Liver Cancer Algorithm: A novel bio-inspired optimizer
This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability...
Saved in:
Published in | Computers in biology and medicine Vol. 165; p. 107389 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.10.2023
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm’s efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC’2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge–Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection.
•An efficient LCA algorithm is proposed based on Liver cancer tumor.•CEC’20 test suite is utilized for verification of LCA performance.•LCA is proposed for biomedical classification tasks.•LCA is analyzed using various analysis metrics.•The performance of the LCA is better than other competitor algorithms. |
---|---|
AbstractList | This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor's ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm's efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC'2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge-Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection.This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor's ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm's efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC'2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge-Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection. This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm’s efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC’2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge–Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection. AbstractThis paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm’s efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC’2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection. This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm’s efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC’2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge–Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection. •An efficient LCA algorithm is proposed based on Liver cancer tumor.•CEC’20 test suite is utilized for verification of LCA performance.•LCA is proposed for biomedical classification tasks.•LCA is analyzed using various analysis metrics.•The performance of the LCA is better than other competitor algorithms. |
ArticleNumber | 107389 |
Author | Samee, Nagwan Abdel Oliva, Diego Houssein, Essam H. Emam, Marwa M. Mahmoud, Noha F. |
Author_xml | – sequence: 1 givenname: Essam H. orcidid: 0000-0002-8127-7233 surname: Houssein fullname: Houssein, Essam H. email: essam.halim@mu.edu.eg organization: Faculty of Computers and Information, Minia University, Minia, Egypt – sequence: 2 givenname: Diego orcidid: 0000-0001-8781-7993 surname: Oliva fullname: Oliva, Diego email: diego.oliva@cucei.udg.mx organization: Depto. Innovación Basada en la Información y el Conocimiento, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico – sequence: 3 givenname: Nagwan Abdel surname: Samee fullname: Samee, Nagwan Abdel email: nmabdelsamee@pnu.edu.sa organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – sequence: 4 givenname: Noha F. surname: Mahmoud fullname: Mahmoud, Noha F. email: Nfmahmoud@pnu.edu.sa organization: Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – sequence: 5 givenname: Marwa M. orcidid: 0000-0001-7399-6839 surname: Emam fullname: Emam, Marwa M. email: marwa.khalef@mu.edu.eg organization: Faculty of Computers and Information, Minia University, Minia, Egypt |
BookMark | eNqNkU2LE0EQhhtZwWz0Pwx48TKx-mumx8NiDLorBDyo52ZSU9GOM91j9ySw_np7iCgEhJwKmreernrqlt344ImxgsOKA69eH1YYhnHnwkDdSoCQ-bmWpnnCFtzUTQlaqhu2AOBQKiP0M3ab0gEAFEhYsGrrThSLTesxl3X_LUQ3fR_eFOvChxP1RSaXzqfRReqKME5ucL8oPmdP922f6MWfumRfP7z_snkot5_uP27W2xJVw6dSCg2V4iR2iKpCqutaSckBRcVpJ4XUvK47vTNVZ8ReotojaQmasKkqoVEu2aszd4zh55HSZAeXkPq-9RSOyQpTSdEYk1despcX0UM4Rp-nm1N1_khxmVN35xTGkFKkvUU3tZMLfoqt6y0HO2u1B_tPq5212rPWDDAXgDG6oY2P17S-O7dSNnZyFG1CR1l8l-XiZLvgroHcXUCwd95h2_-gR0p_d-Y2CQv283z4-e5CAhitdAa8_T_guhl-A7chwsI |
CitedBy_id | crossref_primary_10_1016_j_cma_2024_117588 crossref_primary_10_32604_cmc_2024_049001 crossref_primary_10_1016_j_compbiomed_2024_108780 crossref_primary_10_1007_s42235_024_00493_8 crossref_primary_10_1093_jcde_qwae090 crossref_primary_10_3390_fractalfract8030132 crossref_primary_10_1007_s41939_024_00487_3 crossref_primary_10_1038_s41598_024_75839_7 crossref_primary_10_1038_s41598_025_91270_y crossref_primary_10_1016_j_rineng_2025_104372 crossref_primary_10_3390_biomimetics8080619 crossref_primary_10_1016_j_ijepes_2024_110085 crossref_primary_10_1016_j_neucom_2024_128427 crossref_primary_10_1109_ACCESS_2024_3365700 crossref_primary_10_1007_s10462_025_11118_9 crossref_primary_10_1016_j_isci_2025_111867 crossref_primary_10_1038_s41598_024_83589_9 crossref_primary_10_3390_pr11102986 crossref_primary_10_1016_j_compbiomed_2024_108394 crossref_primary_10_1016_j_bspc_2024_107431 crossref_primary_10_1038_s41598_024_81125_3 crossref_primary_10_1016_j_compbiomed_2024_108035 crossref_primary_10_1016_j_compbiomed_2024_108437 crossref_primary_10_1016_j_compbiomed_2024_108439 crossref_primary_10_1038_s41598_024_59064_w crossref_primary_10_1016_j_asr_2025_02_062 crossref_primary_10_1109_ACCESS_2024_3445269 crossref_primary_10_1007_s42235_024_00569_5 crossref_primary_10_1007_s11227_024_06291_7 crossref_primary_10_1007_s10586_024_04628_8 crossref_primary_10_1038_s41598_024_59979_4 crossref_primary_10_1049_rpg2_13113 crossref_primary_10_1038_s41598_024_68878_7 crossref_primary_10_1109_TSMC_2024_3407960 crossref_primary_10_1016_j_compbiomed_2024_108440 crossref_primary_10_1093_jcde_qwae073 crossref_primary_10_1093_jcde_qwae074 crossref_primary_10_1007_s00500_025_10409_1 crossref_primary_10_1016_j_knosys_2024_111725 crossref_primary_10_1186_s40537_025_01116_7 crossref_primary_10_1007_s10586_024_04540_1 crossref_primary_10_1016_j_ins_2025_121908 crossref_primary_10_1016_j_compbiomed_2024_108600 crossref_primary_10_3934_math_2024859 crossref_primary_10_3390_biomimetics9020066 crossref_primary_10_1007_s00202_024_02735_8 crossref_primary_10_1016_j_compbiomed_2024_108447 crossref_primary_10_1016_j_compbiomed_2024_108329 crossref_primary_10_1038_s41598_024_69487_0 crossref_primary_10_1080_00207721_2024_2367079 crossref_primary_10_3390_biomimetics9040223 crossref_primary_10_1002_widm_1548 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1016_j_displa_2024_102799 crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1007_s42235_024_00555_x crossref_primary_10_1016_j_ins_2024_121033 crossref_primary_10_1016_j_neucom_2024_128289 crossref_primary_10_3390_a17090423 crossref_primary_10_1016_j_aej_2025_02_046 crossref_primary_10_1016_j_compbiomed_2024_108294 crossref_primary_10_3390_biomimetics9030130 crossref_primary_10_1007_s10586_024_04301_0 crossref_primary_10_1016_j_isci_2024_111230 crossref_primary_10_1111_exsy_70023 crossref_primary_10_1016_j_heliyon_2024_e26665 crossref_primary_10_1038_s41598_024_59287_x crossref_primary_10_3934_math_2024622 crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1016_j_apenergy_2024_124137 crossref_primary_10_1007_s10586_024_04491_7 crossref_primary_10_1016_j_aei_2024_102464 crossref_primary_10_1016_j_asoc_2024_111734 crossref_primary_10_1007_s13042_024_02143_1 crossref_primary_10_1049_cit2_12345 crossref_primary_10_1093_jcde_qwae069 crossref_primary_10_1016_j_asej_2024_103026 crossref_primary_10_1093_jcde_qwae054 crossref_primary_10_1007_s10586_024_04668_0 crossref_primary_10_1016_j_bspc_2024_106492 crossref_primary_10_1016_j_compbiomed_2024_108984 crossref_primary_10_1109_ACCESS_2024_3401487 crossref_primary_10_32604_cmes_2024_057214 crossref_primary_10_1007_s10586_024_04441_3 crossref_primary_10_1109_TETCI_2024_3405370 crossref_primary_10_1007_s11227_024_06817_z crossref_primary_10_1016_j_isci_2024_110561 crossref_primary_10_1007_s42235_024_00593_5 crossref_primary_10_1016_j_compbiomed_2024_108599 crossref_primary_10_1038_s41598_024_77440_4 crossref_primary_10_1016_j_compbiomed_2024_108638 crossref_primary_10_1007_s10586_024_04544_x crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_3934_math_2024972 crossref_primary_10_1186_s40537_024_00931_8 crossref_primary_10_1016_j_knosys_2024_111960 crossref_primary_10_1016_j_displa_2024_102727 crossref_primary_10_1016_j_compbiomed_2024_109175 crossref_primary_10_1016_j_heliyon_2024_e40068 crossref_primary_10_1016_j_eswa_2024_124400 crossref_primary_10_1093_jcde_qwae030 crossref_primary_10_3390_biomimetics9030186 crossref_primary_10_1038_s41598_025_91418_w crossref_primary_10_1186_s40537_024_01034_0 crossref_primary_10_1016_j_fss_2024_109014 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1016_j_ijcce_2024_09_005 crossref_primary_10_1007_s10462_024_11023_7 crossref_primary_10_3390_math12101506 crossref_primary_10_1007_s42235_024_00553_z crossref_primary_10_3934_era_2025023 crossref_primary_10_1093_jcde_qwad108 crossref_primary_10_3390_sym16101255 crossref_primary_10_1007_s10489_024_05889_x crossref_primary_10_1093_jcde_qwaf006 crossref_primary_10_3390_biomimetics9050277 crossref_primary_10_1007_s10462_024_10923_y crossref_primary_10_3390_su16114419 crossref_primary_10_1109_ACCESS_2024_3455550 crossref_primary_10_1038_s41598_024_65292_x crossref_primary_10_1016_j_artmed_2024_102886 crossref_primary_10_1016_j_compbiomed_2024_108134 crossref_primary_10_1111_exsy_13803 crossref_primary_10_1007_s42235_024_00590_8 crossref_primary_10_1016_j_compbiomed_2024_109348 crossref_primary_10_32604_cmc_2024_048146 crossref_primary_10_1016_j_compbiomed_2024_108535 crossref_primary_10_1186_s40537_024_01000_w crossref_primary_10_1038_s41598_024_61876_9 crossref_primary_10_1016_j_asoc_2024_112108 crossref_primary_10_1016_j_displa_2024_102740 crossref_primary_10_1038_s41598_024_70663_5 crossref_primary_10_1063_5_0243619 |
Cites_doi | 10.1038/scientificamerican0792-66 10.1371/journal.pone.0142190 10.1016/j.future.2019.02.028 10.1016/j.eswa.2021.115651 10.3748/wjg.v21.i41.11767 10.1007/s13042-017-0711-7 10.1080/00207169508804397 10.1016/j.asoc.2021.108043 10.1016/j.eswa.2022.119015 10.1016/j.eswa.2022.116552 10.1016/j.eswa.2021.115079 10.1016/j.knosys.2022.108789 10.1007/s10489-020-01893-z 10.1109/TCSS.2022.3141114 10.1016/j.compbiomed.2021.104558 10.1016/j.advengsoft.2016.01.008 10.1007/s42235-022-00297-8 10.1016/j.asoc.2018.11.033 10.1016/j.compbiomed.2021.104712 10.1016/j.eswa.2020.113377 10.1038/s41598-020-71502-z 10.1016/j.cad.2010.12.015 10.1016/j.knosys.2018.01.021 10.1109/4235.585893 10.1038/s41598-022-14225-7 10.1016/j.knosys.2021.106926 10.1016/j.cma.2021.114194 10.1007/s00521-015-1870-7 10.1016/j.engappai.2019.08.025 10.1016/j.compbiomed.2022.106404 10.1016/j.eswa.2021.114864 10.1016/j.future.2019.07.015 10.1007/s00521-021-05991-y 10.1016/j.future.2020.03.055 10.1016/j.compbiomed.2021.104968 10.1016/j.engappai.2020.103541 10.1016/j.eswa.2021.116235 10.1016/j.ins.2009.03.004 10.1007/s10489-017-0903-6 10.4249/scholarpedia.6915 10.1016/j.eswa.2022.116516 10.1109/ACCESS.2022.3223388 10.1016/j.asoc.2017.11.043 10.1016/j.advengsoft.2013.12.007 10.1023/A:1008202821328 10.1007/s00521-021-06273-3 10.1016/j.eswa.2020.114161 10.1016/j.neucom.2017.11.077 10.3897/jucs.93498 10.1016/j.compbiomed.2023.106966 10.1016/j.knosys.2020.106711 10.1007/s00521-020-05296-6 10.1016/j.eswa.2022.116924 10.1007/s10664-013-9249-9 10.1016/j.knosys.2019.105190 10.1016/j.knosys.2022.108457 10.1016/j.eswa.2021.116158 10.1007/s11538-015-0110-8 10.1016/j.compeleceng.2013.11.024 10.1007/s42235-021-0050-y |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Elsevier Ltd 2023. Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Elsevier Ltd – notice: 2023. Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2023.107389 |
DatabaseName | CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 107389 |
ExternalDocumentID | 10_1016_j_compbiomed_2023_107389 S0010482523008545 1_s2_0_S0010482523008545 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c491t-3250641e2bcc46ce77743310c261eb3235177d5b86d82f3c4fce5305ec96625c3 |
IEDL.DBID | 7X7 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Mon Jul 21 11:40:02 EDT 2025 Wed Aug 13 04:49:45 EDT 2025 Tue Jul 01 03:29:04 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Fri Feb 23 02:35:12 EST 2024 Tue Feb 25 20:10:54 EST 2025 Tue Aug 26 20:14:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Liver Cancer Algorithm (LCA) Bio-inspired Random opposition-based learning (ROBL) Feature selection (FS) Metaheuristic algorithms (MAs) Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-3250641e2bcc46ce77743310c261eb3235177d5b86d82f3c4fce5305ec96625c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7399-6839 0000-0002-8127-7233 0000-0001-8781-7993 |
PQID | 2867177413 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2863298807 proquest_journals_2867177413 crossref_citationtrail_10_1016_j_compbiomed_2023_107389 crossref_primary_10_1016_j_compbiomed_2023_107389 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107389 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523008545 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Wolpert, Macready (b13) 1997; 1 Chandrashekar, Sahin (b81) 2014; 40 MiarNaeimi, Azizyan, Rashki (b25) 2021; 213 Devikanniga, Ramu, Haldorai (b78) 2020; 7 Abdiansah, Wardoyo (b82) 2015; 128 Houssein, Çelik, Mahdy, Ghoniem (b14) 2022; 195 Eberhart, Kennedy (b15) 1995 Xing, Zhao, Chen, Deng, Xiao (b56) 2023; 20 Houssein, Neggaz, Hosney, Mohamed, Hassaballah (b63) 2021; 33 Emam, El-Sattar, Houssein, Kamel (b4) 2023 Moghdani, Salimifard (b44) 2018; 64 Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b26) 2022; 191 Hussien, Hassanien, Houssein (b80) 2017 Yang, Chen, Heidari, Gandomi (b27) 2021; 177 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b21) 2019; 97 Kaur, Awasthi, Sangal, Dhiman (b23) 2020; 90 Abd Elaziz, Yousri (b61) 2021 Suyanto, Ariyanto, Ariyanto (b29) 2022; 114 Dehghani, Mardaneh, Guerrero, Malik, Kumar (b45) 2020; 13 Ahmadianfar, Heidari, Noshadian, Chen, Gandomi (b43) 2022; 195 Sabha, Thaher, Emam (b58) 2023; 29 Dhiman (b1) 2021; 222 Moosavi, Bardsiri (b51) 2019; 86 Sayed, Soliman, Hassanien (b55) 2021; 136 Sallam, Elsayed, Chakrabortty, Ryan (b72) 2020 Singh, Houssein, Singh, Dhiman (b6) 2022 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b41) 2021; 51 Dehghani, Montazeri, Givi, Guerrero, Dhiman (b46) 2020; 13 F.A. Zeidabadi, M. Dehghani, Poa: Puzzle optimization algorithm, Int. J. Intell. Eng. Syst. 15 (1). Chen, Mei, Xu, Yu, Huang (b2) 2018; 145 Mirjalili, Mirjalili, Lewis (b18) 2014; 69 Emam, Samee, Jamjoom, Houssein (b9) 2023 Cai, Luo, Wang, Yang (b76) 2018; 300 Wang, Zhang, Niu, Gao, Jiang, Zhang, Yu, Dong (b52) 2022; 10 Houssein, Emam, Ali (b7) 2021; 33 Faramarzi, Heidarinejad, Stephens, Mirjalili (b40) 2020; 191 Houssein, Hosney, Elhoseny, Oliva, Mohamed, Hassaballah (b64) 2020; 10 Mirjalili, Lewis (b19) 2016; 95 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b20) 2020 Emam, Houssein, Ghoniem (b8) 2023; 152 Dehghani, Montazeri, Dehghani, Seifi (b38) 2017 Mohamed, Mohamed (b71) 2019; 10 Houssein, Saber, Ali, Wazery (b60) 2022; 191 Khalid, Hamza, Mirjalili, Hosny (b59) 2022; 248 Mafarja, Thaher, Too, Chantar, Turabieh, Houssein, Emam (b11) 2022 Zhao, Wang, Mirjalili (b33) 2022; 388 Houssein, Emam, Ali, Suganthan (b77) 2021; 167 Dehghani, Mardaneh, Malik (b49) 2020; 8 Braik, Hammouri, Atwan, Al-Betar, Awadallah (b24) 2022; 243 Rao, Savsani, Vakharia (b48) 2011; 43 Holland (b34) 1992; 267 Dorigo, Stützle (b17) 2019 Mirjalili, Mirjalili, Hatamlou (b39) 2016; 27 Vatandoust, Price, Karapetis (b70) 2015; 21 Storn, Price (b35) 1997; 11 Rashedi, Nezamabadi-Pour, Saryazdi (b37) 2009; 179 Piri, Mohapatra (b57) 2021; 135 Feldman, Goldwasser, Mark, Schwartz, Orion (b65) 2009; 4 Li, Chen, Wang, Heidari, Mirjalili (b22) 2020; 111 Al-Betar, Alyasseri, Awadallah, Abu Doush (b73) 2021; 33 Houssein, Oliva, Çelik, Emam, Ghoniem (b3) 2023; 213 Houssein, Çelik, Mahdy, Ghoniem (b5) 2022; 195 Houssein, Oliva, Çelik, Emam, Ghoniem (b10) 2023; 213 Karaboga (b16) 2010; 5 Houssein, Emam, Ali (b75) 2022 Houssein, Neggaz, Hosney, Mohamed, Hassaballah (b79) 2021; 33 Sápi, Kovács, Drexler, Kocsis, Gajári, Sápi (b66) 2015; 10 Olorunda, Engelbrecht (b12) 2008 Mousavirad, Ebrahimpour-Komleh (b53) 2017; 47 Talkington, Durrett (b67) 2015; 77 Tu, Chen, Wang, Gandomi (b28) 2021; 18 Sadeeq, Abdulazeez (b32) 2022; 10 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b42) 2019; 101 Abd Elaziz, Moemen, Hassanien, Xiong (b62) 2020; 97 Emary, Zawbaa, Sharawi (b68) 2019; 75 Houssein, Emam, Ali (b69) 2021; 185 Dehghani, Trojovská, Trojovskỳ (b50) 2022; 12 Ahmadianfar, Heidari, Gandomi, Chu, Chen (b30) 2021; 181 Chopra, Ansari (b31) 2022; 198 Yao (b36) 1995; 56 Thawkar, Sharma, Khanna, kumar Singh (b54) 2021; 139 Arcuri, Fraser (b74) 2013; 18 Sadeeq (10.1016/j.compbiomed.2023.107389_b32) 2022; 10 Dehghani (10.1016/j.compbiomed.2023.107389_b49) 2020; 8 Emam (10.1016/j.compbiomed.2023.107389_b4) 2023 Cai (10.1016/j.compbiomed.2023.107389_b76) 2018; 300 Khalid (10.1016/j.compbiomed.2023.107389_b59) 2022; 248 Mousavirad (10.1016/j.compbiomed.2023.107389_b53) 2017; 47 10.1016/j.compbiomed.2023.107389_b47 Dehghani (10.1016/j.compbiomed.2023.107389_b46) 2020; 13 Piri (10.1016/j.compbiomed.2023.107389_b57) 2021; 135 Suyanto (10.1016/j.compbiomed.2023.107389_b29) 2022; 114 Dhiman (10.1016/j.compbiomed.2023.107389_b1) 2021; 222 Houssein (10.1016/j.compbiomed.2023.107389_b7) 2021; 33 Olorunda (10.1016/j.compbiomed.2023.107389_b12) 2008 Arcuri (10.1016/j.compbiomed.2023.107389_b74) 2013; 18 Chopra (10.1016/j.compbiomed.2023.107389_b31) 2022; 198 Storn (10.1016/j.compbiomed.2023.107389_b35) 1997; 11 MiarNaeimi (10.1016/j.compbiomed.2023.107389_b25) 2021; 213 Abd Elaziz (10.1016/j.compbiomed.2023.107389_b61) 2021 Houssein (10.1016/j.compbiomed.2023.107389_b3) 2023; 213 Xing (10.1016/j.compbiomed.2023.107389_b56) 2023; 20 Hussien (10.1016/j.compbiomed.2023.107389_b80) 2017 Houssein (10.1016/j.compbiomed.2023.107389_b63) 2021; 33 Houssein (10.1016/j.compbiomed.2023.107389_b14) 2022; 195 Yang (10.1016/j.compbiomed.2023.107389_b27) 2021; 177 Dehghani (10.1016/j.compbiomed.2023.107389_b50) 2022; 12 Heidari (10.1016/j.compbiomed.2023.107389_b21) 2019; 97 Sápi (10.1016/j.compbiomed.2023.107389_b66) 2015; 10 Talkington (10.1016/j.compbiomed.2023.107389_b67) 2015; 77 Rashedi (10.1016/j.compbiomed.2023.107389_b37) 2009; 179 Houssein (10.1016/j.compbiomed.2023.107389_b75) 2022 Li (10.1016/j.compbiomed.2023.107389_b22) 2020; 111 Ahmadianfar (10.1016/j.compbiomed.2023.107389_b30) 2021; 181 Thawkar (10.1016/j.compbiomed.2023.107389_b54) 2021; 139 Tu (10.1016/j.compbiomed.2023.107389_b28) 2021; 18 Moghdani (10.1016/j.compbiomed.2023.107389_b44) 2018; 64 Houssein (10.1016/j.compbiomed.2023.107389_b64) 2020; 10 Braik (10.1016/j.compbiomed.2023.107389_b24) 2022; 243 Abualigah (10.1016/j.compbiomed.2023.107389_b26) 2022; 191 Mohamed (10.1016/j.compbiomed.2023.107389_b71) 2019; 10 Hashim (10.1016/j.compbiomed.2023.107389_b41) 2021; 51 Vatandoust (10.1016/j.compbiomed.2023.107389_b70) 2015; 21 Emam (10.1016/j.compbiomed.2023.107389_b9) 2023 Houssein (10.1016/j.compbiomed.2023.107389_b77) 2021; 167 Devikanniga (10.1016/j.compbiomed.2023.107389_b78) 2020; 7 Emam (10.1016/j.compbiomed.2023.107389_b8) 2023; 152 Mafarja (10.1016/j.compbiomed.2023.107389_b11) 2022 Dehghani (10.1016/j.compbiomed.2023.107389_b38) 2017 Chandrashekar (10.1016/j.compbiomed.2023.107389_b81) 2014; 40 Zhao (10.1016/j.compbiomed.2023.107389_b33) 2022; 388 Dorigo (10.1016/j.compbiomed.2023.107389_b17) 2019 Mirjalili (10.1016/j.compbiomed.2023.107389_b19) 2016; 95 Karaboga (10.1016/j.compbiomed.2023.107389_b16) 2010; 5 Wolpert (10.1016/j.compbiomed.2023.107389_b13) 1997; 1 Houssein (10.1016/j.compbiomed.2023.107389_b5) 2022; 195 Houssein (10.1016/j.compbiomed.2023.107389_b79) 2021; 33 Kaur (10.1016/j.compbiomed.2023.107389_b23) 2020; 90 Rao (10.1016/j.compbiomed.2023.107389_b48) 2011; 43 Ahmadianfar (10.1016/j.compbiomed.2023.107389_b43) 2022; 195 Houssein (10.1016/j.compbiomed.2023.107389_b60) 2022; 191 Eberhart (10.1016/j.compbiomed.2023.107389_b15) 1995 Mirjalili (10.1016/j.compbiomed.2023.107389_b39) 2016; 27 Feldman (10.1016/j.compbiomed.2023.107389_b65) 2009; 4 Wang (10.1016/j.compbiomed.2023.107389_b52) 2022; 10 Faramarzi (10.1016/j.compbiomed.2023.107389_b20) 2020 Mirjalili (10.1016/j.compbiomed.2023.107389_b18) 2014; 69 Hashim (10.1016/j.compbiomed.2023.107389_b42) 2019; 101 Moosavi (10.1016/j.compbiomed.2023.107389_b51) 2019; 86 Sayed (10.1016/j.compbiomed.2023.107389_b55) 2021; 136 Abdiansah (10.1016/j.compbiomed.2023.107389_b82) 2015; 128 Dehghani (10.1016/j.compbiomed.2023.107389_b45) 2020; 13 Al-Betar (10.1016/j.compbiomed.2023.107389_b73) 2021; 33 Emary (10.1016/j.compbiomed.2023.107389_b68) 2019; 75 Houssein (10.1016/j.compbiomed.2023.107389_b69) 2021; 185 Faramarzi (10.1016/j.compbiomed.2023.107389_b40) 2020; 191 Abd Elaziz (10.1016/j.compbiomed.2023.107389_b62) 2020; 97 Houssein (10.1016/j.compbiomed.2023.107389_b10) 2023; 213 Singh (10.1016/j.compbiomed.2023.107389_b6) 2022 Yao (10.1016/j.compbiomed.2023.107389_b36) 1995; 56 Sabha (10.1016/j.compbiomed.2023.107389_b58) 2023; 29 Chen (10.1016/j.compbiomed.2023.107389_b2) 2018; 145 Holland (10.1016/j.compbiomed.2023.107389_b34) 1992; 267 Sallam (10.1016/j.compbiomed.2023.107389_b72) 2020 |
References_xml | – volume: 12 start-page: 9924 year: 2022 ident: b50 article-title: A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process publication-title: Sci. Rep. – volume: 198 year: 2022 ident: b31 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Syst. Appl. – volume: 86 start-page: 165 year: 2019 end-page: 181 ident: b51 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2021 end-page: 46 ident: b61 article-title: Automatic selection of heavy-tailed distributions-based synergy henry gas solubility and Harris Hawk optimizer for feature selection: case study drug design and discovery publication-title: Artif. Intell. Rev. – volume: 10 start-page: 166 year: 2022 end-page: 177 ident: b52 article-title: Dual-population social group optimization algorithm based on human social group behavior law publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 145 start-page: 250 year: 2018 end-page: 263 ident: b2 article-title: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization publication-title: Knowl.-Based Syst. – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: b41 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – volume: 177 year: 2021 ident: b27 article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts publication-title: Expert Syst. Appl. – volume: 181 year: 2021 ident: b30 article-title: Run beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method publication-title: Expert Syst. Appl. – volume: 29 start-page: 759 year: 2023 end-page: 804 ident: b58 article-title: Cooperative swarm intelligence algorithms for adaptive multilevel thresholding segmentation of covid-19 ct-scan images publication-title: JUCS - J. Universal Comput. Sci. – volume: 222 year: 2021 ident: b1 article-title: Ssc: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications publication-title: Knowl.-Based Syst. – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: b44 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. – start-page: 1128 year: 2008 end-page: 1134 ident: b12 article-title: Measuring exploration/exploitation in particle swarms using swarm diversity publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) – volume: 195 year: 2022 ident: b5 article-title: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems publication-title: Expert Syst. Appl. – volume: 18 start-page: 674 year: 2021 end-page: 710 ident: b28 article-title: The colony predation algorithm publication-title: J. Bionic Eng. – volume: 213 year: 2023 ident: b3 article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection publication-title: Expert Syst. Appl. – volume: 195 year: 2022 ident: b43 article-title: Info: An efficient optimization algorithm based on weighted mean of vectors publication-title: Expert Syst. Appl. – volume: 10 start-page: 1 year: 2020 end-page: 22 ident: b64 article-title: Hybrid Harris Hawks optimization with cuckoo search for drug design and discovery in chemoinformatics publication-title: Sci. Rep. – year: 2019 ident: b17 article-title: Ant Colony Optimization: Overview and Recent Advances – start-page: 1 year: 2022 end-page: 27 ident: b11 article-title: An efficient high-dimensional feature selection approach driven by enhanced multi-strategy grey wolf optimizer for biological data classification publication-title: Neural Comput. Appl. – start-page: 1 year: 2022 end-page: 19 ident: b75 article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm publication-title: Neural Comput. Appl. – year: 2020 ident: b20 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. – volume: 33 start-page: 5011 year: 2021 end-page: 5042 ident: b73 article-title: Coronavirus herd immunity optimizer (chio) publication-title: Neural Comput. Appl. – volume: 33 start-page: 13601 year: 2021 end-page: 13618 ident: b79 article-title: Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities publication-title: Neural Comput. Appl. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b48 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput.-Aided Des. – start-page: 1 year: 2023 end-page: 23 ident: b4 article-title: Modified orca predation algorithm: Developments and perspectives on global optimization and hybrid energy systems publication-title: Neural Comput. Appl. – start-page: 0210 year: 2017 end-page: 0214 ident: b38 article-title: Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke’s law publication-title: 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation – year: 2023 ident: b9 article-title: Optimized deep learning architecture for brain tumor classification using improved hunger games search algorithm publication-title: Comput. Biol. Med. – volume: 195 year: 2022 ident: b14 article-title: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems publication-title: Expert Syst. Appl. – volume: 56 start-page: 161 year: 1995 end-page: 168 ident: b36 article-title: A new simulated annealing algorithm publication-title: Int. J. Comput. Math. – volume: 10 start-page: 253 year: 2019 end-page: 277 ident: b71 article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization publication-title: Int. J. Mach. Learn. Cybern. – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: b81 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b42 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – volume: 10 start-page: 121615 year: 2022 end-page: 121640 ident: b32 article-title: Giant trevally optimizer (gto): A novel metaheuristic algorithm for global optimization and challenging engineering problems publication-title: IEEE Access – volume: 13 start-page: 514 year: 2020 end-page: 523 ident: b45 article-title: Football game based optimization: An application to solve energy commitment problem publication-title: Int. J. Intell. Eng. Syst. – volume: 7 year: 2020 ident: b78 article-title: Efficient diagnosis of liver disease using support vector machine optimized with crows search algorithm publication-title: EAI Endorsed Trans. Energy Web – start-page: 39 year: 1995 end-page: 43 ident: b15 article-title: A new optimizer using particle swarm theory publication-title: Sixth International Symposium on Micro Machine and Human Science – volume: 213 year: 2021 ident: b25 article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowl.-Based Syst. – volume: 191 year: 2022 ident: b26 article-title: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. – volume: 47 start-page: 850 year: 2017 end-page: 887 ident: b53 article-title: Human mental search: A new population-based metaheuristic optimization algorithm publication-title: Appl. Intell. – volume: 21 start-page: 11767 year: 2015 ident: b70 article-title: Colorectal cancer: Metastases to a single organ publication-title: World J. Gastroenterol. – volume: 243 year: 2022 ident: b24 article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems publication-title: Knowl.-Based Syst. – volume: 33 start-page: 13601 year: 2021 end-page: 13618 ident: b63 article-title: Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities publication-title: Neural Comput. Appl. – volume: 213 year: 2023 ident: b10 article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection publication-title: Expert Syst. Appl. – volume: 139 year: 2021 ident: b54 article-title: Breast cancer prediction using a hybrid method based on butterfly optimization algorithm and ant lion optimizer publication-title: Comput. Biol. Med. – volume: 152 year: 2023 ident: b8 article-title: A modified reptile search algorithm for global optimization and image segmentation: Case study brain mri images publication-title: Comput. Biol. Med. – start-page: 315 year: 2017 end-page: 320 ident: b80 article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities publication-title: 2017 Eighth International Conference on Intelligent Computing and Information Systems – volume: 77 start-page: 1934 year: 2015 end-page: 1954 ident: b67 article-title: Estimating tumor growth rates in vivo publication-title: Bull. Math. Biol. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b19 article-title: The whale optimization algorithm publication-title: Adv. Eng. Software – volume: 388 year: 2022 ident: b33 article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 8 start-page: 57 year: 2020 end-page: 64 ident: b49 article-title: Foa: Following optimization algorithm for solving power engineering optimization problems publication-title: J. Oper. Automat. Power Eng. – volume: 300 start-page: 70 year: 2018 end-page: 79 ident: b76 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing – volume: 167 year: 2021 ident: b77 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review publication-title: Expert Syst. Appl. – volume: 4 start-page: 455 year: 2009 end-page: 462 ident: b65 article-title: A mathematical model for tumor volume evaluation using two-dimensions publication-title: J. Appl. Quant. Methods – volume: 136 year: 2021 ident: b55 article-title: A novel melanoma prediction model for imbalanced data using optimized squeezenet by bald eagle search optimization publication-title: Comput. Biol. Med. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b37 article-title: Gsa: A gravitational search algorithm publication-title: Inf. Sci. – volume: 20 start-page: 797 year: 2023 end-page: 818 ident: b56 article-title: Boosting whale optimizer with quasi-oppositional learning and Gaussian barebone for feature selection and covid-19 image segmentation publication-title: J. Bionic Eng. – volume: 128 start-page: 28 year: 2015 end-page: 34 ident: b82 article-title: Time complexity analysis of support vector machines (svm) in libsvm publication-title: Int. J. Comput. Appl. – volume: 114 year: 2022 ident: b29 article-title: Komodo mlipir algorithm publication-title: Appl. Soft Comput. – volume: 135 year: 2021 ident: b57 article-title: An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection publication-title: Comput. Biol. Med. – volume: 185 year: 2021 ident: b69 article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm publication-title: Expert Syst. Appl. – reference: F.A. Zeidabadi, M. Dehghani, Poa: Puzzle optimization algorithm, Int. J. Intell. Eng. Syst. 15 (1). – start-page: 1 year: 2020 end-page: 8 ident: b72 article-title: Improved multi-operator differential evolution algorithm for solving unconstrained problems publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b34 article-title: Genetic algorithms publication-title: Sci. Am. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b35 article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 33 start-page: 16899 year: 2021 end-page: 16919 ident: b7 article-title: Improved manta ray foraging optimization for multi-level thresholding using covid-19 ct images publication-title: Neural Comput. Appl. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b18 article-title: Grey wolf optimizer publication-title: Adv. Eng. Software – volume: 90 year: 2020 ident: b23 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b13 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2022 end-page: 37 ident: b6 article-title: Hssahho: A novel hybrid salp swarm-Harris Hawks optimization algorithm for complex engineering problems publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 248 year: 2022 ident: b59 article-title: Bcovidoa: A novel binary coronavirus disease optimization algorithm for feature selection publication-title: Knowl.-Based Syst. – volume: 13 start-page: 286 year: 2020 end-page: 294 ident: b46 article-title: Darts game optimizer: A new optimization technique based on darts game publication-title: Int. J. Intell. Eng. Syst. – volume: 191 year: 2022 ident: b60 article-title: Centroid mutation-based search and rescue optimization algorithm for feature selection and classification publication-title: Expert Syst. Appl. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b21 article-title: Harris Hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: b22 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. – volume: 18 start-page: 594 year: 2013 end-page: 623 ident: b74 article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering publication-title: Empir. Softw. Eng. – volume: 97 year: 2020 ident: b62 article-title: Toxicity risks evaluation of unknown fda biotransformed drugs based on a multi-objective feature selection approach publication-title: Appl. Soft Comput. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b39 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 75 start-page: 775 year: 2019 end-page: 789 ident: b68 article-title: Impact of Lèvy flight on modern meta-heuristic optimizers publication-title: Appl. Soft Comput. – volume: 5 start-page: 6915 year: 2010 ident: b16 article-title: Artificial bee colony algorithm publication-title: Scholarpedia – volume: 191 year: 2020 ident: b40 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl.-Based Syst. – volume: 10 year: 2015 ident: b66 article-title: Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy publication-title: PLoS One – start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b75 article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm publication-title: Neural Comput. Appl. – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.compbiomed.2023.107389_b34 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 10 issue: 11 year: 2015 ident: 10.1016/j.compbiomed.2023.107389_b66 article-title: Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy publication-title: PLoS One doi: 10.1371/journal.pone.0142190 – volume: 4 start-page: 455 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2023.107389_b65 article-title: A mathematical model for tumor volume evaluation using two-dimensions publication-title: J. Appl. Quant. Methods – year: 2019 ident: 10.1016/j.compbiomed.2023.107389_b17 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.compbiomed.2023.107389_b21 article-title: Harris Hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 185 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b69 article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115651 – volume: 21 start-page: 11767 issue: 41 year: 2015 ident: 10.1016/j.compbiomed.2023.107389_b70 article-title: Colorectal cancer: Metastases to a single organ publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v21.i41.11767 – volume: 10 start-page: 253 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2023.107389_b71 article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0711-7 – volume: 56 start-page: 161 issue: 3–4 year: 1995 ident: 10.1016/j.compbiomed.2023.107389_b36 article-title: A new simulated annealing algorithm publication-title: Int. J. Comput. Math. doi: 10.1080/00207169508804397 – start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b6 article-title: Hssahho: A novel hybrid salp swarm-Harris Hawks optimization algorithm for complex engineering problems publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 114 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b29 article-title: Komodo mlipir algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108043 – volume: 213 year: 2023 ident: 10.1016/j.compbiomed.2023.107389_b3 article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119015 – volume: 195 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b5 article-title: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116552 – volume: 181 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b30 article-title: Run beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115079 – volume: 13 start-page: 286 issue: 5 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b46 article-title: Darts game optimizer: A new optimization technique based on darts game publication-title: Int. J. Intell. Eng. Syst. – volume: 248 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b59 article-title: Bcovidoa: A novel binary coronavirus disease optimization algorithm for feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108789 – volume: 51 start-page: 1531 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b41 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 10 start-page: 166 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b52 article-title: Dual-population social group optimization algorithm based on human social group behavior law publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2022.3141114 – volume: 135 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b57 article-title: An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104558 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.compbiomed.2023.107389_b19 article-title: The whale optimization algorithm publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 20 start-page: 797 issue: 2 year: 2023 ident: 10.1016/j.compbiomed.2023.107389_b56 article-title: Boosting whale optimizer with quasi-oppositional learning and Gaussian barebone for feature selection and covid-19 image segmentation publication-title: J. Bionic Eng. doi: 10.1007/s42235-022-00297-8 – volume: 97 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b62 article-title: Toxicity risks evaluation of unknown fda biotransformed drugs based on a multi-objective feature selection approach publication-title: Appl. Soft Comput. – volume: 75 start-page: 775 year: 2019 ident: 10.1016/j.compbiomed.2023.107389_b68 article-title: Impact of Lèvy flight on modern meta-heuristic optimizers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.033 – volume: 136 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b55 article-title: A novel melanoma prediction model for imbalanced data using optimized squeezenet by bald eagle search optimization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104712 – start-page: 0210 year: 2017 ident: 10.1016/j.compbiomed.2023.107389_b38 article-title: Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke’s law – year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b20 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b64 article-title: Hybrid Harris Hawks optimization with cuckoo search for drug design and discovery in chemoinformatics publication-title: Sci. Rep. doi: 10.1038/s41598-020-71502-z – start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b11 article-title: An efficient high-dimensional feature selection approach driven by enhanced multi-strategy grey wolf optimizer for biological data classification publication-title: Neural Comput. Appl. – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2023.107389_b48 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 145 start-page: 250 year: 2018 ident: 10.1016/j.compbiomed.2023.107389_b2 article-title: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.01.021 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.compbiomed.2023.107389_b13 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 12 start-page: 9924 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b50 article-title: A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process publication-title: Sci. Rep. doi: 10.1038/s41598-022-14225-7 – start-page: 1128 year: 2008 ident: 10.1016/j.compbiomed.2023.107389_b12 article-title: Measuring exploration/exploitation in particle swarms using swarm diversity – volume: 222 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b1 article-title: Ssc: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106926 – volume: 388 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b33 article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114194 – volume: 27 start-page: 495 year: 2016 ident: 10.1016/j.compbiomed.2023.107389_b39 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 86 start-page: 165 year: 2019 ident: 10.1016/j.compbiomed.2023.107389_b51 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – volume: 152 year: 2023 ident: 10.1016/j.compbiomed.2023.107389_b8 article-title: A modified reptile search algorithm for global optimization and image segmentation: Case study brain mri images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106404 – volume: 177 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b27 article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114864 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.compbiomed.2023.107389_b42 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 33 start-page: 13601 issue: 20 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b79 article-title: Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05991-y – volume: 111 start-page: 300 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b22 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 139 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b54 article-title: Breast cancer prediction using a hybrid method based on butterfly optimization algorithm and ant lion optimizer publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104968 – volume: 90 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b23 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 128 start-page: 28 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2023.107389_b82 article-title: Time complexity analysis of support vector machines (svm) in libsvm publication-title: Int. J. Comput. Appl. – volume: 191 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b60 article-title: Centroid mutation-based search and rescue optimization algorithm for feature selection and classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116235 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.compbiomed.2023.107389_b37 article-title: Gsa: A gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 213 year: 2023 ident: 10.1016/j.compbiomed.2023.107389_b10 article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119015 – volume: 195 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b14 article-title: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116552 – volume: 47 start-page: 850 year: 2017 ident: 10.1016/j.compbiomed.2023.107389_b53 article-title: Human mental search: A new population-based metaheuristic optimization algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-017-0903-6 – volume: 5 start-page: 6915 issue: 3 year: 2010 ident: 10.1016/j.compbiomed.2023.107389_b16 article-title: Artificial bee colony algorithm publication-title: Scholarpedia doi: 10.4249/scholarpedia.6915 – volume: 195 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b43 article-title: Info: An efficient optimization algorithm based on weighted mean of vectors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116516 – volume: 10 start-page: 121615 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b32 article-title: Giant trevally optimizer (gto): A novel metaheuristic algorithm for global optimization and challenging engineering problems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3223388 – volume: 64 start-page: 161 year: 2018 ident: 10.1016/j.compbiomed.2023.107389_b44 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – start-page: 39 year: 1995 ident: 10.1016/j.compbiomed.2023.107389_b15 article-title: A new optimizer using particle swarm theory – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.compbiomed.2023.107389_b18 article-title: Grey wolf optimizer publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2013.12.007 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b61 article-title: Automatic selection of heavy-tailed distributions-based synergy henry gas solubility and Harris Hawk optimizer for feature selection: case study drug design and discovery publication-title: Artif. Intell. Rev. – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.compbiomed.2023.107389_b35 article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 7 issue: 29 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b78 article-title: Efficient diagnosis of liver disease using support vector machine optimized with crows search algorithm publication-title: EAI Endorsed Trans. Energy Web – volume: 33 start-page: 16899 issue: 24 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b7 article-title: Improved manta ray foraging optimization for multi-level thresholding using covid-19 ct images publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06273-3 – volume: 167 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b77 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114161 – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107389_b4 article-title: Modified orca predation algorithm: Developments and perspectives on global optimization and hybrid energy systems publication-title: Neural Comput. Appl. – volume: 300 start-page: 70 year: 2018 ident: 10.1016/j.compbiomed.2023.107389_b76 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 29 start-page: 759 issue: 7 year: 2023 ident: 10.1016/j.compbiomed.2023.107389_b58 article-title: Cooperative swarm intelligence algorithms for adaptive multilevel thresholding segmentation of covid-19 ct-scan images publication-title: JUCS - J. Universal Comput. Sci. doi: 10.3897/jucs.93498 – year: 2023 ident: 10.1016/j.compbiomed.2023.107389_b9 article-title: Optimized deep learning architecture for brain tumor classification using improved hunger games search algorithm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106966 – volume: 213 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b25 article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106711 – volume: 33 start-page: 5011 issue: 10 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b73 article-title: Coronavirus herd immunity optimizer (chio) publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05296-6 – volume: 198 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b31 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – start-page: 315 year: 2017 ident: 10.1016/j.compbiomed.2023.107389_b80 article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities – volume: 18 start-page: 594 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2023.107389_b74 article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-013-9249-9 – volume: 191 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b40 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 8 start-page: 57 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b49 article-title: Foa: Following optimization algorithm for solving power engineering optimization problems publication-title: J. Oper. Automat. Power Eng. – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b72 article-title: Improved multi-operator differential evolution algorithm for solving unconstrained problems – volume: 243 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b24 article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108457 – volume: 13 start-page: 514 issue: 5 year: 2020 ident: 10.1016/j.compbiomed.2023.107389_b45 article-title: Football game based optimization: An application to solve energy commitment problem publication-title: Int. J. Intell. Eng. Syst. – volume: 191 year: 2022 ident: 10.1016/j.compbiomed.2023.107389_b26 article-title: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 77 start-page: 1934 issue: 10 year: 2015 ident: 10.1016/j.compbiomed.2023.107389_b67 article-title: Estimating tumor growth rates in vivo publication-title: Bull. Math. Biol. doi: 10.1007/s11538-015-0110-8 – ident: 10.1016/j.compbiomed.2023.107389_b47 – volume: 33 start-page: 13601 issue: 20 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b63 article-title: Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05991-y – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2023.107389_b81 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – volume: 18 start-page: 674 year: 2021 ident: 10.1016/j.compbiomed.2023.107389_b28 article-title: The colony predation algorithm publication-title: J. Bionic Eng. doi: 10.1007/s42235-021-0050-y |
SSID | ssj0004030 |
Score | 2.6661363 |
Snippet | This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover... AbstractThis paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107389 |
SubjectTerms | Algorithms Amine oxidase (flavin-containing) Benchmarks Bio-inspired Biomedical data Coronaviruses Datasets Evolutionary algorithms Evolutionary computation Feature selection Feature selection (FS) Genetic algorithms Herd immunity Heuristic methods Internal Medicine Liver cancer Liver Cancer Algorithm (LCA) Metaheuristic algorithms (MAs) Operators (mathematics) Optimization Optimization algorithms Other Particle swarm optimization Random opposition-based learning (ROBL) Runge-Kutta method Support vector machines Tumors |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqDogF8RSFgoLEmrbxI25gqiqqClEmKnWzGseBoDap-mBg4LdzlzitgA6VGOP4ZOvs-3wnf3cm5HYsAj2mIZJbxy2Xy3bkBrEWLhMxHGfSl1FeeH7w7PeH_HEkRhXSLXNhkFZpsb_A9BytbUvTarM5SxLM8YVQAgIccKLBb-CYaM65xF3e-NrQPHiLFWkogDfY27J5Co4X0raLNPcGPiMOzZLhg-_bj6hfYJ2fQL1DcmBdR6dTzO6IVEx6TPYG9nL8hPhPyLFwuriOc6czec0g8H-b3jkdJ80-zMSBObhJilfrJnIywIpp8mnmp2TYe3jp9l37LIKreeAtXUaxyJxnaKg197WR4MEx8NI0BEMQGlMmPCkjEbb9qE1jpnmsjQCzNhpCGyo0OyPVNEvNOXGMAKPWBlZLxjyOYN00XvBK38SaxlFUI7LUhNK2Zjg-XTFRJTnsXW10qFCHqtBhjXhryVlRN2MHmaBUtirzQgHJFID7DrJym6xZWJNcKE8tqGqpP9umRu7Xkj923o7j1stdodZDUSwaCKvisRq5Wf8Gu8XLmHFqslXeh9EA0FNe_GsCl2Qfvwp-YZ1Ul_OVuQI_aRle54bwDWNeD1Y priority: 102 providerName: Elsevier |
Title | Liver Cancer Algorithm: A novel bio-inspired optimizer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523008545 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523008545 https://dx.doi.org/10.1016/j.compbiomed.2023.107389 https://www.proquest.com/docview/2867177413 https://www.proquest.com/docview/2863298807 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9sw8LRSadoLgn1o5aPKJF4DjR3HDTygUrV0QKuJrVLfrNZ2-FBJoC087GG_nbvEaaUJob4kUpKLrbvz-c73BXAwFrEeswkFt44bfiibxo8TLXwuEtzOZCRNXni-P4h6w_BiJEbuwG3uwipLmZgLapNpOiM_YlSIDXWVgJ8-PvnUNYq8q66FRgWqVLqMuFqO5CovssGLFBSUNSGaQi6Sp4jvopDtIsX9kFqI42PJqdn729vTf4I63326W7Dp1EavVdB5Gz7Y9DN87DvH-BeIrii-wmsTDWdea3qDU1_cPhx7LS_NXuzUwzn4dym51a3xMpQTD3d_7ewrDLudP-2e71oi-DqMg4XPGRWYCyybaB1G2krECEcNTaMhhGYx4wJxZMSkGZkmS7gOE20FLmmr0axhQvNvsJFmqf0OnhW4oLVFSskkTAzSTJNzV0Y20SwxpgayxITSrl44ta2YqjIw7F6tcKgIh6rAYQ2CJeRjUTNjDZi4RLYqc0JRiikU7GvAyrdg7dwtx7kK1JyphvqdVyNCRkC7C1XNUNTgZAnpNI5Ck1hz3L2SK9RyqBWf1uDH8jWuWXLEjFObPeffcBaj5JQ77_9iFz7ReEXw4B5sLGbPdh-VoMWkDpXDf0E953e8Nrvndai2fl72Bng_6wx-Xb8CXI8JQQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTttAcARUKr0gaEGE51Zqj4Z41-uNW6EqgqahJFwKErcl2V23VMGGJLSCj-IbO-O1E6lCKBeutmfHGs_T8wL40JOJ6fE-Fbf26kGkGjZIUiMDIVM0ZypWthg83z2N2-fR9wt5MQePVS8MlVVWOrFQ1DY39I98n9MgNvRVQvHl5jagrVGUXa1WaHi2OHH3fzFkGx0cH-H3_ch56-vZYTsotwoEJkrCcSA4zWgLHe8bE8XGKTxUoJNjMJbAyJILiWis7Ddi2-CpMFFqnESpcAYjAy6NwHPn4RXCJBTsNVrfpn2YdeFbXlC3RRh6lZVDvp6MSsR9S_0erSzHy0rQcvmnzeF_hqGwdq1lWCrdVNb0fLUCcy57C6-7ZSL-HcQdqudgh8QzQ9Yc_ERSjX9df2JNluV_3IDhOwRXGaXxnWU56qXrqwc3XIXzFyHWGixkeebWgTmJCsQ45AyVRqlFHjGUTFaxSw1Pra2BqiihTTmfnNZkDHRViPZbT2moiYba07AG4QTyxs_omAEmqYitqx5U1JoaDckMsOopWDcqxX-kQz3iuq5_FNOPkBEwzkPXNpI1-DyBLD0c77nMiHer4go9QTWVixq8n9xGHUGJn17m8rviGcET1NRq4_kjdmGxfdbt6M7x6ckmvCHcvnBxCxbGwzu3jQ7YuL9TcD2Dy5cWs38oVD9T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ9gSYgvxs9YQV0TfTzp7d7e9jTGVKABgYaoJLwt7X4opNxhWzT6p_nXOXO71yaGmL7wer3Zaaazv5npfAG8HMrCDPmIiluHnSRTXZsU3shESI_mTOXK1oPnDwf57nH28USerMCfpheGyiobTKyB2laG_iPf5DSIDX2VVGz6WBZxtN1_f_k9oQ1SlGlt1mkEFdl3v35i-DZ9t7eNv_Urzvs7X7Z2k7hhIDFZkc4SwWleW-r4yJgsN04hA4EOj8G4AqNMLiSytHLUzW2Xe2Eyb5zEG-IMRglcGoHn3oJVRVFRC1Y_7AyOPi26MjsiNMAg0mUYiMU6olBdRgXjocH-NS0wx8dK0Kr5643jP2aitn39u3AnOq2sF7TsHqy48j6sHca0_APID6i6g22RBk1Yb_wVhTX7dvGG9VhZ_XBjht8hOSspqe8sqxClLs5-u8lDOL4RcT2CVlmV7jEwJxFOjEM9UT7zFjXGUGpZ5c4b7q1tg2okoU2cVk5LM8a6KUs71wsZapKhDjJsQzqnvAwTO5agKRph66YjFTFUo1lZglZdR-umEQymOtVTrjv6cz0LCRUBoz50dDPZhrdzyujvBD9mSb4bjVboOavFLWnDi_nHiBiUBhqWrrqq3xG8QNxWT_5_xHNYwyumD_YG--twm1iHKsYNaM0mV-4pemOz0bOo9gxOb_qm_QWACUTl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+Cancer+Algorithm%3A+A+novel+bio-inspired+optimizer&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Houssein%2C+Essam+H.&rft.au=Oliva%2C+Diego&rft.au=Samee%2C+Nagwan+Abdel&rft.au=Mahmoud%2C+Noha+F.&rft.date=2023-10-01&rft.issn=0010-4825&rft.volume=165&rft.spage=107389&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2023_107389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |