Online semi-supervised learning for motor imagery EEG classification

Time-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world adoption of motor imagery (MI)-based BCIs. An alternative approach is to integrate readily available, as well as informative, unlabeled data...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 165; p. 107405
Main Authors Zhang, Li, Li, Changsheng, Zhang, Run, Sun, Qiang
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.10.2023
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world adoption of motor imagery (MI)-based BCIs. An alternative approach is to integrate readily available, as well as informative, unlabeled data online, whereas this approach is less investigated. We proposed an online semi-supervised learning scheme to improve the classification performance of MI-based BCI. This scheme uses regularized weighted online sequential extreme learning machine (RWOS-ELM) as the base classifier and updates its model parameters with incoming balanced data chunk-by-chunk. In the initial stage, we designed a technique that combines the synthetic minority oversampling with the edited nearest neighbor rule for data augmentation to construct more discriminative initial classifiers. When used online, the incoming chunk of data is first pseudo-labeled by RWOS-ELM as well as an auxiliary classifier, and then balanced again by the above-mentioned technique. Initial classifiers are further updated based on these class-balanced data. Offline experimental results on two publicly available MI datasets demonstrate the superiority of the proposed scheme over its counterparts. Further online experiments on six subjects show that their BCI performance gradually improved by learning from incoming unlabeled data. Our proposed online semi-supervised learning scheme has higher computation and memory usage efficiency, which is promising for online MI-based BCIs, especially in the case of insufficient labeled training data. •An online semi-supervised learning method is proposed to deal with the problem of limited EEG data during calibration.•The proposed method does not rely on stored data to retrain the model online, which decreases memory usage burden.•An auxiliary classifier is introduced to help select pseudo-labeled data to avoid the performance degradation.•The proposed method can solve the problem of class imbalance during online learning.
AbstractList AbstractObjectiveTime-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world adoption of motor imagery (MI)-based BCIs. An alternative approach is to integrate readily available, as well as informative, unlabeled data online, whereas this approach is less investigated. Approach. We proposed an online semi-supervised learning scheme to improve the classification performance of MI-based BCI. This scheme uses regularized weighted online sequential extreme learning machine (RWOS-ELM) as the base classifier and updates its model parameters with incoming balanced data chunk-by-chunk. In the initial stage, we designed a technique that combines the synthetic minority oversampling with the edited nearest neighbor rule for data augmentation to construct more discriminative initial classifiers. When used online, the incoming chunk of data is first pseudo-labeled by RWOS-ELM as well as an auxiliary classifier, and then balanced again by the upper mentioned technique. Initial classifiers are further updated based on these class-balanced data. Main results. Offline experimental results on two publicly available MI datasets demonstrate the superiority of the proposed scheme over its counterparts. Further online experiments on six subjects show that their BCI performance gradually improved by learning from incoming unlabeled data. Significance. Our proposed online semi-supervised learning scheme has higher computation and memory usage efficiency, which is promising for online MI-based BCIs, especially in the case of insufficient labeled training data.
Time-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world adoption of motor imagery (MI)-based BCIs. An alternative approach is to integrate readily available, as well as informative, unlabeled data online, whereas this approach is less investigated.OBJECTIVETime-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world adoption of motor imagery (MI)-based BCIs. An alternative approach is to integrate readily available, as well as informative, unlabeled data online, whereas this approach is less investigated.We proposed an online semi-supervised learning scheme to improve the classification performance of MI-based BCI. This scheme uses regularized weighted online sequential extreme learning machine (RWOS-ELM) as the base classifier and updates its model parameters with incoming balanced data chunk-by-chunk. In the initial stage, we designed a technique that combines the synthetic minority oversampling with the edited nearest neighbor rule for data augmentation to construct more discriminative initial classifiers. When used online, the incoming chunk of data is first pseudo-labeled by RWOS-ELM as well as an auxiliary classifier, and then balanced again by the above-mentioned technique. Initial classifiers are further updated based on these class-balanced data.APPROACHWe proposed an online semi-supervised learning scheme to improve the classification performance of MI-based BCI. This scheme uses regularized weighted online sequential extreme learning machine (RWOS-ELM) as the base classifier and updates its model parameters with incoming balanced data chunk-by-chunk. In the initial stage, we designed a technique that combines the synthetic minority oversampling with the edited nearest neighbor rule for data augmentation to construct more discriminative initial classifiers. When used online, the incoming chunk of data is first pseudo-labeled by RWOS-ELM as well as an auxiliary classifier, and then balanced again by the above-mentioned technique. Initial classifiers are further updated based on these class-balanced data.Offline experimental results on two publicly available MI datasets demonstrate the superiority of the proposed scheme over its counterparts. Further online experiments on six subjects show that their BCI performance gradually improved by learning from incoming unlabeled data.MAIN RESULTSOffline experimental results on two publicly available MI datasets demonstrate the superiority of the proposed scheme over its counterparts. Further online experiments on six subjects show that their BCI performance gradually improved by learning from incoming unlabeled data.Our proposed online semi-supervised learning scheme has higher computation and memory usage efficiency, which is promising for online MI-based BCIs, especially in the case of insufficient labeled training data.SIGNIFICANCEOur proposed online semi-supervised learning scheme has higher computation and memory usage efficiency, which is promising for online MI-based BCIs, especially in the case of insufficient labeled training data.
Time-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world adoption of motor imagery (MI)-based BCIs. An alternative approach is to integrate readily available, as well as informative, unlabeled data online, whereas this approach is less investigated. We proposed an online semi-supervised learning scheme to improve the classification performance of MI-based BCI. This scheme uses regularized weighted online sequential extreme learning machine (RWOS-ELM) as the base classifier and updates its model parameters with incoming balanced data chunk-by-chunk. In the initial stage, we designed a technique that combines the synthetic minority oversampling with the edited nearest neighbor rule for data augmentation to construct more discriminative initial classifiers. When used online, the incoming chunk of data is first pseudo-labeled by RWOS-ELM as well as an auxiliary classifier, and then balanced again by the above-mentioned technique. Initial classifiers are further updated based on these class-balanced data. Offline experimental results on two publicly available MI datasets demonstrate the superiority of the proposed scheme over its counterparts. Further online experiments on six subjects show that their BCI performance gradually improved by learning from incoming unlabeled data. Our proposed online semi-supervised learning scheme has higher computation and memory usage efficiency, which is promising for online MI-based BCIs, especially in the case of insufficient labeled training data. •An online semi-supervised learning method is proposed to deal with the problem of limited EEG data during calibration.•The proposed method does not rely on stored data to retrain the model online, which decreases memory usage burden.•An auxiliary classifier is introduced to help select pseudo-labeled data to avoid the performance degradation.•The proposed method can solve the problem of class imbalance during online learning.
ObjectiveTime-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world adoption of motor imagery (MI)-based BCIs. An alternative approach is to integrate readily available, as well as informative, unlabeled data online, whereas this approach is less investigated.ApproachWe proposed an online semi-supervised learning scheme to improve the classification performance of MI-based BCI. This scheme uses regularized weighted online sequential extreme learning machine (RWOS-ELM) as the base classifier and updates its model parameters with incoming balanced data chunk-by-chunk. In the initial stage, we designed a technique that combines the synthetic minority oversampling with the edited nearest neighbor rule for data augmentation to construct more discriminative initial classifiers. When used online, the incoming chunk of data is first pseudo-labeled by RWOS-ELM as well as an auxiliary classifier, and then balanced again by the above-mentioned technique. Initial classifiers are further updated based on these class-balanced data.Main resultsOffline experimental results on two publicly available MI datasets demonstrate the superiority of the proposed scheme over its counterparts. Further online experiments on six subjects show that their BCI performance gradually improved by learning from incoming unlabeled data.SignificanceOur proposed online semi-supervised learning scheme has higher computation and memory usage efficiency, which is promising for online MI-based BCIs, especially in the case of insufficient labeled training data.
ArticleNumber 107405
Author Sun, Qiang
Li, Changsheng
Zhang, Run
Zhang, Li
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0001-7294-9395
  surname: Zhang
  fullname: Zhang, Li
  email: zldy02@cqu.edu.cn
  organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, People’s Republic of China
– sequence: 2
  givenname: Changsheng
  surname: Li
  fullname: Li, Changsheng
  organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, People’s Republic of China
– sequence: 3
  givenname: Run
  surname: Zhang
  fullname: Zhang, Run
  organization: Marketing Service Center, State Grid Chongqing Electric Power Company, Yuzhong District, Chongqing, 400014, People’s Republic of China
– sequence: 4
  givenname: Qiang
  orcidid: 0000-0002-1125-4706
  surname: Sun
  fullname: Sun, Qiang
  organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, People’s Republic of China
BookMark eNqVkkFr3DAQhUVJoJuk_8HQSy_ejizJli6lbbJJC4EckpyFVh4FbW1pK3kD--8rZ0sKgUJyGYF483jzzZyQoxADElJRWFKg7efN0sZxu_ZxxH7ZQMPKd8dBvCMLKjtVg2D8iCwAKNRcNuI9Ocl5AwAcGCzIxU0YfMAq4-jrvNtievQZ-2pAk4IPD5WLqRrjVKofzQOmfbVaXVV2MDl7562ZfAxn5NiZIeOHv-8pub9c3Z3_qK9vrn6ef7uuLVd0qgUFI1tqjOOMUebWqmvXfQsKZCskSqsc552g3HK0pmNMOSmcRQuKrgUYdko-HXy3Kf7eYZ706LPFYTAB4y7rRrasUYo2okg_vpBu4i6Fkm5WdbRtSykqeVDZFHNO6PQ2lTHTXlPQM1690f_w6hmvPuAtrV9etFo_PdGYkvHDawy-HwywEHv0mHS2HoPF3ie0k-6jf0OKZxNb1lnWMvzCPebnmanOjQZ9O5_BfAUNA5AdsGLw9f8Gr8vwBwZ8yMQ
CitedBy_id crossref_primary_10_3389_fnhum_2024_1447662
crossref_primary_10_1016_j_compbiomed_2023_107910
Cites_doi 10.1088/1741-2552/ab7264
10.1007/s12559-014-9255-2
10.1166/jmihi.2017.2061
10.1109/JBHI.2013.2285232
10.1016/j.neucom.2012.02.003
10.1613/jair.1.11192
10.1016/j.eswa.2017.12.015
10.1109/MCI.2018.2866730
10.1016/j.patcog.2016.08.010
10.1109/TCYB.2014.2307349
10.1002/ird.2592
10.1109/TNN.2006.880583
10.1088/1741-2552/aaa8c0
10.1007/s12524-022-01500-3
10.1109/TBME.2004.827088
10.1109/ACCESS.2020.2997116
10.3390/s22155860
10.1016/j.neunet.2022.06.008
10.1109/TBME.2013.2261994
10.1007/s10827-018-0701-0
10.1155/2019/2087132
10.1109/TNSRE.2022.3192448
10.1007/s00521-019-04066-3
10.1016/j.cegh.2018.10.007
10.1016/S0013-4694(97)00080-1
10.1109/TSMC.1972.4309137
10.1016/j.asoc.2020.106071
10.1016/j.neucom.2016.12.098
10.1007/s13042-020-01209-0
10.3390/pr8040415
10.1109/86.895946
10.1613/jair.953
ContentType Journal Article
Copyright 2023 Elsevier Ltd
2023. Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: 2023. Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.107405
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & allied health premium.
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107405
ExternalDocumentID 10_1016_j_compbiomed_2023_107405
S0010482523008703
1_s2_0_S0010482523008703
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c491t-510a861aaf43313fb976bd60908658e8c9f447514c4eca7339f85fcec091b50a3
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Thu Jul 10 23:20:55 EDT 2025
Wed Aug 13 07:50:46 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Jul 01 03:29:04 EDT 2025
Fri Feb 23 02:35:12 EST 2024
Tue Feb 25 20:03:25 EST 2025
Tue Aug 26 20:14:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain-computer interface
Extreme learning machine
Synthetic minority oversampling technique
Semi-supervised learning
Edited nearest neighbor rule
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-510a861aaf43313fb976bd60908658e8c9f447514c4eca7339f85fcec091b50a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1125-4706
0000-0001-7294-9395
PQID 2867166671
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2863299125
proquest_journals_2867166671
crossref_primary_10_1016_j_compbiomed_2023_107405
crossref_citationtrail_10_1016_j_compbiomed_2023_107405
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107405
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523008703
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers in biology and medicine
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Ansari, Edla, Dodia, Kuppili (bib19) 2019; 7
Zhang, Chen, Tan, He, Zhang (bib8) 2017; 7
Wei, Li, Ji, Jin, Liu, Bai, Ye (bib17) 2022; 30
Ramoser, Muller-Gerking, Pfurtscheller (bib34) 2000; 8
Liu, Zhou, Zhang, Xiong (bib14) 2020; 89
Aydav, Kumar, Minz (bib23) 2022; 50
Meng, Sheng, Zhang, Zhu (bib9) 2014; 18
Chawla, Bowyer, Hall, Kegelmeyer (bib26) 2002; 16
She, Zou, Meng, Fan, Luo (bib13) 2021; 12
Huang (bib30) 2014; 6
Ko, Jeon, Yoon, Suk (bib16) 2022; 12
Zhao, Wang, Park (bib21) 2012; 87
Pfurtscheller, Neuper, Flotzinger, Pregenzer (bib3) 1997; 103
Talukdar, Hazarika, Gan (bib5) 2019; 46
Liang, Huang, Saratchandran, Sundararajan (bib20) 2006; 17
Zhang, Wen, Li, Zhu (bib37) 2020; 17
Huang, Song, Gupta, Wu (bib38) 2014; 44
Salimpour, Kalbkhani, Seyyedi, Solouk (bib15) 2022; 12
Oikonomou, Nikolopoulos, Kompatsiaris (bib35) 2020; 8
Baniqued, Stanyer, Awais, Alazmani, Jackson, Mon-Williams, Mushtaq, Holt (bib2) 2021; 18
She, Zhou, Gan, Ma, Luo (bib12) 2019; 8
Gu, Yu, Shen, Li (bib18) 2013; 60
Wang, Gu, Yu, Li (bib22) 2017; 269
Tangermann, Muller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Muller-Putz, Nolte, Pfurtscheller, Preissl, Schalk, Schogl, Vidaurre, Waldert, Blankertz (bib33) 2012; 6
Chen, Jiao, Liu, Zhao, Zhao, Liu (bib24) 2017; 61
Bamdadian, Guan, Ang, Xu (bib10) 2012
Choi, Park, Yang (bib4) 2022; 22
Dornhege, Blankertz, Curio, Muller (bib32) 2004; 51
Santos, Soares, Abreu, Araujo, Santos (bib39) 2018; 13
Wilson (bib28) 1972; SMC2
Wu, Jiang, Peng (bib7) 2022; 153
Shahbazbeygi, Yosefvand, Yaghoubi, Shabanlou, Rajabi (bib31) 2021; 70
Zhang, Wang, Zhou, Jin, Wang, Wang, Cichocki (bib36) 2018; 96
Xia, Wang, Liu, Weng, Xu (bib29) 2020; 32
He, Eguren, Azorin, Grossman, Luu, Contreras-Vidal (bib1) 2018; 15
Oikonomou, Nikolopoulos, Kompatsiaris (bib6) 2022
Xu, Hua, Zhang, Hu, Huang, Liu, Guo (bib11) 2019; 2019
Li, Xie, Chen (bib25) 2020; 8
Fernandez, Garcia, Herrera, Chawla (bib27) 2018; 61
Choi (10.1016/j.compbiomed.2023.107405_bib4) 2022; 22
Meng (10.1016/j.compbiomed.2023.107405_bib9) 2014; 18
Huang (10.1016/j.compbiomed.2023.107405_bib38) 2014; 44
Xu (10.1016/j.compbiomed.2023.107405_bib11) 2019; 2019
Santos (10.1016/j.compbiomed.2023.107405_bib39) 2018; 13
Li (10.1016/j.compbiomed.2023.107405_bib25) 2020; 8
Huang (10.1016/j.compbiomed.2023.107405_bib30) 2014; 6
Ko (10.1016/j.compbiomed.2023.107405_bib16) 2022; 12
She (10.1016/j.compbiomed.2023.107405_bib13) 2021; 12
Liu (10.1016/j.compbiomed.2023.107405_bib14) 2020; 89
Zhang (10.1016/j.compbiomed.2023.107405_bib8) 2017; 7
Ansari (10.1016/j.compbiomed.2023.107405_bib19) 2019; 7
Zhao (10.1016/j.compbiomed.2023.107405_bib21) 2012; 87
Liang (10.1016/j.compbiomed.2023.107405_bib20) 2006; 17
Ramoser (10.1016/j.compbiomed.2023.107405_bib34) 2000; 8
Xia (10.1016/j.compbiomed.2023.107405_bib29) 2020; 32
Zhang (10.1016/j.compbiomed.2023.107405_bib36) 2018; 96
She (10.1016/j.compbiomed.2023.107405_bib12) 2019; 8
Oikonomou (10.1016/j.compbiomed.2023.107405_bib35) 2020; 8
Bamdadian (10.1016/j.compbiomed.2023.107405_bib10) 2012
Aydav (10.1016/j.compbiomed.2023.107405_bib23) 2022; 50
Shahbazbeygi (10.1016/j.compbiomed.2023.107405_bib31) 2021; 70
Zhang (10.1016/j.compbiomed.2023.107405_bib37) 2020; 17
Wu (10.1016/j.compbiomed.2023.107405_bib7) 2022; 153
Dornhege (10.1016/j.compbiomed.2023.107405_bib32) 2004; 51
Chen (10.1016/j.compbiomed.2023.107405_bib24) 2017; 61
Salimpour (10.1016/j.compbiomed.2023.107405_bib15) 2022; 12
Wang (10.1016/j.compbiomed.2023.107405_bib22) 2017; 269
Baniqued (10.1016/j.compbiomed.2023.107405_bib2) 2021; 18
He (10.1016/j.compbiomed.2023.107405_bib1) 2018; 15
Wei (10.1016/j.compbiomed.2023.107405_bib17) 2022; 30
Wilson (10.1016/j.compbiomed.2023.107405_bib28) 1972; SMC2
Oikonomou (10.1016/j.compbiomed.2023.107405_bib6) 2022
Gu (10.1016/j.compbiomed.2023.107405_bib18) 2013; 60
Pfurtscheller (10.1016/j.compbiomed.2023.107405_bib3) 1997; 103
Chawla (10.1016/j.compbiomed.2023.107405_bib26) 2002; 16
Talukdar (10.1016/j.compbiomed.2023.107405_bib5) 2019; 46
Fernandez (10.1016/j.compbiomed.2023.107405_bib27) 2018; 61
Tangermann (10.1016/j.compbiomed.2023.107405_bib33) 2012; 6
References_xml – volume: 8
  year: 2019
  ident: bib12
  article-title: Decoding EEG in motor imagery tasks with graph semi-supervised broad learning
  publication-title: Electronics-Switz
– volume: 12
  year: 2022
  ident: bib15
  article-title: Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals
  publication-title: Sci. Rep.-Uk
– volume: 51
  start-page: 993
  year: 2004
  end-page: 1002
  ident: bib32
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE T Bio.-Med. Eng
– volume: 44
  start-page: 2405
  year: 2014
  end-page: 2417
  ident: bib38
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE T Cybernetics
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib26
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 96
  start-page: 302
  year: 2018
  end-page: 310
  ident: bib36
  article-title: Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces
  publication-title: Expert Syst. Appl.
– volume: 12
  year: 2022
  ident: bib16
  article-title: Semi-supervised generative and discriminative adversarial learning for motor imagery-based brain-computer interface
  publication-title: Sci. Rep.-Uk
– volume: 30
  start-page: 2067
  year: 2022
  end-page: 2076
  ident: bib17
  article-title: A semi-supervised progressive learning algorithm for brain-computer interface
  publication-title: IEEE T Neur. Syst. Rehabil.
– volume: 46
  start-page: 55
  year: 2019
  end-page: 76
  ident: bib5
  article-title: Motor imagery and mental fatigue: inter-relationship and EEG based estimation
  publication-title: J. Comput. Neurosci.
– volume: 8
  year: 2020
  ident: bib25
  article-title: Semi-supervised ensemble classification method based on near neighbor and its application
  publication-title: Processes
– volume: 18
  year: 2021
  ident: bib2
  article-title: Brain-computer interface robotics for hand rahabilitation after stroke: a systematic review
  publication-title: J. NeuroEng. Rehabil.
– volume: 50
  start-page: 877
  year: 2022
  end-page: 893
  ident: bib23
  article-title: Self-training with spatially confident and diverse samples for the classification of remote sensing images
  publication-title: J. Indian Soc. Remote
– start-page: 1308
  year: 2022
  end-page: 1312
  ident: bib6
  article-title: A multitask bayesian framework for the analysis of motor imagery EEG data
  publication-title: 30th European Signal Processing Conference
– volume: 7
  start-page: 330
  year: 2017
  end-page: 337
  ident: bib8
  article-title: An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface
  publication-title: J. Med. Imaging Health Inform.
– volume: 32
  start-page: 7747
  year: 2020
  end-page: 7758
  ident: bib29
  article-title: Density-based semi-supervised online sequential extreme learning machine
  publication-title: Neural Comput. Appl.
– volume: 7
  start-page: 274
  year: 2019
  end-page: 278
  ident: bib19
  article-title: Brain-computer interface for wheelchair control operations: an approach based on fast fourier transform and on-line sequential extreme learning machine
  publication-title: Clin. Epidemiol Glob.
– volume: 70
  start-page: 757
  year: 2021
  end-page: 772
  ident: bib31
  article-title: Stone weir scour modelling in curved canals using a weighted regularized extreme learning machine
  publication-title: Irrig. Drain.
– volume: 13
  start-page: 59
  year: 2018
  end-page: 76
  ident: bib39
  article-title: Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches
  publication-title: IEEE Comput. Intell. M
– volume: 103
  start-page: 642
  year: 1997
  end-page: 651
  ident: bib3
  article-title: EEG-based discrimination between imagination of right and left hand movement
  publication-title: Electroen. Clin. Neuro.
– volume: 2019
  year: 2019
  ident: bib11
  article-title: Improved transductive support vector machine for a small labelled set in motor imagery-based brain-computer interface
  publication-title: Comput. Intell. Neurosci.
– volume: 60
  start-page: 2614
  year: 2013
  end-page: 2623
  ident: bib18
  article-title: An online semi-supervised brain-computer interface
  publication-title: IEEE T Bio.-Med. Eng.
– volume: 61
  start-page: 361
  year: 2017
  end-page: 378
  ident: bib24
  article-title: Semi-supervised double sparse graphs based discriminant analysis for dimensionality reduction
  publication-title: Pattern Recogn.
– volume: 12
  start-page: 903
  year: 2021
  end-page: 916
  ident: bib13
  article-title: Balanced Graph-based regularized semi-supervised extreme learning machine for EEG classification
  publication-title: Int. J. Mach. Learn Cyb.
– volume: 15
  year: 2018
  ident: bib1
  article-title: Brain-machine interfaces for controlling lower-limb powered robotic systems
  publication-title: J. Neural. Eng.
– volume: 18
  start-page: 1461
  year: 2014
  end-page: 1472
  ident: bib9
  article-title: Improved semisupervised adaptation for a small training dataset in the brain-computer interface
  publication-title: IEEE J. Biomed. Health
– volume: 8
  start-page: 98572
  year: 2020
  end-page: 98583
  ident: bib35
  article-title: Robust motor imagery classification using sparse representations and grouping structures
  publication-title: IEEE Access
– volume: 89
  year: 2020
  ident: bib14
  article-title: Semi-supervised learning quantization algorithm with deep features for motor imagery EEG Recognition in smart healthcare application
  publication-title: Appl. Soft Comput.
– volume: 6
  year: 2012
  ident: bib33
  article-title: Review of the BCI competition IV
  publication-title: Front Neurosci.-Switz
– volume: 87
  start-page: 79
  year: 2012
  end-page: 89
  ident: bib21
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
– volume: 61
  start-page: 863
  year: 2018
  end-page: 905
  ident: bib27
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J. Artif. Intell. Res.
– volume: 269
  start-page: 148
  year: 2017
  end-page: 151
  ident: bib22
  article-title: An online semi-supervised P300 speller based on extreme learning machine
  publication-title: Neurocomputing
– volume: 153
  start-page: 235
  year: 2022
  end-page: 253
  ident: bib7
  article-title: Transfer learning for motor imagery based brain-computer interfaces: a tutorial
  publication-title: Neural Network.
– volume: SMC2
  start-page: 408
  year: 1972
  ident: bib28
  article-title: Asymptotic properties of nearest neighbor rules using edited data
  publication-title: IEEE T Syst. Man. Cyb.
– volume: 6
  start-page: 376
  year: 2014
  end-page: 390
  ident: bib30
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cogn. Comput.
– volume: 17
  year: 2020
  ident: bib37
  article-title: Ensemble classifier based on optimized extreme learning machine for motor imagery classification
  publication-title: J. Neural. Eng.
– start-page: 2732
  year: 2012
  end-page: 2735
  ident: bib10
  article-title: Online semi-supervised learning with KL distance weighting for motor imagery-based BCI
  publication-title: IEEE Engineering in Medicine and Biology Society Conference Proceedings
– volume: 22
  year: 2022
  ident: bib4
  article-title: A novel quick-response eigenface analysis scheme for brain-computer interfaces
  publication-title: Sensors-Basel
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: bib34
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE T Neur. Sys. Rehabil.
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bib20
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE T Neural Netw.
– volume: 17
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107405_bib37
  article-title: Ensemble classifier based on optimized extreme learning machine for motor imagery classification
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/ab7264
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107405_bib30
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-014-9255-2
– volume: 7
  start-page: 330
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107405_bib8
  article-title: An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2017.2061
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107405_bib16
  article-title: Semi-supervised generative and discriminative adversarial learning for motor imagery-based brain-computer interface
  publication-title: Sci. Rep.-Uk
– volume: 18
  start-page: 1461
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107405_bib9
  article-title: Improved semisupervised adaptation for a small training dataset in the brain-computer interface
  publication-title: IEEE J. Biomed. Health
  doi: 10.1109/JBHI.2013.2285232
– volume: 87
  start-page: 79
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107405_bib21
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.003
– volume: 61
  start-page: 863
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107405_bib27
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.11192
– volume: 96
  start-page: 302
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107405_bib36
  article-title: Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.12.015
– volume: 13
  start-page: 59
  issue: 4
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107405_bib39
  article-title: Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches
  publication-title: IEEE Comput. Intell. M
  doi: 10.1109/MCI.2018.2866730
– volume: 61
  start-page: 361
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107405_bib24
  article-title: Semi-supervised double sparse graphs based discriminant analysis for dimensionality reduction
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.08.010
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107405_bib38
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE T Cybernetics
  doi: 10.1109/TCYB.2014.2307349
– volume: 70
  start-page: 757
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107405_bib31
  article-title: Stone weir scour modelling in curved canals using a weighted regularized extreme learning machine
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.2592
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.compbiomed.2023.107405_bib20
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE T Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 15
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107405_bib1
  article-title: Brain-machine interfaces for controlling lower-limb powered robotic systems
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/aaa8c0
– volume: 50
  start-page: 877
  issue: 5
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107405_bib23
  article-title: Self-training with spatially confident and diverse samples for the classification of remote sensing images
  publication-title: J. Indian Soc. Remote
  doi: 10.1007/s12524-022-01500-3
– volume: 51
  start-page: 993
  issue: 6
  year: 2004
  ident: 10.1016/j.compbiomed.2023.107405_bib32
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE T Bio.-Med. Eng
  doi: 10.1109/TBME.2004.827088
– volume: 8
  start-page: 98572
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107405_bib35
  article-title: Robust motor imagery classification using sparse representations and grouping structures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997116
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107405_bib15
  article-title: Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals
  publication-title: Sci. Rep.-Uk
– volume: 22
  issue: 15
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107405_bib4
  article-title: A novel quick-response eigenface analysis scheme for brain-computer interfaces
  publication-title: Sensors-Basel
  doi: 10.3390/s22155860
– volume: 153
  start-page: 235
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107405_bib7
  article-title: Transfer learning for motor imagery based brain-computer interfaces: a tutorial
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2022.06.008
– start-page: 2732
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107405_bib10
  article-title: Online semi-supervised learning with KL distance weighting for motor imagery-based BCI
– volume: 60
  start-page: 2614
  issue: 9
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107405_bib18
  article-title: An online semi-supervised brain-computer interface
  publication-title: IEEE T Bio.-Med. Eng.
  doi: 10.1109/TBME.2013.2261994
– start-page: 1308
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107405_bib6
  article-title: A multitask bayesian framework for the analysis of motor imagery EEG data
– volume: 8
  issue: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107405_bib12
  article-title: Decoding EEG in motor imagery tasks with graph semi-supervised broad learning
  publication-title: Electronics-Switz
– volume: 46
  start-page: 55
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107405_bib5
  article-title: Motor imagery and mental fatigue: inter-relationship and EEG based estimation
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-018-0701-0
– volume: 2019
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107405_bib11
  article-title: Improved transductive support vector machine for a small labelled set in motor imagery-based brain-computer interface
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/2087132
– volume: 30
  start-page: 2067
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107405_bib17
  article-title: A semi-supervised progressive learning algorithm for brain-computer interface
  publication-title: IEEE T Neur. Syst. Rehabil.
  doi: 10.1109/TNSRE.2022.3192448
– volume: 32
  start-page: 7747
  issue: 12
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107405_bib29
  article-title: Density-based semi-supervised online sequential extreme learning machine
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04066-3
– volume: 7
  start-page: 274
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107405_bib19
  article-title: Brain-computer interface for wheelchair control operations: an approach based on fast fourier transform and on-line sequential extreme learning machine
  publication-title: Clin. Epidemiol Glob.
  doi: 10.1016/j.cegh.2018.10.007
– volume: 103
  start-page: 642
  year: 1997
  ident: 10.1016/j.compbiomed.2023.107405_bib3
  article-title: EEG-based discrimination between imagination of right and left hand movement
  publication-title: Electroen. Clin. Neuro.
  doi: 10.1016/S0013-4694(97)00080-1
– volume: SMC2
  start-page: 408
  issue: 3
  year: 1972
  ident: 10.1016/j.compbiomed.2023.107405_bib28
  article-title: Asymptotic properties of nearest neighbor rules using edited data
  publication-title: IEEE T Syst. Man. Cyb.
  doi: 10.1109/TSMC.1972.4309137
– volume: 89
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107405_bib14
  article-title: Semi-supervised learning quantization algorithm with deep features for motor imagery EEG Recognition in smart healthcare application
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106071
– volume: 6
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107405_bib33
  article-title: Review of the BCI competition IV
  publication-title: Front Neurosci.-Switz
– volume: 269
  start-page: 148
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107405_bib22
  article-title: An online semi-supervised P300 speller based on extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.098
– volume: 12
  start-page: 903
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107405_bib13
  article-title: Balanced Graph-based regularized semi-supervised extreme learning machine for EEG classification
  publication-title: Int. J. Mach. Learn Cyb.
  doi: 10.1007/s13042-020-01209-0
– volume: 8
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107405_bib25
  article-title: Semi-supervised ensemble classification method based on near neighbor and its application
  publication-title: Processes
  doi: 10.3390/pr8040415
– volume: 8
  start-page: 441
  issue: 4
  year: 2000
  ident: 10.1016/j.compbiomed.2023.107405_bib34
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE T Neur. Sys. Rehabil.
  doi: 10.1109/86.895946
– volume: 18
  issue: 15
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107405_bib2
  article-title: Brain-computer interface robotics for hand rahabilitation after stroke: a systematic review
  publication-title: J. NeuroEng. Rehabil.
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.compbiomed.2023.107405_bib26
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
SSID ssj0004030
Score 2.3769717
Snippet Time-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world...
AbstractObjectiveTime-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that...
ObjectiveTime-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107405
SubjectTerms Algorithms
Artificial neural networks
Brain-computer interface
Calibration
Classification
Classifiers
Data augmentation
Deep learning
Distance learning
Edited nearest neighbor rule
Electroencephalography
Extreme learning machine
Fatigue
Human-computer interface
Image classification
Internal Medicine
Internet
Machine learning
Mental task performance
Methods
Motor skill learning
Other
Semi-supervised learning
Synthetic minority oversampling technique
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KD-JFfGK0SgSvafPYvPAktbUI9WShtyW72ZWIfWDagxd_uzPZTYraQ8FLIMkOGyazs9-w38wQcuvHsM3kSeoIXygIUJRyuPSEEwjAsrDFcVnV2R4_R6MJfZqG0xbp17kwSKs0vl_79Mpbmyc9o83esigwxxdCCQhwAES7YHVY8ZPSGK28-7WheVA30Gko4G9wtGHzaI4X0rZ1mnsX24h3kZ2Ijey2b1G_nHW1Aw0PyYGBjva9_roj0pLzY7I3NofjJ-RBlw21SzkrnHK9RC9Qytw2jSFebcCnNvwZuBYzLF3xaQ8Gj7ZA_IyEoeofnZLJcPDSHzmmSYIjaOqtHFhTWRJ5WaYw9ylQHPAFzyM3hVglTGQiUoU1_TwqqBRZHASpSkIlpACgwEM3C85Ie76Yy3Ni4ykpzQKheOLTMM2zEIIPnvKcRqFKXGWRuNYLE6aCODayeGc1VeyNbTTKUKNMa9QiXiO51FU0dpBJa9WzOksU_BoDV7-DbLxNVpZmgZbMY6XPXPbHiCxy10j-sMMd5-3UNsKaqXwsIQhRYuxZ5KZ5DasYj2ayuVysqzEBAANAmxf_-oBLso93mm3YIe3Vx1peAWpa8etqWXwDHPAUwQ
  priority: 102
  providerName: Elsevier
Title Online semi-supervised learning for motor imagery EEG classification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523008703
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523008703
https://dx.doi.org/10.1016/j.compbiomed.2023.107405
https://www.proquest.com/docview/2867166671
https://www.proquest.com/docview/2863299125
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58gHgRn1gfJYLX1CSbNAkexEdrVSziA3pbsptdUbStpj148bc7k920ICK9JIdksjA7O_tNduYbgMMgxm0mT1JXBlJjgKK1K5QvXSYRy-IWJ1TJs33bbXaewute1LM_3AqbVln5xNJR5wNJ_8iPAiJiQ6wd-yfDD5e6RtHpqm2hMQ-LRF1GVh334mldpMdMCQr6mhBDIZvJY_K7KGXblLg3qIV4gzITqYnd39vTL0dd7j7tVVixsNE5NfO8BnOqvw5Lt_ZgfAMuDGWoU6j3F7cYD8kDFCp3bFOIZwexqYOzgteXd6Kt-HJarUtHEnamZKFyfjbhqd16PO-4tkGCK8PUH7m4nrKk6WeZpronpgViC5E3vRTjlChRiUw18fn5oQyVzGLGUp1EWiqJIEFEXsa2YKE_6KttcOiENMyY1CIJwijNswgDD5GKPGxGOvF0DeJKL1xa9nBqYvHGqzSxVz7VKCeNcqPRGvgTyaFh0JhBJq1Uz6sKUfRpHN38DLLxX7KqsIuz4D4vAu7xh5KbCM0CozAP3RarwfFE0uIPgytmHHevshE-GWpqtTU4mDzGFUzHMllfDcblOwxBASLNnf8_sQvLNJ5JJdyDhdHnWO0jJBqJOsw3vv16af14TdqXdVg8vbrpdPF-1ure3f8AH0AOww
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED5BkWAvEzCmlZVhpO0xkMRJEwshNI2WMigvgMSbFzv2xARtIa0Qf4rfyF2ctNKEUF94yUtysXQ5330X330H8D1MMMzkqfB0qC0mKNZ6ygTa4xqxLIY4ZUqe7f55u3cV_b6Orxfgue6FobLK2ieWjjofavpHvhcSERti7SQ4HN17NDWKTlfrERrOLE7N0yOmbMXByRF-3x9h2O1c_up51VQBT0ciGHtohFnaDrLMUrMQtwoDssrbvkBwH6cm1cISCV4Q6cjoLOFc2DS22miMrCr2M47vXYQlFBaU7KXd41kfps9dywv6tghTr6pyyNWTUYm4a6nfpZHlu1QJSUPzXg-H_wWGMtp1V-FjBVPZT2dXa7BgBuuw3K8O4j_BkaMoZYW5u_GKyYg8TmFyVg2h-MsQCzO0Arze3BFNxhPrdI6ZJqxOxUmlPWzA1buo7jM0BsOB-QKMTmSjjGur0jCKRZ7FmOgoofKoHdvUt01Iar1IXbGV09CMW1mXpf2TM41K0qh0Gm1CMJUcOcaOOWRErXpZd6SiD5UYVuaQTV6TNUXlDAoZyCKUvrwouZDQLDDr89FN8ibsTyUrvONwzJzrtmobkdOlZrukCTvT2-gx6BgoG5jhpHyGIwhBZLv59iu2YaV32T-TZyfnp1_hA63tyhhb0Bg_TMwWwrGx-lbuAQZ_3nvTvQA6tEW1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xVkJ7mWAw0dFtRmKPgSROmkTTNI21pQyo0AYSbyZ27ImJ_mBpNfGv7a_bXey00oSmvvCSl-Ri6XK--y7-7g5gP0wwzBRp5qlQGUxQjPGkDpTHFWJZDHFSV322z4edwVX09Tq-XoM_dS0M0Sprn1g56mKi6B_5YUiN2BBrJ8GhcbSIi27_0_TeowlSdNJaj9OwJnKqH35j-lZ-POnit34fhv3e5ZeB5yYMeCrKgpmHBpmnnSDPDRUOcSMxOMui42cI9ONUpyoz1BAviFSkVZ5wnpk0NkorjLIy9nOO730GzYSyogY0j3rDi2_Lqkyf2wIY9HQRJmKOR2TZZUQYtwX2BzTA_IB4kTRC7_Hg-E-YqGJffwNeONDKPlsr24Q1PX4J6-fuWH4LurZhKSv16NYr51PyP6UumBtJ8YMhMmZoE3i9HVHTjAfW6x0zRcidqEqVdWzD1ZMo7xU0xpOx3gFG57NRzpWRaRjFWZHHmPbITBZRJzapb1qQ1HoRyvUupxEad6Imqf0US40K0qiwGm1BsJCc2v4dK8hktepFXZ-KHlVgkFlBNnlMVpfONZQiEGUofPG96oyEZoE5oI9Ok7fgw0LSoR-LalZct13biFgstdwzLdhb3Eb_QYdC-VhP5tUzHCEJ4tzX_3_FO1jHDSfOToanu_CclracxjY0Zr_m-g1is5l86zYBg5un3nd_AeiHS0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+semi-supervised+learning+for+motor+imagery+EEG+classification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Zhang%2C+Li&rft.au=Li%2C+Changsheng&rft.au=Zhang%2C+Run&rft.au=Sun%2C+Qiang&rft.date=2023-10-01&rft.issn=0010-4825&rft.spage=107405&rft.epage=107405&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107405&rft.externalDBID=ECK1-s2.0-S0010482523008703&rft.externalDocID=1_s2_0_S0010482523008703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon