Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden
Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discha...
Saved in:
Published in | Journal of hazardous materials Vol. 122; no. 3; pp. 195 - 204 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.07.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and β-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC–MS (methylated derivatives) or LC–MS/MS. In addition to the targeted pharmaceuticals, GC–MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a β-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl
−) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The β-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales. |
---|---|
AbstractList | Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales. Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales. Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and β-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC–MS (methylated derivatives) or LC–MS/MS. In addition to the targeted pharmaceuticals, GC–MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a β-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl −) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The β-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales. Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Hoje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl-) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales. Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta -blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Hoje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta -blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl super(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta -blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g. transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales. |
Author | Loge, Frank J. Ginn, Timothy R. Paxéus, Nicklas A. Bendz, David |
Author_xml | – sequence: 1 givenname: David surname: Bendz fullname: Bendz, David email: David.Bendz@swedgeo.se organization: Swedish Geotechnical Institute, Department of Environmental Technology, Hospitalsgatan 16A, S-211 33 Malmö, Sweden – sequence: 2 givenname: Nicklas A. surname: Paxéus fullname: Paxéus, Nicklas A. organization: Gryaab, Karl IX:s väg, S-418 34 Gothenburg, Sweden – sequence: 3 givenname: Timothy R. surname: Ginn fullname: Ginn, Timothy R. organization: University of California, Department of Civil and Environmental Engineering, 1 Shields Avenue, 2001 Engineering III, Davis, CA 95616, USA – sequence: 4 givenname: Frank J. surname: Loge fullname: Loge, Frank J. organization: University of California, Department of Civil and Environmental Engineering, 1 Shields Avenue, 2001 Engineering III, Davis, CA 95616, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15967274$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc-K1TAchYOMOHdGH0HJypWtSZMmjS5EBnWEgQH_rEOa_MpNadOapFeuD-YL-GL2cq8Ibq6rs_m-szjnCl2EKQBCTykpKaHiZV_2W_NjNLmsCKlLwkpCqwdoQxvJCsaYuEAbwggvWKP4JbpKqSeEUFnzR-iS1krISvINmu-tXWKEYAGb4HBnMuCpw_PWxNFYWLK3Zhj22Njsd4DtNM7TElzCPuC8BQxh5-MURgj5BTbYmgQ45cXtX-HbXz97wJ9WLR7oz9_BQXiMHnZmSPDklNfo6_t3X25ui7v7Dx9v3t4Vliuai8qKihpKHQWiWNUYQblsJNSNNIpIxlrbkk60neKydk2luKhF53hHGLOuFewaPT_2znH6tkDKevTJwjCYANOStJCqVorws2ClKJWs_g-QkHV70azgsxO4tCM4PUc_mrjXf1ZfgfoI2DilFKH7ixB9eFf3-vTuobXWhOn13dV7_Y9nfTbZTyFH44ez9pujDevsOw9RJ-sPxzsfwWbtJn-m4Tcn_8QE |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2010_04_073 crossref_primary_10_1007_s11356_013_2439_6 crossref_primary_10_1016_j_scitotenv_2012_08_061 crossref_primary_10_1007_s00244_009_9383_y crossref_primary_10_1007_s11356_017_0880_7 crossref_primary_10_1016_j_microc_2023_108465 crossref_primary_10_1016_j_watres_2013_11_026 crossref_primary_10_1016_j_scitotenv_2014_05_087 crossref_primary_10_1016_j_scitotenv_2019_04_323 crossref_primary_10_1897_IEAM_2009_072_1 crossref_primary_10_1007_s11356_021_16558_8 crossref_primary_10_3390_polym16131804 crossref_primary_10_1002_jssc_202200042 crossref_primary_10_1007_s00216_006_0444_z crossref_primary_10_1016_j_jcis_2012_07_037 crossref_primary_10_1007_s10311_022_01465_2 crossref_primary_10_1002_etc_1725 crossref_primary_10_1007_s10653_014_9632_5 crossref_primary_10_5985_jec_20_127 crossref_primary_10_1016_j_scitotenv_2013_09_018 crossref_primary_10_1080_12269328_2012_732316 crossref_primary_10_1016_j_marenvres_2018_05_001 crossref_primary_10_1080_10934529_2015_1047647 crossref_primary_10_1016_j_cbpc_2010_11_004 crossref_primary_10_1016_j_chemosphere_2010_12_083 crossref_primary_10_1016_j_jhazmat_2015_08_057 crossref_primary_10_1016_j_scitotenv_2016_08_074 crossref_primary_10_1098_rsos_171457 crossref_primary_10_1039_b904548a crossref_primary_10_1016_j_cej_2014_05_109 crossref_primary_10_1016_j_scitotenv_2018_04_179 crossref_primary_10_1002_rra_3430 crossref_primary_10_1016_j_jhazmat_2011_01_057 crossref_primary_10_1016_j_chemosphere_2007_04_069 crossref_primary_10_1080_10826076_2012_673212 crossref_primary_10_1016_j_scitotenv_2021_152527 crossref_primary_10_1128_AEM_03693_13 crossref_primary_10_1021_acs_est_1c01274 crossref_primary_10_1007_s00216_006_0936_x crossref_primary_10_1016_j_watres_2012_01_044 crossref_primary_10_1016_j_envpol_2019_05_150 crossref_primary_10_1007_s10040_012_0852_4 crossref_primary_10_1016_j_etap_2011_12_017 crossref_primary_10_1016_j_jece_2019_103142 crossref_primary_10_1039_C9GC03265G crossref_primary_10_1016_j_jclepro_2018_03_083 crossref_primary_10_3390_ma16041422 crossref_primary_10_1016_j_chemosphere_2017_08_151 crossref_primary_10_1016_j_watres_2013_03_004 crossref_primary_10_5004_dwt_2011_2677 crossref_primary_10_1007_s13592_023_01046_4 crossref_primary_10_1021_acs_est_5b03051 crossref_primary_10_1897_08_531_1 crossref_primary_10_4236_jep_2013_49109 crossref_primary_10_1016_j_marenvres_2017_04_005 crossref_primary_10_1016_j_ecoenv_2013_06_033 crossref_primary_10_1007_s11270_009_0086_9 crossref_primary_10_1016_j_cej_2019_123606 crossref_primary_10_1007_s00216_006_0969_1 crossref_primary_10_1016_j_tca_2016_07_016 crossref_primary_10_1007_s00216_006_1035_8 crossref_primary_10_1002_lol2_10219 crossref_primary_10_1080_10934529_2015_1047668 crossref_primary_10_1080_03067319_2010_526208 crossref_primary_10_1007_s11356_019_04472_z crossref_primary_10_1016_j_jenvman_2021_113314 crossref_primary_10_1021_es9027452 crossref_primary_10_1016_j_ces_2013_12_044 crossref_primary_10_1016_j_watres_2021_117743 crossref_primary_10_1016_j_marenvres_2017_04_012 crossref_primary_10_1016_j_scitotenv_2017_11_287 crossref_primary_10_1007_s10661_014_3881_8 crossref_primary_10_1016_j_watres_2006_12_017 crossref_primary_10_1039_b9ay00283a crossref_primary_10_1016_j_marpolbul_2015_03_008 crossref_primary_10_3390_su122310197 crossref_primary_10_5897_JECE2016_0377 crossref_primary_10_1016_j_chroma_2014_04_054 crossref_primary_10_1016_j_scitotenv_2016_05_206 crossref_primary_10_1016_j_algal_2021_102560 crossref_primary_10_1016_j_scitotenv_2014_04_090 crossref_primary_10_1016_j_scitotenv_2020_142765 crossref_primary_10_1007_s10661_013_3398_6 crossref_primary_10_1016_j_chemosphere_2023_138855 crossref_primary_10_1016_j_ecoenv_2007_10_015 crossref_primary_10_1007_s11270_015_2622_0 crossref_primary_10_1016_j_chemosphere_2023_137882 crossref_primary_10_1016_j_watres_2014_12_042 crossref_primary_10_1016_j_aquatox_2013_12_018 crossref_primary_10_1039_b608170n crossref_primary_10_1007_s11356_023_26796_7 crossref_primary_10_1016_j_cej_2011_09_057 crossref_primary_10_1016_j_jenvman_2016_07_015 crossref_primary_10_1016_j_aca_2008_07_051 crossref_primary_10_1016_j_scitotenv_2018_08_309 crossref_primary_10_1007_s10695_021_00987_w crossref_primary_10_1016_j_scitotenv_2019_134057 crossref_primary_10_1016_j_agee_2020_107123 crossref_primary_10_1016_j_scitotenv_2013_01_049 crossref_primary_10_1016_j_scitotenv_2014_04_097 crossref_primary_10_3390_membranes13080697 crossref_primary_10_1080_02772248_2015_1005092 crossref_primary_10_4491_KSEE_2017_39_3_124 crossref_primary_10_1016_j_envint_2014_06_015 crossref_primary_10_1039_C6AY00112B crossref_primary_10_1007_s00216_006_0781_y crossref_primary_10_3390_ani12010060 crossref_primary_10_1007_s00216_009_3225_7 crossref_primary_10_1016_j_surfin_2021_101097 crossref_primary_10_1007_s00267_017_0841_4 crossref_primary_10_1021_acs_iecr_9b01395 crossref_primary_10_1007_s11356_021_18287_4 crossref_primary_10_1016_j_envint_2016_09_014 crossref_primary_10_1039_C9AY01597C crossref_primary_10_1039_c3ay00048f crossref_primary_10_1007_s00216_006_0728_3 crossref_primary_10_1016_j_envpol_2010_03_012 crossref_primary_10_1016_j_chemosphere_2010_10_041 crossref_primary_10_1016_j_seta_2021_101652 crossref_primary_10_1039_b909311g crossref_primary_10_1016_j_chemosphere_2011_05_014 crossref_primary_10_1061__ASCE_EE_1943_7870_0000344 crossref_primary_10_1007_s10661_016_5706_4 crossref_primary_10_1016_j_envpol_2013_08_004 crossref_primary_10_1016_j_jenvman_2022_115703 crossref_primary_10_1016_j_seppur_2015_09_059 crossref_primary_10_1007_s10661_017_6128_7 crossref_primary_10_1016_j_cbpc_2020_108840 crossref_primary_10_2134_jeq2012_0020 crossref_primary_10_1007_s10661_021_08999_y crossref_primary_10_1007_s11356_017_8902_z crossref_primary_10_1016_j_scitotenv_2017_03_011 crossref_primary_10_1371_journal_pone_0184725 crossref_primary_10_1007_s10661_012_2827_2 crossref_primary_10_1016_j_chemosphere_2012_10_074 crossref_primary_10_1007_s40242_023_3073_6 crossref_primary_10_1007_s00216_006_0586_z crossref_primary_10_2175_106143016X14609975746000 crossref_primary_10_1016_j_scitotenv_2017_02_222 crossref_primary_10_1016_j_scitotenv_2017_10_052 crossref_primary_10_1061__ASCE_EE_1943_7870_0001791 crossref_primary_10_1016_j_jconhyd_2013_08_001 crossref_primary_10_1080_10807039_2018_1479631 crossref_primary_10_1016_j_jhazmat_2018_05_035 crossref_primary_10_1016_j_cej_2017_12_090 crossref_primary_10_3390_su13063496 crossref_primary_10_1080_10807030802235078 crossref_primary_10_3354_meps11213 crossref_primary_10_1007_s11356_017_0523_z crossref_primary_10_1088_1748_9326_9_7_074018 crossref_primary_10_1016_j_scitotenv_2018_07_415 crossref_primary_10_1016_j_watres_2012_11_027 crossref_primary_10_1016_j_cej_2015_07_084 crossref_primary_10_1016_j_envpol_2012_04_004 crossref_primary_10_1080_19443994_2014_981225 crossref_primary_10_5322_JESI_2013_22_12_1615 crossref_primary_10_1007_s11164_022_04778_7 crossref_primary_10_1002_gch2_201800093 crossref_primary_10_1016_j_scitotenv_2014_11_079 crossref_primary_10_1007_s11356_017_9726_6 crossref_primary_10_1016_j_watres_2007_11_023 crossref_primary_10_1007_s11270_021_05067_6 crossref_primary_10_1021_es3030148 crossref_primary_10_5004_dwt_2017_20879 crossref_primary_10_1016_j_scitotenv_2009_10_009 crossref_primary_10_1007_s00216_008_1854_x crossref_primary_10_1016_j_watres_2007_11_019 crossref_primary_10_1080_01480545_2018_1560465 crossref_primary_10_1016_j_marpolbul_2009_02_004 crossref_primary_10_1016_S1001_0742_12_60006_0 crossref_primary_10_1016_j_chemosphere_2010_06_065 crossref_primary_10_1016_j_scitotenv_2013_12_063 crossref_primary_10_1007_s10661_016_5375_3 crossref_primary_10_1016_j_jhazmat_2013_08_003 crossref_primary_10_1093_jaoacint_qsaa100 crossref_primary_10_1007_s11356_013_2037_7 crossref_primary_10_2166_wst_2021_457 crossref_primary_10_1007_s11356_013_2363_9 crossref_primary_10_1016_j_seppur_2019_01_079 crossref_primary_10_1016_j_ecoleng_2010_11_002 crossref_primary_10_2131_jts_34_227 crossref_primary_10_1021_es401919k crossref_primary_10_1016_j_chemosphere_2015_06_024 crossref_primary_10_1007_s00216_009_2669_0 crossref_primary_10_1016_j_cbpb_2015_10_009 crossref_primary_10_1002_lno_12228 crossref_primary_10_1016_j_chroma_2007_05_074 crossref_primary_10_1016_j_jhazmat_2012_12_057 crossref_primary_10_1016_j_scitotenv_2014_10_021 crossref_primary_10_1016_j_watres_2016_02_022 crossref_primary_10_1016_j_scitotenv_2019_04_182 crossref_primary_10_1016_j_chemosphere_2015_07_056 crossref_primary_10_1016_j_chroma_2010_08_005 crossref_primary_10_1016_j_jhazmat_2021_125908 crossref_primary_10_1080_10934529_2014_854670 crossref_primary_10_1897_09_173_1 crossref_primary_10_2166_wst_2015_079 crossref_primary_10_2175_106143010X12681059116653 crossref_primary_10_1016_j_chemosphere_2014_06_074 crossref_primary_10_1155_2014_645737 crossref_primary_10_1016_j_cej_2022_136902 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000668 crossref_primary_10_1016_j_toxlet_2007_10_012 crossref_primary_10_1002_tox_22392 crossref_primary_10_1007_s11270_024_07382_0 crossref_primary_10_1007_s10661_011_2454_3 crossref_primary_10_1016_j_scitotenv_2014_04_003 crossref_primary_10_1016_j_yrtph_2009_10_006 crossref_primary_10_1007_s11356_022_19968_4 crossref_primary_10_1016_j_scitotenv_2023_169848 crossref_primary_10_1016_j_envpol_2011_10_031 crossref_primary_10_1089_ees_2010_0213 crossref_primary_10_1016_j_ecoenv_2017_12_041 crossref_primary_10_1016_j_aquatox_2008_04_011 crossref_primary_10_1080_15226514_2022_2057422 crossref_primary_10_1007_s11356_013_1754_2 crossref_primary_10_1016_j_jpba_2019_02_016 crossref_primary_10_1016_j_scitotenv_2008_03_018 crossref_primary_10_1007_s00216_006_0821_7 crossref_primary_10_1007_s00216_010_3862_x crossref_primary_10_1016_j_jece_2019_103400 crossref_primary_10_1021_es900280e crossref_primary_10_1016_j_scitotenv_2023_163184 crossref_primary_10_1016_j_yrtph_2012_07_003 crossref_primary_10_1002_clen_201300179 crossref_primary_10_1038_srep21396 crossref_primary_10_1007_s10344_011_0513_2 crossref_primary_10_3390_w11122515 crossref_primary_10_1016_j_jhazmat_2020_123733 crossref_primary_10_1021_ac0715672 crossref_primary_10_1016_j_watres_2011_02_013 crossref_primary_10_47470_0016_9900_2021_100_11_1218_1223 crossref_primary_10_1002_bit_24553 crossref_primary_10_1016_j_watres_2018_04_031 crossref_primary_10_1016_j_jprot_2016_01_010 crossref_primary_10_1016_j_scitotenv_2020_138770 crossref_primary_10_1080_10934520902996880 crossref_primary_10_1016_j_ecoleng_2016_08_010 crossref_primary_10_1016_j_scitotenv_2019_04_113 crossref_primary_10_1016_j_scitotenv_2013_03_044 crossref_primary_10_1016_j_apcatb_2013_03_013 crossref_primary_10_3390_ijerph16173026 crossref_primary_10_1016_j_cej_2020_125440 crossref_primary_10_1016_j_envpol_2011_04_037 crossref_primary_10_1016_j_jhazmat_2013_08_040 crossref_primary_10_1016_S1001_0742_12_60293_9 crossref_primary_10_1016_j_jhazmat_2016_05_072 crossref_primary_10_1016_j_etap_2006_05_002 crossref_primary_10_1016_j_scitotenv_2024_175664 crossref_primary_10_1021_acs_chemrev_8b00299 crossref_primary_10_1016_j_aquatox_2015_07_019 crossref_primary_10_1016_j_watres_2016_02_047 crossref_primary_10_1016_j_trac_2007_03_005 crossref_primary_10_5194_hess_23_573_2019 crossref_primary_10_1016_j_apcatb_2013_10_035 crossref_primary_10_1016_j_crci_2016_05_005 crossref_primary_10_1016_j_chroma_2007_10_052 crossref_primary_10_1039_C8EM00327K crossref_primary_10_1016_j_scitotenv_2015_06_002 crossref_primary_10_1016_j_seppur_2020_118195 crossref_primary_10_1016_j_watres_2023_119883 crossref_primary_10_1016_j_scitotenv_2014_12_055 crossref_primary_10_1002_slct_201903943 crossref_primary_10_1007_s11356_023_30030_9 crossref_primary_10_1016_j_envint_2018_06_035 crossref_primary_10_1007_s11356_016_7668_z crossref_primary_10_1007_s41061_019_0241_8 crossref_primary_10_1016_j_chroma_2015_08_061 crossref_primary_10_1016_j_marpolbul_2016_03_011 crossref_primary_10_1007_s11356_016_7437_z crossref_primary_10_1016_j_aca_2012_01_014 crossref_primary_10_1016_j_jhazmat_2010_03_048 crossref_primary_10_1007_s10532_008_9237_8 crossref_primary_10_1016_j_jece_2022_107798 crossref_primary_10_1039_c000408c crossref_primary_10_1021_acs_est_3c03242 crossref_primary_10_1016_j_aquatox_2021_105809 crossref_primary_10_1016_j_cej_2013_05_061 crossref_primary_10_1016_j_aquatox_2014_01_011 crossref_primary_10_1016_j_chemosphere_2018_07_170 crossref_primary_10_1021_es204621q crossref_primary_10_1016_j_jphotochem_2021_113283 crossref_primary_10_1016_j_ultsonch_2016_09_017 crossref_primary_10_1016_j_scitotenv_2008_10_016 crossref_primary_10_1039_c0em00765j crossref_primary_10_1016_j_biortech_2008_01_008 crossref_primary_10_1016_j_watres_2010_08_012 crossref_primary_10_1002_etc_3336 crossref_primary_10_1007_s11356_014_2774_2 crossref_primary_10_1080_09593330_2018_1444098 crossref_primary_10_1289_ehp_11776 crossref_primary_10_1080_09593330_2016_1156773 crossref_primary_10_1007_s11356_013_1982_5 crossref_primary_10_1021_es100779n crossref_primary_10_1016_j_cej_2017_09_094 crossref_primary_10_1016_j_watres_2014_09_051 crossref_primary_10_1016_j_jece_2020_105005 crossref_primary_10_1016_j_jclepro_2019_06_243 crossref_primary_10_1007_s12649_020_01041_1 crossref_primary_10_1016_j_jece_2013_10_016 crossref_primary_10_1016_j_jhazmat_2010_03_075 crossref_primary_10_1016_j_jhazmat_2021_127284 crossref_primary_10_3390_antibiotics10060684 crossref_primary_10_1016_j_scitotenv_2011_09_014 crossref_primary_10_1021_ac503323e crossref_primary_10_1016_j_enmm_2019_100239 crossref_primary_10_2989_16085914_2018_1465393 crossref_primary_10_1016_j_envpol_2006_05_038 crossref_primary_10_1016_j_jece_2023_111654 crossref_primary_10_1016_j_envpol_2009_03_017 crossref_primary_10_1016_j_jhazmat_2013_08_057 crossref_primary_10_5004_dwt_2019_24341 crossref_primary_10_1016_j_jpba_2016_02_049 crossref_primary_10_1016_j_scitotenv_2016_04_170 crossref_primary_10_1016_j_chemosphere_2008_09_020 crossref_primary_10_1016_j_scitotenv_2019_135901 crossref_primary_10_1016_j_chemosphere_2012_11_018 crossref_primary_10_4028_www_scientific_net_MSF_967_179 crossref_primary_10_1002_jctb_4888 crossref_primary_10_1007_s11356_019_04170_w crossref_primary_10_1016_j_micromeso_2015_02_026 crossref_primary_10_1007_s10311_009_0239_5 crossref_primary_10_1007_s00216_009_3099_8 crossref_primary_10_1007_s11356_013_2477_0 crossref_primary_10_1016_j_watres_2008_11_031 crossref_primary_10_1016_j_ecoenv_2016_01_015 crossref_primary_10_1007_s00216_006_0951_y crossref_primary_10_1002_clen_201400483 crossref_primary_10_1021_es900282c crossref_primary_10_1002_jssc_201201142 crossref_primary_10_1007_s11356_011_0661_7 crossref_primary_10_5004_dwt_2021_27038 crossref_primary_10_1016_j_envpol_2020_115687 crossref_primary_10_1007_s11356_012_1128_1 crossref_primary_10_1016_j_trac_2006_11_004 crossref_primary_10_1371_journal_pone_0093774 crossref_primary_10_1016_j_watres_2010_10_037 crossref_primary_10_3389_frwa_2024_1335766 crossref_primary_10_4491_eer_2016_115 crossref_primary_10_1007_s11356_014_4023_0 crossref_primary_10_1016_j_envres_2024_118401 crossref_primary_10_1897_09_071_1 crossref_primary_10_1007_s00216_014_7749_0 crossref_primary_10_1016_j_scitotenv_2012_12_050 crossref_primary_10_1021_jp808057c crossref_primary_10_1371_journal_pone_0115223 crossref_primary_10_1002_tox_20684 crossref_primary_10_1016_j_talanta_2015_06_073 crossref_primary_10_4491_KSEE_2021_43_7_491 crossref_primary_10_1016_j_jenvman_2021_114096 crossref_primary_10_1016_j_scitotenv_2007_08_013 crossref_primary_10_1007_s10661_022_10314_2 crossref_primary_10_1039_c1em10015g crossref_primary_10_1021_acsami_6b01748 crossref_primary_10_1016_j_jhazmat_2016_05_038 crossref_primary_10_1016_j_marpolbul_2025_117751 crossref_primary_10_3920_QAS2012_0177 crossref_primary_10_1517_14740338_2012_644272 crossref_primary_10_1016_j_scitotenv_2014_01_093 crossref_primary_10_1007_s11356_012_0750_2 crossref_primary_10_1016_j_microc_2016_11_018 crossref_primary_10_1016_j_chemosphere_2014_07_085 crossref_primary_10_1080_01919510600985937 crossref_primary_10_1016_j_surfin_2023_103281 crossref_primary_10_1016_j_envpol_2009_02_019 crossref_primary_10_1134_S0036024422100107 crossref_primary_10_1016_j_scitotenv_2016_03_053 crossref_primary_10_1016_j_jenvman_2013_08_043 crossref_primary_10_1016_j_marpolbul_2024_116667 crossref_primary_10_1039_C5RA10523D crossref_primary_10_1080_01932691_2019_1614030 crossref_primary_10_1016_j_jhazmat_2010_10_005 crossref_primary_10_1016_j_jpba_2012_02_011 crossref_primary_10_1016_j_watres_2008_04_002 crossref_primary_10_1002_clen_200900038 crossref_primary_10_1016_j_watres_2006_06_039 crossref_primary_10_1016_j_foodcont_2016_03_001 crossref_primary_10_1021_acs_est_9b02966 crossref_primary_10_1139_er_2019_0007 crossref_primary_10_1007_s10646_016_1682_2 crossref_primary_10_1515_aiht_2016_67_2727 crossref_primary_10_1016_j_jhazmat_2017_09_058 crossref_primary_10_1007_s00216_019_01968_y crossref_primary_10_1016_j_jhazmat_2021_127350 crossref_primary_10_4028_www_scientific_net_AMM_470_11 crossref_primary_10_1039_c0em00602e crossref_primary_10_1007_s11356_016_6503_x crossref_primary_10_1016_j_envpol_2020_114548 crossref_primary_10_1111_j_1752_1688_2008_00284_x crossref_primary_10_1016_j_watres_2017_06_068 crossref_primary_10_1016_j_envres_2021_112196 crossref_primary_10_1016_j_scitotenv_2018_07_439 crossref_primary_10_1080_09593330_2015_1058422 crossref_primary_10_1016_j_marpolbul_2007_04_008 crossref_primary_10_2175_106143008X325719 crossref_primary_10_1016_j_watres_2015_02_049 crossref_primary_10_2139_ssrn_4117136 crossref_primary_10_1007_s10661_018_6683_6 crossref_primary_10_1039_c3em30884g crossref_primary_10_1111_j_1365_2389_2012_01430_x crossref_primary_10_1016_j_scitotenv_2012_04_028 crossref_primary_10_3390_chemengineering8050090 crossref_primary_10_1080_03067319_2022_2047184 crossref_primary_10_1016_j_chemosphere_2014_06_038 crossref_primary_10_1016_j_chemosphere_2007_08_026 crossref_primary_10_1016_j_aquatox_2006_08_010 crossref_primary_10_1080_09291016_2013_787684 crossref_primary_10_1016_j_solener_2011_04_031 crossref_primary_10_1016_j_watres_2008_04_026 crossref_primary_10_1080_20008686_2018_1553463 crossref_primary_10_1016_j_envint_2018_03_013 crossref_primary_10_1002_etc_5981 crossref_primary_10_1016_j_scitotenv_2008_02_025 crossref_primary_10_1016_j_talanta_2010_11_046 crossref_primary_10_1016_j_jenvman_2021_111971 crossref_primary_10_1016_j_chemosphere_2006_07_051 crossref_primary_10_1016_j_chroma_2013_05_002 crossref_primary_10_3390_w15152835 crossref_primary_10_1016_j_scitotenv_2015_11_047 crossref_primary_10_1021_acsearthspacechem_2c00002 crossref_primary_10_1007_s10661_017_6341_4 crossref_primary_10_1016_j_scitotenv_2017_03_001 crossref_primary_10_1016_j_jhazmat_2013_02_035 crossref_primary_10_1007_s11356_016_6679_0 crossref_primary_10_1002_jssc_200700571 crossref_primary_10_1016_j_jconhyd_2018_06_003 crossref_primary_10_1007_s11356_015_4473_z crossref_primary_10_1016_j_scitotenv_2016_05_002 crossref_primary_10_1016_j_envint_2006_09_014 crossref_primary_10_1016_j_envpol_2020_115269 crossref_primary_10_4491_KSEE_2020_42_4_177 crossref_primary_10_1039_b817364h crossref_primary_10_1016_j_scitotenv_2018_07_093 crossref_primary_10_3390_biology9120478 crossref_primary_10_1007_s40726_017_0072_6 crossref_primary_10_1016_j_chemosphere_2011_12_067 crossref_primary_10_1248_jhs_55_249 crossref_primary_10_1016_j_jhazmat_2008_11_070 crossref_primary_10_1021_acs_est_5b05769 crossref_primary_10_4296_cwrj2012_949 crossref_primary_10_3390_molecules25051026 crossref_primary_10_1007_s10661_011_2020_z crossref_primary_10_1016_j_watres_2012_06_017 crossref_primary_10_1016_j_arabjc_2014_10_044 crossref_primary_10_1016_j_watres_2010_11_010 crossref_primary_10_1016_j_cattod_2017_05_088 crossref_primary_10_1016_j_ijheh_2011_08_002 crossref_primary_10_1007_s10661_012_2811_x crossref_primary_10_1007_s11356_014_2721_2 crossref_primary_10_1016_j_chemosphere_2016_06_095 crossref_primary_10_1039_C4EM00494A crossref_primary_10_1016_j_apsusc_2021_151145 crossref_primary_10_1016_j_watres_2008_10_047 crossref_primary_10_20964_2017_08_72 crossref_primary_10_1016_j_watres_2010_07_050 crossref_primary_10_1039_b717453e crossref_primary_10_1007_s00128_023_03739_z crossref_primary_10_1016_j_chroma_2006_08_077 crossref_primary_10_1016_j_watres_2010_06_020 crossref_primary_10_1016_j_chemosphere_2009_08_012 crossref_primary_10_1016_j_chroma_2011_08_093 crossref_primary_10_1088_1757_899X_611_1_012053 crossref_primary_10_1016_j_chroma_2014_08_018 crossref_primary_10_1016_j_scitotenv_2013_01_059 crossref_primary_10_1897_IEAM_2009_026_1 crossref_primary_10_1002_etc_222 crossref_primary_10_1016_j_chemosphere_2009_08_010 crossref_primary_10_1016_j_scitotenv_2018_06_153 crossref_primary_10_1016_j_envpol_2013_09_009 crossref_primary_10_1016_j_watres_2010_03_005 crossref_primary_10_1016_j_jphotochem_2008_03_011 crossref_primary_10_1007_s00244_013_9979_0 crossref_primary_10_1080_03067319_2014_900680 crossref_primary_10_1007_s00244_008_9202_x crossref_primary_10_1016_j_chroma_2009_01_056 crossref_primary_10_1021_jp110753r crossref_primary_10_1080_03067319_2011_592949 crossref_primary_10_1007_s11270_011_1008_1 crossref_primary_10_1002_jat_1660 crossref_primary_10_1016_j_envpol_2008_10_009 crossref_primary_10_1016_j_aquatox_2016_03_017 crossref_primary_10_1016_j_apcatb_2017_06_057 crossref_primary_10_1016_j_chemosphere_2022_133903 crossref_primary_10_1016_j_chroma_2009_02_085 crossref_primary_10_1016_j_jenvman_2015_04_002 crossref_primary_10_1016_j_scitotenv_2015_04_051 crossref_primary_10_3390_ijerph16030414 crossref_primary_10_7202_019164ar crossref_primary_10_1016_j_ultsonch_2019_02_015 crossref_primary_10_1039_C8EM00390D crossref_primary_10_1007_s11356_014_2622_4 crossref_primary_10_1007_s11270_015_2690_1 crossref_primary_10_1016_j_watres_2012_07_033 crossref_primary_10_1016_j_scitotenv_2016_02_009 crossref_primary_10_3390_w9030218 crossref_primary_10_1016_j_scitotenv_2015_03_040 crossref_primary_10_1016_j_scitotenv_2020_136916 crossref_primary_10_1016_j_chemosphere_2013_08_055 crossref_primary_10_1080_03067310903531504 crossref_primary_10_1016_j_talanta_2014_08_016 crossref_primary_10_1007_s11356_012_1099_2 crossref_primary_10_3390_toxics2020188 crossref_primary_10_1016_j_envres_2019_04_032 crossref_primary_10_1016_j_watres_2009_02_013 crossref_primary_10_1016_j_cbpc_2009_02_005 crossref_primary_10_1016_j_jhazmat_2009_10_100 crossref_primary_10_1007_s11356_015_4234_z crossref_primary_10_1016_j_envint_2016_06_025 crossref_primary_10_1016_j_scitotenv_2013_08_027 crossref_primary_10_1016_j_scitotenv_2020_142122 crossref_primary_10_1016_j_scitotenv_2017_07_171 crossref_primary_10_1038_s41598_023_30477_3 crossref_primary_10_3390_antibiotics2010115 crossref_primary_10_1002_ep_13482 crossref_primary_10_1016_j_aquatox_2010_04_017 crossref_primary_10_1016_j_aquatox_2012_12_016 crossref_primary_10_5802_crchim_183 crossref_primary_10_1016_j_chemosphere_2016_01_117 crossref_primary_10_2108_zsj_28_281 crossref_primary_10_1021_es060737 crossref_primary_10_1016_j_aquatox_2012_07_009 crossref_primary_10_1016_j_chemosphere_2010_03_060 crossref_primary_10_1039_C7RA11796E crossref_primary_10_1016_j_scitotenv_2018_06_124 crossref_primary_10_11001_jksww_2019_33_6_469 crossref_primary_10_1016_j_chemosphere_2012_12_042 crossref_primary_10_1016_j_watres_2010_04_022 crossref_primary_10_1039_B903880A crossref_primary_10_1007_s11356_014_3400_z crossref_primary_10_1016_j_ecoenv_2008_02_009 crossref_primary_10_1080_01496390701290417 crossref_primary_10_1016_j_etap_2012_02_005 crossref_primary_10_1016_j_ces_2017_08_015 crossref_primary_10_1371_journal_pone_0147525 crossref_primary_10_1039_b9ay00015a crossref_primary_10_1007_s00244_012_9847_3 crossref_primary_10_1016_j_scitotenv_2012_07_046 crossref_primary_10_1016_j_scitotenv_2017_04_118 crossref_primary_10_1007_s11356_018_3025_8 crossref_primary_10_1016_j_watres_2013_09_026 crossref_primary_10_1016_j_ecoenv_2019_109980 crossref_primary_10_1080_09593330_2014_888097 crossref_primary_10_1897_06_495R_1 crossref_primary_10_1016_j_ecoenv_2014_04_029 crossref_primary_10_1016_j_envpol_2009_04_002 crossref_primary_10_1007_s00216_010_3702_z crossref_primary_10_1016_j_scitotenv_2012_06_035 crossref_primary_10_3390_biology10101064 crossref_primary_10_1002_2013WR014759 crossref_primary_10_1016_j_cej_2017_06_148 crossref_primary_10_2208_jscejer_73_159 crossref_primary_10_1016_j_emcon_2016_12_004 crossref_primary_10_1039_c0em00068j crossref_primary_10_1016_j_ecoenv_2015_12_020 crossref_primary_10_1016_j_envint_2014_03_021 crossref_primary_10_1016_j_snb_2012_09_016 crossref_primary_10_1016_j_aquatox_2016_10_006 crossref_primary_10_4491_KSEE_2011_33_6_453 crossref_primary_10_1016_j_scitotenv_2018_09_086 crossref_primary_10_1016_j_watres_2016_07_068 crossref_primary_10_1007_s10967_014_3134_x crossref_primary_10_1021_es402878e crossref_primary_10_1039_c2em00007e crossref_primary_10_1248_jhs_54_240 crossref_primary_10_1016_j_aca_2009_01_011 crossref_primary_10_1016_j_scitotenv_2019_01_187 crossref_primary_10_1002_elsc_200700017 crossref_primary_10_1039_C4TA02904F crossref_primary_10_1007_s11356_014_3929_x crossref_primary_10_1007_s00128_014_1247_0 crossref_primary_10_1016_j_chemosphere_2021_130385 crossref_primary_10_15407_zht2020_66_033 crossref_primary_10_1039_b817890a |
Cites_doi | 10.1021/es981014w 10.1016/S0378-4274(02)00041-3 10.1016/S0378-4274(02)00049-8 10.1016/S0045-6535(99)00442-7 10.1016/S0140-6736(00)02270-4 10.1016/S0045-6535(99)00438-5 10.1021/jf00093a062 10.1016/S0045-6535(97)00354-8 10.1016/S0043-1354(03)00164-7 10.1021/es011055j 10.1289/ehp.99107s6907 10.2166/wst.2004.0335 10.1023/A:1007526826979 10.1111/j.2042-7158.1985.tb04922.x 10.1021/es020158e 10.1016/S0043-1354(98)00099-2 10.1021/es0003021 10.1016/S0048-9697(98)00337-4 10.1089/109287503768335931 10.1021/es00005a039 10.2166/wst.2000.0585 10.1016/S0045-6535(02)00769-5 10.1016/0044-8486(94)00310-K |
ContentType | Journal Article |
Copyright | 2005 Elsevier B.V. |
Copyright_xml | – notice: 2005 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TV 7U1 7U7 7UA C1K F1W H97 L.G 8FD FR3 KR7 7X8 |
DOI | 10.1016/j.jhazmat.2005.03.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Pollution Abstracts Risk Abstracts Toxicology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Risk Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Toxicology Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database Risk Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
EndPage | 204 |
ExternalDocumentID | 15967274 10_1016_j_jhazmat_2005_03_012 S0304389405000907 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Sweden |
GeographicLocations_xml | – name: Sweden |
GroupedDBID | --- --K --M -~X ..I .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLECG BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HMC HVGLF HZ~ IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SEN SES SEW SPC SPCBC SSG SSJ SSZ T5K T9H TAE UAO VH1 WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7TV 7U1 7U7 7UA C1K F1W H97 L.G 8FD FR3 KR7 7X8 |
ID | FETCH-LOGICAL-c491t-2c621a11d1e09328a614787e587a90733bcb0f6bf9475d8294656fd4f033cdb63 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 |
IngestDate | Fri Jul 11 12:41:53 EDT 2025 Thu Jul 10 23:47:54 EDT 2025 Thu Jul 10 21:19:47 EDT 2025 Fri Jun 20 17:44:46 EDT 2025 Tue Jul 01 03:29:38 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Fri Feb 23 02:30:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Persistence Recipient Sewage Pharmaceutical Transport |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-2c621a11d1e09328a614787e587a90733bcb0f6bf9475d8294656fd4f033cdb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 15967274 |
PQID | 20087368 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_67959904 proquest_miscellaneous_29117354 proquest_miscellaneous_20087368 pubmed_primary_15967274 crossref_primary_10_1016_j_jhazmat_2005_03_012 crossref_citationtrail_10_1016_j_jhazmat_2005_03_012 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2005_03_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-07-15 |
PublicationDateYYYYMMDD | 2005-07-15 |
PublicationDate_xml | – month: 07 year: 2005 text: 2005-07-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2005 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | (bib5) 2001 Rabolle, Spliid (bib14) 2000; 40 M. Ahel, A. Jelicic, Occurrence of analgetics in a municipal solid waste landfill and adjacent groundwater aquifier, In: S. Matsui (Ed.), Proceedings of the Third IWA Specialized Conference on Hazard Assessment and Control of Environmental Contaminants –ECOHAZARD’99, Otsu, Japan, 1999, pp. 497–504. Berndtsson (bib19) 1990; 26 Park (bib26) 2001; 1 Hektoen, Berge, Hormazabal, Yndestad (bib13) 1995; 133 Calamari, Zuccato, Castiglioni, Bagnati, Fanelli (bib18) 2003; 37 Heberer (bib1) 2002; 131 Paxéus (bib12) 2004; 50 J. Niemczynowicz, An investigation of the areal and dynamic properties of rainfall and its influence on rainfall generating processes, Report 1005, Department of Water Resources Engineering, Lund University, Lund, Sweden, 1984. SRC PhysProp (2001), accessed via Hirsch, Ternes, Haberer, Kratz (bib36) 1999; 225 Jørgensen, Halling-Sørensen (bib11) 2000; 40 Adveef, Berger, Brownell (bib31) 2000; 17 Buser, Poiger, Muller (bib23) 1999; 33 Stumpf, Ternes, Haberer, Baumann (bib24) 1998; 91 Richardson, Brown (bib28) 1985; 37 Paxéus (bib8) 2000; 42 Tolls (bib16) 2001; 35 Fry, Toone (bib9) 1981; 231 . Yeager, Halley (bib15) 1990; 38 Snyder, Westerhoff, Yoon, Sedlak (bib10) 2003; 20 Ternes (bib32) 1998; 32 C. Jonasson, The technical services department at Lund water and sewage works, Sweden, 2003, Personal communication. Scheytt, Mersmann, Heberer (bib17) 2001 Andreozzi, Marotta, Paxéus (bib27) 2002; 50 I. Dellien, The technical services department at Lund water and sewage works, Sweden, 2003, Personal communication. Holm, Rugge, Bjerg, Christensen (bib7) 1995; 29 Sabaliunas, Webb, Hauk, Jacob, Eckhoff (bib33) 2003; 37 Zuccato, Calamari, Natangelo, Fanelli (bib35) 2000; 355 Kolpin, Furlong, Meyer, Zaugg, Barber, Buxton (bib4) 2002; 36 Straub (bib25) 2002; 131 Daughton, Ternes (bib2) 1999; 107 Halling-Sørensen, Nielsen, Lanzky, Igerslev, Lutzhoft, Jørgensen (bib3) 1998; 36 DeRuiter (bib34) 2000; 2 Paxéus (10.1016/j.jhazmat.2005.03.012_bib12) 2004; 50 Berndtsson (10.1016/j.jhazmat.2005.03.012_bib19) 1990; 26 Sabaliunas (10.1016/j.jhazmat.2005.03.012_bib33) 2003; 37 Halling-Sørensen (10.1016/j.jhazmat.2005.03.012_bib3) 1998; 36 Buser (10.1016/j.jhazmat.2005.03.012_bib23) 1999; 33 Richardson (10.1016/j.jhazmat.2005.03.012_bib28) 1985; 37 10.1016/j.jhazmat.2005.03.012_bib30 Daughton (10.1016/j.jhazmat.2005.03.012_bib2) 1999; 107 Adveef (10.1016/j.jhazmat.2005.03.012_bib31) 2000; 17 DeRuiter (10.1016/j.jhazmat.2005.03.012_bib34) 2000; 2 Kolpin (10.1016/j.jhazmat.2005.03.012_bib4) 2002; 36 Park (10.1016/j.jhazmat.2005.03.012_bib26) 2001; 1 Tolls (10.1016/j.jhazmat.2005.03.012_bib16) 2001; 35 Ternes (10.1016/j.jhazmat.2005.03.012_bib32) 1998; 32 Holm (10.1016/j.jhazmat.2005.03.012_bib7) 1995; 29 10.1016/j.jhazmat.2005.03.012_bib6 Paxéus (10.1016/j.jhazmat.2005.03.012_bib8) 2000; 42 Jørgensen (10.1016/j.jhazmat.2005.03.012_bib11) 2000; 40 Zuccato (10.1016/j.jhazmat.2005.03.012_bib35) 2000; 355 (10.1016/j.jhazmat.2005.03.012_bib5) 2001 Rabolle (10.1016/j.jhazmat.2005.03.012_bib14) 2000; 40 10.1016/j.jhazmat.2005.03.012_bib29 10.1016/j.jhazmat.2005.03.012_bib22 Scheytt (10.1016/j.jhazmat.2005.03.012_bib17) 2001 10.1016/j.jhazmat.2005.03.012_bib20 10.1016/j.jhazmat.2005.03.012_bib21 Yeager (10.1016/j.jhazmat.2005.03.012_bib15) 1990; 38 Straub (10.1016/j.jhazmat.2005.03.012_bib25) 2002; 131 Snyder (10.1016/j.jhazmat.2005.03.012_bib10) 2003; 20 Stumpf (10.1016/j.jhazmat.2005.03.012_bib24) 1998; 91 Hirsch (10.1016/j.jhazmat.2005.03.012_bib36) 1999; 225 Fry (10.1016/j.jhazmat.2005.03.012_bib9) 1981; 231 Hektoen (10.1016/j.jhazmat.2005.03.012_bib13) 1995; 133 Andreozzi (10.1016/j.jhazmat.2005.03.012_bib27) 2002; 50 Heberer (10.1016/j.jhazmat.2005.03.012_bib1) 2002; 131 Calamari (10.1016/j.jhazmat.2005.03.012_bib18) 2003; 37 |
References_xml | – year: 2001 ident: bib5 publication-title: Pharmaceuticals in the environment—sources, fate, effects and risks – volume: 38 start-page: 883 year: 1990 end-page: 886 ident: bib15 article-title: Sorption/desorption of 14C[efromycin] with soils publication-title: J. Agric. Food Chem. – volume: 33 start-page: 2529 year: 1999 end-page: 2535 ident: bib23 article-title: Occurrence and environmental behaviour of the chiral pharmaceutical drug Ibuprofen in surface waters and in waste waters publication-title: Environ. Sci. Technol. – volume: 131 start-page: 137 year: 2002 end-page: 143 ident: bib25 article-title: Environmental risk assessment for human pharmaceuticals in the European Union according to the draft guideline/disscussion paper of January publication-title: Toxicol. Lett. – volume: 37 start-page: 1 year: 1985 end-page: 12 ident: bib28 article-title: The fate of pharmaceuticals in the aquatic environment publication-title: J. Pharm. Pharmacol. – volume: 107 start-page: 907 year: 1999 end-page: 944 ident: bib2 article-title: PPCPs in the environment: agents of subtle change publication-title: Environ. Health Perspect. – reference: SRC PhysProp (2001), accessed via – volume: 42 start-page: 323 year: 2000 end-page: 333 ident: bib8 article-title: Organic compounds in municipal landfill leachates publication-title: Water Sci. Technol. – volume: 231 start-page: 919 year: 1981 end-page: 924 ident: bib9 article-title: DDT-induced feminization of gull embryos publication-title: Science – volume: 26 start-page: 549 year: 1990 end-page: 1558 ident: bib19 article-title: Transport and sedimentation of pollutants in a river reach: a chemical mass balance approach publication-title: Water Resour. Res. – reference: C. Jonasson, The technical services department at Lund water and sewage works, Sweden, 2003, Personal communication. – volume: 17 start-page: 85 year: 2000 end-page: 89 ident: bib31 article-title: pH-Metric solubility. Part 2: Correlation between the acid-base titration and the saturation shake-flask solubility–pH methods publication-title: Pharm. Res. – volume: 36 start-page: 357 year: 1998 end-page: 393 ident: bib3 article-title: Occurrence, fate, and effects of pharmaceutical substances in the environment—a review publication-title: Chemosphere – volume: 37 start-page: 3145 year: 2003 end-page: 3154 ident: bib33 article-title: Environmental fate of triclosan in the river Aire basin, UK publication-title: Water Res. – volume: 91 start-page: 291 year: 1998 end-page: 303 ident: bib24 article-title: Isolation of ibuprofen-metabolites and their importance as pollutants of the aquatic environment publication-title: Vom Wasser – volume: 225 start-page: 109 year: 1999 end-page: 118 ident: bib36 article-title: Occurence of antibiotics in the environment publication-title: Sci. Total Environ. – start-page: 253 year: 2001 end-page: 259 ident: bib17 article-title: Natural attenuation of pharmaceuticals publication-title: Proceeding of the Second International Conference on Pharamceuticals and Endocrine Disrupting Chemicals in Water, October 9–11, Minneapolis, MN – volume: 32 start-page: 3245 year: 1998 end-page: 3260 ident: bib32 article-title: Occurrence of drugs in German sewage treatment plants and rivers publication-title: Water Res. – volume: 50 start-page: 1319 year: 2002 end-page: 1330 ident: bib27 article-title: Pharmaceuticals in STP effuents and their solar photodegradation in aquatic environment publication-title: Chemosphere – volume: 131 start-page: 5 year: 2002 end-page: 17 ident: bib1 article-title: Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data publication-title: Toxicol. Lett. – volume: 50 start-page: 253 year: 2004 end-page: 260 ident: bib12 article-title: Removal of Selected NSAIDs, Gemfibrozil, Carbamazepine, β-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment publication-title: Water Sci. Technol. – volume: 1 start-page: 185 year: 2001 end-page: 188 ident: bib26 article-title: Drug metabolism publication-title: Br. J. Anaesth. CEPD Rev. – volume: 20 start-page: 449 year: 2003 end-page: 469 ident: bib10 article-title: Pharmaceuticals, personal care products and endocrine disrupters in water: implications for water industry publication-title: Environ. Eng. Sci. – volume: 355 start-page: 1789 year: 2000 end-page: 1790 ident: bib35 article-title: Presence of therapeutic drugs in the environment publication-title: Lancet – volume: 35 start-page: 3397 year: 2001 end-page: 3406 ident: bib16 article-title: Sorption of veterinary pharmaceuticals in soils: a review publication-title: Environ. Sci. Technol. – volume: 2 start-page: 1 year: 2000 end-page: 23 ident: bib34 article-title: Non-steroidal antiinflammatory drugs (NSAIDs) publication-title: Princ. Drug Action – volume: 37 start-page: 1241 year: 2003 end-page: 1248 ident: bib18 article-title: Strategic survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy publication-title: Environ. Sci. Technol. – volume: 133 start-page: 175 year: 1995 end-page: 184 ident: bib13 article-title: Persistence of antibacterial agents in marine sediments publication-title: Aquaculture – reference: I. Dellien, The technical services department at Lund water and sewage works, Sweden, 2003, Personal communication. – volume: 40 start-page: 715 year: 2000 end-page: 722 ident: bib14 article-title: Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil publication-title: Chemosphere – volume: 36 start-page: 1202 year: 2002 end-page: 1211 ident: bib4 article-title: Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance publication-title: Environ. Sci. Technol. – reference: J. Niemczynowicz, An investigation of the areal and dynamic properties of rainfall and its influence on rainfall generating processes, Report 1005, Department of Water Resources Engineering, Lund University, Lund, Sweden, 1984. – volume: 29 start-page: 1415 year: 1995 end-page: 1420 ident: bib7 article-title: Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grinsted, Denmark) publication-title: Environ. Sci. Technol. – volume: 40 start-page: 691 year: 2000 end-page: 699 ident: bib11 article-title: Drugs in the environment publication-title: Chemosphere – reference: M. Ahel, A. Jelicic, Occurrence of analgetics in a municipal solid waste landfill and adjacent groundwater aquifier, In: S. Matsui (Ed.), Proceedings of the Third IWA Specialized Conference on Hazard Assessment and Control of Environmental Contaminants –ECOHAZARD’99, Otsu, Japan, 1999, pp. 497–504. – reference: . – volume: 33 start-page: 2529 year: 1999 ident: 10.1016/j.jhazmat.2005.03.012_bib23 article-title: Occurrence and environmental behaviour of the chiral pharmaceutical drug Ibuprofen in surface waters and in waste waters publication-title: Environ. Sci. Technol. doi: 10.1021/es981014w – volume: 131 start-page: 5 year: 2002 ident: 10.1016/j.jhazmat.2005.03.012_bib1 article-title: Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data publication-title: Toxicol. Lett. doi: 10.1016/S0378-4274(02)00041-3 – volume: 131 start-page: 137 year: 2002 ident: 10.1016/j.jhazmat.2005.03.012_bib25 article-title: Environmental risk assessment for human pharmaceuticals in the European Union according to the draft guideline/disscussion paper of January publication-title: Toxicol. Lett. doi: 10.1016/S0378-4274(02)00049-8 – ident: 10.1016/j.jhazmat.2005.03.012_bib29 – volume: 231 start-page: 919 year: 1981 ident: 10.1016/j.jhazmat.2005.03.012_bib9 article-title: DDT-induced feminization of gull embryos publication-title: Science – volume: 40 start-page: 715 year: 2000 ident: 10.1016/j.jhazmat.2005.03.012_bib14 article-title: Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00442-7 – volume: 355 start-page: 1789 year: 2000 ident: 10.1016/j.jhazmat.2005.03.012_bib35 article-title: Presence of therapeutic drugs in the environment publication-title: Lancet doi: 10.1016/S0140-6736(00)02270-4 – volume: 40 start-page: 691 year: 2000 ident: 10.1016/j.jhazmat.2005.03.012_bib11 article-title: Drugs in the environment publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00438-5 – start-page: 253 year: 2001 ident: 10.1016/j.jhazmat.2005.03.012_bib17 article-title: Natural attenuation of pharmaceuticals – volume: 38 start-page: 883 year: 1990 ident: 10.1016/j.jhazmat.2005.03.012_bib15 article-title: Sorption/desorption of 14C[efromycin] with soils publication-title: J. Agric. Food Chem. doi: 10.1021/jf00093a062 – ident: 10.1016/j.jhazmat.2005.03.012_bib20 – volume: 36 start-page: 357 year: 1998 ident: 10.1016/j.jhazmat.2005.03.012_bib3 article-title: Occurrence, fate, and effects of pharmaceutical substances in the environment—a review publication-title: Chemosphere doi: 10.1016/S0045-6535(97)00354-8 – year: 2001 ident: 10.1016/j.jhazmat.2005.03.012_bib5 – ident: 10.1016/j.jhazmat.2005.03.012_bib22 – volume: 37 start-page: 3145 year: 2003 ident: 10.1016/j.jhazmat.2005.03.012_bib33 article-title: Environmental fate of triclosan in the river Aire basin, UK publication-title: Water Res. doi: 10.1016/S0043-1354(03)00164-7 – volume: 36 start-page: 1202 year: 2002 ident: 10.1016/j.jhazmat.2005.03.012_bib4 article-title: Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance publication-title: Environ. Sci. Technol. doi: 10.1021/es011055j – volume: 107 start-page: 907 year: 1999 ident: 10.1016/j.jhazmat.2005.03.012_bib2 article-title: PPCPs in the environment: agents of subtle change publication-title: Environ. Health Perspect. doi: 10.1289/ehp.99107s6907 – volume: 50 start-page: 253 issue: 5 year: 2004 ident: 10.1016/j.jhazmat.2005.03.012_bib12 article-title: Removal of Selected NSAIDs, Gemfibrozil, Carbamazepine, β-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment publication-title: Water Sci. Technol. doi: 10.2166/wst.2004.0335 – volume: 2 start-page: 1 year: 2000 ident: 10.1016/j.jhazmat.2005.03.012_bib34 article-title: Non-steroidal antiinflammatory drugs (NSAIDs) publication-title: Princ. Drug Action – volume: 17 start-page: 85 year: 2000 ident: 10.1016/j.jhazmat.2005.03.012_bib31 article-title: pH-Metric solubility. Part 2: Correlation between the acid-base titration and the saturation shake-flask solubility–pH methods publication-title: Pharm. Res. doi: 10.1023/A:1007526826979 – volume: 37 start-page: 1 year: 1985 ident: 10.1016/j.jhazmat.2005.03.012_bib28 article-title: The fate of pharmaceuticals in the aquatic environment publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.1985.tb04922.x – volume: 91 start-page: 291 year: 1998 ident: 10.1016/j.jhazmat.2005.03.012_bib24 article-title: Isolation of ibuprofen-metabolites and their importance as pollutants of the aquatic environment publication-title: Vom Wasser – volume: 37 start-page: 1241 year: 2003 ident: 10.1016/j.jhazmat.2005.03.012_bib18 article-title: Strategic survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy publication-title: Environ. Sci. Technol. doi: 10.1021/es020158e – volume: 32 start-page: 3245 year: 1998 ident: 10.1016/j.jhazmat.2005.03.012_bib32 article-title: Occurrence of drugs in German sewage treatment plants and rivers publication-title: Water Res. doi: 10.1016/S0043-1354(98)00099-2 – volume: 35 start-page: 3397 year: 2001 ident: 10.1016/j.jhazmat.2005.03.012_bib16 article-title: Sorption of veterinary pharmaceuticals in soils: a review publication-title: Environ. Sci. Technol. doi: 10.1021/es0003021 – volume: 1 start-page: 185 year: 2001 ident: 10.1016/j.jhazmat.2005.03.012_bib26 article-title: Drug metabolism publication-title: Br. J. Anaesth. CEPD Rev. – volume: 225 start-page: 109 year: 1999 ident: 10.1016/j.jhazmat.2005.03.012_bib36 article-title: Occurence of antibiotics in the environment publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(98)00337-4 – volume: 20 start-page: 449 issue: 5 year: 2003 ident: 10.1016/j.jhazmat.2005.03.012_bib10 article-title: Pharmaceuticals, personal care products and endocrine disrupters in water: implications for water industry publication-title: Environ. Eng. Sci. doi: 10.1089/109287503768335931 – volume: 29 start-page: 1415 year: 1995 ident: 10.1016/j.jhazmat.2005.03.012_bib7 article-title: Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grinsted, Denmark) publication-title: Environ. Sci. Technol. doi: 10.1021/es00005a039 – volume: 26 start-page: 549 issue: 1 year: 1990 ident: 10.1016/j.jhazmat.2005.03.012_bib19 article-title: Transport and sedimentation of pollutants in a river reach: a chemical mass balance approach publication-title: Water Resour. Res. – ident: 10.1016/j.jhazmat.2005.03.012_bib21 – volume: 42 start-page: 323 year: 2000 ident: 10.1016/j.jhazmat.2005.03.012_bib8 article-title: Organic compounds in municipal landfill leachates publication-title: Water Sci. Technol. doi: 10.2166/wst.2000.0585 – ident: 10.1016/j.jhazmat.2005.03.012_bib6 – volume: 50 start-page: 1319 year: 2002 ident: 10.1016/j.jhazmat.2005.03.012_bib27 article-title: Pharmaceuticals in STP effuents and their solar photodegradation in aquatic environment publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00769-5 – ident: 10.1016/j.jhazmat.2005.03.012_bib30 – volume: 133 start-page: 175 year: 1995 ident: 10.1016/j.jhazmat.2005.03.012_bib13 article-title: Persistence of antibacterial agents in marine sediments publication-title: Aquaculture doi: 10.1016/0044-8486(94)00310-K |
SSID | ssj0001754 |
Score | 2.4141781 |
Snippet | Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 195 |
SubjectTerms | Adrenergic beta-Antagonists - analysis Anti-Bacterial Agents - analysis Carbamazepine - analysis Diclofenac - analysis Environmental Monitoring - methods Humans Ibuprofen - analysis Osmolar Concentration Persistence Pharmaceutical Pharmaceutical Preparations - analysis Recipient Rivers - chemistry Sewage Sewage - chemistry Sweden Transport Water Pollutants, Chemical - analysis Water Pollution, Chemical - analysis |
Title | Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden |
URI | https://dx.doi.org/10.1016/j.jhazmat.2005.03.012 https://www.ncbi.nlm.nih.gov/pubmed/15967274 https://www.proquest.com/docview/20087368 https://www.proquest.com/docview/29117354 https://www.proquest.com/docview/67959904 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYovbQH1AItPy31gWOz68Q_sXtDqGjbAocCErfIdhztrlB2BYsQHHgsXqAv1hkn6W4PW6Reo7HkZMYzXzwz3xCyr1MlLU9VEjxYsNCVT1yJ1xzWmZJrz0KGzcknp2pwIb5fyssVctj1wmBZZev7G58evXX7pN9-zf50NOqfYVIPwi0gDgQKsaNciBytvPc4L_OA8NhQSGEGAKTnXTz9cW88tA8ADNurFd5jabYsPi3DnzEOHb0hay2ApAfNHt-SlVCvk9cLtILr5MWxvdsgUyQQvo7NfNTWJa0AVdJJRafDxVvsq3tqo8ujWFyOM5Zu6KimAAvpQg_cZ2qph3hHIxvtFzr49TQO9CfWdKD02V0A97VJLo6-nh8Okna-QuKFSWdJ5lWW2jQt08AAxmkLoRrOb5A6twaHOTrvWKVcZUQuS50Z5FarSlExzn3pFH9HVutJHbYIrTKmwBaUDxr-T5g3TvuQc1NK7XLwCttEdF-18C35OM7AuCq6KrNx0SoDB2PKgvEClLFNen-WTRv2jecW6E5lxV9mVECEeG7pp07FBRwxzJvYOkxub-Kkzpwr_Q8JCBk5l2K5hMKZ7oaBxPvGeubvIw1mw8XO_299l7yKjLLI9yk_kNXZ9W34CFhp5vbiYdgjLw--_Ric_gZeZhRm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoeqkJbCm3Bhx6bXSd-xO6tQkULXTgUkLhZtuOIXaHsChah9sDP6h_oH-tMHuz2sCBxjcaSk3l9sWe-IeSzTpV0PFVJDGDBQpch8QUeczhvCq4Dixk2Jx8dq8GZODyX5ytkr-uFwbLKNvY3Mb2O1u2Tfvs1-9PRqH-Cl3qQbgFxIFDAjvI1Ae6LYwx6d_M6D8iPDYcUXgGA-LyNpz_ujS_cb0CG7dkK77E0W5aglgHQOhHtvyavWgRJvzWbXCcrsdogLxd4BTfIs6G7fUOmyCB8VXfzUVcVtARYSSclnV4sHmNf_qKujnkUq8txyNI1HVUUcCFdaIL7Qh0NkPBoTUf7lQ7-_hlH-hOLOlD65DZC_HpLzva_n-4NknbAQhKESWdJFlSWujQt0sgAx2kHuRocOEqdO4PTHH3wrFS-NCKXhc4MkquVhSgZ56Hwir8jq9Wkiu8JLTOmwBhUiBp-UFgwXoeYc1NI7XMIC1tEdF_VhpZ9HIdgXNquzGxsW2XgZExpGbegjC3Su182beg3HlugO5XZ_-zIQop4bOlup2ILPoYXJ66Kk5vrelRnzpV-QAJyRs6lWC6hcKi7YSCx2VjP_H2kwetwsf30re-S54PTo6EdHhz_-EBe1PSySP4pP5LV2dVN_ATAaeZ3asf4B4WjFfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occurrence+and+fate+of+pharmaceutically+active+compounds+in+the+environment%2C+a+case+study%3A+H%C3%B6je+River+in+Sweden&rft.jtitle=Journal+of+hazardous+materials&rft.au=Bendz%2C+David&rft.au=Pax%C3%A9us%2C+Nicklas+A.&rft.au=Ginn%2C+Timothy+R.&rft.au=Loge%2C+Frank+J.&rft.date=2005-07-15&rft.issn=0304-3894&rft.volume=122&rft.issue=3&rft.spage=195&rft.epage=204&rft_id=info:doi/10.1016%2Fj.jhazmat.2005.03.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2005_03_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |