Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining

A new scheduling system for selecting dispatching rules in real time is developed by combining the techniques of simulation, data mining, and statistical process control charts. The proposed scheduling system extracts knowledge from data coming from the manufacturing environment by constructing a de...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production research Vol. 48; no. 23; pp. 6909 - 6938
Main Authors Metan, Gokhan, Sabuncuoglu, Ihsan, Pierreval, Henri
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Group 01.12.2010
Taylor & Francis
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0020-7543
1366-588X
DOI10.1080/00207540903307581

Cover

Abstract A new scheduling system for selecting dispatching rules in real time is developed by combining the techniques of simulation, data mining, and statistical process control charts. The proposed scheduling system extracts knowledge from data coming from the manufacturing environment by constructing a decision tree, and selects a dispatching rule from the tree for each scheduling period. In addition, the system utilises the process control charts to monitor the performance of the decision tree and dynamically updates this decision tree whenever the manufacturing conditions change. This gives the proposed system the ability to adapt itself to changes in the manufacturing environment and improve the quality of its decisions. We implement the proposed system on a job shop problem, with the objective of minimising average tardiness, to evaluate its performance. Simulation results indicate that the performance of the proposed system is considerably better than other simulation-based single-pass and multi-pass scheduling algorithms available in the literature. We also illustrate knowledge extraction by presenting a sample decision tree from our experiments.
AbstractList A new scheduling system for selecting dispatching rules in real time is developed by combining the techniques of simulation, data mining, and statistical process control charts. The proposed scheduling system extracts knowledge from data coming from the manufacturing environment by constructing a decision tree, and selects a dispatching rule from the tree for each scheduling period. In addition, the system utilises the process control charts to monitor the performance of the decision tree and dynamically updates this decision tree whenever the manufacturing conditions change. This gives the proposed system the ability to adapt itself to changes in the manufacturing environment and improve the quality of its decisions. We implement the proposed system on a job shop problem, with the objective of minimising average tardiness, to evaluate its performance. Simulation results indicate that the performance of the proposed system is considerably better than other simulation-based single-pass and multi-pass scheduling algorithms available in the literature. We also illustrate knowledge extraction by presenting a sample decision tree from our experiments.
A new scheduling system for selecting dispatching rules in real time is developed by combining the techniques of simulation, data mining, and statistical process control charts. The proposed scheduling system extracts knowledge from data coming from the manufacturing environment by constructing a decision tree, and selects a dispatching rule from the tree for each scheduling period. In addition, the system utilises the process control charts to monitor the performance of the decision tree and dynamically updates this decision tree whenever the manufacturing conditions change. This gives the proposed system the ability to adapt itself to changes in the manufacturing environment and improve the quality of its decisions. We implement the proposed system on a job shop problem, with the objective of minimising average tardiness, to evaluate its performance. Simulation results indicate that the performance of the proposed system is considerably better than other simulation-based single-pass and multi-pass scheduling algorithms available in the literature. We also illustrate knowledge extraction by presenting a sample decision tree from our experiments. [PUBLICATION ABSTRACT]
Author Sabuncuoglu, Ihsan
Metan, Gokhan
Pierreval, Henri
Author_xml – sequence: 1
  givenname: Gokhan
  surname: Metan
  fullname: Metan, Gokhan
  email: gom204@lehigh.edu
  organization: Department of Industrial and Systems Engineering , Lehigh University
– sequence: 2
  givenname: Ihsan
  surname: Sabuncuoglu
  fullname: Sabuncuoglu, Ihsan
  organization: Department of Industrial Engineering , Bilkent University
– sequence: 3
  givenname: Henri
  surname: Pierreval
  fullname: Pierreval, Henri
  organization: LIMOS
BackLink http://www.econis.eu/PPNSET?PPN=642175462$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23448807$$DView record in Pascal Francis
BookMark eNqFkVFrFDEUhYNUcFv9AT4ZBMGX0WQyM8mAL1K0FQqCKPgW7iZ31tRMUpNM2_33ZtktSIualwTynXPvPfeYHIUYkJDnnL3hTLG3jLVM9h0bmRD1ofgjsuJiGJpeqe9HZLX7byognpDjnC9ZPb3qVmTzBcHT4makGT2a4mKgcaLZ_EC7eBc2NC0eM4Vg6c8QbzzaDVK8LQn28LUDarcBZmfA-y01MZQUfeWohQJ0dqG6PCWPJ_AZnx3uE_Lt44evp-fNxeezT6fvLxrTjbw0vbQjCCktQzNOapBcCuAcVC8B-cCVWrdyrbpOMmFHPgluGLdWdMCxhbURJ-T13vcqxV8L5qJnlw16DwHjkjWvlm3bS8Ur-vIeehmXFGp3Wg5CiFYIWaFXBwhynW9KEIzL-iq5GdJWt6LrlGI77sWewzr_H8DQtbzGPrSVkHvCpJhzwkkbV2AXYY3Sec2Z3m1SP9hkVfJ7yjv3f2kO1VyYYprhJiZvdYGtj-luiAcqXW5LVb77r1L8vfBvcDPFCQ
CODEN IJPRB8
CitedBy_id crossref_primary_10_1080_0951192X_2021_1946849
crossref_primary_10_1016_j_jii_2022_100371
crossref_primary_10_1016_j_jclepro_2016_07_123
crossref_primary_10_3390_computers5010003
crossref_primary_10_1016_j_ejor_2015_02_026
crossref_primary_10_1007_s11227_020_03457_x
crossref_primary_10_1016_j_cie_2018_03_039
crossref_primary_10_1142_S179396231850040X
crossref_primary_10_1080_00207543_2021_1925772
crossref_primary_10_1109_TSM_2023_3336909
crossref_primary_10_1016_j_cmpb_2011_09_003
crossref_primary_10_1016_j_jclepro_2018_05_203
crossref_primary_10_1080_00207543_2014_881575
crossref_primary_10_3390_math10234608
crossref_primary_10_1017_S0890060413000516
crossref_primary_10_1109_ACCESS_2021_3120126
crossref_primary_10_1177_1687814019838178
crossref_primary_10_1109_ACCESS_2020_3000781
crossref_primary_10_1080_17517575_2018_1526322
crossref_primary_10_1109_TSM_2020_2965293
crossref_primary_10_1080_00207543_2019_1634847
crossref_primary_10_7737_MSFE_2014_20_1_001
crossref_primary_10_1080_00207543_2020_1859634
crossref_primary_10_1080_00207543_2010_539281
crossref_primary_10_1155_2022_2605333
crossref_primary_10_1007_s10951_020_00664_5
crossref_primary_10_1016_j_engappai_2012_04_001
crossref_primary_10_1109_ACCESS_2022_3160452
crossref_primary_10_1080_00207543_2011_631603
crossref_primary_10_1016_j_asoc_2011_07_022
crossref_primary_10_1016_j_ifacol_2019_10_013
crossref_primary_10_1142_S0219686724500252
crossref_primary_10_1145_3590163
crossref_primary_10_1016_j_jmsy_2022_04_019
crossref_primary_10_1080_00207543_2018_1443230
crossref_primary_10_1108_ECAM_04_2022_0345
crossref_primary_10_1016_j_jmsy_2017_03_008
crossref_primary_10_1016_j_simpat_2014_01_005
crossref_primary_10_1016_j_jii_2017_08_001
crossref_primary_10_1016_j_jmsy_2013_12_007
crossref_primary_10_1016_j_jmsy_2020_11_004
crossref_primary_10_1016_j_jii_2019_04_003
crossref_primary_10_1142_S0219686719500021
crossref_primary_10_1155_2019_7172842
crossref_primary_10_1080_00207543_2016_1178406
crossref_primary_10_1093_imaman_dpae029
crossref_primary_10_1007_s00500_021_06385_x
crossref_primary_10_1080_00207543_2013_793857
crossref_primary_10_1080_00207543_2019_1672902
crossref_primary_10_17341_gazimmfd_478648
crossref_primary_10_3390_machines11100921
Cites_doi 10.1016/0278-6125(92)90005-Z
10.1007/BF01324876
10.1080/002075497195137
10.1080/002075497195605
10.1016/j.cie.2006.02.002
10.1007/s10115-007-0114-2
10.1080/12460125.1993.10511572
10.1007/s00170-003-1937-y
10.1080/00207548908942642
10.1080/00207549308956756
10.1016/0278-6125(88)90018-0
10.1007/s10951-005-4781-0
10.1504/IJISE.2008.017555
10.1016/j.ejor.2005.07.026
10.1080/00207540410001708489
10.1080/00207540600993360
10.1007/s00170-004-2430-y
10.1057/jors.1990.72
10.1007/s00170-005-0190-y
10.1115/1.2194554
10.1287/mnsc.30.9.1093
10.1007/s10951-006-5591-8
10.1080/00207549108948099
10.1108/17410380410523524
10.1016/j.rcim.2005.03.004
10.1016/0278-6125(94)90024-8
10.1080/002075498192733
10.1016/0278-6125(93)90015-L
10.1016/S0278-6125(01)80046-7
10.1080/0020754031000118099
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2010
2015 INIST-CNRS
Copyright Taylor & Francis Group 2010
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2010
– notice: 2015 INIST-CNRS
– notice: Copyright Taylor & Francis Group 2010
DBID AAYXX
CITATION
OQ6
IQODW
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207540903307581
DatabaseName CrossRef
ECONIS
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1366-588X
EndPage 6938
ExternalDocumentID 2185814361
23448807
642175462
10_1080_00207540903307581
430932
Genre Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADUMR
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EJD
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
07I
1OL
1TA
4B5
AAGDL
AAHIA
AAYOK
AAYXX
ABDPE
ACKIV
ACTTO
ADXEU
ADYSH
AEHZU
AEZBV
AFBWG
AFFNX
AFION
AFRVT
AGBLW
AGVKY
AGWUF
AI.
AIYEW
AKHJE
AKMBP
ALRRR
ALXIB
AMPGV
BGSSV
BWMZZ
C0-
C5H
CITATION
CYRSC
DAOYK
DEXXA
FETWF
IFELN
L8C
LJTGL
NUSFT
OPCYK
TAJZE
TAP
UB6
VH1
ZCG
ZY4
ABTAH
OQ6
IQODW
TASJS
7SC
8FD
AGBKS
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c491t-57d9a377d0ec9f867173a11a857ae16188b27b844703d91f31c01dd34a1e2abc3
ISSN 0020-7543
IngestDate Mon Sep 08 17:21:12 EDT 2025
Wed Aug 13 04:57:48 EDT 2025
Mon Jul 21 09:12:17 EDT 2025
Sat Mar 08 16:11:01 EST 2025
Tue Jul 01 03:30:00 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Mon May 13 12:08:27 EDT 2019
Wed Dec 25 09:05:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Tree(graph)
simulation
Job shop
radio frequency identification
Data mining
dynamic scheduling
Decision tree
Adaptive control
Delay
pricing theory
Statistical data
Pricing
Inventory control
Dynamic programming
Environment quality
Statistical process control
Data analysis
Control chart
Process control
Routing
Scheduling
Radiofrequency
Real time
Knowledge extraction
Game theory
Selection rule
inventory management
dispatching rules
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c491t-57d9a377d0ec9f867173a11a857ae16188b27b844703d91f31c01dd34a1e2abc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 763332337
PQPubID 30924
PageCount 30
ParticipantIDs proquest_journals_763332337
informaworld_taylorfrancis_310_1080_00207540903307581
proquest_miscellaneous_1671225781
pascalfrancis_primary_23448807
crossref_citationtrail_10_1080_00207540903307581
econis_primary_642175462
crossref_primary_10_1080_00207540903307581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
– name: London
PublicationTitle International journal of production research
PublicationYear 2010
Publisher Taylor & Francis Group
Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0010
CIT0032
CIT0031
CIT0011
CIT0033
DeVor RE (CIT0004) 1992
Sabuncuoglu I (CIT0024) 2003
CIT0014
CIT0013
CIT0016
CIT0015
Metan G (CIT0018)
CIT0017
CIT0019
CIT0022
Ishii N (CIT0012) 1994; 2
Quinlan JR (CIT0023) 1993
Shiue Y-R (CIT0027) 2006; 28
Pierreval H (CIT0021) 1990; 41
Geiger CD (CIT0006) 2006; 46
Pierreval H (CIT0020) 1993; 2
Shiue Y-R (CIT0026) 2005; 22
Yildirim MB (CIT0034) 2006; 50
CIT0003
CIT0025
Tayanithi P (CIT0029) 1993; 11
Tayanithi P (CIT0030) 1993; 12
CIT0002
Aissani N (CIT0001) 2008; 3
CIT0005
CIT0007
CIT0028
CIT0009
CIT0008
References_xml – volume: 11
  start-page: 195
  issue: 3
  year: 1993
  ident: CIT0029
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/0278-6125(92)90005-Z
– volume: 2
  start-page: 69
  issue: 6
  year: 1994
  ident: CIT0012
  publication-title: International Journal of Flexible Manufacturing Systems
  doi: 10.1007/BF01324876
– ident: CIT0022
  doi: 10.1080/002075497195137
– ident: CIT0016
  doi: 10.1080/002075497195605
– volume: 50
  start-page: 185
  issue: 1
  year: 2006
  ident: CIT0034
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2006.02.002
– start-page: 2148
  volume-title: Proceedings of the 2005 winter simulation conference
  ident: CIT0018
– ident: CIT0033
  doi: 10.1007/s10115-007-0114-2
– volume-title: Technical working paper
  year: 2003
  ident: CIT0024
– volume: 2
  start-page: 173
  issue: 1
  year: 1993
  ident: CIT0020
  publication-title: Journal of Decision Systems
  doi: 10.1080/12460125.1993.10511572
– ident: CIT0025
  doi: 10.1007/s00170-003-1937-y
– ident: CIT0032
  doi: 10.1080/00207548908942642
– ident: CIT0003
  doi: 10.1080/00207549308956756
– ident: CIT0031
  doi: 10.1016/0278-6125(88)90018-0
– ident: CIT0017
  doi: 10.1007/s10951-005-4781-0
– volume: 3
  start-page: 474
  issue: 4
  year: 2008
  ident: CIT0001
  publication-title: International Journal of Industrial and Systems Engineering
  doi: 10.1504/IJISE.2008.017555
– ident: CIT0009
  doi: 10.1016/j.ejor.2005.07.026
– ident: CIT0010
  doi: 10.1080/00207540410001708489
– volume: 46
  start-page: 1431
  issue: 6
  year: 2006
  ident: CIT0006
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540600993360
– volume: 28
  start-page: 737
  year: 2006
  ident: CIT0027
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-004-2430-y
– volume: 41
  start-page: 461
  issue: 6
  year: 1990
  ident: CIT0021
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1990.72
– ident: CIT0005
  doi: 10.1007/s00170-005-0190-y
– ident: CIT0008
  doi: 10.1115/1.2194554
– ident: CIT0002
  doi: 10.1287/mnsc.30.9.1093
– ident: CIT0007
  doi: 10.1007/s10951-006-5591-8
– ident: CIT0011
  doi: 10.1080/00207549108948099
– volume-title: Statistical quality design and control
  year: 1992
  ident: CIT0004
– ident: CIT0028
  doi: 10.1108/17410380410523524
– volume-title: C4.5 programs for machine learning
  year: 1993
  ident: CIT0023
– volume: 22
  start-page: 203
  issue: 3
  year: 2005
  ident: CIT0026
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2005.03.004
– ident: CIT0014
  doi: 10.1016/0278-6125(94)90024-8
– ident: CIT0013
  doi: 10.1080/002075498192733
– volume: 12
  start-page: 153
  issue: 2
  year: 1993
  ident: CIT0030
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/0278-6125(93)90015-L
– ident: CIT0015
  doi: 10.1016/S0278-6125(01)80046-7
– ident: CIT0019
  doi: 10.1080/0020754031000118099
SSID ssj0000584
Score 2.2326043
Snippet A new scheduling system for selecting dispatching rules in real time is developed by combining the techniques of simulation, data mining, and statistical...
SourceID proquest
pascalfrancis
econis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6909
SubjectTerms adaptive control
Applied sciences
Charts
Computer science; control theory; systems
Computer simulation
Control charts
Data Mining
Data processing. List processing. Character string processing
Decision theory. Utility theory
Decision trees
Dispatching rules
dynamic scheduling
Dynamical systems
Dynamics
Entscheidungsbaum
Exact sciences and technology
Extraction
game theory
Inventory control, production control. Distribution
inventory management
Job shops
Manufacturing
Memory organisation. Data processing
Operational research and scientific management
Operational research. Management science
pricing theory
Process controls
Produktionssteuerung
radio frequency identification
Real time
Scheduling
Scheduling algorithms
Scheduling, sequencing
Scheduling-Verfahren
Simulation
Software
Statistical process control
Statistische Methode
Studies
Title Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining
URI https://www.tandfonline.com/doi/abs/10.1080/00207540903307581
http://www.econis.eu/PPNSET?PPN=642175462
https://www.proquest.com/docview/763332337
https://www.proquest.com/docview/1671225781
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKxgM8ID61MpiMxBNVpjh2vh4n2KjQNhC0ouIlchJnq9alU5sgxl_PXZw4aYuqwUtUJXYS9X6-O1_ufkfIW88W0raVbQVcwQYlwDYvsUysLE0YDwT2g8cC57NzbzgWnybupNe77WQtlUV8mPz-a13J_0gVzoFcsUr2HyRrbgon4DfIF44gYTjeScZfVVX0ca0Gy6qdTe38wYYVDEhVZ74oZ0qzMJvg2QDU8aLuEP5zKgep7kkvZ7PbJnEdxg0wdXRwXbWP6DqwqxHEDu_EjaaOxbvWBEIm0HymCh1m_Ti_umzR-E3GYFTL-cWsrDTVZSc_6AtY6wUykWvTmC-m3fDESqpHUy5gW76ruZgOlday3PMsN6h6Chs1LIIO3BzeUaqwgQ87BtoLNR_MhvJvsiUdcIMExp9Af7m6Icwq0fb55-hkfHoajY4no3tk1_F9_MK_ezT88ON7a8bdoKbw1u_ffBJHYvb1R6w4NfcxkjFdrnHfYtKtXIIwM90wZcP2Vw7N6DF5VO9E6JGG1RPSU_lT8rDDT_mMXCDAKAKMGoDReUZbgNEKYBQARg3AaAswCgCjHYDRFmAUAUY1wJ6T8cnx6P3QqjtzWIkIWWG5fhpK7vuprZIwQ4pEn0vGZOD6UmELhiB2_DgQAuxJGrKMs8RmacqFZMqRccJfkJ18nqs9QrmUsUgClsHGXIjMDnFqamew71eup3if2M1fGyU1bT12T5lFzLDbrkmjT96ZKTeas2Xb4D0tLzMUS79hiOfAo7sSjIoqhlbLb_NOUfGr6BN3yxS-5S0OVtBhXsbhAk2s3yf7DVyiem0vI_ANOHc4h6tvzFUwD_jNT-ZqXi4jBrJx0Cyzl3cYs08etGv4FdkpFqV6DU53ER_Uy-MPZ4HWOg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDI8mNmnbw74nbjAIEk9IRUmdXtvHaQLdBtzDBBJvUZomE9qtN11709hfP7tNOzjQPfAcJ00Tx44d-2fG9sdCGSGciDJwaKBkVOalMDbypZWQKaoHTwnOZ9Px5EJ9vUwug8OtDmGVZEP7DiiildV0uMkZ3YfEUQo3ajpFLgZk0YQyrx8neG8nDgcx_S-JkyygMIsI6aF_1bxviFt66QkZo1f1CnwpxU2aGpfOdzUv7ojvVicdv2S6_5suFOXH4bIpDu3fFaDHh__uK_YiXFf5p46_XrNHrnrDnt8AMXzLvn_DuyanGvW8bovq4E7zuedoNqMao2x3vljOXM1xAnxw4XFUCosuqYL_vjK8vK5Mi1wwu-YhfB7pOAWw8p9tEYt37OL46PzzJArlGyKrctlESVrmBtK0FM7mnnD0UjBSmixJjSOc_qyI0yJTCoVOmUsP0gpZlqCMdLEpLLxnG9W8cpuMgzGFspn0aL0p5UVOXUvh0Th0ydjBiIl-87QN2OZUYmOm5QCBurKGI3YwdPnVAXusI97sOGIgpfxgJBnH-OmbPKKb1tESOOTuSLr504xYsqYLrJnFzi3-GyYTgyI5nI7YVs-QOoiiWqMCAYgBsHVvaEUZQg9DpnLzZa0l7k1Mslt-eODUdtnTyfnZqT79Mj3ZYs_iIeZnm200i6X7iDe3pthpj-c_aU80tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqqKr2AH0htjzqSj1VCrIzziY5VoUVfa2qqkjcIsePCnXJok22Kvx6ZhJvCgvaA-eMH4nHMx5n5vsYez8USgvhRJSBwwAlI5qXUpvIWyMhU8QHTwXO38fD4xP15TQ5Dbk5dUirpBjad0ARra2mzX1h_SIjjiq40dEpumFADU2o8Hodx0woow_E-L8hTrIAwiwilIfFT837urjllh5TLHpWL6GXUtqkrvHL-Y7y4o71bl3SaLPjXa1bJEPKRPlzMG_KA3O1hPP44Ld9zjbCYZV_7LTrBXvkqpfs2Q0Iw1fs9088aXJiqOd1S6mD68ynnmPQjE6Mat35bD5xNcfxeX-Bx9ElzLqSCv73THN7WekWt2ByyUPyPMpxSl_l5y2FxWt2Mjr69ek4CuQNkVG5bKIktbmGNLXCmdwTil4KWkqdJal2hNKflXFaZkqhybG59CCNkNaC0tLFujSwxdaqaeW2GQetS2Uy6TF2U8qLnJpa4TE0dMnQwYCJxdoVJiCbE8HGpJA9AOrSNxywD32Tiw7WY5XwdqcQvShVB6PIMMahb6pI0bTXLEFB7vZUNP-aAUtWNIEVs9i_pX79ZGJQZIXTAdtZ6GMRDFFdoPsAiAHw6bv-KVoQ-i2kKzed14XEtYnJcss3D5zaW_bkx-Go-PZ5_HWHPY37hJ9dttbM5m4Pj21Nud9uzmtn1zNb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+time+selection+of+scheduling+rules+and+knowledge+extraction+via+dynamically+controlled+data+mining&rft.jtitle=International+journal+of+production+research&rft.au=Metan%2C+Gokhan&rft.au=Sabuncuoglu%2C+Ihsan&rft.au=Pierreval%2C+Henri&rft.date=2010-12-01&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=48&rft.issue=23&rft.spage=6909&rft.epage=6938&rft_id=info:doi/10.1080%2F00207540903307581&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon