc50e1749437ca823c2f29bd48faafc99b5a62562127dab5b76a08e0f4c13
IEDL.DBID IOP
ISSN 1475-7516
1475-7508
IngestDate Thu May 18 18:38:14 EDT 2023
Fri May 09 12:22:08 EDT 2025
Fri Jul 11 14:32:36 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 03:49:02 EDT 2025
Tue Nov 10 14:51:02 EST 2020
Mon May 13 15:47:42 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cosmological perturbation theory
gravitational waves
sources
physics of the early universe
inflation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-741fbc50e1749437ca823c2f29bd48faafc99b5a62562127dab5b76a08e0f4c13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-2395-7812
PQID 851465991
PQPubID 23462
PageCount 1
ParticipantIDs proquest_miscellaneous_851465991
osti_scitechconnect_22272856
crossref_primary_10_1088_1475_7516_2010_04_021
hal_primary_oai_HAL_hal_00460779v1
crossref_citationtrail_10_1088_1475_7516_2010_04_021
iop_primary_10_1088_1475_7516_2010_04_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of cosmology and astroparticle physics
PublicationYear 2010
Publisher IOP Publishing
Institute of Physics (IOP)
Publisher_xml – name: IOP Publishing
– name: Institute of Physics (IOP)
References 25
V. Corbin (2) 2006; 23
LIGO Scientific collaboration (23) 2009; 26
F.R. Bouchet (1)
A. Nicolis (8) 2004; 21
10
11
12
13
LIGO collaboration (22) 2007; 659
15
16
17
S. Kawamura . (3) 2006; 23
18
19
K. Jedamzik (20)
K. Nakayama (24) 2008; 2008
4
5
6
7
9
R. Easther (14) 2006; 2006
21
References_xml – volume: 23
  start-page: 2435
  issn: 0264-9381
  year: 2006
  ident: 2
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/23/7/014
– ident: 12
  doi: 10.1103/PhysRevD.76.083002
– ident: 17
  doi: 10.1103/PhysRevD.77.043517
– ident: 9
  doi: 10.1103/PhysRevD.75.043507
– ident: 20
– ident: 19
  doi: 10.1016/S0370-1573(99)00102-7
– ident: 1
– volume: 2006
  start-page: 010
  issn: 1475-7508
  year: 2006
  ident: 14
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 15
  doi: 10.1103/PhysRevLett.99.221301
– ident: 4
  doi: 10.1103/PhysRevLett.69.2026
– ident: 16
  doi: 10.1103/PhysRevLett.98.061302
– ident: 5
  doi: 10.1103/PhysRevD.45.4514
– ident: 25
  doi: 10.1119/1.13627
– ident: 10
  doi: 10.1103/PhysRevD.66.024030
– ident: 7
  doi: 10.1103/PhysRevD.49.2837
– volume: 21
  start-page: L27
  issn: 0264-9381
  year: 2004
  ident: 8
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/21/4/L05
– ident: 13
  doi: 10.1103/PhysRevD.56.653
– ident: 6
  doi: 10.1103/PhysRevD.47.4372
– volume: 659
  start-page: 918
  issn: 0004-637X
  year: 2007
  ident: 22
  publication-title: Astrophys. J.
  doi: 10.1086/511329
– volume: 23
  start-page: S125
  issn: 0264-9381
  year: 2006
  ident: 3
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/23/8/S17
– volume: 2008
  start-page: 020
  issn: 1475-7508
  year: 2008
  ident: 24
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2008/06/020
– volume: 26
  start-page: 114013
  issn: 0264-9381
  year: 2009
  ident: 23
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/26/11/114013
– ident: 18
  doi: 10.1103/PhysRevD.76.123517
– ident: 21
  doi: 10.1103/PhysRevD.79.083511
– ident: 11
  doi: 10.1103/PhysRevD.66.103505
SSID ssj0026338
ssib002806714
ssib053834950
Score 2.2052107
Snippet In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar...
SourceID osti
hal
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 021
SubjectTerms ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
CHAOS THEORY
COSMOLOGY
Cosmology and Extra-Galactic Astrophysics
DISTURBANCES
ENERGY DENSITY
EVAPORATION
GRAVITATIONAL WAVES
NONLINEAR PROBLEMS
Physics
POTENTIALS
SCALARS
Sciences of the Universe
Title Generation of gravitational waves during early structure formation between cosmic inflation and reheating
URI http://iopscience.iop.org/1475-7516/2010/04/021
https://www.proquest.com/docview/851465991
https://hal.science/hal-00460779
https://www.osti.gov/biblio/22272856
Volume 2010
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2PfHCN9rBQBECJB56148kTR5PiOlACPbApL1FaZqIE1t7Wu-G4K_HbtpK0yYx3qoqSRvHie3Y_hngja-VcD6TCUmbhGeVTVTIy0QXhISSa1JqKdriq1yd8s9n4mwPxsp063YznPxzfIyefF6KpBSZXJDjdpHyRdonjqPsJ2Pr07eTycCSRV-5euoxZuygkXfrKNdk0f4PioTcx8_i6dzi_rpxOvci5_gBnIyJOzHS5Od8t63m7s9NHMe7zuYh3B_UT7aM_PII9nzzGA6XHV2Itxe_2TvWP8f7ju4JrCMsNa0eawOjYkUDqDeO8ste-Y7FREfmCSmZRTja3aVnU1YkG0LBmGu7i7VjyNIx_o7ZpmaXnqQBDvAUTo8_fv-wSobqDInjOtsmqIqEyonUo02jeVE6q_LC5SHXVc1VsDY4rSth0cCSBCNf20pUpbSp8mngLiuewUHTNv4QmA55WivvpRWWe0-uSRsIm5ATmD93M-DjOhk3zJIqaJyb3oWulCGyGiKrIbKalBsk6wzmU7dNxO74V4fXyARTW0LeXi2_GHrXJ9mWpb7CRu9xMe864NtrbW9rYzZ1mMERcZxBbiHoXkcxTm5rKE85V0LOgI2caHD3k0vHNr7ddQb1ZS4F6vjP_-OvXsC9GANB8UdHcICc4V-iarWtXvX76S80ShK8
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-9CuJL_aZXaw2igg97-5Vkk8fDely11D5Y6FvIZhMstrtH965F_3pnNnsLrYqKb2FJwmYyyUwyv_mFkFeukty6VERobSKWliaSPisilSMTSqbQqUW0xZGYn7APp_x0g-wPuTDNot_6J1AMRMFBhD0gTsYpK3hU8FTEGMmNExaDnYoXlR-ROzwXCoFdB5-Oh2OXyLv3rIdm6zye33V1w0KNviA-cgT_Ant2A6vupz27M0Sz-8SthxDwJ18nq2U5sd9vsTv-7xgfkK3eU6XT0OYh2XD1I7I9bfHuvLn4Rt_QrhyuRtrH5CwwWONE08ZTfNeo5_-GXq7NlWtpyImkDkmVaWCuXV06OiRQ0h41Rm3TXpxZCtofoHrU1BW9dGg4oIMn5GT2_vO7edQ_5BBZptJlBF6LLy1PHBx_FMsLa2SW28xnqqyY9MZ4q1TJDZzFBDLOV6bkZSFMIl3imU3zp2Szbmq3TajyWVJJ54ThhjmHUUzjkcaQIe8_s2PC1pOnbT9KfGzjXHfRdik1ilajaDWKVidMg2jHZDI0WwSajz81eAmaMdRFku759FDjty4ftyjUFVR6CxP8tx2-vlH3V3U0KMCY7KIaatAgZPm1CIeyS40pzZnkYkzoWj01bBQY_TG1a1atBteaCQ7HgZ1_-KsX5O7x_kwfHhx9fEbuBeQEopZ2ySYoiXsODtmy3OvW2w9zASKv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+gravitational+waves+during+early+structure+formation+between+cosmic+inflation+and+reheating&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Jedamzik%2C+Karsten&rft.au=Lemoine%2C+Martin&rft.au=Martin%2C+Jerome&rft.date=2010-04-01&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2010&rft.spage=JCAP04021&rft.epage=JCAP04%282010%29021&rft_id=info:doi/10.1088%2F1475-7516%2F2010%2F04%2F021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon