Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning

S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS30. The measur...

Full description

Saved in:
Bibliographic Details
Published inSoils and Foundations Vol. 64; no. 6; p. 101525
Main Authors Hayashi, Koichi, Suzuki, Toru, Inazaki, Tomio, Konishi, Chisato, Suzuki, Haruhiko, Matsuyama, Hisanori
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0038-0806
2524-1788
DOI10.1016/j.sandf.2024.101525

Cover

Loading…
Abstract S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS30. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their VS30 are reasonably consistent with true Vs profiles and their VS30. The results implied that the deep learning could estimate Vs profile from H/V together with other information.
AbstractList S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS30. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their VS30 are reasonably consistent with true Vs profiles and their VS30. The results implied that the deep learning could estimate Vs profile from H/V together with other information.
S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS₃₀) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS₃₀. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their VS₃₀ are reasonably consistent with true Vs profiles and their VS₃₀. The results implied that the deep learning could estimate Vs profile from H/V together with other information.
ArticleNumber 101525
Author Matsuyama, Hisanori
Inazaki, Tomio
Hayashi, Koichi
Konishi, Chisato
Suzuki, Toru
Suzuki, Haruhiko
Author_xml – sequence: 1
  givenname: Koichi
  surname: Hayashi
  fullname: Hayashi, Koichi
  email: hayashi.koichi.4x@kyoto-u.ac.jp
  organization: Kyoto University, Japan
– sequence: 2
  givenname: Toru
  surname: Suzuki
  fullname: Suzuki, Toru
  organization: Mony Exploration Corporation, Japan
– sequence: 3
  givenname: Tomio
  surname: Inazaki
  fullname: Inazaki, Tomio
  organization: Non-affiliated
– sequence: 4
  givenname: Chisato
  surname: Konishi
  fullname: Konishi, Chisato
  organization: OYO Corporation, Japan
– sequence: 5
  givenname: Haruhiko
  surname: Suzuki
  fullname: Suzuki, Haruhiko
  organization: OYO Corporation, Japan
– sequence: 6
  givenname: Hisanori
  surname: Matsuyama
  fullname: Matsuyama, Hisanori
  organization: OYO Corporation, Japan
BookMark eNqFkTtvHCEUhVFkS1k_fkEayjSzgeExTJEishzHkiUXiWvEwMVhxcIGxhvZvz6MJ0qRIqmAq_udyz3nDJ2knAChd5RsKaHyw25bTXJ-25OeLxXRizdo04ued3RQ6gRtCGGqI4rIt-is1h0hsieUbpC_rnPYmzmkR_y1-2mOgI8Qsw3zMz6U7EOEin3Je_w9l_CS02xiN-fuCGUO1kRcD2Dn0i6lieSKJ1PB4ZywAzjgCKakpn2BTr2JFS5_n-fo4fP1t6sv3d39ze3Vp7vO8pHOnVReCCfcJBiZ7ATCk8ENcnB-dMJOXlLOJ2aIpKOysr0tVcZ5NfFBMDV4do5uV12XzU4fSlutPOtsgn4t5PKozfLxCJr0puGjNcx6zpQbhWcDATJyIYThsmm9X7WaDz-eoM56H6qFGE2C_FQ1o4IvTvdLK1tbbcm1FvB_RlOil4T0Tr8mpJeE9JpQo8a_qGb74mJqhob4H_bjykJz8xig6GoDJAsulBZIWzf8k_8F07qwtQ
CitedBy_id crossref_primary_10_3390_pr13030788
Cites_doi 10.1007/s10712-018-9474-2
10.1785/0120030028
10.1007/s10950-022-10104-w
10.1016/B978-0-12-813555-6.00010-1
10.1061/(ASCE)GT.1943-5606.0000743
10.9795/bullgsj.57.309
10.1111/j.1365-246X.2011.05064.x
10.1016/j.enggeo.2020.105922
10.1002/nsg.12144
10.1007/s10950-021-10062-9
10.1190/1.1444590
10.4133/1.2922698
10.1186/s40623-017-0766-4
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.sandf.2024.101525
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2524-1788
ExternalDocumentID oai_doaj_org_article_02a6c19ca3cf438d95f370e094555a46
10_1016_j_sandf_2024_101525
S0038080624001033
GroupedDBID -~X
0R~
0SF
123
2WC
4.4
457
5B4
6I.
7.U
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AAKDD
AALRI
AAXUO
ABCQX
ABMAC
ABTAH
ABVKL
ACGFS
ADBBV
ADEZE
ADVLN
AENEX
AEXQZ
AFJKZ
AFPKN
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IXB
JSI
JSP
L7B
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
RJT
ROL
RYR
RZJ
SSZ
TKC
WBO
Y6R
ZY4
~02
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c491t-68f55d5db530bcbe5f07d767df9d5cbf6144b3a06198c6bf6c18adf8b475387f3
IEDL.DBID DOA
ISSN 0038-0806
IngestDate Wed Aug 27 01:24:17 EDT 2025
Fri Jul 11 09:23:58 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Thu Jul 31 00:18:03 EDT 2025
Sat Dec 21 16:01:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords S-wave velocity
Japan
Machine learning
Inversion
Surface wave
Microtremor
Horizontal-to-vertical spectral ratio
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-68f55d5db530bcbe5f07d767df9d5cbf6144b3a06198c6bf6c18adf8b475387f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/02a6c19ca3cf438d95f370e094555a46
PQID 3154152526
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_02a6c19ca3cf438d95f370e094555a46
proquest_miscellaneous_3154152526
crossref_primary_10_1016_j_sandf_2024_101525
crossref_citationtrail_10_1016_j_sandf_2024_101525
elsevier_sciencedirect_doi_10_1016_j_sandf_2024_101525
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
20241201
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Soils and Foundations
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Okada (b0140) 2003
Keras, 2024.
Hayashi, K., Inazaki, T. and Suzuki, H., 2006. Buried incised channels delineation using microtremor array measurements at Soka and Misato Cities in Saitama Prefecture. Bulletin Geological Survey of Japan, 57, 309-325 (in Japanese)
Suzuki, H., Nagashima, F., Tadashi, S., Yatagai, A., Hayashi, K., and Kawase, H., 2018. Deep subsurface modeling in Kanto plain using pseudo earthquake Horizontal-to-Vertical spectral ratio based on the diffuse field theory, Proceedings of the 139th SEGJ Conference, 3-6 (in Japanese).
Suzuki, Konishi, Yatagai, Sato, Ogahara, Sakurai, Kaida, Suzuki, Takahashi, Inazaki (b0170) 2020; 73
Asten, Hayashi (b0020) 2018; 39
Foti, Hollender, Garofalo, Albarello, Asten, Bard, Comina, Cornou, Cox, Di Giulio, Forbriger, Hayashi, Lunedei, Martin, Mercerat, Ohrnberger, Poggi, Renalier, Sicilia, Socco (b0050) 2017; 16
Hayashi, K., Suzuki, T., Konishi, C., Matsuyama, H., and Suzuki, H., 2021. Autonomous and voluntary geophysical database - Dense H/V measurements at Kanto Plain -, Proceedings of the 145th SEGJ Conference (in Japanese).
Aki (b0005) 1957; 35
Andrus, Stokoe, Chung (b0010) 1999
Mori, Kawase, Matsushima, Nagashima (b0125) 2016; 16
Craig, M., K. Hayashi, and O. Kozaci, 2021. Active and passive seismic surface wave methods for levee assessment in the Sacramento-San Joaquin Delta, California, USA: Near Surface Geophysics, doi: 10.1002/nsg.12144.
Lay, Wallace (b0110) 1995
SeisImager.com, 2024b.
Cho, Pyun, Choi, Lee, Jang, Choi (b0030) 2023
Kayen, Moss, Thompson, Seed, Cetin, Kiureghian, Tanaka, Tokimatsu (b0100) 2013; 139
Ferriz, Hayashi, Sandhu, Loogman (b0045) 2016
Hayashi, Inazaki, Kitao, Kita (b0070) 2019
Park, Miller, Xia (b0145) 1999; 64
FEMA. 2003. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures FEMA 450-1 / 2003 Edition
Molnar, Sirohey, Assaf, Bard, Castellaro, Cornou, Cox, Guillier, Hassani, Kawase, Matsushima, Sánchez-Sesma, Yong (b0120) 2022; 26
Wang, G., Zhang, F., Furuya, G., Hayashi, K., Hu, W., McSaveney, M., and Huang, R., 2020. The debris avalanche in Donghekou area triggered by the 2008 Wenchuan (M8.0) earthquake : Features and possible transportation mechanisms, Engineering Geology, 105922, ISSN 0013-7952
Hayashi, Hirade, Iiba, Inazaki, Takahashi (b0065) 2008; 61
Inazaki, T. and Hayashi, K., 2022. Mapping of near surface S-wave velocity structure based on H/V spectral ratio of microtremor measurements conducted on southern flank and foot area of Mt. Tsukuba, Proceedings of the 145th SEGJ Conference (in Japanese).
Menke, W., 2018, Geophysical Data Analysis, Berkeley, CA, U.S. ISBN: 9780128135556.
Arai, Tokimatsu (b0015) 2004; 94
Sánchez-Sesma, Rodríguez, Iturrarán-Viveros, Luzón, Campillo, Margerin, Rodríguez-Castellanos (b0150) 2011; 186
.
Japan Seismic Hazard Information Station (J-SHIS), 2023.
Kawase (b0090) 1996; 67–5
Yong, Askan, Cassidy, D’Amico, Parolai, Pilz, Stephenson (b0190) 2022; 26
Hayashi, Asten, Stephenson, Cornou, Hobiger, Pilz, Yamanaka (b0075) 2022
SeisImager.com, 2024a.
Nakamura (b0130) 1989; 30
Wakamatsu, Matsuoka, Kubo, Hasegawa, Sugiura (b0175) 2004; 759
Kawase, Mori, Nagashima (b0095) 2018; 70
CAO, Japanese Government, 2017.
Xia, j., Miller, R. D. and Park, C. B., 1999. Configuration of near-surface shear-wave velocity by inverting surface wave, Proceedings of the symposium on the application of geophysics to engineering and environmental problems '99, EEGS, 95-104.
Nogoshi, Igarashi (b0135) 1971; 24
10.1016/j.sandf.2024.101525_b0035
10.1016/j.sandf.2024.101525_b0155
Kawase (10.1016/j.sandf.2024.101525_b0095) 2018; 70
Foti (10.1016/j.sandf.2024.101525_b0050) 2017; 16
10.1016/j.sandf.2024.101525_b0055
Wakamatsu (10.1016/j.sandf.2024.101525_b0175) 2004; 759
Aki (10.1016/j.sandf.2024.101525_b0005) 1957; 35
Arai (10.1016/j.sandf.2024.101525_b0015) 2004; 94
Kayen (10.1016/j.sandf.2024.101525_b0100) 2013; 139
Hayashi (10.1016/j.sandf.2024.101525_b0075) 2022
Mori (10.1016/j.sandf.2024.101525_b0125) 2016; 16
10.1016/j.sandf.2024.101525_b0115
Okada (10.1016/j.sandf.2024.101525_b0140) 2003
Sánchez-Sesma (10.1016/j.sandf.2024.101525_b0150) 2011; 186
10.1016/j.sandf.2024.101525_b0025
10.1016/j.sandf.2024.101525_b0185
10.1016/j.sandf.2024.101525_b0085
Cho (10.1016/j.sandf.2024.101525_b0030) 2023
10.1016/j.sandf.2024.101525_b0165
Hayashi (10.1016/j.sandf.2024.101525_b0065) 2008; 61
Molnar (10.1016/j.sandf.2024.101525_b0120) 2022; 26
10.1016/j.sandf.2024.101525_b0060
10.1016/j.sandf.2024.101525_b0180
10.1016/j.sandf.2024.101525_b0040
10.1016/j.sandf.2024.101525_b0160
Andrus (10.1016/j.sandf.2024.101525_b0010) 1999
Nakamura (10.1016/j.sandf.2024.101525_b0130) 1989; 30
Yong (10.1016/j.sandf.2024.101525_b0190) 2022; 26
10.1016/j.sandf.2024.101525_b0080
Park (10.1016/j.sandf.2024.101525_b0145) 1999; 64
Suzuki (10.1016/j.sandf.2024.101525_b0170) 2020; 73
Hayashi (10.1016/j.sandf.2024.101525_b0070) 2019
Kawase (10.1016/j.sandf.2024.101525_b0090) 1996; 67–5
Ferriz (10.1016/j.sandf.2024.101525_b0045) 2016
10.1016/j.sandf.2024.101525_b0105
Nogoshi (10.1016/j.sandf.2024.101525_b0135) 1971; 24
Asten (10.1016/j.sandf.2024.101525_b0020) 2018; 39
Lay (10.1016/j.sandf.2024.101525_b0110) 1995
References_xml – volume: 759
  start-page: 213
  year: 2004
  end-page: 232
  ident: b0175
  article-title: Development of GIS-based Japan engineering geomorphologic classification map
  publication-title: Japanese J. JSCE
– reference: Craig, M., K. Hayashi, and O. Kozaci, 2021. Active and passive seismic surface wave methods for levee assessment in the Sacramento-San Joaquin Delta, California, USA: Near Surface Geophysics, doi: 10.1002/nsg.12144.
– reference: SeisImager.com, 2024a.
– reference: Menke, W., 2018, Geophysical Data Analysis, Berkeley, CA, U.S. ISBN: 9780128135556.
– volume: 67–5
  start-page: 25
  year: 1996
  end-page: 34
  ident: b0090
  article-title: Cause of the Damage Belt in Kobe: “The Basin-Edge Effect”, Constructive Interference of the Direct S-Wave with the Basin-Induced Diffracted/Rayleigh Waves, Seismological Society of
  publication-title: America
– volume: 94
  start-page: 53
  year: 2004
  end-page: 63
  ident: b0015
  article-title: S-wave velocity profiling by inversion of microtremor H/V spectrum
  publication-title: Bull. Seismol. Soc. Am.
– volume: 24
  start-page: 26
  year: 1971
  end-page: 40
  ident: b0135
  article-title: On the amplitude characteristics of ambient noise (Part 2)
  publication-title: J. Seismol. Soc. Jpn.
– reference: Xia, j., Miller, R. D. and Park, C. B., 1999. Configuration of near-surface shear-wave velocity by inverting surface wave, Proceedings of the symposium on the application of geophysics to engineering and environmental problems '99, EEGS, 95-104.
– reference: Suzuki, H., Nagashima, F., Tadashi, S., Yatagai, A., Hayashi, K., and Kawase, H., 2018. Deep subsurface modeling in Kanto plain using pseudo earthquake Horizontal-to-Vertical spectral ratio based on the diffuse field theory, Proceedings of the 139th SEGJ Conference, 3-6 (in Japanese).
– volume: 30
  start-page: 25
  year: 1989
  end-page: 33
  ident: b0130
  article-title: A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface
  publication-title: Quart. Report Railway Tech. Res.
– volume: 64
  start-page: 800
  year: 1999
  end-page: 808
  ident: b0145
  article-title: Multichannel Analysis of surface waves
  publication-title: Geophysics
– volume: 186
  start-page: 221
  year: 2011
  end-page: 225
  ident: b0150
  article-title: A theory for microtremor H/V spectral ratio: Application for a layered medium
  publication-title: Geophys. J. Int.
– volume: 35
  start-page: 415
  year: 1957
  end-page: 456
  ident: b0005
  article-title: Space and time spectra of stationary stochastic waves, with special reference to microtremors
  publication-title: Bull. Earthqu. Res. Inst.
– year: 2003
  ident: b0140
  article-title: The microtremor survey method
– volume: 70
  start-page: 1
  year: 2018
  ident: b0095
  article-title: Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept
  publication-title: Earth Planets Space
– reference: Wang, G., Zhang, F., Furuya, G., Hayashi, K., Hu, W., McSaveney, M., and Huang, R., 2020. The debris avalanche in Donghekou area triggered by the 2008 Wenchuan (M8.0) earthquake : Features and possible transportation mechanisms, Engineering Geology, 105922, ISSN 0013-7952,
– volume: 139
  start-page: 407
  year: 2013
  end-page: 419
  ident: b0100
  article-title: Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential
  publication-title: J. Geotech. Geoenviron. Eng.
– year: 1995
  ident: b0110
  article-title: Modern Gloval Seismology
– reference: Hayashi, K., Suzuki, T., Konishi, C., Matsuyama, H., and Suzuki, H., 2021. Autonomous and voluntary geophysical database - Dense H/V measurements at Kanto Plain -, Proceedings of the 145th SEGJ Conference (in Japanese).
– reference: Japan Seismic Hazard Information Station (J-SHIS), 2023.
– start-page: 283
  year: 2016
  end-page: 299
  ident: b0045
  article-title: Geophysical investigation of flood control levees in the Sacramento-San Joaquin Estuary, California
  publication-title: Applied Geology in California
– start-page: 1
  year: 2019
  end-page: 21
  ident: b0070
  article-title: Statistical estimation of soil parameters in from cross-plots of S-wave velocity and resistivity obtained by integrated geophysical method
  publication-title: Levees and Dams -Advances in Geophysical Monitoring and Characterization-
– reference: Keras, 2024.
– year: 1999
  ident: b0010
  article-title: Draft guidelines for evaluating liquefaction resistance using shear-wave velocity measurements and simplified procedure, NISTIR6277
– volume: 16
  start-page: 13
  year: 2016
  end-page: 32
  ident: b0125
  article-title: Comparison of observed earthquake and microtremor horizontal-to-vertical spectral ratios and inversion of velocity structures based on their empirical ratios
  publication-title: J. Japan Assoc. Earthq. Eng.
– volume: 39
  year: 2018
  ident: b0020
  article-title: Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise
  publication-title: Surv. Geophys.
– volume: 73
  start-page: 209
  year: 2020
  end-page: 217
  ident: b0170
  article-title: 2D Microtremor array measurements for estimating of deep subsurface structurel model in Tsukuba City
  publication-title: Butsuri-Tansa
– year: 2022
  ident: b0075
  article-title: Microtremor array method using spatial autocorrelation analysis of Rayleigh-wave data
  publication-title: J. Seismol.
– reference: .
– reference: Inazaki, T. and Hayashi, K., 2022. Mapping of near surface S-wave velocity structure based on H/V spectral ratio of microtremor measurements conducted on southern flank and foot area of Mt. Tsukuba, Proceedings of the 145th SEGJ Conference (in Japanese).
– volume: 26
  start-page: 653
  year: 2022
  end-page: 685
  ident: b0120
  article-title: A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method
  publication-title: J. Seismol.
– reference: SeisImager.com, 2024b.
– reference: FEMA. 2003. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures FEMA 450-1 / 2003 Edition,
– volume: 16
  start-page: 2367
  year: 2017
  end-page: 2420
  ident: b0050
  article-title: Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project
  publication-title: Bulletin of the Georgian Academy of SciencesEarthqu Eng
– reference: Hayashi, K., Inazaki, T. and Suzuki, H., 2006. Buried incised channels delineation using microtremor array measurements at Soka and Misato Cities in Saitama Prefecture. Bulletin Geological Survey of Japan, 57, 309-325 (in Japanese),
– reference: CAO, Japanese Government, 2017.
– volume: 61
  start-page: 483
  year: 2008
  end-page: 498
  ident: b0065
  article-title: Site investigation by surface-wave method and micro-tremor array measurements at central Anamizu
  publication-title: Ishikawa Prefecture, BUTSURI-TANSA
– volume: 26
  start-page: 557
  year: 2022
  end-page: 566
  ident: b0190
  article-title: Introduction to the special issue of the Consortium of Organizations for Strong Motion Observation Systems (COSMOS) international guidelines for applying noninvasive geophysical techniques to characterize seismic site conditions
  publication-title: J. Seismol.
– start-page: 1
  year: 2023
  end-page: 17
  ident: b0030
  article-title: Prediction of S-wave velocity models from surface waves using deep learning
  publication-title: Near Surf. Geophys.
– volume: 39
  year: 2018
  ident: 10.1016/j.sandf.2024.101525_b0020
  article-title: Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-018-9474-2
– volume: 94
  start-page: 53
  issue: 1
  year: 2004
  ident: 10.1016/j.sandf.2024.101525_b0015
  article-title: S-wave velocity profiling by inversion of microtremor H/V spectrum
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120030028
– volume: 30
  start-page: 25
  issue: 1
  year: 1989
  ident: 10.1016/j.sandf.2024.101525_b0130
  article-title: A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface
  publication-title: Quart. Report Railway Tech. Res.
– year: 1999
  ident: 10.1016/j.sandf.2024.101525_b0010
– ident: 10.1016/j.sandf.2024.101525_b0155
– ident: 10.1016/j.sandf.2024.101525_b0105
– year: 1995
  ident: 10.1016/j.sandf.2024.101525_b0110
– ident: 10.1016/j.sandf.2024.101525_b0040
– volume: 16
  start-page: 13
  year: 2016
  ident: 10.1016/j.sandf.2024.101525_b0125
  article-title: Comparison of observed earthquake and microtremor horizontal-to-vertical spectral ratios and inversion of velocity structures based on their empirical ratios
  publication-title: J. Japan Assoc. Earthq. Eng.
– volume: 26
  start-page: 557
  year: 2022
  ident: 10.1016/j.sandf.2024.101525_b0190
  article-title: Introduction to the special issue of the Consortium of Organizations for Strong Motion Observation Systems (COSMOS) international guidelines for applying noninvasive geophysical techniques to characterize seismic site conditions
  publication-title: J. Seismol.
  doi: 10.1007/s10950-022-10104-w
– ident: 10.1016/j.sandf.2024.101525_b0025
– ident: 10.1016/j.sandf.2024.101525_b0115
  doi: 10.1016/B978-0-12-813555-6.00010-1
– ident: 10.1016/j.sandf.2024.101525_b0085
– ident: 10.1016/j.sandf.2024.101525_b0165
– volume: 759
  start-page: 213
  year: 2004
  ident: 10.1016/j.sandf.2024.101525_b0175
  article-title: Development of GIS-based Japan engineering geomorphologic classification map
  publication-title: Japanese J. JSCE
– volume: 139
  start-page: 407
  year: 2013
  ident: 10.1016/j.sandf.2024.101525_b0100
  article-title: Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000743
– ident: 10.1016/j.sandf.2024.101525_b0055
  doi: 10.9795/bullgsj.57.309
– year: 2003
  ident: 10.1016/j.sandf.2024.101525_b0140
– volume: 186
  start-page: 221
  issue: 1
  year: 2011
  ident: 10.1016/j.sandf.2024.101525_b0150
  article-title: A theory for microtremor H/V spectral ratio: Application for a layered medium
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2011.05064.x
– volume: 16
  start-page: 2367
  year: 2017
  ident: 10.1016/j.sandf.2024.101525_b0050
  article-title: Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project
  publication-title: Bulletin of the Georgian Academy of SciencesEarthqu Eng
– start-page: 1
  year: 2019
  ident: 10.1016/j.sandf.2024.101525_b0070
  article-title: Statistical estimation of soil parameters in from cross-plots of S-wave velocity and resistivity obtained by integrated geophysical method
– ident: 10.1016/j.sandf.2024.101525_b0180
  doi: 10.1016/j.enggeo.2020.105922
– volume: 35
  start-page: 415
  year: 1957
  ident: 10.1016/j.sandf.2024.101525_b0005
  article-title: Space and time spectra of stationary stochastic waves, with special reference to microtremors
  publication-title: Bull. Earthqu. Res. Inst.
– start-page: 1
  year: 2023
  ident: 10.1016/j.sandf.2024.101525_b0030
  article-title: Prediction of S-wave velocity models from surface waves using deep learning
  publication-title: Near Surf. Geophys.
– ident: 10.1016/j.sandf.2024.101525_b0035
  doi: 10.1002/nsg.12144
– volume: 73
  start-page: 209
  year: 2020
  ident: 10.1016/j.sandf.2024.101525_b0170
  article-title: 2D Microtremor array measurements for estimating of deep subsurface structurel model in Tsukuba City
  publication-title: Butsuri-Tansa
– start-page: 283
  year: 2016
  ident: 10.1016/j.sandf.2024.101525_b0045
  article-title: Geophysical investigation of flood control levees in the Sacramento-San Joaquin Estuary, California
– ident: 10.1016/j.sandf.2024.101525_b0080
– volume: 61
  start-page: 483
  year: 2008
  ident: 10.1016/j.sandf.2024.101525_b0065
  article-title: Site investigation by surface-wave method and micro-tremor array measurements at central Anamizu
  publication-title: Ishikawa Prefecture, BUTSURI-TANSA
– ident: 10.1016/j.sandf.2024.101525_b0060
– volume: 26
  start-page: 653
  year: 2022
  ident: 10.1016/j.sandf.2024.101525_b0120
  article-title: A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method
  publication-title: J. Seismol.
  doi: 10.1007/s10950-021-10062-9
– year: 2022
  ident: 10.1016/j.sandf.2024.101525_b0075
  article-title: Microtremor array method using spatial autocorrelation analysis of Rayleigh-wave data
  publication-title: J. Seismol.
– volume: 64
  start-page: 800
  issue: 3
  year: 1999
  ident: 10.1016/j.sandf.2024.101525_b0145
  article-title: Multichannel Analysis of surface waves
  publication-title: Geophysics
  doi: 10.1190/1.1444590
– ident: 10.1016/j.sandf.2024.101525_b0185
  doi: 10.4133/1.2922698
– volume: 70
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.sandf.2024.101525_b0095
  article-title: Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-017-0766-4
– volume: 24
  start-page: 26
  year: 1971
  ident: 10.1016/j.sandf.2024.101525_b0135
  article-title: On the amplitude characteristics of ambient noise (Part 2)
  publication-title: J. Seismol. Soc. Jpn.
– ident: 10.1016/j.sandf.2024.101525_b0160
– volume: 67–5
  start-page: 25
  year: 1996
  ident: 10.1016/j.sandf.2024.101525_b0090
  article-title: Cause of the Damage Belt in Kobe: “The Basin-Edge Effect”, Constructive Interference of the Direct S-Wave with the Basin-Induced Diffracted/Rayleigh Waves, Seismological Society of
  publication-title: America
SSID ssj0062011
Score 2.4033637
Snippet S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion...
S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS₃₀) is indispensable information to estimate the local site amplification of ground motion...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101525
SubjectTerms bedrock
geomorphology
geophysics
Horizontal-to-vertical spectral ratio
Inversion
Japan
Machine learning
Microtremor
S-wave velocity
Surface wave
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAeIqlgIzEEatOHDv2kVatKiS4QKW9WX4ui1Cy2t2C1F_fGcepWg49cIstJ3HG4_nGysw3hHzkro9cesV6bRLrkuDMS9exrIN3AkHBYXLy12_q4rL7spTLA3I658JgWGW1_ZNNL9a69hxXaR5v1mvM8RVIiqgwCrLhAhk_RadLEt_yZLbGCgFuomZEJmauZuahEuO1g9M68ni2HfZIrJd9B50Kif89kPrHXBcMOn9KnlTnkX6e5veMHKThOXl8h1LwBclnsGfRCx1W9Dv76_4kilFBAZxtWutz7yjmlNCf43Z9PWIyJNuPrJRlhvWiJfVyCxdFNXYUYS7ScaAxpQ2tRSZWL8nl-dmP0wtWaymw0Jlmz5TOUkYZvRTcB59k5n3sVR-ziTL4jOdCLxygu9FBQTs02sWsfQfnGd1n8YocDuOQXhMacgvIymMwPnciGCPbAFajEaqJ3iu_IO0sQxsq0TjWu_ht54iyX7YI3qLg7ST4Bfl0e9Nm4tl4ePgJLs7tUCTJLh3jdmWrlljeOvgME5wIMFEdjcyi5wkOtFKCPqoFUfPS2ns6B49aP_z2D7MiWNiN-IvFDWm82lkBHimOaNWb_334EXmErSlk5i053G-v0jtwfPb-fdHsG0hXAfI
  priority: 102
  providerName: Elsevier
Title Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning
URI https://dx.doi.org/10.1016/j.sandf.2024.101525
https://www.proquest.com/docview/3154152526
https://doaj.org/article/02a6c19ca3cf438d95f370e094555a46
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vIng02DZN2hxVFBX0osLeQp4-kFZ2VwV_vTNpK-pBL15KG9ImzCT5ZujMN4TsZabymbCSVbUKrAw8Y1aYksXaWcMRFAwmJ19eybPb8mIsxl9KfWFMWEcP3AnuICuMdLlyhrtY8torEXmVBfBKhICPJrJtwLzOmRpohVIA1xRccSTpLEpsEVgM-wv0JIb-bwj04yxOAHO6RBZ7y5AedjNaJnOhWSHxBLYgGpXNHb1mb-Y1UAzycWA7077c9pRiigi9bycP7y3mNrJZy1KVZRA_TZmUE7hJmp5SRC1P24b6EJ5pXzPibpXcnp7cHJ-xvjQCc6XKZ0zWUQgvvBU8s84GEbPKV7LyUXnhbEQ3z3IDYK1qJ-HZ5bXxsbYluCd1FfkamW_aJqwT6mIBQJl5pywI2CklCgeHQM5l7q2VdkSKQWra9bzhWL7iSQ8BYo86iVqjqHUn6hHZ_3zpuaPN-L37EarjsytyXqcGWAm6Xwn6r5UwInJQpu7Nh84sgE89_D767qB6DZsL_5iYJrQvU83BwMQehdz4jxlukgUctouG2SLzs8lL2AabZmZ30vKF6_n46ANcSfii
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQCHiqdYaMFIHLHqxLETH9uq1RbaXmilvVl-bhehZLW7BYlfz4yTVC2HHrgljpM44_F8Y2XmG0I-c1sHLp1idaMjq6LgzElbsdR4ZwWCgsXk5PMLNb2qvs7kbIscjbkwGFY52P7epmdrPbTsD9LcXy4WmOMrkBRRYRRkwYV4RB6DN1Bj_YbT2eFojhUiXM_NiFTMXI3UQznIaw3bdSTyLCtskVgw-w48ZRb_eyj1j73OIHTynOwM3iM96Af4gmzF9iV5dodT8BVJx7Bo0Q1t5_Q7-21_RYphQR68bToU6F5TTCqh191q8afDbEi26ViuywwTRnPu5QoOsm6sKeJcoF1LQ4xLOlSZmL8mVyfHl0dTNhRTYL7SxYapJkkZZHBScOddlInXoVZ1SDpI7xJuDJ2wAO-68QrOfdHYkBpXwYamqZN4Q7bbro1vCfWpBGjlwWuXKuG1lqUHs1EIVQTnlJuQcpSh8QPTOBa8-GnGkLIfJgveoOBNL_gJ-XJ707In2ni4-yFOzm1XZMnODd1qbgY1Mby08BnaW-FhoE3QMomaR9jRSgkKqSZEjVNr7ikdPGrx8Ns_jYpgYDniPxbbxu5mbQS4pNijVO_-9-EfyZPp5fmZOTu9-PaePMUrffzMLtnerG7iHnhBG_cha_lfP5IFEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+S-wave+velocity+profiles+from+horizontal-to-vertical+spectral+ratios+based+on+deep+learning&rft.jtitle=Soils+and+foundations&rft.au=Hayashi%2C+Koichi&rft.au=Suzuki%2C+T%C5%8Dru&rft.au=Inazaki%2C+Tomio&rft.au=Konishi%2C+Chisato&rft.date=2024-12-01&rft.issn=0038-0806&rft.volume=64&rft.issue=6+p.101525-&rft_id=info:doi/10.1016%2Fj.sandf.2024.101525&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0806&client=summon