Liver Cancer Algorithm: A novel bio-inspired optimizer

This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 165; p. 107389
Main Authors Houssein, Essam H., Oliva, Diego, Samee, Nagwan Abdel, Mahmoud, Noha F., Emam, Marwa M.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.10.2023
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm’s efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC’2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge–Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection. •An efficient LCA algorithm is proposed based on Liver cancer tumor.•CEC’20 test suite is utilized for verification of LCA performance.•LCA is proposed for biomedical classification tasks.•LCA is analyzed using various analysis metrics.•The performance of the LCA is better than other competitor algorithms.
AbstractList This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor's ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm's efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC'2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge-Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection.This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor's ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm's efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC'2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge-Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection.
This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm’s efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC’2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge–Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection.
AbstractThis paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm’s efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC’2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection.
This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor’s ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm’s efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC’2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge–Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection. •An efficient LCA algorithm is proposed based on Liver cancer tumor.•CEC’20 test suite is utilized for verification of LCA performance.•LCA is proposed for biomedical classification tasks.•LCA is analyzed using various analysis metrics.•The performance of the LCA is better than other competitor algorithms.
ArticleNumber 107389
Author Samee, Nagwan Abdel
Oliva, Diego
Houssein, Essam H.
Emam, Marwa M.
Mahmoud, Noha F.
Author_xml – sequence: 1
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
– sequence: 2
  givenname: Diego
  orcidid: 0000-0001-8781-7993
  surname: Oliva
  fullname: Oliva, Diego
  email: diego.oliva@cucei.udg.mx
  organization: Depto. Innovación Basada en la Información y el Conocimiento, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico
– sequence: 3
  givenname: Nagwan Abdel
  surname: Samee
  fullname: Samee, Nagwan Abdel
  email: nmabdelsamee@pnu.edu.sa
  organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– sequence: 4
  givenname: Noha F.
  surname: Mahmoud
  fullname: Mahmoud, Noha F.
  email: Nfmahmoud@pnu.edu.sa
  organization: Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– sequence: 5
  givenname: Marwa M.
  orcidid: 0000-0001-7399-6839
  surname: Emam
  fullname: Emam, Marwa M.
  email: marwa.khalef@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
BookMark eNqNkU2LE0EQhhtZwWz0Pwx48TKx-mumx8NiDLorBDyo52ZSU9GOM91j9ySw_np7iCgEhJwKmreernrqlt344ImxgsOKA69eH1YYhnHnwkDdSoCQ-bmWpnnCFtzUTQlaqhu2AOBQKiP0M3ab0gEAFEhYsGrrThSLTesxl3X_LUQ3fR_eFOvChxP1RSaXzqfRReqKME5ucL8oPmdP922f6MWfumRfP7z_snkot5_uP27W2xJVw6dSCg2V4iR2iKpCqutaSckBRcVpJ4XUvK47vTNVZ8ReotojaQmasKkqoVEu2aszd4zh55HSZAeXkPq-9RSOyQpTSdEYk1despcX0UM4Rp-nm1N1_khxmVN35xTGkFKkvUU3tZMLfoqt6y0HO2u1B_tPq5212rPWDDAXgDG6oY2P17S-O7dSNnZyFG1CR1l8l-XiZLvgroHcXUCwd95h2_-gR0p_d-Y2CQv283z4-e5CAhitdAa8_T_guhl-A7chwsI
CitedBy_id crossref_primary_10_1016_j_cma_2024_117588
crossref_primary_10_32604_cmc_2024_049001
crossref_primary_10_1016_j_compbiomed_2024_108780
crossref_primary_10_1007_s42235_024_00493_8
crossref_primary_10_1093_jcde_qwae090
crossref_primary_10_3390_fractalfract8030132
crossref_primary_10_1007_s41939_024_00487_3
crossref_primary_10_1038_s41598_024_75839_7
crossref_primary_10_1038_s41598_025_91270_y
crossref_primary_10_1016_j_rineng_2025_104372
crossref_primary_10_3390_biomimetics8080619
crossref_primary_10_1016_j_ijepes_2024_110085
crossref_primary_10_1016_j_neucom_2024_128427
crossref_primary_10_1109_ACCESS_2024_3365700
crossref_primary_10_1007_s10462_025_11118_9
crossref_primary_10_1016_j_isci_2025_111867
crossref_primary_10_1038_s41598_024_83589_9
crossref_primary_10_3390_pr11102986
crossref_primary_10_1016_j_compbiomed_2024_108394
crossref_primary_10_1016_j_bspc_2024_107431
crossref_primary_10_1038_s41598_024_81125_3
crossref_primary_10_1016_j_compbiomed_2024_108035
crossref_primary_10_1016_j_compbiomed_2024_108437
crossref_primary_10_1016_j_compbiomed_2024_108439
crossref_primary_10_1038_s41598_024_59064_w
crossref_primary_10_1016_j_asr_2025_02_062
crossref_primary_10_1109_ACCESS_2024_3445269
crossref_primary_10_1007_s42235_024_00569_5
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1007_s10586_024_04628_8
crossref_primary_10_1038_s41598_024_59979_4
crossref_primary_10_1049_rpg2_13113
crossref_primary_10_1038_s41598_024_68878_7
crossref_primary_10_1109_TSMC_2024_3407960
crossref_primary_10_1016_j_compbiomed_2024_108440
crossref_primary_10_1093_jcde_qwae073
crossref_primary_10_1093_jcde_qwae074
crossref_primary_10_1007_s00500_025_10409_1
crossref_primary_10_1016_j_knosys_2024_111725
crossref_primary_10_1186_s40537_025_01116_7
crossref_primary_10_1007_s10586_024_04540_1
crossref_primary_10_1016_j_ins_2025_121908
crossref_primary_10_1016_j_compbiomed_2024_108600
crossref_primary_10_3934_math_2024859
crossref_primary_10_3390_biomimetics9020066
crossref_primary_10_1007_s00202_024_02735_8
crossref_primary_10_1016_j_compbiomed_2024_108447
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1038_s41598_024_69487_0
crossref_primary_10_1080_00207721_2024_2367079
crossref_primary_10_3390_biomimetics9040223
crossref_primary_10_1002_widm_1548
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1016_j_displa_2024_102799
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1007_s42235_024_00555_x
crossref_primary_10_1016_j_ins_2024_121033
crossref_primary_10_1016_j_neucom_2024_128289
crossref_primary_10_3390_a17090423
crossref_primary_10_1016_j_aej_2025_02_046
crossref_primary_10_1016_j_compbiomed_2024_108294
crossref_primary_10_3390_biomimetics9030130
crossref_primary_10_1007_s10586_024_04301_0
crossref_primary_10_1016_j_isci_2024_111230
crossref_primary_10_1111_exsy_70023
crossref_primary_10_1016_j_heliyon_2024_e26665
crossref_primary_10_1038_s41598_024_59287_x
crossref_primary_10_3934_math_2024622
crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1016_j_apenergy_2024_124137
crossref_primary_10_1007_s10586_024_04491_7
crossref_primary_10_1016_j_aei_2024_102464
crossref_primary_10_1016_j_asoc_2024_111734
crossref_primary_10_1007_s13042_024_02143_1
crossref_primary_10_1049_cit2_12345
crossref_primary_10_1093_jcde_qwae069
crossref_primary_10_1016_j_asej_2024_103026
crossref_primary_10_1093_jcde_qwae054
crossref_primary_10_1007_s10586_024_04668_0
crossref_primary_10_1016_j_bspc_2024_106492
crossref_primary_10_1016_j_compbiomed_2024_108984
crossref_primary_10_1109_ACCESS_2024_3401487
crossref_primary_10_32604_cmes_2024_057214
crossref_primary_10_1007_s10586_024_04441_3
crossref_primary_10_1109_TETCI_2024_3405370
crossref_primary_10_1007_s11227_024_06817_z
crossref_primary_10_1016_j_isci_2024_110561
crossref_primary_10_1007_s42235_024_00593_5
crossref_primary_10_1016_j_compbiomed_2024_108599
crossref_primary_10_1038_s41598_024_77440_4
crossref_primary_10_1016_j_compbiomed_2024_108638
crossref_primary_10_1007_s10586_024_04544_x
crossref_primary_10_1080_21642583_2024_2385310
crossref_primary_10_3934_math_2024972
crossref_primary_10_1186_s40537_024_00931_8
crossref_primary_10_1016_j_knosys_2024_111960
crossref_primary_10_1016_j_displa_2024_102727
crossref_primary_10_1016_j_compbiomed_2024_109175
crossref_primary_10_1016_j_heliyon_2024_e40068
crossref_primary_10_1016_j_eswa_2024_124400
crossref_primary_10_1093_jcde_qwae030
crossref_primary_10_3390_biomimetics9030186
crossref_primary_10_1038_s41598_025_91418_w
crossref_primary_10_1186_s40537_024_01034_0
crossref_primary_10_1016_j_fss_2024_109014
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1016_j_ijcce_2024_09_005
crossref_primary_10_1007_s10462_024_11023_7
crossref_primary_10_3390_math12101506
crossref_primary_10_1007_s42235_024_00553_z
crossref_primary_10_3934_era_2025023
crossref_primary_10_1093_jcde_qwad108
crossref_primary_10_3390_sym16101255
crossref_primary_10_1007_s10489_024_05889_x
crossref_primary_10_1093_jcde_qwaf006
crossref_primary_10_3390_biomimetics9050277
crossref_primary_10_1007_s10462_024_10923_y
crossref_primary_10_3390_su16114419
crossref_primary_10_1109_ACCESS_2024_3455550
crossref_primary_10_1038_s41598_024_65292_x
crossref_primary_10_1016_j_artmed_2024_102886
crossref_primary_10_1016_j_compbiomed_2024_108134
crossref_primary_10_1111_exsy_13803
crossref_primary_10_1007_s42235_024_00590_8
crossref_primary_10_1016_j_compbiomed_2024_109348
crossref_primary_10_32604_cmc_2024_048146
crossref_primary_10_1016_j_compbiomed_2024_108535
crossref_primary_10_1186_s40537_024_01000_w
crossref_primary_10_1038_s41598_024_61876_9
crossref_primary_10_1016_j_asoc_2024_112108
crossref_primary_10_1016_j_displa_2024_102740
crossref_primary_10_1038_s41598_024_70663_5
crossref_primary_10_1063_5_0243619
Cites_doi 10.1038/scientificamerican0792-66
10.1371/journal.pone.0142190
10.1016/j.future.2019.02.028
10.1016/j.eswa.2021.115651
10.3748/wjg.v21.i41.11767
10.1007/s13042-017-0711-7
10.1080/00207169508804397
10.1016/j.asoc.2021.108043
10.1016/j.eswa.2022.119015
10.1016/j.eswa.2022.116552
10.1016/j.eswa.2021.115079
10.1016/j.knosys.2022.108789
10.1007/s10489-020-01893-z
10.1109/TCSS.2022.3141114
10.1016/j.compbiomed.2021.104558
10.1016/j.advengsoft.2016.01.008
10.1007/s42235-022-00297-8
10.1016/j.asoc.2018.11.033
10.1016/j.compbiomed.2021.104712
10.1016/j.eswa.2020.113377
10.1038/s41598-020-71502-z
10.1016/j.cad.2010.12.015
10.1016/j.knosys.2018.01.021
10.1109/4235.585893
10.1038/s41598-022-14225-7
10.1016/j.knosys.2021.106926
10.1016/j.cma.2021.114194
10.1007/s00521-015-1870-7
10.1016/j.engappai.2019.08.025
10.1016/j.compbiomed.2022.106404
10.1016/j.eswa.2021.114864
10.1016/j.future.2019.07.015
10.1007/s00521-021-05991-y
10.1016/j.future.2020.03.055
10.1016/j.compbiomed.2021.104968
10.1016/j.engappai.2020.103541
10.1016/j.eswa.2021.116235
10.1016/j.ins.2009.03.004
10.1007/s10489-017-0903-6
10.4249/scholarpedia.6915
10.1016/j.eswa.2022.116516
10.1109/ACCESS.2022.3223388
10.1016/j.asoc.2017.11.043
10.1016/j.advengsoft.2013.12.007
10.1023/A:1008202821328
10.1007/s00521-021-06273-3
10.1016/j.eswa.2020.114161
10.1016/j.neucom.2017.11.077
10.3897/jucs.93498
10.1016/j.compbiomed.2023.106966
10.1016/j.knosys.2020.106711
10.1007/s00521-020-05296-6
10.1016/j.eswa.2022.116924
10.1007/s10664-013-9249-9
10.1016/j.knosys.2019.105190
10.1016/j.knosys.2022.108457
10.1016/j.eswa.2021.116158
10.1007/s11538-015-0110-8
10.1016/j.compeleceng.2013.11.024
10.1007/s42235-021-0050-y
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
2023. Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2023. Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.107389
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107389
ExternalDocumentID 10_1016_j_compbiomed_2023_107389
S0010482523008545
1_s2_0_S0010482523008545
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c491t-3250641e2bcc46ce77743310c261eb3235177d5b86d82f3c4fce5305ec96625c3
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Mon Jul 21 11:40:02 EDT 2025
Wed Aug 13 04:49:45 EDT 2025
Tue Jul 01 03:29:04 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Fri Feb 23 02:35:12 EST 2024
Tue Feb 25 20:10:54 EST 2025
Tue Aug 26 20:14:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Liver Cancer Algorithm (LCA)
Bio-inspired
Random opposition-based learning (ROBL)
Feature selection (FS)
Metaheuristic algorithms (MAs)
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-3250641e2bcc46ce77743310c261eb3235177d5b86d82f3c4fce5305ec96625c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7399-6839
0000-0002-8127-7233
0000-0001-8781-7993
PQID 2867177413
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2863298807
proquest_journals_2867177413
crossref_citationtrail_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1016_j_compbiomed_2023_107389
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107389
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523008545
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers in biology and medicine
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Wolpert, Macready (b13) 1997; 1
Chandrashekar, Sahin (b81) 2014; 40
MiarNaeimi, Azizyan, Rashki (b25) 2021; 213
Devikanniga, Ramu, Haldorai (b78) 2020; 7
Abdiansah, Wardoyo (b82) 2015; 128
Houssein, Çelik, Mahdy, Ghoniem (b14) 2022; 195
Eberhart, Kennedy (b15) 1995
Xing, Zhao, Chen, Deng, Xiao (b56) 2023; 20
Houssein, Neggaz, Hosney, Mohamed, Hassaballah (b63) 2021; 33
Emam, El-Sattar, Houssein, Kamel (b4) 2023
Moghdani, Salimifard (b44) 2018; 64
Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b26) 2022; 191
Hussien, Hassanien, Houssein (b80) 2017
Yang, Chen, Heidari, Gandomi (b27) 2021; 177
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b21) 2019; 97
Kaur, Awasthi, Sangal, Dhiman (b23) 2020; 90
Abd Elaziz, Yousri (b61) 2021
Suyanto, Ariyanto, Ariyanto (b29) 2022; 114
Dehghani, Mardaneh, Guerrero, Malik, Kumar (b45) 2020; 13
Ahmadianfar, Heidari, Noshadian, Chen, Gandomi (b43) 2022; 195
Sabha, Thaher, Emam (b58) 2023; 29
Dhiman (b1) 2021; 222
Moosavi, Bardsiri (b51) 2019; 86
Sayed, Soliman, Hassanien (b55) 2021; 136
Sallam, Elsayed, Chakrabortty, Ryan (b72) 2020
Singh, Houssein, Singh, Dhiman (b6) 2022
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b41) 2021; 51
Dehghani, Montazeri, Givi, Guerrero, Dhiman (b46) 2020; 13
F.A. Zeidabadi, M. Dehghani, Poa: Puzzle optimization algorithm, Int. J. Intell. Eng. Syst. 15 (1).
Chen, Mei, Xu, Yu, Huang (b2) 2018; 145
Mirjalili, Mirjalili, Lewis (b18) 2014; 69
Emam, Samee, Jamjoom, Houssein (b9) 2023
Cai, Luo, Wang, Yang (b76) 2018; 300
Wang, Zhang, Niu, Gao, Jiang, Zhang, Yu, Dong (b52) 2022; 10
Houssein, Emam, Ali (b7) 2021; 33
Faramarzi, Heidarinejad, Stephens, Mirjalili (b40) 2020; 191
Houssein, Hosney, Elhoseny, Oliva, Mohamed, Hassaballah (b64) 2020; 10
Mirjalili, Lewis (b19) 2016; 95
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b20) 2020
Emam, Houssein, Ghoniem (b8) 2023; 152
Dehghani, Montazeri, Dehghani, Seifi (b38) 2017
Mohamed, Mohamed (b71) 2019; 10
Houssein, Saber, Ali, Wazery (b60) 2022; 191
Khalid, Hamza, Mirjalili, Hosny (b59) 2022; 248
Mafarja, Thaher, Too, Chantar, Turabieh, Houssein, Emam (b11) 2022
Zhao, Wang, Mirjalili (b33) 2022; 388
Houssein, Emam, Ali, Suganthan (b77) 2021; 167
Dehghani, Mardaneh, Malik (b49) 2020; 8
Braik, Hammouri, Atwan, Al-Betar, Awadallah (b24) 2022; 243
Rao, Savsani, Vakharia (b48) 2011; 43
Holland (b34) 1992; 267
Dorigo, Stützle (b17) 2019
Mirjalili, Mirjalili, Hatamlou (b39) 2016; 27
Vatandoust, Price, Karapetis (b70) 2015; 21
Storn, Price (b35) 1997; 11
Rashedi, Nezamabadi-Pour, Saryazdi (b37) 2009; 179
Piri, Mohapatra (b57) 2021; 135
Feldman, Goldwasser, Mark, Schwartz, Orion (b65) 2009; 4
Li, Chen, Wang, Heidari, Mirjalili (b22) 2020; 111
Al-Betar, Alyasseri, Awadallah, Abu Doush (b73) 2021; 33
Houssein, Oliva, Çelik, Emam, Ghoniem (b3) 2023; 213
Houssein, Çelik, Mahdy, Ghoniem (b5) 2022; 195
Houssein, Oliva, Çelik, Emam, Ghoniem (b10) 2023; 213
Karaboga (b16) 2010; 5
Houssein, Emam, Ali (b75) 2022
Houssein, Neggaz, Hosney, Mohamed, Hassaballah (b79) 2021; 33
Sápi, Kovács, Drexler, Kocsis, Gajári, Sápi (b66) 2015; 10
Olorunda, Engelbrecht (b12) 2008
Mousavirad, Ebrahimpour-Komleh (b53) 2017; 47
Talkington, Durrett (b67) 2015; 77
Tu, Chen, Wang, Gandomi (b28) 2021; 18
Sadeeq, Abdulazeez (b32) 2022; 10
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b42) 2019; 101
Abd Elaziz, Moemen, Hassanien, Xiong (b62) 2020; 97
Emary, Zawbaa, Sharawi (b68) 2019; 75
Houssein, Emam, Ali (b69) 2021; 185
Dehghani, Trojovská, Trojovskỳ (b50) 2022; 12
Ahmadianfar, Heidari, Gandomi, Chu, Chen (b30) 2021; 181
Chopra, Ansari (b31) 2022; 198
Yao (b36) 1995; 56
Thawkar, Sharma, Khanna, kumar Singh (b54) 2021; 139
Arcuri, Fraser (b74) 2013; 18
Sadeeq (10.1016/j.compbiomed.2023.107389_b32) 2022; 10
Dehghani (10.1016/j.compbiomed.2023.107389_b49) 2020; 8
Emam (10.1016/j.compbiomed.2023.107389_b4) 2023
Cai (10.1016/j.compbiomed.2023.107389_b76) 2018; 300
Khalid (10.1016/j.compbiomed.2023.107389_b59) 2022; 248
Mousavirad (10.1016/j.compbiomed.2023.107389_b53) 2017; 47
10.1016/j.compbiomed.2023.107389_b47
Dehghani (10.1016/j.compbiomed.2023.107389_b46) 2020; 13
Piri (10.1016/j.compbiomed.2023.107389_b57) 2021; 135
Suyanto (10.1016/j.compbiomed.2023.107389_b29) 2022; 114
Dhiman (10.1016/j.compbiomed.2023.107389_b1) 2021; 222
Houssein (10.1016/j.compbiomed.2023.107389_b7) 2021; 33
Olorunda (10.1016/j.compbiomed.2023.107389_b12) 2008
Arcuri (10.1016/j.compbiomed.2023.107389_b74) 2013; 18
Chopra (10.1016/j.compbiomed.2023.107389_b31) 2022; 198
Storn (10.1016/j.compbiomed.2023.107389_b35) 1997; 11
MiarNaeimi (10.1016/j.compbiomed.2023.107389_b25) 2021; 213
Abd Elaziz (10.1016/j.compbiomed.2023.107389_b61) 2021
Houssein (10.1016/j.compbiomed.2023.107389_b3) 2023; 213
Xing (10.1016/j.compbiomed.2023.107389_b56) 2023; 20
Hussien (10.1016/j.compbiomed.2023.107389_b80) 2017
Houssein (10.1016/j.compbiomed.2023.107389_b63) 2021; 33
Houssein (10.1016/j.compbiomed.2023.107389_b14) 2022; 195
Yang (10.1016/j.compbiomed.2023.107389_b27) 2021; 177
Dehghani (10.1016/j.compbiomed.2023.107389_b50) 2022; 12
Heidari (10.1016/j.compbiomed.2023.107389_b21) 2019; 97
Sápi (10.1016/j.compbiomed.2023.107389_b66) 2015; 10
Talkington (10.1016/j.compbiomed.2023.107389_b67) 2015; 77
Rashedi (10.1016/j.compbiomed.2023.107389_b37) 2009; 179
Houssein (10.1016/j.compbiomed.2023.107389_b75) 2022
Li (10.1016/j.compbiomed.2023.107389_b22) 2020; 111
Ahmadianfar (10.1016/j.compbiomed.2023.107389_b30) 2021; 181
Thawkar (10.1016/j.compbiomed.2023.107389_b54) 2021; 139
Tu (10.1016/j.compbiomed.2023.107389_b28) 2021; 18
Moghdani (10.1016/j.compbiomed.2023.107389_b44) 2018; 64
Houssein (10.1016/j.compbiomed.2023.107389_b64) 2020; 10
Braik (10.1016/j.compbiomed.2023.107389_b24) 2022; 243
Abualigah (10.1016/j.compbiomed.2023.107389_b26) 2022; 191
Mohamed (10.1016/j.compbiomed.2023.107389_b71) 2019; 10
Hashim (10.1016/j.compbiomed.2023.107389_b41) 2021; 51
Vatandoust (10.1016/j.compbiomed.2023.107389_b70) 2015; 21
Emam (10.1016/j.compbiomed.2023.107389_b9) 2023
Houssein (10.1016/j.compbiomed.2023.107389_b77) 2021; 167
Devikanniga (10.1016/j.compbiomed.2023.107389_b78) 2020; 7
Emam (10.1016/j.compbiomed.2023.107389_b8) 2023; 152
Mafarja (10.1016/j.compbiomed.2023.107389_b11) 2022
Dehghani (10.1016/j.compbiomed.2023.107389_b38) 2017
Chandrashekar (10.1016/j.compbiomed.2023.107389_b81) 2014; 40
Zhao (10.1016/j.compbiomed.2023.107389_b33) 2022; 388
Dorigo (10.1016/j.compbiomed.2023.107389_b17) 2019
Mirjalili (10.1016/j.compbiomed.2023.107389_b19) 2016; 95
Karaboga (10.1016/j.compbiomed.2023.107389_b16) 2010; 5
Wolpert (10.1016/j.compbiomed.2023.107389_b13) 1997; 1
Houssein (10.1016/j.compbiomed.2023.107389_b5) 2022; 195
Houssein (10.1016/j.compbiomed.2023.107389_b79) 2021; 33
Kaur (10.1016/j.compbiomed.2023.107389_b23) 2020; 90
Rao (10.1016/j.compbiomed.2023.107389_b48) 2011; 43
Ahmadianfar (10.1016/j.compbiomed.2023.107389_b43) 2022; 195
Houssein (10.1016/j.compbiomed.2023.107389_b60) 2022; 191
Eberhart (10.1016/j.compbiomed.2023.107389_b15) 1995
Mirjalili (10.1016/j.compbiomed.2023.107389_b39) 2016; 27
Feldman (10.1016/j.compbiomed.2023.107389_b65) 2009; 4
Wang (10.1016/j.compbiomed.2023.107389_b52) 2022; 10
Faramarzi (10.1016/j.compbiomed.2023.107389_b20) 2020
Mirjalili (10.1016/j.compbiomed.2023.107389_b18) 2014; 69
Hashim (10.1016/j.compbiomed.2023.107389_b42) 2019; 101
Moosavi (10.1016/j.compbiomed.2023.107389_b51) 2019; 86
Sayed (10.1016/j.compbiomed.2023.107389_b55) 2021; 136
Abdiansah (10.1016/j.compbiomed.2023.107389_b82) 2015; 128
Dehghani (10.1016/j.compbiomed.2023.107389_b45) 2020; 13
Al-Betar (10.1016/j.compbiomed.2023.107389_b73) 2021; 33
Emary (10.1016/j.compbiomed.2023.107389_b68) 2019; 75
Houssein (10.1016/j.compbiomed.2023.107389_b69) 2021; 185
Faramarzi (10.1016/j.compbiomed.2023.107389_b40) 2020; 191
Abd Elaziz (10.1016/j.compbiomed.2023.107389_b62) 2020; 97
Houssein (10.1016/j.compbiomed.2023.107389_b10) 2023; 213
Singh (10.1016/j.compbiomed.2023.107389_b6) 2022
Yao (10.1016/j.compbiomed.2023.107389_b36) 1995; 56
Sabha (10.1016/j.compbiomed.2023.107389_b58) 2023; 29
Chen (10.1016/j.compbiomed.2023.107389_b2) 2018; 145
Holland (10.1016/j.compbiomed.2023.107389_b34) 1992; 267
Sallam (10.1016/j.compbiomed.2023.107389_b72) 2020
References_xml – volume: 12
  start-page: 9924
  year: 2022
  ident: b50
  article-title: A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
  publication-title: Sci. Rep.
– volume: 198
  year: 2022
  ident: b31
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
– volume: 86
  start-page: 165
  year: 2019
  end-page: 181
  ident: b51
  article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2021
  end-page: 46
  ident: b61
  article-title: Automatic selection of heavy-tailed distributions-based synergy henry gas solubility and Harris Hawk optimizer for feature selection: case study drug design and discovery
  publication-title: Artif. Intell. Rev.
– volume: 10
  start-page: 166
  year: 2022
  end-page: 177
  ident: b52
  article-title: Dual-population social group optimization algorithm based on human social group behavior law
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 145
  start-page: 250
  year: 2018
  end-page: 263
  ident: b2
  article-title: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization
  publication-title: Knowl.-Based Syst.
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  ident: b41
  article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– volume: 177
  year: 2021
  ident: b27
  article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
– volume: 181
  year: 2021
  ident: b30
  article-title: Run beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 759
  year: 2023
  end-page: 804
  ident: b58
  article-title: Cooperative swarm intelligence algorithms for adaptive multilevel thresholding segmentation of covid-19 ct-scan images
  publication-title: JUCS - J. Universal Comput. Sci.
– volume: 222
  year: 2021
  ident: b1
  article-title: Ssc: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications
  publication-title: Knowl.-Based Syst.
– volume: 64
  start-page: 161
  year: 2018
  end-page: 185
  ident: b44
  article-title: Volleyball premier league algorithm
  publication-title: Appl. Soft Comput.
– start-page: 1128
  year: 2008
  end-page: 1134
  ident: b12
  article-title: Measuring exploration/exploitation in particle swarms using swarm diversity
  publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
– volume: 195
  year: 2022
  ident: b5
  article-title: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 674
  year: 2021
  end-page: 710
  ident: b28
  article-title: The colony predation algorithm
  publication-title: J. Bionic Eng.
– volume: 213
  year: 2023
  ident: b3
  article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection
  publication-title: Expert Syst. Appl.
– volume: 195
  year: 2022
  ident: b43
  article-title: Info: An efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 22
  ident: b64
  article-title: Hybrid Harris Hawks optimization with cuckoo search for drug design and discovery in chemoinformatics
  publication-title: Sci. Rep.
– year: 2019
  ident: b17
  article-title: Ant Colony Optimization: Overview and Recent Advances
– start-page: 1
  year: 2022
  end-page: 27
  ident: b11
  article-title: An efficient high-dimensional feature selection approach driven by enhanced multi-strategy grey wolf optimizer for biological data classification
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2022
  end-page: 19
  ident: b75
  article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
  publication-title: Neural Comput. Appl.
– year: 2020
  ident: b20
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 5011
  year: 2021
  end-page: 5042
  ident: b73
  article-title: Coronavirus herd immunity optimizer (chio)
  publication-title: Neural Comput. Appl.
– volume: 33
  start-page: 13601
  year: 2021
  end-page: 13618
  ident: b79
  article-title: Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities
  publication-title: Neural Comput. Appl.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b48
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
– start-page: 1
  year: 2023
  end-page: 23
  ident: b4
  article-title: Modified orca predation algorithm: Developments and perspectives on global optimization and hybrid energy systems
  publication-title: Neural Comput. Appl.
– start-page: 0210
  year: 2017
  end-page: 0214
  ident: b38
  article-title: Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke’s law
  publication-title: 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation
– year: 2023
  ident: b9
  article-title: Optimized deep learning architecture for brain tumor classification using improved hunger games search algorithm
  publication-title: Comput. Biol. Med.
– volume: 195
  year: 2022
  ident: b14
  article-title: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems
  publication-title: Expert Syst. Appl.
– volume: 56
  start-page: 161
  year: 1995
  end-page: 168
  ident: b36
  article-title: A new simulated annealing algorithm
  publication-title: Int. J. Comput. Math.
– volume: 10
  start-page: 253
  year: 2019
  end-page: 277
  ident: b71
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b81
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b42
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– volume: 10
  start-page: 121615
  year: 2022
  end-page: 121640
  ident: b32
  article-title: Giant trevally optimizer (gto): A novel metaheuristic algorithm for global optimization and challenging engineering problems
  publication-title: IEEE Access
– volume: 13
  start-page: 514
  year: 2020
  end-page: 523
  ident: b45
  article-title: Football game based optimization: An application to solve energy commitment problem
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 7
  year: 2020
  ident: b78
  article-title: Efficient diagnosis of liver disease using support vector machine optimized with crows search algorithm
  publication-title: EAI Endorsed Trans. Energy Web
– start-page: 39
  year: 1995
  end-page: 43
  ident: b15
  article-title: A new optimizer using particle swarm theory
  publication-title: Sixth International Symposium on Micro Machine and Human Science
– volume: 213
  year: 2021
  ident: b25
  article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 191
  year: 2022
  ident: b26
  article-title: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
– volume: 47
  start-page: 850
  year: 2017
  end-page: 887
  ident: b53
  article-title: Human mental search: A new population-based metaheuristic optimization algorithm
  publication-title: Appl. Intell.
– volume: 21
  start-page: 11767
  year: 2015
  ident: b70
  article-title: Colorectal cancer: Metastases to a single organ
  publication-title: World J. Gastroenterol.
– volume: 243
  year: 2022
  ident: b24
  article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 33
  start-page: 13601
  year: 2021
  end-page: 13618
  ident: b63
  article-title: Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities
  publication-title: Neural Comput. Appl.
– volume: 213
  year: 2023
  ident: b10
  article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection
  publication-title: Expert Syst. Appl.
– volume: 139
  year: 2021
  ident: b54
  article-title: Breast cancer prediction using a hybrid method based on butterfly optimization algorithm and ant lion optimizer
  publication-title: Comput. Biol. Med.
– volume: 152
  year: 2023
  ident: b8
  article-title: A modified reptile search algorithm for global optimization and image segmentation: Case study brain mri images
  publication-title: Comput. Biol. Med.
– start-page: 315
  year: 2017
  end-page: 320
  ident: b80
  article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities
  publication-title: 2017 Eighth International Conference on Intelligent Computing and Information Systems
– volume: 77
  start-page: 1934
  year: 2015
  end-page: 1954
  ident: b67
  article-title: Estimating tumor growth rates in vivo
  publication-title: Bull. Math. Biol.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b19
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
– volume: 388
  year: 2022
  ident: b33
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 8
  start-page: 57
  year: 2020
  end-page: 64
  ident: b49
  article-title: Foa: Following optimization algorithm for solving power engineering optimization problems
  publication-title: J. Oper. Automat. Power Eng.
– volume: 300
  start-page: 70
  year: 2018
  end-page: 79
  ident: b76
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
– volume: 167
  year: 2021
  ident: b77
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review
  publication-title: Expert Syst. Appl.
– volume: 4
  start-page: 455
  year: 2009
  end-page: 462
  ident: b65
  article-title: A mathematical model for tumor volume evaluation using two-dimensions
  publication-title: J. Appl. Quant. Methods
– volume: 136
  year: 2021
  ident: b55
  article-title: A novel melanoma prediction model for imbalanced data using optimized squeezenet by bald eagle search optimization
  publication-title: Comput. Biol. Med.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b37
  article-title: Gsa: A gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 20
  start-page: 797
  year: 2023
  end-page: 818
  ident: b56
  article-title: Boosting whale optimizer with quasi-oppositional learning and Gaussian barebone for feature selection and covid-19 image segmentation
  publication-title: J. Bionic Eng.
– volume: 128
  start-page: 28
  year: 2015
  end-page: 34
  ident: b82
  article-title: Time complexity analysis of support vector machines (svm) in libsvm
  publication-title: Int. J. Comput. Appl.
– volume: 114
  year: 2022
  ident: b29
  article-title: Komodo mlipir algorithm
  publication-title: Appl. Soft Comput.
– volume: 135
  year: 2021
  ident: b57
  article-title: An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection
  publication-title: Comput. Biol. Med.
– volume: 185
  year: 2021
  ident: b69
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Syst. Appl.
– reference: F.A. Zeidabadi, M. Dehghani, Poa: Puzzle optimization algorithm, Int. J. Intell. Eng. Syst. 15 (1).
– start-page: 1
  year: 2020
  end-page: 8
  ident: b72
  article-title: Improved multi-operator differential evolution algorithm for solving unconstrained problems
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b34
  article-title: Genetic algorithms
  publication-title: Sci. Am.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b35
  article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 33
  start-page: 16899
  year: 2021
  end-page: 16919
  ident: b7
  article-title: Improved manta ray foraging optimization for multi-level thresholding using covid-19 ct images
  publication-title: Neural Comput. Appl.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b18
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Software
– volume: 90
  year: 2020
  ident: b23
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b13
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2022
  end-page: 37
  ident: b6
  article-title: Hssahho: A novel hybrid salp swarm-Harris Hawks optimization algorithm for complex engineering problems
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 248
  year: 2022
  ident: b59
  article-title: Bcovidoa: A novel binary coronavirus disease optimization algorithm for feature selection
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 286
  year: 2020
  end-page: 294
  ident: b46
  article-title: Darts game optimizer: A new optimization technique based on darts game
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 191
  year: 2022
  ident: b60
  article-title: Centroid mutation-based search and rescue optimization algorithm for feature selection and classification
  publication-title: Expert Syst. Appl.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b21
  article-title: Harris Hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: b22
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
– volume: 18
  start-page: 594
  year: 2013
  end-page: 623
  ident: b74
  article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering
  publication-title: Empir. Softw. Eng.
– volume: 97
  year: 2020
  ident: b62
  article-title: Toxicity risks evaluation of unknown fda biotransformed drugs based on a multi-objective feature selection approach
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b39
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– volume: 75
  start-page: 775
  year: 2019
  end-page: 789
  ident: b68
  article-title: Impact of Lèvy flight on modern meta-heuristic optimizers
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 6915
  year: 2010
  ident: b16
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
– volume: 191
  year: 2020
  ident: b40
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 10
  year: 2015
  ident: b66
  article-title: Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy
  publication-title: PLoS One
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b75
  article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
  publication-title: Neural Comput. Appl.
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.compbiomed.2023.107389_b34
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 10
  issue: 11
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107389_b66
  article-title: Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0142190
– volume: 4
  start-page: 455
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2023.107389_b65
  article-title: A mathematical model for tumor volume evaluation using two-dimensions
  publication-title: J. Appl. Quant. Methods
– year: 2019
  ident: 10.1016/j.compbiomed.2023.107389_b17
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107389_b21
  article-title: Harris Hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 185
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b69
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115651
– volume: 21
  start-page: 11767
  issue: 41
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107389_b70
  article-title: Colorectal cancer: Metastases to a single organ
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v21.i41.11767
– volume: 10
  start-page: 253
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107389_b71
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0711-7
– volume: 56
  start-page: 161
  issue: 3–4
  year: 1995
  ident: 10.1016/j.compbiomed.2023.107389_b36
  article-title: A new simulated annealing algorithm
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207169508804397
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b6
  article-title: Hssahho: A novel hybrid salp swarm-Harris Hawks optimization algorithm for complex engineering problems
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 114
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b29
  article-title: Komodo mlipir algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108043
– volume: 213
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107389_b3
  article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119015
– volume: 195
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b5
  article-title: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116552
– volume: 181
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b30
  article-title: Run beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115079
– volume: 13
  start-page: 286
  issue: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b46
  article-title: Darts game optimizer: A new optimization technique based on darts game
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 248
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b59
  article-title: Bcovidoa: A novel binary coronavirus disease optimization algorithm for feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108789
– volume: 51
  start-page: 1531
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b41
  article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 10
  start-page: 166
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b52
  article-title: Dual-population social group optimization algorithm based on human social group behavior law
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3141114
– volume: 135
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b57
  article-title: An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104558
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107389_b19
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 20
  start-page: 797
  issue: 2
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107389_b56
  article-title: Boosting whale optimizer with quasi-oppositional learning and Gaussian barebone for feature selection and covid-19 image segmentation
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-022-00297-8
– volume: 97
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b62
  article-title: Toxicity risks evaluation of unknown fda biotransformed drugs based on a multi-objective feature selection approach
  publication-title: Appl. Soft Comput.
– volume: 75
  start-page: 775
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107389_b68
  article-title: Impact of Lèvy flight on modern meta-heuristic optimizers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.033
– volume: 136
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b55
  article-title: A novel melanoma prediction model for imbalanced data using optimized squeezenet by bald eagle search optimization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104712
– start-page: 0210
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107389_b38
  article-title: Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke’s law
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b20
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b64
  article-title: Hybrid Harris Hawks optimization with cuckoo search for drug design and discovery in chemoinformatics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71502-z
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b11
  article-title: An efficient high-dimensional feature selection approach driven by enhanced multi-strategy grey wolf optimizer for biological data classification
  publication-title: Neural Comput. Appl.
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107389_b48
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 145
  start-page: 250
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107389_b2
  article-title: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.01.021
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.compbiomed.2023.107389_b13
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 12
  start-page: 9924
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b50
  article-title: A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-14225-7
– start-page: 1128
  year: 2008
  ident: 10.1016/j.compbiomed.2023.107389_b12
  article-title: Measuring exploration/exploitation in particle swarms using swarm diversity
– volume: 222
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b1
  article-title: Ssc: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106926
– volume: 388
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b33
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114194
– volume: 27
  start-page: 495
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107389_b39
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 86
  start-page: 165
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107389_b51
  article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.025
– volume: 152
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107389_b8
  article-title: A modified reptile search algorithm for global optimization and image segmentation: Case study brain mri images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106404
– volume: 177
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b27
  article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114864
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107389_b42
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 33
  start-page: 13601
  issue: 20
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b79
  article-title: Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05991-y
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b22
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 139
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b54
  article-title: Breast cancer prediction using a hybrid method based on butterfly optimization algorithm and ant lion optimizer
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104968
– volume: 90
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b23
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 128
  start-page: 28
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107389_b82
  article-title: Time complexity analysis of support vector machines (svm) in libsvm
  publication-title: Int. J. Comput. Appl.
– volume: 191
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b60
  article-title: Centroid mutation-based search and rescue optimization algorithm for feature selection and classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116235
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.compbiomed.2023.107389_b37
  article-title: Gsa: A gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 213
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107389_b10
  article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119015
– volume: 195
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b14
  article-title: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116552
– volume: 47
  start-page: 850
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107389_b53
  article-title: Human mental search: A new population-based metaheuristic optimization algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0903-6
– volume: 5
  start-page: 6915
  issue: 3
  year: 2010
  ident: 10.1016/j.compbiomed.2023.107389_b16
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.6915
– volume: 195
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b43
  article-title: Info: An efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116516
– volume: 10
  start-page: 121615
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b32
  article-title: Giant trevally optimizer (gto): A novel metaheuristic algorithm for global optimization and challenging engineering problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3223388
– volume: 64
  start-page: 161
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107389_b44
  article-title: Volleyball premier league algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.043
– start-page: 39
  year: 1995
  ident: 10.1016/j.compbiomed.2023.107389_b15
  article-title: A new optimizer using particle swarm theory
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107389_b18
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.12.007
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b61
  article-title: Automatic selection of heavy-tailed distributions-based synergy henry gas solubility and Harris Hawk optimizer for feature selection: case study drug design and discovery
  publication-title: Artif. Intell. Rev.
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.compbiomed.2023.107389_b35
  article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 7
  issue: 29
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b78
  article-title: Efficient diagnosis of liver disease using support vector machine optimized with crows search algorithm
  publication-title: EAI Endorsed Trans. Energy Web
– volume: 33
  start-page: 16899
  issue: 24
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b7
  article-title: Improved manta ray foraging optimization for multi-level thresholding using covid-19 ct images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06273-3
– volume: 167
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b77
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114161
– start-page: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107389_b4
  article-title: Modified orca predation algorithm: Developments and perspectives on global optimization and hybrid energy systems
  publication-title: Neural Comput. Appl.
– volume: 300
  start-page: 70
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107389_b76
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 29
  start-page: 759
  issue: 7
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107389_b58
  article-title: Cooperative swarm intelligence algorithms for adaptive multilevel thresholding segmentation of covid-19 ct-scan images
  publication-title: JUCS - J. Universal Comput. Sci.
  doi: 10.3897/jucs.93498
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107389_b9
  article-title: Optimized deep learning architecture for brain tumor classification using improved hunger games search algorithm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106966
– volume: 213
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b25
  article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106711
– volume: 33
  start-page: 5011
  issue: 10
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b73
  article-title: Coronavirus herd immunity optimizer (chio)
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05296-6
– volume: 198
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b31
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– start-page: 315
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107389_b80
  article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities
– volume: 18
  start-page: 594
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107389_b74
  article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-013-9249-9
– volume: 191
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b40
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– volume: 8
  start-page: 57
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b49
  article-title: Foa: Following optimization algorithm for solving power engineering optimization problems
  publication-title: J. Oper. Automat. Power Eng.
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b72
  article-title: Improved multi-operator differential evolution algorithm for solving unconstrained problems
– volume: 243
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b24
  article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108457
– volume: 13
  start-page: 514
  issue: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107389_b45
  article-title: Football game based optimization: An application to solve energy commitment problem
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 191
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107389_b26
  article-title: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 77
  start-page: 1934
  issue: 10
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107389_b67
  article-title: Estimating tumor growth rates in vivo
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-015-0110-8
– ident: 10.1016/j.compbiomed.2023.107389_b47
– volume: 33
  start-page: 13601
  issue: 20
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b63
  article-title: Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05991-y
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107389_b81
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 18
  start-page: 674
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107389_b28
  article-title: The colony predation algorithm
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-021-0050-y
SSID ssj0004030
Score 2.6661363
Snippet This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover...
AbstractThis paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107389
SubjectTerms Algorithms
Amine oxidase (flavin-containing)
Benchmarks
Bio-inspired
Biomedical data
Coronaviruses
Datasets
Evolutionary algorithms
Evolutionary computation
Feature selection
Feature selection (FS)
Genetic algorithms
Herd immunity
Heuristic methods
Internal Medicine
Liver cancer
Liver Cancer Algorithm (LCA)
Metaheuristic algorithms (MAs)
Operators (mathematics)
Optimization
Optimization algorithms
Other
Particle swarm optimization
Random opposition-based learning (ROBL)
Runge-Kutta method
Support vector machines
Tumors
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqDogF8RSFgoLEmrbxI25gqiqqClEmKnWzGseBoDap-mBg4LdzlzitgA6VGOP4ZOvs-3wnf3cm5HYsAj2mIZJbxy2Xy3bkBrEWLhMxHGfSl1FeeH7w7PeH_HEkRhXSLXNhkFZpsb_A9BytbUvTarM5SxLM8YVQAgIccKLBb-CYaM65xF3e-NrQPHiLFWkogDfY27J5Co4X0raLNPcGPiMOzZLhg-_bj6hfYJ2fQL1DcmBdR6dTzO6IVEx6TPYG9nL8hPhPyLFwuriOc6czec0g8H-b3jkdJ80-zMSBObhJilfrJnIywIpp8mnmp2TYe3jp9l37LIKreeAtXUaxyJxnaKg197WR4MEx8NI0BEMQGlMmPCkjEbb9qE1jpnmsjQCzNhpCGyo0OyPVNEvNOXGMAKPWBlZLxjyOYN00XvBK38SaxlFUI7LUhNK2Zjg-XTFRJTnsXW10qFCHqtBhjXhryVlRN2MHmaBUtirzQgHJFID7DrJym6xZWJNcKE8tqGqpP9umRu7Xkj923o7j1stdodZDUSwaCKvisRq5Wf8Gu8XLmHFqslXeh9EA0FNe_GsCl2Qfvwp-YZ1Ul_OVuQI_aRle54bwDWNeD1Y
  priority: 102
  providerName: Elsevier
Title Liver Cancer Algorithm: A novel bio-inspired optimizer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523008545
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523008545
https://dx.doi.org/10.1016/j.compbiomed.2023.107389
https://www.proquest.com/docview/2867177413
https://www.proquest.com/docview/2863298807
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9sw8LRSadoLgn1o5aPKJF4DjR3HDTygUrV0QKuJrVLfrNZ2-FBJoC087GG_nbvEaaUJob4kUpKLrbvz-c73BXAwFrEeswkFt44bfiibxo8TLXwuEtzOZCRNXni-P4h6w_BiJEbuwG3uwipLmZgLapNpOiM_YlSIDXWVgJ8-PvnUNYq8q66FRgWqVLqMuFqO5CovssGLFBSUNSGaQi6Sp4jvopDtIsX9kFqI42PJqdn729vTf4I63326W7Dp1EavVdB5Gz7Y9DN87DvH-BeIrii-wmsTDWdea3qDU1_cPhx7LS_NXuzUwzn4dym51a3xMpQTD3d_7ewrDLudP-2e71oi-DqMg4XPGRWYCyybaB1G2krECEcNTaMhhGYx4wJxZMSkGZkmS7gOE20FLmmr0axhQvNvsJFmqf0OnhW4oLVFSskkTAzSTJNzV0Y20SwxpgayxITSrl44ta2YqjIw7F6tcKgIh6rAYQ2CJeRjUTNjDZi4RLYqc0JRiikU7GvAyrdg7dwtx7kK1JyphvqdVyNCRkC7C1XNUNTgZAnpNI5Ck1hz3L2SK9RyqBWf1uDH8jWuWXLEjFObPeffcBaj5JQ77_9iFz7ReEXw4B5sLGbPdh-VoMWkDpXDf0E953e8Nrvndai2fl72Bng_6wx-Xb8CXI8JQQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTttAcARUKr0gaEGE51Zqj4Z41-uNW6EqgqahJFwKErcl2V23VMGGJLSCj-IbO-O1E6lCKBeutmfHGs_T8wL40JOJ6fE-Fbf26kGkGjZIUiMDIVM0ZypWthg83z2N2-fR9wt5MQePVS8MlVVWOrFQ1DY39I98n9MgNvRVQvHl5jagrVGUXa1WaHi2OHH3fzFkGx0cH-H3_ch56-vZYTsotwoEJkrCcSA4zWgLHe8bE8XGKTxUoJNjMJbAyJILiWis7Ddi2-CpMFFqnESpcAYjAy6NwHPn4RXCJBTsNVrfpn2YdeFbXlC3RRh6lZVDvp6MSsR9S_0erSzHy0rQcvmnzeF_hqGwdq1lWCrdVNb0fLUCcy57C6-7ZSL-HcQdqudgh8QzQ9Yc_ERSjX9df2JNluV_3IDhOwRXGaXxnWU56qXrqwc3XIXzFyHWGixkeebWgTmJCsQ45AyVRqlFHjGUTFaxSw1Pra2BqiihTTmfnNZkDHRViPZbT2moiYba07AG4QTyxs_omAEmqYitqx5U1JoaDckMsOopWDcqxX-kQz3iuq5_FNOPkBEwzkPXNpI1-DyBLD0c77nMiHer4go9QTWVixq8n9xGHUGJn17m8rviGcET1NRq4_kjdmGxfdbt6M7x6ckmvCHcvnBxCxbGwzu3jQ7YuL9TcD2Dy5cWs38oVD9T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ9gSYgvxs9YQV0TfTzp7d7e9jTGVKABgYaoJLwt7X4opNxhWzT6p_nXOXO71yaGmL7wer3Zaaazv5npfAG8HMrCDPmIiluHnSRTXZsU3shESI_mTOXK1oPnDwf57nH28USerMCfpheGyiobTKyB2laG_iPf5DSIDX2VVGz6WBZxtN1_f_k9oQ1SlGlt1mkEFdl3v35i-DZ9t7eNv_Urzvs7X7Z2k7hhIDFZkc4SwWleW-r4yJgsN04hA4EOj8G4AqNMLiSytHLUzW2Xe2Eyb5zEG-IMRglcGoHn3oJVRVFRC1Y_7AyOPi26MjsiNMAg0mUYiMU6olBdRgXjocH-NS0wx8dK0Kr5643jP2aitn39u3AnOq2sF7TsHqy48j6sHca0_APID6i6g22RBk1Yb_wVhTX7dvGG9VhZ_XBjht8hOSspqe8sqxClLs5-u8lDOL4RcT2CVlmV7jEwJxFOjEM9UT7zFjXGUGpZ5c4b7q1tg2okoU2cVk5LM8a6KUs71wsZapKhDjJsQzqnvAwTO5agKRph66YjFTFUo1lZglZdR-umEQymOtVTrjv6cz0LCRUBoz50dDPZhrdzyujvBD9mSb4bjVboOavFLWnDi_nHiBiUBhqWrrqq3xG8QNxWT_5_xHNYwyumD_YG--twm1iHKsYNaM0mV-4pemOz0bOo9gxOb_qm_QWACUTl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+Cancer+Algorithm%3A+A+novel+bio-inspired+optimizer&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Houssein%2C+Essam+H.&rft.au=Oliva%2C+Diego&rft.au=Samee%2C+Nagwan+Abdel&rft.au=Mahmoud%2C+Noha+F.&rft.date=2023-10-01&rft.issn=0010-4825&rft.volume=165&rft.spage=107389&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2023_107389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon