Generation of gravitational waves during early structure formation between cosmic inflation and reheating
In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m22/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of su...
Saved in:
Published in | Journal of cosmology and astroparticle physics Vol. 2010; no. 4; p. 021 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IOP Publishing
01.04.2010
Institute of Physics (IOP) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m22/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors. Keywords-> |
---|---|
AbstractList | In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m{sup 2}φ{sup 2}/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors. In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for quadratic chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors. In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m22/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors. Keywords-> |
Author | Lemoine, Martin Jedamzik, Karsten Martin, Jérôme |
Author_xml | – sequence: 1 fullname: Jedamzik, Karsten – sequence: 2 fullname: Lemoine, Martin – sequence: 3 fullname: Martin, Jérôme |
BackLink | https://hal.science/hal-00460779$$DView record in HAL https://www.osti.gov/biblio/22272856$$D View this record in Osti.gov |
BookMark | eNqFkVFrFDEQx4NUsK1-BCHggwiel2STzS4-laJt4cAXfQ6z2cldZC85k-yVfvvuuqUVKfqUzMzvP_PwOyMnIQYk5C1nnzhrmjWXWq204vVaMM7WTK6Z4C_I6WP_5I__K3KW80_GRF1VzSnxVxgwQfEx0OjoNsHRl98lDPQWjphpPyYfthQhDXc0lzTaMiakLqb9kuuw3CIGamPee0t9cMMygNDThDucqrB9TV46GDK-eXjPyY-vX75fXq82365uLi82KytbXlZactdZxZBr2cpKW2hEZYUTbdfLxgE427adglqoWnChe-hUp2tgDTInLa_Oybtlb8zFm2x9QbuzMQS0xQghtGhUPVEfFmoHgzkkv4d0ZyJ4c32xMXOPMVkzrdvjvPH9wh5S_DViLmbvs8VhgIBxzKZRXNaqbWdSLaRNMeeE7nE1Z2Z2ZWYPZvZgZleGSTO5mnKf_8rZBwslgR_-m_64pH08PB18DjWH3k04ewb_54V7szi3pg |
CitedBy_id | crossref_primary_10_1103_PhysRevD_107_043503 crossref_primary_10_1103_PhysRevLett_133_111002 crossref_primary_10_1142_S0218271815300037 crossref_primary_10_1103_PhysRevD_105_123023 crossref_primary_10_1088_1475_7516_2013_12_021 crossref_primary_10_1103_PhysRevD_92_103505 crossref_primary_10_1088_1475_7516_2020_05_003 crossref_primary_10_1103_PhysRevD_109_083529 crossref_primary_10_1088_1475_7516_2020_01_024 crossref_primary_10_1088_1475_7516_2011_04_027 crossref_primary_10_1134_S1547477113070030 crossref_primary_10_1088_1475_7516_2022_08_021 crossref_primary_10_1140_epjc_s10052_019_7571_0 crossref_primary_10_1103_PhysRevD_108_L081303 crossref_primary_10_1088_1475_7516_2011_11_015 crossref_primary_10_1088_1475_7516_2021_07_046 crossref_primary_10_1103_PhysRevD_101_083529 crossref_primary_10_1016_j_dark_2024_101653 crossref_primary_10_1103_PhysRevD_103_043516 crossref_primary_10_1088_1475_7516_2024_12_011 crossref_primary_10_1103_PhysRevD_82_023511 crossref_primary_10_1103_PhysRevD_106_023504 crossref_primary_10_1088_1475_7516_2019_10_071 crossref_primary_10_1103_PhysRevD_101_123533 crossref_primary_10_1103_PhysRevD_100_043532 crossref_primary_10_1093_mnras_stw621 crossref_primary_10_1016_j_newast_2021_101691 crossref_primary_10_1103_PhysRevD_106_023519 crossref_primary_10_1016_j_dark_2014_01_003 crossref_primary_10_1088_1475_7516_2020_07_030 crossref_primary_10_1103_PhysRevD_109_043521 crossref_primary_10_1103_PhysRevD_86_063523 crossref_primary_10_1103_PhysRevD_105_023516 crossref_primary_10_3847_1538_4357_ac3a6c crossref_primary_10_3847_1538_4357_aa74be crossref_primary_10_1103_PhysRevD_104_103510 crossref_primary_10_1155_2021_4742306 crossref_primary_10_1103_PhysRevD_111_055019 crossref_primary_10_1088_1475_7516_2025_02_009 crossref_primary_10_1088_1475_7516_2022_10_089 crossref_primary_10_1103_PhysRevD_90_023519 crossref_primary_10_1088_1475_7516_2024_10_006 crossref_primary_10_1103_PhysRevD_84_083503 crossref_primary_10_1103_PhysRevD_96_123524 crossref_primary_10_1103_PhysRevD_102_083528 crossref_primary_10_1088_1475_7516_2013_12_037 crossref_primary_10_1016_j_physletb_2012_06_040 crossref_primary_10_1103_PhysRevD_101_063519 crossref_primary_10_1103_PhysRevD_103_063525 crossref_primary_10_1103_PhysRevD_101_103526 crossref_primary_10_1088_1475_7516_2011_10_006 crossref_primary_10_1142_S0217751X2050013X crossref_primary_10_1103_PhysRevD_100_063543 crossref_primary_10_1103_PhysRevLett_124_061301 crossref_primary_10_1103_PhysRevLett_131_011003 |
Cites_doi | 10.1088/0264-9381/23/7/014 10.1103/PhysRevD.76.083002 10.1103/PhysRevD.77.043517 10.1103/PhysRevD.75.043507 10.1016/S0370-1573(99)00102-7 10.1103/PhysRevLett.99.221301 10.1103/PhysRevLett.69.2026 10.1103/PhysRevLett.98.061302 10.1103/PhysRevD.45.4514 10.1119/1.13627 10.1103/PhysRevD.66.024030 10.1103/PhysRevD.49.2837 10.1088/0264-9381/21/4/L05 10.1103/PhysRevD.56.653 10.1103/PhysRevD.47.4372 10.1086/511329 10.1088/0264-9381/23/8/S17 10.1088/1475-7516/2008/06/020 10.1088/0264-9381/26/11/114013 10.1103/PhysRevD.76.123517 10.1103/PhysRevD.79.083511 10.1103/PhysRevD.66.103505 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7TG KL. 1XC OTOTI |
DOI | 10.1088/1475-7516/2010/04/021 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Hyper Article en Ligne (HAL) OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1475-7516 |
EndPage | 21 |
ExternalDocumentID | 22272856 oai_HAL_hal_00460779v1 10_1088_1475_7516_2010_04_021 |
GroupedDBID | 02O 1JI 1WK 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AALHV ABQJV ACGFS AEFHF AENEX AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IOP IZVLO J9A KNG KOT LAP M45 MGA MV1 N5L N9A NT- NT. P2P Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 UCJ UNR VSI W28 XPP ZMT AAJKP AATNI AAYXX ABJNI ABVAM ACAFW ACARI ACGFO ACHIP ADEQX ADWVK AERVB AGQPQ AKPSB AOAED ARNYC CITATION CRLBU ER. IJHAN JCGBZ PJBAE 7TG KL. 1XC OTOTI |
ID | FETCH-LOGICAL-c491t-741fbc50e1749437ca823c2f29bd48faafc99b5a62562127dab5b76a08e0f4c13 |
IEDL.DBID | IOP |
ISSN | 1475-7516 1475-7508 |
IngestDate | Thu May 18 18:38:14 EDT 2023 Fri May 09 12:22:08 EDT 2025 Fri Jul 11 14:32:36 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Tue Jul 01 03:49:02 EDT 2025 Tue Nov 10 14:51:02 EST 2020 Mon May 13 15:47:42 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cosmological perturbation theory gravitational waves sources physics of the early universe inflation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-741fbc50e1749437ca823c2f29bd48faafc99b5a62562127dab5b76a08e0f4c13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-2395-7812 |
PQID | 851465991 |
PQPubID | 23462 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_851465991 osti_scitechconnect_22272856 crossref_primary_10_1088_1475_7516_2010_04_021 hal_primary_oai_HAL_hal_00460779v1 crossref_citationtrail_10_1088_1475_7516_2010_04_021 iop_primary_10_1088_1475_7516_2010_04_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of cosmology and astroparticle physics |
PublicationYear | 2010 |
Publisher | IOP Publishing Institute of Physics (IOP) |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics (IOP) |
References | 25 V. Corbin (2) 2006; 23 LIGO Scientific collaboration (23) 2009; 26 F.R. Bouchet (1) A. Nicolis (8) 2004; 21 10 11 12 13 LIGO collaboration (22) 2007; 659 15 16 17 S. Kawamura . (3) 2006; 23 18 19 K. Jedamzik (20) K. Nakayama (24) 2008; 2008 4 5 6 7 9 R. Easther (14) 2006; 2006 21 |
References_xml | – volume: 23 start-page: 2435 issn: 0264-9381 year: 2006 ident: 2 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/23/7/014 – ident: 12 doi: 10.1103/PhysRevD.76.083002 – ident: 17 doi: 10.1103/PhysRevD.77.043517 – ident: 9 doi: 10.1103/PhysRevD.75.043507 – ident: 20 – ident: 19 doi: 10.1016/S0370-1573(99)00102-7 – ident: 1 – volume: 2006 start-page: 010 issn: 1475-7508 year: 2006 ident: 14 publication-title: J. Cosmol. Astropart. Phys. – ident: 15 doi: 10.1103/PhysRevLett.99.221301 – ident: 4 doi: 10.1103/PhysRevLett.69.2026 – ident: 16 doi: 10.1103/PhysRevLett.98.061302 – ident: 5 doi: 10.1103/PhysRevD.45.4514 – ident: 25 doi: 10.1119/1.13627 – ident: 10 doi: 10.1103/PhysRevD.66.024030 – ident: 7 doi: 10.1103/PhysRevD.49.2837 – volume: 21 start-page: L27 issn: 0264-9381 year: 2004 ident: 8 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/21/4/L05 – ident: 13 doi: 10.1103/PhysRevD.56.653 – ident: 6 doi: 10.1103/PhysRevD.47.4372 – volume: 659 start-page: 918 issn: 0004-637X year: 2007 ident: 22 publication-title: Astrophys. J. doi: 10.1086/511329 – volume: 23 start-page: S125 issn: 0264-9381 year: 2006 ident: 3 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/23/8/S17 – volume: 2008 start-page: 020 issn: 1475-7508 year: 2008 ident: 24 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2008/06/020 – volume: 26 start-page: 114013 issn: 0264-9381 year: 2009 ident: 23 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/26/11/114013 – ident: 18 doi: 10.1103/PhysRevD.76.123517 – ident: 21 doi: 10.1103/PhysRevD.79.083511 – ident: 11 doi: 10.1103/PhysRevD.66.103505 |
SSID | ssj0026338 ssib002806714 ssib053834950 |
Score | 2.2052107 |
Snippet | In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar... |
SourceID | osti hal proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 021 |
SubjectTerms | ASTROPHYSICS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY CHAOS THEORY COSMOLOGY Cosmology and Extra-Galactic Astrophysics DISTURBANCES ENERGY DENSITY EVAPORATION GRAVITATIONAL WAVES NONLINEAR PROBLEMS Physics POTENTIALS SCALARS Sciences of the Universe |
Title | Generation of gravitational waves during early structure formation between cosmic inflation and reheating |
URI | http://iopscience.iop.org/1475-7516/2010/04/021 https://www.proquest.com/docview/851465991 https://hal.science/hal-00460779 https://www.osti.gov/biblio/22272856 |
Volume | 2010 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2PfHCN9rBQBECJB56148kTR5PiOlACPbApL1FaZqIE1t7Wu-G4K_HbtpK0yYx3qoqSRvHie3Y_hngja-VcD6TCUmbhGeVTVTIy0QXhISSa1JqKdriq1yd8s9n4mwPxsp063YznPxzfIyefF6KpBSZXJDjdpHyRdonjqPsJ2Pr07eTycCSRV-5euoxZuygkXfrKNdk0f4PioTcx8_i6dzi_rpxOvci5_gBnIyJOzHS5Od8t63m7s9NHMe7zuYh3B_UT7aM_PII9nzzGA6XHV2Itxe_2TvWP8f7ju4JrCMsNa0eawOjYkUDqDeO8ste-Y7FREfmCSmZRTja3aVnU1YkG0LBmGu7i7VjyNIx_o7ZpmaXnqQBDvAUTo8_fv-wSobqDInjOtsmqIqEyonUo02jeVE6q_LC5SHXVc1VsDY4rSth0cCSBCNf20pUpbSp8mngLiuewUHTNv4QmA55WivvpRWWe0-uSRsIm5ATmD93M-DjOhk3zJIqaJyb3oWulCGyGiKrIbKalBsk6wzmU7dNxO74V4fXyARTW0LeXi2_GHrXJ9mWpb7CRu9xMe864NtrbW9rYzZ1mMERcZxBbiHoXkcxTm5rKE85V0LOgI2caHD3k0vHNr7ddQb1ZS4F6vjP_-OvXsC9GANB8UdHcICc4V-iarWtXvX76S80ShK8 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-9CuJL_aZXaw2igg97-5Vkk8fDely11D5Y6FvIZhMstrtH965F_3pnNnsLrYqKb2FJwmYyyUwyv_mFkFeukty6VERobSKWliaSPisilSMTSqbQqUW0xZGYn7APp_x0g-wPuTDNot_6J1AMRMFBhD0gTsYpK3hU8FTEGMmNExaDnYoXlR-ROzwXCoFdB5-Oh2OXyLv3rIdm6zye33V1w0KNviA-cgT_Ant2A6vupz27M0Sz-8SthxDwJ18nq2U5sd9vsTv-7xgfkK3eU6XT0OYh2XD1I7I9bfHuvLn4Rt_QrhyuRtrH5CwwWONE08ZTfNeo5_-GXq7NlWtpyImkDkmVaWCuXV06OiRQ0h41Rm3TXpxZCtofoHrU1BW9dGg4oIMn5GT2_vO7edQ_5BBZptJlBF6LLy1PHBx_FMsLa2SW28xnqqyY9MZ4q1TJDZzFBDLOV6bkZSFMIl3imU3zp2Szbmq3TajyWVJJ54ThhjmHUUzjkcaQIe8_s2PC1pOnbT9KfGzjXHfRdik1ilajaDWKVidMg2jHZDI0WwSajz81eAmaMdRFku759FDjty4ftyjUFVR6CxP8tx2-vlH3V3U0KMCY7KIaatAgZPm1CIeyS40pzZnkYkzoWj01bBQY_TG1a1atBteaCQ7HgZ1_-KsX5O7x_kwfHhx9fEbuBeQEopZ2ySYoiXsODtmy3OvW2w9zASKv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+gravitational+waves+during+early+structure+formation+between+cosmic+inflation+and+reheating&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Jedamzik%2C+Karsten&rft.au=Lemoine%2C+Martin&rft.au=Martin%2C+Jerome&rft.date=2010-04-01&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2010&rft.spage=JCAP04021&rft.epage=JCAP04%282010%29021&rft_id=info:doi/10.1088%2F1475-7516%2F2010%2F04%2F021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |