Effect of volume expansion with hypertonic- and isotonic saline and isotonic glucose on sodium and water transport in the principal cells in the kidney

The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells a...

Full description

Saved in:
Bibliographic Details
Published inBMC nephrology Vol. 14; no. 1; p. 202
Main Authors Jensen, Janni M, Mose, Frank H, Bech, Jesper N, Nielsen, Soren, Pedersen, Erling B
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 26.09.2013
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the γ-fraction of ENaC (u-ENaCγ). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaCγ and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans. We studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaCγ, fractional sodium excretion (FENa), free water clearance (CH2O), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day. After isotonic saline infusion, u-AQP2 increased (27%). CH2O and u-ENaCγ were unchanged, whereas FENa increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaCγ (19%) and FENa (96%), whereas CH2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaCγ (-10%) and FENa (-44%) whereas CH2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion. Volume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaCγ, whereas u-ENaCγ was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body. Clinical Trial no: NCT01414088.
AbstractList The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the γ-fraction of ENaC (u-ENaCγ). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaCγ and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans.BACKGROUNDThe renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the γ-fraction of ENaC (u-ENaCγ). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaCγ and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans.We studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaCγ, fractional sodium excretion (FENa), free water clearance (CH2O), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day.METHODSWe studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaCγ, fractional sodium excretion (FENa), free water clearance (CH2O), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day.After isotonic saline infusion, u-AQP2 increased (27%). CH2O and u-ENaCγ were unchanged, whereas FENa increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaCγ (19%) and FENa (96%), whereas CH2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaCγ (-10%) and FENa (-44%) whereas CH2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion.RESULTSAfter isotonic saline infusion, u-AQP2 increased (27%). CH2O and u-ENaCγ were unchanged, whereas FENa increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaCγ (19%) and FENa (96%), whereas CH2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaCγ (-10%) and FENa (-44%) whereas CH2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion.Volume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaCγ, whereas u-ENaCγ was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body.CONCLUSIONSVolume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaCγ, whereas u-ENaCγ was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body.Clinical Trial no: NCT01414088.TRIAL REGISTRATIONClinical Trial no: NCT01414088.
The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the γ-fraction of ENaC (u-ENaCγ). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaCγ and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans. We studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaCγ, fractional sodium excretion (FENa), free water clearance (CH2O), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day. After isotonic saline infusion, u-AQP2 increased (27%). CH2O and u-ENaCγ were unchanged, whereas FENa increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaCγ (19%) and FENa (96%), whereas CH2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaCγ (-10%) and FENa (-44%) whereas CH2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion. Volume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaCγ, whereas u-ENaCγ was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body. Clinical Trial no: NCT01414088.
The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the [gamma]-fraction of ENaC (u-ENaC[gamma]). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaC[gamma] and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans. We studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaC[gamma], fractional sodium excretion (FE.sub.Na), free water clearance (C.sub.H2O), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day. After isotonic saline infusion, u-AQP2 increased (27%). C.sub.H2O and u-ENaC[gamma] were unchanged, whereas FE.sub.Na increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaC[gamma] (19%) and FE.sub.Na (96%), whereas C.sub.H2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaC[gamma] (-10%) and FE.sub.Na (-44%) whereas C.sub.H2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion. Volume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaC[gamma], whereas u-ENaC[gamma] was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body.
Background The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the [gamma]-fraction of ENaC (u-ENaC[gamma]). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaC[gamma] and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans. Methods We studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaC[gamma], fractional sodium excretion (FE.sub.Na), free water clearance (C.sub.H2O), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day. Results After isotonic saline infusion, u-AQP2 increased (27%). C.sub.H2O and u-ENaC[gamma] were unchanged, whereas FE.sub.Na increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaC[gamma] (19%) and FE.sub.Na (96%), whereas C.sub.H2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaC[gamma] (-10%) and FE.sub.Na (-44%) whereas C.sub.H2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion. Conclusions Volume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaC[gamma], whereas u-ENaC[gamma] was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body. Trial registration Clinical Trial no: NCT01414088 Keywords: Healthy subjects, Urination, Aquaporin2, Epithelial sodium channels, Arginine vasopressin, Renin-angiotensin-aldosterone system
Doc number: 202 Abstract Background: The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the γ-fraction of ENaC (u-ENaCγ). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaCγ and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans. Methods: We studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaCγ, fractional sodium excretion (FENa ), free water clearance (CH2O ), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day. Results: After isotonic saline infusion, u-AQP2 increased (27%). CH2O and u-ENaCγ were unchanged, whereas FENa increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaCγ (19%) and FENa (96%), whereas CH2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaCγ (-10%) and FENa (-44%) whereas CH2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion. Conclusions: Volume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaCγ, whereas u-ENaCγ was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body. Trial registration: Clinical Trial no: NCT01414088
ArticleNumber 202
Audience Academic
Author Bech, Jesper N
Jensen, Janni M
Nielsen, Soren
Pedersen, Erling B
Mose, Frank H
AuthorAffiliation 3 Water and Salt Research Centre, Aarhus University, Aarhus, Denmark
2 Aarhus University, Aarhus, Denmark
1 Department of Medical Research, Holstebro Hospital, Laegaardvej 12, Holstebro 7500, Denmark
AuthorAffiliation_xml – name: 2 Aarhus University, Aarhus, Denmark
– name: 1 Department of Medical Research, Holstebro Hospital, Laegaardvej 12, Holstebro 7500, Denmark
– name: 3 Water and Salt Research Centre, Aarhus University, Aarhus, Denmark
Author_xml – sequence: 1
  givenname: Janni M
  surname: Jensen
  fullname: Jensen, Janni M
– sequence: 2
  givenname: Frank H
  surname: Mose
  fullname: Mose, Frank H
– sequence: 3
  givenname: Jesper N
  surname: Bech
  fullname: Bech, Jesper N
– sequence: 4
  givenname: Soren
  surname: Nielsen
  fullname: Nielsen, Soren
– sequence: 5
  givenname: Erling B
  surname: Pedersen
  fullname: Pedersen, Erling B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24067081$$D View this record in MEDLINE/PubMed
BookMark eNp1UstuHCEQRJGj-JHcc4qQcsllHGCYB5dIluU8JEu5JGfEQrOLw8BkYGzvl-R3w9hea20l4gB0V1V3SXWMDkIMgNBbSk4p7duPlHe0YnUrKsorRtgLdPRYOth7H6LjlK4IoV3PySt0yDhpO9LTI_TnwlrQGUeLr6OfB8BwO6qQXAz4xuUN3mxHmHIMTldYBYNdinc_nJR3AZ7W1n7WMQEu5BSNm4e79o3KMOE8FdkxThm7gPMG8Di5oN2oPNbgfdqVfzkTYPsavbTKJ3jzcJ-gn58vfpx_rS6_f_l2fnZZaS5orlqrBDUMSGMbxmpqOktEbfmquLNcrwwjfWOg721LW86MagRpmq6jLTOworQ-QZ_udcd5NYDREMqeXpbdBjVtZVROPu0Et5HreC3rnoum5kXgw4PAFH_PkLIcXFoMqQBxTpLyRtCGsI4V6Ptn0Ks4T6HYK6i670Ur6j3UWnmQLthY5upFVJ6VgS3pBF1Qp_9AlWNgcLqkxLpSf0J4t2_00eEuCgXQ3gP0FFOawErtssolCEXZeUmJXDInl1DJJVTlJUvmCpE8I-60_0v5CxP32NY
CitedBy_id crossref_primary_10_1186_s12882_019_1342_x
crossref_primary_10_1016_j_jcrc_2017_06_019
crossref_primary_10_1038_s41598_019_55171_1
crossref_primary_10_2174_1876526201810010028
crossref_primary_10_1186_1471_2369_15_101
crossref_primary_10_1186_s12882_021_02310_4
crossref_primary_10_1007_s00134_020_06132_0
crossref_primary_10_1016_j_niox_2023_03_001
crossref_primary_10_3390_jpm14101064
crossref_primary_10_14814_phy2_14653
crossref_primary_10_1093_bja_aex118
crossref_primary_10_1080_02688697_2018_1508640
crossref_primary_10_1007_s00508_018_1327_y
crossref_primary_10_1016_j_mehy_2020_110237
crossref_primary_10_1016_S1441_2772_23_00755_X
crossref_primary_10_23876_j_krcp_21_180
crossref_primary_10_1186_s13063_019_3420_6
Cites_doi 10.1056/NEJM199506083322303
10.1038/ki.2010.130
10.1042/cs0730285
10.1152/ajprenal.2000.279.1.F46
10.1681/ASN.2007070816
10.1073/pnas.92.4.1013
10.1016/j.bbadis.2010.06.014
10.1007/s00424-012-1171-2
10.1681/ASN.2008010021
10.1046/j.1365-2265.2001.01336.x
10.1681/ASN.V73403
10.1046/j.1471-4159.2001.00320.x
10.1007/s00424-009-0656-0
10.1097/00041552-199409000-00003
10.1073/pnas.0403518101
10.1073/pnas.91.19.8984
10.1681/ASN.V1071416
10.1073/pnas.0403453101
10.1152/ajprenal.00442.2010
10.1046/j.1523-1755.2003.00858.x
10.1093/ndt/15.8.1155
10.1210/jc.82.6.1823
10.1186/1471-2369-11-26
10.3109/00365513.2011.635216
10.1681/ASN.2004121079
10.1530/EJE-10-0030
10.1186/1471-2369-11-28
10.1093/ndt/gfq111
10.1152/ajprenal.00064.2007
10.1146/annurev.physiol.64.082101.143243
10.1152/ajprenal.90248.2008
10.1073/pnas.95.24.14552
10.1074/jbc.M801071200
10.1006/exnr.2001.7775
10.1016/0024-3205(81)90370-2
10.3109/10641963.2012.721843
10.1681/ASN.V891357
10.1038/ki.2010.276
10.1159/000332580
10.1053/snep.2001.21647
10.1152/ajprenal.2001.280.6.F1093
10.1016/S0022-4804(03)00128-8
10.1152/ajpregu.00732.2001
10.1046/j.1365-201x.1999.00528.x
10.1085/jgp.200409124
10.1371/journal.pone.0046593
10.1152/physrev.1997.77.2.359
10.1016/j.amjhyper.2004.07.003
10.1152/ajprenal.2001.280.5.F860
10.1152/ajprenal.00371.2009
10.1172/JCI105223
10.1016/j.bbadis.2010.03.010
10.1046/j.1523-1755.2002.t01-2-00644.x
10.1046/j.1464-410X.90.s3.1.x
ContentType Journal Article
Copyright COPYRIGHT 2013 BioMed Central Ltd.
2013 Jensen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Jensen et al.; licensee BioMed Central Ltd. 2013 Jensen et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Jensen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Jensen et al.; licensee BioMed Central Ltd. 2013 Jensen et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/1471-2369-14-202
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2369
EndPage 202
ExternalDocumentID PMC3849534
3087841861
A534607912
24067081
10_1186_1471_2369_14_202
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7QP
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c491t-6fa91d2e05f52231d7f093f4b708f4cbd2085de88f61642da5905577162deb113
IEDL.DBID M48
ISSN 1471-2369
IngestDate Thu Aug 21 18:18:20 EDT 2025
Fri Jul 11 16:49:32 EDT 2025
Fri Jul 25 05:04:04 EDT 2025
Tue Jun 17 22:05:22 EDT 2025
Tue Jun 10 21:02:53 EDT 2025
Mon Jul 21 06:04:41 EDT 2025
Tue Jul 01 00:48:32 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-6fa91d2e05f52231d7f093f4b708f4cbd2085de88f61642da5905577162deb113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.proquest.com/docview/1438896932?pq-origsite=%requestingapplication%
PMID 24067081
PQID 1438896932
PQPubID 44769
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3849534
proquest_miscellaneous_1459150272
proquest_journals_1438896932
gale_infotracmisc_A534607912
gale_infotracacademiconefile_A534607912
pubmed_primary_24067081
crossref_citationtrail_10_1186_1471_2369_14_202
crossref_primary_10_1186_1471_2369_14_202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-26
PublicationDateYYYYMMDD 2013-09-26
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-26
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC nephrology
PublicationTitleAlternate BMC Nephrol
PublicationYear 2013
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References MB Butterworth (627_CR54) 2009; 296
T Rai (627_CR20) 1997; 8
GH Giebisch (627_CR53) 2002; 62
BC Rossier (627_CR5) 2002; 64
SK Matthesen (627_CR9) 2012; 35
YR Su (627_CR3) 2001; 29
L Schild (627_CR35) 2010; 1802
TG Lauridsen (627_CR44) 2010; 162
TH Kwon (627_CR11) 2001; 21
DR Singer (627_CR27) 1987; 73
GH Kim (627_CR47) 1998; 95
MB Sandberg (627_CR48) 2007; 293
J Perucca (627_CR42) 2008; 19
H Hager (627_CR10) 2001; 280
R Baumgarten (627_CR22) 2000; 15
U Hasler (627_CR23) 2008; 283
N De Mota (627_CR31) 2004; 101
M Azizi (627_CR32) 2008; 19
J Loffing (627_CR57) 2009; 458
S Elliot (627_CR18) 1996; 7
CA Ecelbarger (627_CR40) 2001; 171
LJ Andersen (627_CR58) 1999; 166
EB Pedersen (627_CR28) 2010; 11
M Buemi (627_CR2) 2004; 17
RS Pedersen (627_CR6) 2001; 280
CC Graffe (627_CR7) 2012; 302
K Kanno (627_CR16) 1995; 332
M Castaneda-Bueno (627_CR52) 2012; 21
JH DIRKS (627_CR25) 1965; 44
T Saito (627_CR29) 2001; 55
RS Pedersen (627_CR21) 2003; 63
D Marples (627_CR24) 1998; 275
CA Ecelbarger (627_CR34) 2000; 279
AJ de Bold (627_CR26) 1981; 28
NB Pedersen (627_CR49) 2010; 78
LJ Andersen (627_CR51) 2002; 282
S Nielsen (627_CR12) 2002; 90
L Bankir (627_CR39) 2005; 16
JD Stockand (627_CR43) 2010; 78
BC Rossier (627_CR1) 1994; 3
H Garty (627_CR37) 1997; 77
M Damkjaer (627_CR56) 2012; 465
SK Matthesen (627_CR46) 2012; 72
S Nielsen (627_CR4) 2000; 15
T Pisitkun (627_CR19) 2004; 101
TG Lauridsen (627_CR45) 2010; 11
TG Lauridsen (627_CR8) 2010; 25
SR DiGiovanni (627_CR13) 1994; 91
V Bugaj (627_CR41) 2009; 297
RS Edinger (627_CR33) 2012; 7
CH Svensen (627_CR50) 2003; 113
MB Butterworth (627_CR36) 2010; 1802
T Saito (627_CR17) 1997; 82
H Wen (627_CR15) 1999; 10
MB Butterworth (627_CR55) 2005; 125
A Reaux (627_CR30) 2001; 77
LJ Andersen (627_CR38) 1990; 259
S Nielsen (627_CR14) 1995; 92
9114818 - Physiol Rev. 1997 Apr;77(2):359-96
10910438 - Nephrol Dial Transplant. 2000 Aug;15(8):1155-61
12445090 - BJU Int. 2002 Dec;90 Suppl 3:1-6
11320486 - Semin Nephrol. 2001 May;21(3):231-8
2958207 - Clin Sci (Lond). 1987 Sep;73(3):285-9
20203161 - Eur J Endocrinol. 2010 May;162(5):961-9
12631357 - Kidney Int. 2003 Apr;63(4):1417-25
22042004 - Med Princ Pract. 2012;21(2):101-14
8704105 - J Am Soc Nephrol. 1996 Mar;7(3):403-9
9294826 - J Am Soc Nephrol. 1997 Sep;8(9):1357-62
9177390 - J Clin Endocrinol Metab. 1997 Jun;82(6):1823-7
20600867 - Biochim Biophys Acta. 2010 Dec;1802(12):1159-65
10405197 - J Am Soc Nephrol. 1999 Jul;10(7):1416-29
11390896 - News Physiol Sci. 2000 Jun;15:136-143
15607625 - Am J Hypertens. 2004 Dec;17(12 Pt 1):1170-8
10894786 - Am J Physiol Renal Physiol. 2000 Jul;279(1):F46-53
12371944 - Kidney Int. 2002 Nov;62(5):1498-512
20736986 - Kidney Int. 2010 Nov;78(9):849-56
20237060 - Nephrol Dial Transplant. 2010 Aug;25(8):2502-10
19277701 - Pflugers Arch. 2009 May;458(1):111-35
18664568 - J Biol Chem. 2008 Sep 26;283(39):26643-61
18596120 - J Am Soc Nephrol. 2008 Sep;19(9):1721-31
7219045 - Life Sci. 1981 Jan 5;28(1):89-94
9729513 - Am J Physiol. 1998 Sep;275(3 Pt 2):F400-9
7537863 - N Engl J Med. 1995 Jun 8;332(23):1540-5
22149452 - Scand J Clin Lab Invest. 2012 Feb;72(1):78-86
11292629 - Am J Physiol Renal Physiol. 2001 May;280(5):F860-7
23096366 - Pflugers Arch. 2013 Jan;465(1):153-65
15888562 - J Am Soc Nephrol. 2005 Jul;16(7):1920-8
18272843 - J Am Soc Nephrol. 2008 May;19(5):1015-24
18508877 - Am J Physiol Renal Physiol. 2009 Jan;296(1):F10-24
12943804 - J Surg Res. 2003 Jul;113(1):6-12
17507603 - Am J Physiol Renal Physiol. 2007 Sep;293(3):F662-9
21993890 - Am J Physiol Renal Physiol. 2012 Jan 15;302(2):F264-75
11352848 - Am J Physiol Renal Physiol. 2001 Jun;280(6):F1093-106
14328393 - J Clin Invest. 1965 Jul;44:1160-70
11573975 - Exp Neurol. 2001 Oct;171(2):227-34
10372975 - Acta Physiol Scand. 1999 May;166(1):23-30
7522327 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8984-8
23029554 - PLoS One. 2012;7(9):e46593
11359874 - J Neurochem. 2001 May;77(4):1085-96
11259350 - Drug Metab Dispos. 2001 Apr;29(4 Pt 2):553-6
11531928 - Clin Endocrinol (Oxf). 2001 Aug;55(2):217-21
19692483 - Am J Physiol Renal Physiol. 2009 Nov;297(5):F1411-8
15231996 - Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10464-9
11826291 - Annu Rev Physiol. 2002;64:877-97
7532304 - Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013-7
7804746 - Curr Opin Nephrol Hypertens. 1994 Sep;3(5):487-96
12010758 - Am J Physiol Regul Integr Comp Physiol. 2002 Jun;282(6):R1754-61
20923561 - BMC Nephrol. 2010;11:26
21029429 - BMC Nephrol. 2010;11:28
2375429 - Am J Physiol. 1990 Jul;259(1 Pt 2):R53-60
9826738 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14552-7
20347969 - Biochim Biophys Acta. 2010 Dec;1802(12):1166-77
22966789 - Clin Exp Hypertens. 2013;35(5):313-24
15623897 - J Gen Physiol. 2005 Jan;125(1):81-101
20445498 - Kidney Int. 2010 Jul;78(2):160-9
15326289 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13368-73
References_xml – volume: 332
  start-page: 1540
  issue: 23
  year: 1995
  ident: 627_CR16
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199506083322303
– volume: 78
  start-page: 160
  issue: 2
  year: 2010
  ident: 627_CR49
  publication-title: Kidney Int
  doi: 10.1038/ki.2010.130
– volume: 73
  start-page: 285
  issue: 3
  year: 1987
  ident: 627_CR27
  publication-title: Clin Sci (Lond)
  doi: 10.1042/cs0730285
– volume: 279
  start-page: F46
  issue: 1
  year: 2000
  ident: 627_CR34
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.2000.279.1.F46
– volume: 259
  start-page: R53
  issue: 1 Pt 2
  year: 1990
  ident: 627_CR38
  publication-title: Am J Physiol
– volume: 19
  start-page: 1015
  issue: 5
  year: 2008
  ident: 627_CR32
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2007070816
– volume: 92
  start-page: 1013
  issue: 4
  year: 1995
  ident: 627_CR14
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.4.1013
– volume: 1802
  start-page: 1159
  issue: 12
  year: 2010
  ident: 627_CR35
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2010.06.014
– volume: 465
  start-page: 153
  issue: 1
  year: 2012
  ident: 627_CR56
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-012-1171-2
– volume: 19
  start-page: 1721
  issue: 9
  year: 2008
  ident: 627_CR42
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2008010021
– volume: 55
  start-page: 217
  issue: 2
  year: 2001
  ident: 627_CR29
  publication-title: Clin Endocrinol (Oxf)
  doi: 10.1046/j.1365-2265.2001.01336.x
– volume: 7
  start-page: 403
  issue: 3
  year: 1996
  ident: 627_CR18
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V73403
– volume: 77
  start-page: 1085
  issue: 4
  year: 2001
  ident: 627_CR30
  publication-title: J Neurochem
  doi: 10.1046/j.1471-4159.2001.00320.x
– volume: 458
  start-page: 111
  issue: 1
  year: 2009
  ident: 627_CR57
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-009-0656-0
– volume: 3
  start-page: 487
  issue: 5
  year: 1994
  ident: 627_CR1
  publication-title: Curr Opin Nephrol Hypertens
  doi: 10.1097/00041552-199409000-00003
– volume: 101
  start-page: 10464
  issue: 28
  year: 2004
  ident: 627_CR31
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0403518101
– volume: 29
  start-page: 553
  issue: 4 Pt 2
  year: 2001
  ident: 627_CR3
  publication-title: Drug Metab Dispos
– volume: 91
  start-page: 8984
  issue: 19
  year: 1994
  ident: 627_CR13
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.91.19.8984
– volume: 10
  start-page: 1416
  issue: 7
  year: 1999
  ident: 627_CR15
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V1071416
– volume: 101
  start-page: 13368
  issue: 36
  year: 2004
  ident: 627_CR19
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0403453101
– volume: 302
  start-page: F264
  issue: 2
  year: 2012
  ident: 627_CR7
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00442.2010
– volume: 63
  start-page: 1417
  issue: 4
  year: 2003
  ident: 627_CR21
  publication-title: Kidney Int
  doi: 10.1046/j.1523-1755.2003.00858.x
– volume: 15
  start-page: 1155
  issue: 8
  year: 2000
  ident: 627_CR22
  publication-title: Nephrol Dial Transplant
  doi: 10.1093/ndt/15.8.1155
– volume: 82
  start-page: 1823
  issue: 6
  year: 1997
  ident: 627_CR17
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.82.6.1823
– volume: 11
  start-page: 26
  year: 2010
  ident: 627_CR28
  publication-title: BMC Nephrol
  doi: 10.1186/1471-2369-11-26
– volume: 72
  start-page: 78
  issue: 1
  year: 2012
  ident: 627_CR46
  publication-title: Scand J Clin Lab Invest
  doi: 10.3109/00365513.2011.635216
– volume: 16
  start-page: 1920
  issue: 7
  year: 2005
  ident: 627_CR39
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2004121079
– volume: 162
  start-page: 961
  issue: 5
  year: 2010
  ident: 627_CR44
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-10-0030
– volume: 11
  start-page: 28
  year: 2010
  ident: 627_CR45
  publication-title: BMC Nephrol
  doi: 10.1186/1471-2369-11-28
– volume: 25
  start-page: 2502
  issue: 8
  year: 2010
  ident: 627_CR8
  publication-title: Nephrol Dial Transplant
  doi: 10.1093/ndt/gfq111
– volume: 293
  start-page: F662
  issue: 3
  year: 2007
  ident: 627_CR48
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00064.2007
– volume: 64
  start-page: 877
  year: 2002
  ident: 627_CR5
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.physiol.64.082101.143243
– volume: 296
  start-page: F10
  issue: 1
  year: 2009
  ident: 627_CR54
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.90248.2008
– volume: 95
  start-page: 14552
  issue: 24
  year: 1998
  ident: 627_CR47
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.24.14552
– volume: 283
  start-page: 26643
  issue: 39
  year: 2008
  ident: 627_CR23
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M801071200
– volume: 171
  start-page: 227
  issue: 2
  year: 2001
  ident: 627_CR40
  publication-title: Exp Neurol
  doi: 10.1006/exnr.2001.7775
– volume: 28
  start-page: 89
  issue: 1
  year: 1981
  ident: 627_CR26
  publication-title: Life Sci
  doi: 10.1016/0024-3205(81)90370-2
– volume: 35
  start-page: 313
  issue: 5
  year: 2012
  ident: 627_CR9
  publication-title: Clin Exp Hypertens
  doi: 10.3109/10641963.2012.721843
– volume: 8
  start-page: 1357
  issue: 9
  year: 1997
  ident: 627_CR20
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V891357
– volume: 78
  start-page: 849
  issue: 9
  year: 2010
  ident: 627_CR43
  publication-title: Kidney Int
  doi: 10.1038/ki.2010.276
– volume: 21
  start-page: 101
  issue: 2
  year: 2012
  ident: 627_CR52
  publication-title: Med Princ Pract
  doi: 10.1159/000332580
– volume: 15
  start-page: 136
  year: 2000
  ident: 627_CR4
  publication-title: News Physiol Sci
– volume: 21
  start-page: 231
  issue: 3
  year: 2001
  ident: 627_CR11
  publication-title: Semin Nephrol
  doi: 10.1053/snep.2001.21647
– volume: 280
  start-page: F1093
  issue: 6
  year: 2001
  ident: 627_CR10
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.2001.280.6.F1093
– volume: 275
  start-page: F400
  issue: 3 Pt 2
  year: 1998
  ident: 627_CR24
  publication-title: Am J Physiol
– volume: 113
  start-page: 6
  issue: 1
  year: 2003
  ident: 627_CR50
  publication-title: J Surg Res
  doi: 10.1016/S0022-4804(03)00128-8
– volume: 282
  start-page: R1754
  issue: 6
  year: 2002
  ident: 627_CR51
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00732.2001
– volume: 166
  start-page: 23
  issue: 1
  year: 1999
  ident: 627_CR58
  publication-title: Acta Physiol Scand
  doi: 10.1046/j.1365-201x.1999.00528.x
– volume: 125
  start-page: 81
  issue: 1
  year: 2005
  ident: 627_CR55
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.200409124
– volume: 7
  start-page: e46593
  issue: 9
  year: 2012
  ident: 627_CR33
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046593
– volume: 77
  start-page: 359
  issue: 2
  year: 1997
  ident: 627_CR37
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1997.77.2.359
– volume: 17
  start-page: 1170
  issue: 12 Pt 1
  year: 2004
  ident: 627_CR2
  publication-title: Am J Hypertens
  doi: 10.1016/j.amjhyper.2004.07.003
– volume: 280
  start-page: F860
  issue: 5
  year: 2001
  ident: 627_CR6
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.2001.280.5.F860
– volume: 297
  start-page: F1411
  issue: 5
  year: 2009
  ident: 627_CR41
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00371.2009
– volume: 44
  start-page: 1160
  year: 1965
  ident: 627_CR25
  publication-title: J Clin Invest
  doi: 10.1172/JCI105223
– volume: 1802
  start-page: 1166
  issue: 12
  year: 2010
  ident: 627_CR36
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2010.03.010
– volume: 62
  start-page: 1498
  issue: 5
  year: 2002
  ident: 627_CR53
  publication-title: Kidney Int
  doi: 10.1046/j.1523-1755.2002.t01-2-00644.x
– volume: 90
  start-page: 1
  issue: Suppl 3
  year: 2002
  ident: 627_CR12
  publication-title: BJU Int
  doi: 10.1046/j.1464-410X.90.s3.1.x
– reference: 7522327 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8984-8
– reference: 15326289 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13368-73
– reference: 20600867 - Biochim Biophys Acta. 2010 Dec;1802(12):1159-65
– reference: 20736986 - Kidney Int. 2010 Nov;78(9):849-56
– reference: 11320486 - Semin Nephrol. 2001 May;21(3):231-8
– reference: 22149452 - Scand J Clin Lab Invest. 2012 Feb;72(1):78-86
– reference: 9177390 - J Clin Endocrinol Metab. 1997 Jun;82(6):1823-7
– reference: 9729513 - Am J Physiol. 1998 Sep;275(3 Pt 2):F400-9
– reference: 11259350 - Drug Metab Dispos. 2001 Apr;29(4 Pt 2):553-6
– reference: 15607625 - Am J Hypertens. 2004 Dec;17(12 Pt 1):1170-8
– reference: 18508877 - Am J Physiol Renal Physiol. 2009 Jan;296(1):F10-24
– reference: 19692483 - Am J Physiol Renal Physiol. 2009 Nov;297(5):F1411-8
– reference: 20445498 - Kidney Int. 2010 Jul;78(2):160-9
– reference: 23096366 - Pflugers Arch. 2013 Jan;465(1):153-65
– reference: 21993890 - Am J Physiol Renal Physiol. 2012 Jan 15;302(2):F264-75
– reference: 15231996 - Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10464-9
– reference: 10372975 - Acta Physiol Scand. 1999 May;166(1):23-30
– reference: 22966789 - Clin Exp Hypertens. 2013;35(5):313-24
– reference: 11352848 - Am J Physiol Renal Physiol. 2001 Jun;280(6):F1093-106
– reference: 10894786 - Am J Physiol Renal Physiol. 2000 Jul;279(1):F46-53
– reference: 12010758 - Am J Physiol Regul Integr Comp Physiol. 2002 Jun;282(6):R1754-61
– reference: 12445090 - BJU Int. 2002 Dec;90 Suppl 3:1-6
– reference: 2958207 - Clin Sci (Lond). 1987 Sep;73(3):285-9
– reference: 11573975 - Exp Neurol. 2001 Oct;171(2):227-34
– reference: 11390896 - News Physiol Sci. 2000 Jun;15:136-143
– reference: 20203161 - Eur J Endocrinol. 2010 May;162(5):961-9
– reference: 20923561 - BMC Nephrol. 2010;11:26
– reference: 21029429 - BMC Nephrol. 2010;11:28
– reference: 18272843 - J Am Soc Nephrol. 2008 May;19(5):1015-24
– reference: 12631357 - Kidney Int. 2003 Apr;63(4):1417-25
– reference: 11292629 - Am J Physiol Renal Physiol. 2001 May;280(5):F860-7
– reference: 12943804 - J Surg Res. 2003 Jul;113(1):6-12
– reference: 20237060 - Nephrol Dial Transplant. 2010 Aug;25(8):2502-10
– reference: 10910438 - Nephrol Dial Transplant. 2000 Aug;15(8):1155-61
– reference: 10405197 - J Am Soc Nephrol. 1999 Jul;10(7):1416-29
– reference: 14328393 - J Clin Invest. 1965 Jul;44:1160-70
– reference: 9114818 - Physiol Rev. 1997 Apr;77(2):359-96
– reference: 7219045 - Life Sci. 1981 Jan 5;28(1):89-94
– reference: 20347969 - Biochim Biophys Acta. 2010 Dec;1802(12):1166-77
– reference: 15623897 - J Gen Physiol. 2005 Jan;125(1):81-101
– reference: 9826738 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14552-7
– reference: 12371944 - Kidney Int. 2002 Nov;62(5):1498-512
– reference: 2375429 - Am J Physiol. 1990 Jul;259(1 Pt 2):R53-60
– reference: 11359874 - J Neurochem. 2001 May;77(4):1085-96
– reference: 8704105 - J Am Soc Nephrol. 1996 Mar;7(3):403-9
– reference: 19277701 - Pflugers Arch. 2009 May;458(1):111-35
– reference: 7537863 - N Engl J Med. 1995 Jun 8;332(23):1540-5
– reference: 18664568 - J Biol Chem. 2008 Sep 26;283(39):26643-61
– reference: 15888562 - J Am Soc Nephrol. 2005 Jul;16(7):1920-8
– reference: 11531928 - Clin Endocrinol (Oxf). 2001 Aug;55(2):217-21
– reference: 7804746 - Curr Opin Nephrol Hypertens. 1994 Sep;3(5):487-96
– reference: 23029554 - PLoS One. 2012;7(9):e46593
– reference: 9294826 - J Am Soc Nephrol. 1997 Sep;8(9):1357-62
– reference: 7532304 - Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013-7
– reference: 17507603 - Am J Physiol Renal Physiol. 2007 Sep;293(3):F662-9
– reference: 11826291 - Annu Rev Physiol. 2002;64:877-97
– reference: 18596120 - J Am Soc Nephrol. 2008 Sep;19(9):1721-31
– reference: 22042004 - Med Princ Pract. 2012;21(2):101-14
SSID ssj0017840
Score 2.081605
Snippet The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport,...
Background The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water...
Doc number: 202 Abstract Background: The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 202
SubjectTerms Analysis
Angiotensin
Aquaporin 2 - urine
Aquaporins
Blood Volume - drug effects
Body Water - metabolism
Cross-Over Studies
Design
Diet
Epithelial Sodium Channels - urine
Expansion
Female
Glucose
Glucose Solution, Hypertonic - pharmacology
Homeostasis
Humans
Isotonic Solutions - pharmacology
Kidney - cytology
Kidney - drug effects
Kidney - metabolism
Kidney Tubules - drug effects
Kidney Tubules - metabolism
Kidneys
Male
Medical research
Nephrology
Nephrons - drug effects
Nephrons - metabolism
Nutrition research
Physiological aspects
Plasma
Potassium
Rodents
Saline Solution, Hypertonic - pharmacology
Sodium
Sodium - metabolism
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtCqWXkn5vkxYVCqUHEUuWLelUQmkIhfTUwN6EbUnEtLU3ay9Jfkn-bmds2Y17yM22RkZ4ZqQ3I_kNIR9lVohKicAqbRSTXqasqErJpBZlSIos8wZ_Tj77kZ-ey-_rbB0Tbl08VjnNicNE7doKc-RHWKZbmxzgxpfNJcOqUbi7GktoPCSPkLoMrVqt54CLK4hepq1JncMrFGcizQ3jEqxDLJai_yfkOyvS8rTkneXnZJ88jbiRHo-KfkYe-OY5eXwWd8ZfkNuRhpi2gY4TDvXX4OiYC6OYa6UXEHBueyTCZbRoHK27drijXYFIc_ksHmSn0LlrXb37MzRfAS7d0n6iQ6d1QwE-0s2Yr4fR4S5ANz3-VbvG37wk5yfffn49ZbHoAquk4T3LQ2G4Ez7JAkCzlDsVEpMGWapEB1mVDot6Oq91yCHSEq7IDNJ4IRGVg3mfp6_IXtM2_g2hSQhSQIDpgnEyKA-xsHAKEZhDlKNX5Gj6_raKjORYGOO3HSITnVvUmEWNwZUFja3I57nHZmTjuEf2E6rUoqPCW6si_m8AY0PKK3ucpTJPlOEgebiQBAerls2TUdjo4J39Z44r8mFuxp54aK3x7Q5lMgN4WyiQeT3a0DxqBFLwRfmKqIV1zQJI-71saeqLgf471XgmWL69f1gH5IkYKncYJvJDstdvd_4d4Ke-fD84yV9rXxqy
  priority: 102
  providerName: ProQuest
Title Effect of volume expansion with hypertonic- and isotonic saline and isotonic glucose on sodium and water transport in the principal cells in the kidney
URI https://www.ncbi.nlm.nih.gov/pubmed/24067081
https://www.proquest.com/docview/1438896932
https://www.proquest.com/docview/1459150272
https://pubmed.ncbi.nlm.nih.gov/PMC3849534
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66C-KLeHd0HSII4kPcNk1zeRBZZZdFmEXEgXkLbZOwxbVdpx3c_SX-Xc_pZXYri_g205yUNOfk5Du5fIeQ1yLNeKF4YIU2igkvEpYVuWBC8zxEWZp6g5eTFyfyeCk-r9LV1fXooQObG0M7zCe1XJ-9u_h5-QEG_PtuwGu5H4ODZTyRhsUCtA4OeRfmJYX5DBbiak9B6f565Cg9blre8IbJJPW3q742V03PUV6bmI7uk3sDoqQHvQk8ILd89ZDcWQx75o_I756gmNaB9q6I-gtwAbhKRnEVlp5CKLpukSKX0axytGzq7h9tMsSg02fDEXcKlZvalZsfXfEvQKxr2o5E6bSsKABLet6v5EPrcH-gGR9_L13lLx-T5dHht0_HbEjHwAph4pbJkJnYcR-lAUBbEjsVIpMEkatIB1HkDtN9Oq91kBCDcZelBgm-kKLKwYwQJ0_ITlVX_hmhUQiCQ-jpgnEiKA9RMncKsZlD_KNnZH_sf1sMXOWYMuPMdjGLlhY1ZlFj8MuCxmbk7bbGec_T8Q_ZN6hSi0YFby2y4SYCtA3JsOxBmggZKROD5N5EEoZeMS0ejcKOlmsxn7w2EnDxjLzaFmNNPM5W-XqDMqkBJM4VyDztbWjbaoRY0KPxjKiJdW0FkBB8WlKVpx0xeKLxtLB4_t_f94Lc5V16D8O43CM77XrjXwLIavM5ua1Wak52Px6efPk675Yq5t14-gP94SaM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4rcsFDASCHGwmjhObB8QqoBqS7s9tdLeTDa21QiabDdZlT4Jb8EzMpM_Gg699bYbj6NRZjz-xjOeIeStiFOeSe5ZprRkwomIpdlCMKH4wgdpHDuNl5NnR8n0RHybx_MN8qe_C4Nplb1NbAy1LTM8I9_BNt1KJwA3Pi3PGXaNwuhq30KjVYsDd3kBLlv1cf8LyPcd53tfjz9PWddVgGVChzVLfKpDy10Qe8AeUWilB6_ei4UMlBfZwmLXSuuU8gm4EtymscY6VVhpyYJhCyN47y1yGzbeAJ09OR8cvFCCt9SHQlUCLMuQ8SjRLBSgjXy09f2_AVzZAcfZmVe2u70H5H6HU-luq1gPyYYrHpE7sy4S_5j8bsse09LT1sBR9wsMC569UTzbpafg4K5qLLzLaFpYmldl849WKSLb8bMucZ7C5Kq0-fqsGb4AHLyidV9-neYFBbhKl218ALjDqEPVP_6R28JdPiEnNyKOp2SzKAv3jNDAe8HBobVeW-GlA9-bW4mIzyKqUhOy039_k3UV0LERx0_TeEIqMSgxgxKDXwYkNiEfhhnLtvrHNbTvUaQGDQO8NUu7-w3AG5bYMrtxJJJA6hAot0eUsKCz8XCvFKYzKJX5p_4T8mYYxpmYJFe4co00sQZ8zyXQbLU6NHCNwA2-aDghcqRdAwGWGR-PFPlpU248UpiDLJ5fz9Zrcnd6PDs0h_tHBy_IPd50DdGMJ9tks16t3UvAbvXiVbNgKPl-0yv0LwYaVjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+volume+expansion+with+hypertonic-+and+isotonic+saline+and+isotonic+glucose+on+sodium+and+water+transport+in+the+principal+cells+in+the+kidney&rft.jtitle=BMC+nephrology&rft.au=Jensen%2C+Janni+M&rft.au=Mose%2C+Frank+H&rft.au=Bech%2C+Jesper+N&rft.au=Nielsen%2C+Soren&rft.date=2013-09-26&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2369&rft.eissn=1471-2369&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2369-14-202&rft.externalDocID=A534607912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2369&client=summon