Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden

Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discha...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 122; no. 3; pp. 195 - 204
Main Authors Bendz, David, Paxéus, Nicklas A., Ginn, Timothy R., Loge, Frank J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.07.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and β-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC–MS (methylated derivatives) or LC–MS/MS. In addition to the targeted pharmaceuticals, GC–MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a β-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl −) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The β-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.
AbstractList Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.
Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.
Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and β-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC–MS (methylated derivatives) or LC–MS/MS. In addition to the targeted pharmaceuticals, GC–MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a β-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl −) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The β-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.
Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Hoje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl-) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.
Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta -blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Hoje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta -blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl super(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta -blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g. transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.
Author Loge, Frank J.
Ginn, Timothy R.
Paxéus, Nicklas A.
Bendz, David
Author_xml – sequence: 1
  givenname: David
  surname: Bendz
  fullname: Bendz, David
  email: David.Bendz@swedgeo.se
  organization: Swedish Geotechnical Institute, Department of Environmental Technology, Hospitalsgatan 16A, S-211 33 Malmö, Sweden
– sequence: 2
  givenname: Nicklas A.
  surname: Paxéus
  fullname: Paxéus, Nicklas A.
  organization: Gryaab, Karl IX:s väg, S-418 34 Gothenburg, Sweden
– sequence: 3
  givenname: Timothy R.
  surname: Ginn
  fullname: Ginn, Timothy R.
  organization: University of California, Department of Civil and Environmental Engineering, 1 Shields Avenue, 2001 Engineering III, Davis, CA 95616, USA
– sequence: 4
  givenname: Frank J.
  surname: Loge
  fullname: Loge, Frank J.
  organization: University of California, Department of Civil and Environmental Engineering, 1 Shields Avenue, 2001 Engineering III, Davis, CA 95616, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15967274$$D View this record in MEDLINE/PubMed
BookMark eNqNkc-K1TAchYOMOHdGH0HJypWtSZMmjS5EBnWEgQH_rEOa_MpNadOapFeuD-YL-GL2cq8Ibq6rs_m-szjnCl2EKQBCTykpKaHiZV_2W_NjNLmsCKlLwkpCqwdoQxvJCsaYuEAbwggvWKP4JbpKqSeEUFnzR-iS1krISvINmu-tXWKEYAGb4HBnMuCpw_PWxNFYWLK3Zhj22Njsd4DtNM7TElzCPuC8BQxh5-MURgj5BTbYmgQ45cXtX-HbXz97wJ9WLR7oz9_BQXiMHnZmSPDklNfo6_t3X25ui7v7Dx9v3t4Vliuai8qKihpKHQWiWNUYQblsJNSNNIpIxlrbkk60neKydk2luKhF53hHGLOuFewaPT_2znH6tkDKevTJwjCYANOStJCqVorws2ClKJWs_g-QkHV70azgsxO4tCM4PUc_mrjXf1ZfgfoI2DilFKH7ixB9eFf3-vTuobXWhOn13dV7_Y9nfTbZTyFH44ez9pujDevsOw9RJ-sPxzsfwWbtJn-m4Tcn_8QE
CitedBy_id crossref_primary_10_1016_j_chemosphere_2010_04_073
crossref_primary_10_1007_s11356_013_2439_6
crossref_primary_10_1016_j_scitotenv_2012_08_061
crossref_primary_10_1007_s00244_009_9383_y
crossref_primary_10_1007_s11356_017_0880_7
crossref_primary_10_1016_j_microc_2023_108465
crossref_primary_10_1016_j_watres_2013_11_026
crossref_primary_10_1016_j_scitotenv_2014_05_087
crossref_primary_10_1016_j_scitotenv_2019_04_323
crossref_primary_10_1897_IEAM_2009_072_1
crossref_primary_10_1007_s11356_021_16558_8
crossref_primary_10_3390_polym16131804
crossref_primary_10_1002_jssc_202200042
crossref_primary_10_1007_s00216_006_0444_z
crossref_primary_10_1016_j_jcis_2012_07_037
crossref_primary_10_1007_s10311_022_01465_2
crossref_primary_10_1002_etc_1725
crossref_primary_10_1007_s10653_014_9632_5
crossref_primary_10_5985_jec_20_127
crossref_primary_10_1016_j_scitotenv_2013_09_018
crossref_primary_10_1080_12269328_2012_732316
crossref_primary_10_1016_j_marenvres_2018_05_001
crossref_primary_10_1080_10934529_2015_1047647
crossref_primary_10_1016_j_cbpc_2010_11_004
crossref_primary_10_1016_j_chemosphere_2010_12_083
crossref_primary_10_1016_j_jhazmat_2015_08_057
crossref_primary_10_1016_j_scitotenv_2016_08_074
crossref_primary_10_1098_rsos_171457
crossref_primary_10_1039_b904548a
crossref_primary_10_1016_j_cej_2014_05_109
crossref_primary_10_1016_j_scitotenv_2018_04_179
crossref_primary_10_1002_rra_3430
crossref_primary_10_1016_j_jhazmat_2011_01_057
crossref_primary_10_1016_j_chemosphere_2007_04_069
crossref_primary_10_1080_10826076_2012_673212
crossref_primary_10_1016_j_scitotenv_2021_152527
crossref_primary_10_1128_AEM_03693_13
crossref_primary_10_1021_acs_est_1c01274
crossref_primary_10_1007_s00216_006_0936_x
crossref_primary_10_1016_j_watres_2012_01_044
crossref_primary_10_1016_j_envpol_2019_05_150
crossref_primary_10_1007_s10040_012_0852_4
crossref_primary_10_1016_j_etap_2011_12_017
crossref_primary_10_1016_j_jece_2019_103142
crossref_primary_10_1039_C9GC03265G
crossref_primary_10_1016_j_jclepro_2018_03_083
crossref_primary_10_3390_ma16041422
crossref_primary_10_1016_j_chemosphere_2017_08_151
crossref_primary_10_1016_j_watres_2013_03_004
crossref_primary_10_5004_dwt_2011_2677
crossref_primary_10_1007_s13592_023_01046_4
crossref_primary_10_1021_acs_est_5b03051
crossref_primary_10_1897_08_531_1
crossref_primary_10_4236_jep_2013_49109
crossref_primary_10_1016_j_marenvres_2017_04_005
crossref_primary_10_1016_j_ecoenv_2013_06_033
crossref_primary_10_1007_s11270_009_0086_9
crossref_primary_10_1016_j_cej_2019_123606
crossref_primary_10_1007_s00216_006_0969_1
crossref_primary_10_1016_j_tca_2016_07_016
crossref_primary_10_1007_s00216_006_1035_8
crossref_primary_10_1002_lol2_10219
crossref_primary_10_1080_10934529_2015_1047668
crossref_primary_10_1080_03067319_2010_526208
crossref_primary_10_1007_s11356_019_04472_z
crossref_primary_10_1016_j_jenvman_2021_113314
crossref_primary_10_1021_es9027452
crossref_primary_10_1016_j_ces_2013_12_044
crossref_primary_10_1016_j_watres_2021_117743
crossref_primary_10_1016_j_marenvres_2017_04_012
crossref_primary_10_1016_j_scitotenv_2017_11_287
crossref_primary_10_1007_s10661_014_3881_8
crossref_primary_10_1016_j_watres_2006_12_017
crossref_primary_10_1039_b9ay00283a
crossref_primary_10_1016_j_marpolbul_2015_03_008
crossref_primary_10_3390_su122310197
crossref_primary_10_5897_JECE2016_0377
crossref_primary_10_1016_j_chroma_2014_04_054
crossref_primary_10_1016_j_scitotenv_2016_05_206
crossref_primary_10_1016_j_algal_2021_102560
crossref_primary_10_1016_j_scitotenv_2014_04_090
crossref_primary_10_1016_j_scitotenv_2020_142765
crossref_primary_10_1007_s10661_013_3398_6
crossref_primary_10_1016_j_chemosphere_2023_138855
crossref_primary_10_1016_j_ecoenv_2007_10_015
crossref_primary_10_1007_s11270_015_2622_0
crossref_primary_10_1016_j_chemosphere_2023_137882
crossref_primary_10_1016_j_watres_2014_12_042
crossref_primary_10_1016_j_aquatox_2013_12_018
crossref_primary_10_1039_b608170n
crossref_primary_10_1007_s11356_023_26796_7
crossref_primary_10_1016_j_cej_2011_09_057
crossref_primary_10_1016_j_jenvman_2016_07_015
crossref_primary_10_1016_j_aca_2008_07_051
crossref_primary_10_1016_j_scitotenv_2018_08_309
crossref_primary_10_1007_s10695_021_00987_w
crossref_primary_10_1016_j_scitotenv_2019_134057
crossref_primary_10_1016_j_agee_2020_107123
crossref_primary_10_1016_j_scitotenv_2013_01_049
crossref_primary_10_1016_j_scitotenv_2014_04_097
crossref_primary_10_3390_membranes13080697
crossref_primary_10_1080_02772248_2015_1005092
crossref_primary_10_4491_KSEE_2017_39_3_124
crossref_primary_10_1016_j_envint_2014_06_015
crossref_primary_10_1039_C6AY00112B
crossref_primary_10_1007_s00216_006_0781_y
crossref_primary_10_3390_ani12010060
crossref_primary_10_1007_s00216_009_3225_7
crossref_primary_10_1016_j_surfin_2021_101097
crossref_primary_10_1007_s00267_017_0841_4
crossref_primary_10_1021_acs_iecr_9b01395
crossref_primary_10_1007_s11356_021_18287_4
crossref_primary_10_1016_j_envint_2016_09_014
crossref_primary_10_1039_C9AY01597C
crossref_primary_10_1039_c3ay00048f
crossref_primary_10_1007_s00216_006_0728_3
crossref_primary_10_1016_j_envpol_2010_03_012
crossref_primary_10_1016_j_chemosphere_2010_10_041
crossref_primary_10_1016_j_seta_2021_101652
crossref_primary_10_1039_b909311g
crossref_primary_10_1016_j_chemosphere_2011_05_014
crossref_primary_10_1061__ASCE_EE_1943_7870_0000344
crossref_primary_10_1007_s10661_016_5706_4
crossref_primary_10_1016_j_envpol_2013_08_004
crossref_primary_10_1016_j_jenvman_2022_115703
crossref_primary_10_1016_j_seppur_2015_09_059
crossref_primary_10_1007_s10661_017_6128_7
crossref_primary_10_1016_j_cbpc_2020_108840
crossref_primary_10_2134_jeq2012_0020
crossref_primary_10_1007_s10661_021_08999_y
crossref_primary_10_1007_s11356_017_8902_z
crossref_primary_10_1016_j_scitotenv_2017_03_011
crossref_primary_10_1371_journal_pone_0184725
crossref_primary_10_1007_s10661_012_2827_2
crossref_primary_10_1016_j_chemosphere_2012_10_074
crossref_primary_10_1007_s40242_023_3073_6
crossref_primary_10_1007_s00216_006_0586_z
crossref_primary_10_2175_106143016X14609975746000
crossref_primary_10_1016_j_scitotenv_2017_02_222
crossref_primary_10_1016_j_scitotenv_2017_10_052
crossref_primary_10_1061__ASCE_EE_1943_7870_0001791
crossref_primary_10_1016_j_jconhyd_2013_08_001
crossref_primary_10_1080_10807039_2018_1479631
crossref_primary_10_1016_j_jhazmat_2018_05_035
crossref_primary_10_1016_j_cej_2017_12_090
crossref_primary_10_3390_su13063496
crossref_primary_10_1080_10807030802235078
crossref_primary_10_3354_meps11213
crossref_primary_10_1007_s11356_017_0523_z
crossref_primary_10_1088_1748_9326_9_7_074018
crossref_primary_10_1016_j_scitotenv_2018_07_415
crossref_primary_10_1016_j_watres_2012_11_027
crossref_primary_10_1016_j_cej_2015_07_084
crossref_primary_10_1016_j_envpol_2012_04_004
crossref_primary_10_1080_19443994_2014_981225
crossref_primary_10_5322_JESI_2013_22_12_1615
crossref_primary_10_1007_s11164_022_04778_7
crossref_primary_10_1002_gch2_201800093
crossref_primary_10_1016_j_scitotenv_2014_11_079
crossref_primary_10_1007_s11356_017_9726_6
crossref_primary_10_1016_j_watres_2007_11_023
crossref_primary_10_1007_s11270_021_05067_6
crossref_primary_10_1021_es3030148
crossref_primary_10_5004_dwt_2017_20879
crossref_primary_10_1016_j_scitotenv_2009_10_009
crossref_primary_10_1007_s00216_008_1854_x
crossref_primary_10_1016_j_watres_2007_11_019
crossref_primary_10_1080_01480545_2018_1560465
crossref_primary_10_1016_j_marpolbul_2009_02_004
crossref_primary_10_1016_S1001_0742_12_60006_0
crossref_primary_10_1016_j_chemosphere_2010_06_065
crossref_primary_10_1016_j_scitotenv_2013_12_063
crossref_primary_10_1007_s10661_016_5375_3
crossref_primary_10_1016_j_jhazmat_2013_08_003
crossref_primary_10_1093_jaoacint_qsaa100
crossref_primary_10_1007_s11356_013_2037_7
crossref_primary_10_2166_wst_2021_457
crossref_primary_10_1007_s11356_013_2363_9
crossref_primary_10_1016_j_seppur_2019_01_079
crossref_primary_10_1016_j_ecoleng_2010_11_002
crossref_primary_10_2131_jts_34_227
crossref_primary_10_1021_es401919k
crossref_primary_10_1016_j_chemosphere_2015_06_024
crossref_primary_10_1007_s00216_009_2669_0
crossref_primary_10_1016_j_cbpb_2015_10_009
crossref_primary_10_1002_lno_12228
crossref_primary_10_1016_j_chroma_2007_05_074
crossref_primary_10_1016_j_jhazmat_2012_12_057
crossref_primary_10_1016_j_scitotenv_2014_10_021
crossref_primary_10_1016_j_watres_2016_02_022
crossref_primary_10_1016_j_scitotenv_2019_04_182
crossref_primary_10_1016_j_chemosphere_2015_07_056
crossref_primary_10_1016_j_chroma_2010_08_005
crossref_primary_10_1016_j_jhazmat_2021_125908
crossref_primary_10_1080_10934529_2014_854670
crossref_primary_10_1897_09_173_1
crossref_primary_10_2166_wst_2015_079
crossref_primary_10_2175_106143010X12681059116653
crossref_primary_10_1016_j_chemosphere_2014_06_074
crossref_primary_10_1155_2014_645737
crossref_primary_10_1016_j_cej_2022_136902
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000668
crossref_primary_10_1016_j_toxlet_2007_10_012
crossref_primary_10_1002_tox_22392
crossref_primary_10_1007_s11270_024_07382_0
crossref_primary_10_1007_s10661_011_2454_3
crossref_primary_10_1016_j_scitotenv_2014_04_003
crossref_primary_10_1016_j_yrtph_2009_10_006
crossref_primary_10_1007_s11356_022_19968_4
crossref_primary_10_1016_j_scitotenv_2023_169848
crossref_primary_10_1016_j_envpol_2011_10_031
crossref_primary_10_1089_ees_2010_0213
crossref_primary_10_1016_j_ecoenv_2017_12_041
crossref_primary_10_1016_j_aquatox_2008_04_011
crossref_primary_10_1080_15226514_2022_2057422
crossref_primary_10_1007_s11356_013_1754_2
crossref_primary_10_1016_j_jpba_2019_02_016
crossref_primary_10_1016_j_scitotenv_2008_03_018
crossref_primary_10_1007_s00216_006_0821_7
crossref_primary_10_1007_s00216_010_3862_x
crossref_primary_10_1016_j_jece_2019_103400
crossref_primary_10_1021_es900280e
crossref_primary_10_1016_j_scitotenv_2023_163184
crossref_primary_10_1016_j_yrtph_2012_07_003
crossref_primary_10_1002_clen_201300179
crossref_primary_10_1038_srep21396
crossref_primary_10_1007_s10344_011_0513_2
crossref_primary_10_3390_w11122515
crossref_primary_10_1016_j_jhazmat_2020_123733
crossref_primary_10_1021_ac0715672
crossref_primary_10_1016_j_watres_2011_02_013
crossref_primary_10_47470_0016_9900_2021_100_11_1218_1223
crossref_primary_10_1002_bit_24553
crossref_primary_10_1016_j_watres_2018_04_031
crossref_primary_10_1016_j_jprot_2016_01_010
crossref_primary_10_1016_j_scitotenv_2020_138770
crossref_primary_10_1080_10934520902996880
crossref_primary_10_1016_j_ecoleng_2016_08_010
crossref_primary_10_1016_j_scitotenv_2019_04_113
crossref_primary_10_1016_j_scitotenv_2013_03_044
crossref_primary_10_1016_j_apcatb_2013_03_013
crossref_primary_10_3390_ijerph16173026
crossref_primary_10_1016_j_cej_2020_125440
crossref_primary_10_1016_j_envpol_2011_04_037
crossref_primary_10_1016_j_jhazmat_2013_08_040
crossref_primary_10_1016_S1001_0742_12_60293_9
crossref_primary_10_1016_j_jhazmat_2016_05_072
crossref_primary_10_1016_j_etap_2006_05_002
crossref_primary_10_1016_j_scitotenv_2024_175664
crossref_primary_10_1021_acs_chemrev_8b00299
crossref_primary_10_1016_j_aquatox_2015_07_019
crossref_primary_10_1016_j_watres_2016_02_047
crossref_primary_10_1016_j_trac_2007_03_005
crossref_primary_10_5194_hess_23_573_2019
crossref_primary_10_1016_j_apcatb_2013_10_035
crossref_primary_10_1016_j_crci_2016_05_005
crossref_primary_10_1016_j_chroma_2007_10_052
crossref_primary_10_1039_C8EM00327K
crossref_primary_10_1016_j_scitotenv_2015_06_002
crossref_primary_10_1016_j_seppur_2020_118195
crossref_primary_10_1016_j_watres_2023_119883
crossref_primary_10_1016_j_scitotenv_2014_12_055
crossref_primary_10_1002_slct_201903943
crossref_primary_10_1007_s11356_023_30030_9
crossref_primary_10_1016_j_envint_2018_06_035
crossref_primary_10_1007_s11356_016_7668_z
crossref_primary_10_1007_s41061_019_0241_8
crossref_primary_10_1016_j_chroma_2015_08_061
crossref_primary_10_1016_j_marpolbul_2016_03_011
crossref_primary_10_1007_s11356_016_7437_z
crossref_primary_10_1016_j_aca_2012_01_014
crossref_primary_10_1016_j_jhazmat_2010_03_048
crossref_primary_10_1007_s10532_008_9237_8
crossref_primary_10_1016_j_jece_2022_107798
crossref_primary_10_1039_c000408c
crossref_primary_10_1021_acs_est_3c03242
crossref_primary_10_1016_j_aquatox_2021_105809
crossref_primary_10_1016_j_cej_2013_05_061
crossref_primary_10_1016_j_aquatox_2014_01_011
crossref_primary_10_1016_j_chemosphere_2018_07_170
crossref_primary_10_1021_es204621q
crossref_primary_10_1016_j_jphotochem_2021_113283
crossref_primary_10_1016_j_ultsonch_2016_09_017
crossref_primary_10_1016_j_scitotenv_2008_10_016
crossref_primary_10_1039_c0em00765j
crossref_primary_10_1016_j_biortech_2008_01_008
crossref_primary_10_1016_j_watres_2010_08_012
crossref_primary_10_1002_etc_3336
crossref_primary_10_1007_s11356_014_2774_2
crossref_primary_10_1080_09593330_2018_1444098
crossref_primary_10_1289_ehp_11776
crossref_primary_10_1080_09593330_2016_1156773
crossref_primary_10_1007_s11356_013_1982_5
crossref_primary_10_1021_es100779n
crossref_primary_10_1016_j_cej_2017_09_094
crossref_primary_10_1016_j_watres_2014_09_051
crossref_primary_10_1016_j_jece_2020_105005
crossref_primary_10_1016_j_jclepro_2019_06_243
crossref_primary_10_1007_s12649_020_01041_1
crossref_primary_10_1016_j_jece_2013_10_016
crossref_primary_10_1016_j_jhazmat_2010_03_075
crossref_primary_10_1016_j_jhazmat_2021_127284
crossref_primary_10_3390_antibiotics10060684
crossref_primary_10_1016_j_scitotenv_2011_09_014
crossref_primary_10_1021_ac503323e
crossref_primary_10_1016_j_enmm_2019_100239
crossref_primary_10_2989_16085914_2018_1465393
crossref_primary_10_1016_j_envpol_2006_05_038
crossref_primary_10_1016_j_jece_2023_111654
crossref_primary_10_1016_j_envpol_2009_03_017
crossref_primary_10_1016_j_jhazmat_2013_08_057
crossref_primary_10_5004_dwt_2019_24341
crossref_primary_10_1016_j_jpba_2016_02_049
crossref_primary_10_1016_j_scitotenv_2016_04_170
crossref_primary_10_1016_j_chemosphere_2008_09_020
crossref_primary_10_1016_j_scitotenv_2019_135901
crossref_primary_10_1016_j_chemosphere_2012_11_018
crossref_primary_10_4028_www_scientific_net_MSF_967_179
crossref_primary_10_1002_jctb_4888
crossref_primary_10_1007_s11356_019_04170_w
crossref_primary_10_1016_j_micromeso_2015_02_026
crossref_primary_10_1007_s10311_009_0239_5
crossref_primary_10_1007_s00216_009_3099_8
crossref_primary_10_1007_s11356_013_2477_0
crossref_primary_10_1016_j_watres_2008_11_031
crossref_primary_10_1016_j_ecoenv_2016_01_015
crossref_primary_10_1007_s00216_006_0951_y
crossref_primary_10_1002_clen_201400483
crossref_primary_10_1021_es900282c
crossref_primary_10_1002_jssc_201201142
crossref_primary_10_1007_s11356_011_0661_7
crossref_primary_10_5004_dwt_2021_27038
crossref_primary_10_1016_j_envpol_2020_115687
crossref_primary_10_1007_s11356_012_1128_1
crossref_primary_10_1016_j_trac_2006_11_004
crossref_primary_10_1371_journal_pone_0093774
crossref_primary_10_1016_j_watres_2010_10_037
crossref_primary_10_3389_frwa_2024_1335766
crossref_primary_10_4491_eer_2016_115
crossref_primary_10_1007_s11356_014_4023_0
crossref_primary_10_1016_j_envres_2024_118401
crossref_primary_10_1897_09_071_1
crossref_primary_10_1007_s00216_014_7749_0
crossref_primary_10_1016_j_scitotenv_2012_12_050
crossref_primary_10_1021_jp808057c
crossref_primary_10_1371_journal_pone_0115223
crossref_primary_10_1002_tox_20684
crossref_primary_10_1016_j_talanta_2015_06_073
crossref_primary_10_4491_KSEE_2021_43_7_491
crossref_primary_10_1016_j_jenvman_2021_114096
crossref_primary_10_1016_j_scitotenv_2007_08_013
crossref_primary_10_1007_s10661_022_10314_2
crossref_primary_10_1039_c1em10015g
crossref_primary_10_1021_acsami_6b01748
crossref_primary_10_1016_j_jhazmat_2016_05_038
crossref_primary_10_1016_j_marpolbul_2025_117751
crossref_primary_10_3920_QAS2012_0177
crossref_primary_10_1517_14740338_2012_644272
crossref_primary_10_1016_j_scitotenv_2014_01_093
crossref_primary_10_1007_s11356_012_0750_2
crossref_primary_10_1016_j_microc_2016_11_018
crossref_primary_10_1016_j_chemosphere_2014_07_085
crossref_primary_10_1080_01919510600985937
crossref_primary_10_1016_j_surfin_2023_103281
crossref_primary_10_1016_j_envpol_2009_02_019
crossref_primary_10_1134_S0036024422100107
crossref_primary_10_1016_j_scitotenv_2016_03_053
crossref_primary_10_1016_j_jenvman_2013_08_043
crossref_primary_10_1016_j_marpolbul_2024_116667
crossref_primary_10_1039_C5RA10523D
crossref_primary_10_1080_01932691_2019_1614030
crossref_primary_10_1016_j_jhazmat_2010_10_005
crossref_primary_10_1016_j_jpba_2012_02_011
crossref_primary_10_1016_j_watres_2008_04_002
crossref_primary_10_1002_clen_200900038
crossref_primary_10_1016_j_watres_2006_06_039
crossref_primary_10_1016_j_foodcont_2016_03_001
crossref_primary_10_1021_acs_est_9b02966
crossref_primary_10_1139_er_2019_0007
crossref_primary_10_1007_s10646_016_1682_2
crossref_primary_10_1515_aiht_2016_67_2727
crossref_primary_10_1016_j_jhazmat_2017_09_058
crossref_primary_10_1007_s00216_019_01968_y
crossref_primary_10_1016_j_jhazmat_2021_127350
crossref_primary_10_4028_www_scientific_net_AMM_470_11
crossref_primary_10_1039_c0em00602e
crossref_primary_10_1007_s11356_016_6503_x
crossref_primary_10_1016_j_envpol_2020_114548
crossref_primary_10_1111_j_1752_1688_2008_00284_x
crossref_primary_10_1016_j_watres_2017_06_068
crossref_primary_10_1016_j_envres_2021_112196
crossref_primary_10_1016_j_scitotenv_2018_07_439
crossref_primary_10_1080_09593330_2015_1058422
crossref_primary_10_1016_j_marpolbul_2007_04_008
crossref_primary_10_2175_106143008X325719
crossref_primary_10_1016_j_watres_2015_02_049
crossref_primary_10_2139_ssrn_4117136
crossref_primary_10_1007_s10661_018_6683_6
crossref_primary_10_1039_c3em30884g
crossref_primary_10_1111_j_1365_2389_2012_01430_x
crossref_primary_10_1016_j_scitotenv_2012_04_028
crossref_primary_10_3390_chemengineering8050090
crossref_primary_10_1080_03067319_2022_2047184
crossref_primary_10_1016_j_chemosphere_2014_06_038
crossref_primary_10_1016_j_chemosphere_2007_08_026
crossref_primary_10_1016_j_aquatox_2006_08_010
crossref_primary_10_1080_09291016_2013_787684
crossref_primary_10_1016_j_solener_2011_04_031
crossref_primary_10_1016_j_watres_2008_04_026
crossref_primary_10_1080_20008686_2018_1553463
crossref_primary_10_1016_j_envint_2018_03_013
crossref_primary_10_1002_etc_5981
crossref_primary_10_1016_j_scitotenv_2008_02_025
crossref_primary_10_1016_j_talanta_2010_11_046
crossref_primary_10_1016_j_jenvman_2021_111971
crossref_primary_10_1016_j_chemosphere_2006_07_051
crossref_primary_10_1016_j_chroma_2013_05_002
crossref_primary_10_3390_w15152835
crossref_primary_10_1016_j_scitotenv_2015_11_047
crossref_primary_10_1021_acsearthspacechem_2c00002
crossref_primary_10_1007_s10661_017_6341_4
crossref_primary_10_1016_j_scitotenv_2017_03_001
crossref_primary_10_1016_j_jhazmat_2013_02_035
crossref_primary_10_1007_s11356_016_6679_0
crossref_primary_10_1002_jssc_200700571
crossref_primary_10_1016_j_jconhyd_2018_06_003
crossref_primary_10_1007_s11356_015_4473_z
crossref_primary_10_1016_j_scitotenv_2016_05_002
crossref_primary_10_1016_j_envint_2006_09_014
crossref_primary_10_1016_j_envpol_2020_115269
crossref_primary_10_4491_KSEE_2020_42_4_177
crossref_primary_10_1039_b817364h
crossref_primary_10_1016_j_scitotenv_2018_07_093
crossref_primary_10_3390_biology9120478
crossref_primary_10_1007_s40726_017_0072_6
crossref_primary_10_1016_j_chemosphere_2011_12_067
crossref_primary_10_1248_jhs_55_249
crossref_primary_10_1016_j_jhazmat_2008_11_070
crossref_primary_10_1021_acs_est_5b05769
crossref_primary_10_4296_cwrj2012_949
crossref_primary_10_3390_molecules25051026
crossref_primary_10_1007_s10661_011_2020_z
crossref_primary_10_1016_j_watres_2012_06_017
crossref_primary_10_1016_j_arabjc_2014_10_044
crossref_primary_10_1016_j_watres_2010_11_010
crossref_primary_10_1016_j_cattod_2017_05_088
crossref_primary_10_1016_j_ijheh_2011_08_002
crossref_primary_10_1007_s10661_012_2811_x
crossref_primary_10_1007_s11356_014_2721_2
crossref_primary_10_1016_j_chemosphere_2016_06_095
crossref_primary_10_1039_C4EM00494A
crossref_primary_10_1016_j_apsusc_2021_151145
crossref_primary_10_1016_j_watres_2008_10_047
crossref_primary_10_20964_2017_08_72
crossref_primary_10_1016_j_watres_2010_07_050
crossref_primary_10_1039_b717453e
crossref_primary_10_1007_s00128_023_03739_z
crossref_primary_10_1016_j_chroma_2006_08_077
crossref_primary_10_1016_j_watres_2010_06_020
crossref_primary_10_1016_j_chemosphere_2009_08_012
crossref_primary_10_1016_j_chroma_2011_08_093
crossref_primary_10_1088_1757_899X_611_1_012053
crossref_primary_10_1016_j_chroma_2014_08_018
crossref_primary_10_1016_j_scitotenv_2013_01_059
crossref_primary_10_1897_IEAM_2009_026_1
crossref_primary_10_1002_etc_222
crossref_primary_10_1016_j_chemosphere_2009_08_010
crossref_primary_10_1016_j_scitotenv_2018_06_153
crossref_primary_10_1016_j_envpol_2013_09_009
crossref_primary_10_1016_j_watres_2010_03_005
crossref_primary_10_1016_j_jphotochem_2008_03_011
crossref_primary_10_1007_s00244_013_9979_0
crossref_primary_10_1080_03067319_2014_900680
crossref_primary_10_1007_s00244_008_9202_x
crossref_primary_10_1016_j_chroma_2009_01_056
crossref_primary_10_1021_jp110753r
crossref_primary_10_1080_03067319_2011_592949
crossref_primary_10_1007_s11270_011_1008_1
crossref_primary_10_1002_jat_1660
crossref_primary_10_1016_j_envpol_2008_10_009
crossref_primary_10_1016_j_aquatox_2016_03_017
crossref_primary_10_1016_j_apcatb_2017_06_057
crossref_primary_10_1016_j_chemosphere_2022_133903
crossref_primary_10_1016_j_chroma_2009_02_085
crossref_primary_10_1016_j_jenvman_2015_04_002
crossref_primary_10_1016_j_scitotenv_2015_04_051
crossref_primary_10_3390_ijerph16030414
crossref_primary_10_7202_019164ar
crossref_primary_10_1016_j_ultsonch_2019_02_015
crossref_primary_10_1039_C8EM00390D
crossref_primary_10_1007_s11356_014_2622_4
crossref_primary_10_1007_s11270_015_2690_1
crossref_primary_10_1016_j_watres_2012_07_033
crossref_primary_10_1016_j_scitotenv_2016_02_009
crossref_primary_10_3390_w9030218
crossref_primary_10_1016_j_scitotenv_2015_03_040
crossref_primary_10_1016_j_scitotenv_2020_136916
crossref_primary_10_1016_j_chemosphere_2013_08_055
crossref_primary_10_1080_03067310903531504
crossref_primary_10_1016_j_talanta_2014_08_016
crossref_primary_10_1007_s11356_012_1099_2
crossref_primary_10_3390_toxics2020188
crossref_primary_10_1016_j_envres_2019_04_032
crossref_primary_10_1016_j_watres_2009_02_013
crossref_primary_10_1016_j_cbpc_2009_02_005
crossref_primary_10_1016_j_jhazmat_2009_10_100
crossref_primary_10_1007_s11356_015_4234_z
crossref_primary_10_1016_j_envint_2016_06_025
crossref_primary_10_1016_j_scitotenv_2013_08_027
crossref_primary_10_1016_j_scitotenv_2020_142122
crossref_primary_10_1016_j_scitotenv_2017_07_171
crossref_primary_10_1038_s41598_023_30477_3
crossref_primary_10_3390_antibiotics2010115
crossref_primary_10_1002_ep_13482
crossref_primary_10_1016_j_aquatox_2010_04_017
crossref_primary_10_1016_j_aquatox_2012_12_016
crossref_primary_10_5802_crchim_183
crossref_primary_10_1016_j_chemosphere_2016_01_117
crossref_primary_10_2108_zsj_28_281
crossref_primary_10_1021_es060737
crossref_primary_10_1016_j_aquatox_2012_07_009
crossref_primary_10_1016_j_chemosphere_2010_03_060
crossref_primary_10_1039_C7RA11796E
crossref_primary_10_1016_j_scitotenv_2018_06_124
crossref_primary_10_11001_jksww_2019_33_6_469
crossref_primary_10_1016_j_chemosphere_2012_12_042
crossref_primary_10_1016_j_watres_2010_04_022
crossref_primary_10_1039_B903880A
crossref_primary_10_1007_s11356_014_3400_z
crossref_primary_10_1016_j_ecoenv_2008_02_009
crossref_primary_10_1080_01496390701290417
crossref_primary_10_1016_j_etap_2012_02_005
crossref_primary_10_1016_j_ces_2017_08_015
crossref_primary_10_1371_journal_pone_0147525
crossref_primary_10_1039_b9ay00015a
crossref_primary_10_1007_s00244_012_9847_3
crossref_primary_10_1016_j_scitotenv_2012_07_046
crossref_primary_10_1016_j_scitotenv_2017_04_118
crossref_primary_10_1007_s11356_018_3025_8
crossref_primary_10_1016_j_watres_2013_09_026
crossref_primary_10_1016_j_ecoenv_2019_109980
crossref_primary_10_1080_09593330_2014_888097
crossref_primary_10_1897_06_495R_1
crossref_primary_10_1016_j_ecoenv_2014_04_029
crossref_primary_10_1016_j_envpol_2009_04_002
crossref_primary_10_1007_s00216_010_3702_z
crossref_primary_10_1016_j_scitotenv_2012_06_035
crossref_primary_10_3390_biology10101064
crossref_primary_10_1002_2013WR014759
crossref_primary_10_1016_j_cej_2017_06_148
crossref_primary_10_2208_jscejer_73_159
crossref_primary_10_1016_j_emcon_2016_12_004
crossref_primary_10_1039_c0em00068j
crossref_primary_10_1016_j_ecoenv_2015_12_020
crossref_primary_10_1016_j_envint_2014_03_021
crossref_primary_10_1016_j_snb_2012_09_016
crossref_primary_10_1016_j_aquatox_2016_10_006
crossref_primary_10_4491_KSEE_2011_33_6_453
crossref_primary_10_1016_j_scitotenv_2018_09_086
crossref_primary_10_1016_j_watres_2016_07_068
crossref_primary_10_1007_s10967_014_3134_x
crossref_primary_10_1021_es402878e
crossref_primary_10_1039_c2em00007e
crossref_primary_10_1248_jhs_54_240
crossref_primary_10_1016_j_aca_2009_01_011
crossref_primary_10_1016_j_scitotenv_2019_01_187
crossref_primary_10_1002_elsc_200700017
crossref_primary_10_1039_C4TA02904F
crossref_primary_10_1007_s11356_014_3929_x
crossref_primary_10_1007_s00128_014_1247_0
crossref_primary_10_1016_j_chemosphere_2021_130385
crossref_primary_10_15407_zht2020_66_033
crossref_primary_10_1039_b817890a
Cites_doi 10.1021/es981014w
10.1016/S0378-4274(02)00041-3
10.1016/S0378-4274(02)00049-8
10.1016/S0045-6535(99)00442-7
10.1016/S0140-6736(00)02270-4
10.1016/S0045-6535(99)00438-5
10.1021/jf00093a062
10.1016/S0045-6535(97)00354-8
10.1016/S0043-1354(03)00164-7
10.1021/es011055j
10.1289/ehp.99107s6907
10.2166/wst.2004.0335
10.1023/A:1007526826979
10.1111/j.2042-7158.1985.tb04922.x
10.1021/es020158e
10.1016/S0043-1354(98)00099-2
10.1021/es0003021
10.1016/S0048-9697(98)00337-4
10.1089/109287503768335931
10.1021/es00005a039
10.2166/wst.2000.0585
10.1016/S0045-6535(02)00769-5
10.1016/0044-8486(94)00310-K
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TV
7U1
7U7
7UA
C1K
F1W
H97
L.G
8FD
FR3
KR7
7X8
DOI 10.1016/j.jhazmat.2005.03.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Pollution Abstracts
Risk Abstracts
Toxicology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Risk Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Toxicology Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Technology Research Database
Risk Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
EndPage 204
ExternalDocumentID 15967274
10_1016_j_jhazmat_2005_03_012
S0304389405000907
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID ---
--K
--M
-~X
..I
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLECG
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
T9H
TAE
UAO
VH1
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7TV
7U1
7U7
7UA
C1K
F1W
H97
L.G
8FD
FR3
KR7
7X8
ID FETCH-LOGICAL-c491t-2c621a11d1e09328a614787e587a90733bcb0f6bf9475d8294656fd4f033cdb63
IEDL.DBID .~1
ISSN 0304-3894
IngestDate Fri Jul 11 12:41:53 EDT 2025
Thu Jul 10 23:47:54 EDT 2025
Thu Jul 10 21:19:47 EDT 2025
Fri Jun 20 17:44:46 EDT 2025
Tue Jul 01 03:29:38 EDT 2025
Thu Apr 24 22:55:35 EDT 2025
Fri Feb 23 02:30:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Persistence
Recipient
Sewage
Pharmaceutical
Transport
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-2c621a11d1e09328a614787e587a90733bcb0f6bf9475d8294656fd4f033cdb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 15967274
PQID 20087368
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_67959904
proquest_miscellaneous_29117354
proquest_miscellaneous_20087368
pubmed_primary_15967274
crossref_primary_10_1016_j_jhazmat_2005_03_012
crossref_citationtrail_10_1016_j_jhazmat_2005_03_012
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2005_03_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-07-15
PublicationDateYYYYMMDD 2005-07-15
PublicationDate_xml – month: 07
  year: 2005
  text: 2005-07-15
  day: 15
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2005
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (bib5) 2001
Rabolle, Spliid (bib14) 2000; 40
M. Ahel, A. Jelicic, Occurrence of analgetics in a municipal solid waste landfill and adjacent groundwater aquifier, In: S. Matsui (Ed.), Proceedings of the Third IWA Specialized Conference on Hazard Assessment and Control of Environmental Contaminants –ECOHAZARD’99, Otsu, Japan, 1999, pp. 497–504.
Berndtsson (bib19) 1990; 26
Park (bib26) 2001; 1
Hektoen, Berge, Hormazabal, Yndestad (bib13) 1995; 133
Calamari, Zuccato, Castiglioni, Bagnati, Fanelli (bib18) 2003; 37
Heberer (bib1) 2002; 131
Paxéus (bib12) 2004; 50
J. Niemczynowicz, An investigation of the areal and dynamic properties of rainfall and its influence on rainfall generating processes, Report 1005, Department of Water Resources Engineering, Lund University, Lund, Sweden, 1984.
SRC PhysProp (2001), accessed via
Hirsch, Ternes, Haberer, Kratz (bib36) 1999; 225
Jørgensen, Halling-Sørensen (bib11) 2000; 40
Adveef, Berger, Brownell (bib31) 2000; 17
Buser, Poiger, Muller (bib23) 1999; 33
Stumpf, Ternes, Haberer, Baumann (bib24) 1998; 91
Richardson, Brown (bib28) 1985; 37
Paxéus (bib8) 2000; 42
Tolls (bib16) 2001; 35
Fry, Toone (bib9) 1981; 231
.
Yeager, Halley (bib15) 1990; 38
Snyder, Westerhoff, Yoon, Sedlak (bib10) 2003; 20
Ternes (bib32) 1998; 32
C. Jonasson, The technical services department at Lund water and sewage works, Sweden, 2003, Personal communication.
Scheytt, Mersmann, Heberer (bib17) 2001
Andreozzi, Marotta, Paxéus (bib27) 2002; 50
I. Dellien, The technical services department at Lund water and sewage works, Sweden, 2003, Personal communication.
Holm, Rugge, Bjerg, Christensen (bib7) 1995; 29
Sabaliunas, Webb, Hauk, Jacob, Eckhoff (bib33) 2003; 37
Zuccato, Calamari, Natangelo, Fanelli (bib35) 2000; 355
Kolpin, Furlong, Meyer, Zaugg, Barber, Buxton (bib4) 2002; 36
Straub (bib25) 2002; 131
Daughton, Ternes (bib2) 1999; 107
Halling-Sørensen, Nielsen, Lanzky, Igerslev, Lutzhoft, Jørgensen (bib3) 1998; 36
DeRuiter (bib34) 2000; 2
Paxéus (10.1016/j.jhazmat.2005.03.012_bib12) 2004; 50
Berndtsson (10.1016/j.jhazmat.2005.03.012_bib19) 1990; 26
Sabaliunas (10.1016/j.jhazmat.2005.03.012_bib33) 2003; 37
Halling-Sørensen (10.1016/j.jhazmat.2005.03.012_bib3) 1998; 36
Buser (10.1016/j.jhazmat.2005.03.012_bib23) 1999; 33
Richardson (10.1016/j.jhazmat.2005.03.012_bib28) 1985; 37
10.1016/j.jhazmat.2005.03.012_bib30
Daughton (10.1016/j.jhazmat.2005.03.012_bib2) 1999; 107
Adveef (10.1016/j.jhazmat.2005.03.012_bib31) 2000; 17
DeRuiter (10.1016/j.jhazmat.2005.03.012_bib34) 2000; 2
Kolpin (10.1016/j.jhazmat.2005.03.012_bib4) 2002; 36
Park (10.1016/j.jhazmat.2005.03.012_bib26) 2001; 1
Tolls (10.1016/j.jhazmat.2005.03.012_bib16) 2001; 35
Ternes (10.1016/j.jhazmat.2005.03.012_bib32) 1998; 32
Holm (10.1016/j.jhazmat.2005.03.012_bib7) 1995; 29
10.1016/j.jhazmat.2005.03.012_bib6
Paxéus (10.1016/j.jhazmat.2005.03.012_bib8) 2000; 42
Jørgensen (10.1016/j.jhazmat.2005.03.012_bib11) 2000; 40
Zuccato (10.1016/j.jhazmat.2005.03.012_bib35) 2000; 355
(10.1016/j.jhazmat.2005.03.012_bib5) 2001
Rabolle (10.1016/j.jhazmat.2005.03.012_bib14) 2000; 40
10.1016/j.jhazmat.2005.03.012_bib29
10.1016/j.jhazmat.2005.03.012_bib22
Scheytt (10.1016/j.jhazmat.2005.03.012_bib17) 2001
10.1016/j.jhazmat.2005.03.012_bib20
10.1016/j.jhazmat.2005.03.012_bib21
Yeager (10.1016/j.jhazmat.2005.03.012_bib15) 1990; 38
Straub (10.1016/j.jhazmat.2005.03.012_bib25) 2002; 131
Snyder (10.1016/j.jhazmat.2005.03.012_bib10) 2003; 20
Stumpf (10.1016/j.jhazmat.2005.03.012_bib24) 1998; 91
Hirsch (10.1016/j.jhazmat.2005.03.012_bib36) 1999; 225
Fry (10.1016/j.jhazmat.2005.03.012_bib9) 1981; 231
Hektoen (10.1016/j.jhazmat.2005.03.012_bib13) 1995; 133
Andreozzi (10.1016/j.jhazmat.2005.03.012_bib27) 2002; 50
Heberer (10.1016/j.jhazmat.2005.03.012_bib1) 2002; 131
Calamari (10.1016/j.jhazmat.2005.03.012_bib18) 2003; 37
References_xml – year: 2001
  ident: bib5
  publication-title: Pharmaceuticals in the environment—sources, fate, effects and risks
– volume: 38
  start-page: 883
  year: 1990
  end-page: 886
  ident: bib15
  article-title: Sorption/desorption of 14C[efromycin] with soils
  publication-title: J. Agric. Food Chem.
– volume: 33
  start-page: 2529
  year: 1999
  end-page: 2535
  ident: bib23
  article-title: Occurrence and environmental behaviour of the chiral pharmaceutical drug Ibuprofen in surface waters and in waste waters
  publication-title: Environ. Sci. Technol.
– volume: 131
  start-page: 137
  year: 2002
  end-page: 143
  ident: bib25
  article-title: Environmental risk assessment for human pharmaceuticals in the European Union according to the draft guideline/disscussion paper of January
  publication-title: Toxicol. Lett.
– volume: 37
  start-page: 1
  year: 1985
  end-page: 12
  ident: bib28
  article-title: The fate of pharmaceuticals in the aquatic environment
  publication-title: J. Pharm. Pharmacol.
– volume: 107
  start-page: 907
  year: 1999
  end-page: 944
  ident: bib2
  article-title: PPCPs in the environment: agents of subtle change
  publication-title: Environ. Health Perspect.
– reference: SRC PhysProp (2001), accessed via
– volume: 42
  start-page: 323
  year: 2000
  end-page: 333
  ident: bib8
  article-title: Organic compounds in municipal landfill leachates
  publication-title: Water Sci. Technol.
– volume: 231
  start-page: 919
  year: 1981
  end-page: 924
  ident: bib9
  article-title: DDT-induced feminization of gull embryos
  publication-title: Science
– volume: 26
  start-page: 549
  year: 1990
  end-page: 1558
  ident: bib19
  article-title: Transport and sedimentation of pollutants in a river reach: a chemical mass balance approach
  publication-title: Water Resour. Res.
– reference: C. Jonasson, The technical services department at Lund water and sewage works, Sweden, 2003, Personal communication.
– volume: 17
  start-page: 85
  year: 2000
  end-page: 89
  ident: bib31
  article-title: pH-Metric solubility. Part 2: Correlation between the acid-base titration and the saturation shake-flask solubility–pH methods
  publication-title: Pharm. Res.
– volume: 36
  start-page: 357
  year: 1998
  end-page: 393
  ident: bib3
  article-title: Occurrence, fate, and effects of pharmaceutical substances in the environment—a review
  publication-title: Chemosphere
– volume: 37
  start-page: 3145
  year: 2003
  end-page: 3154
  ident: bib33
  article-title: Environmental fate of triclosan in the river Aire basin, UK
  publication-title: Water Res.
– volume: 91
  start-page: 291
  year: 1998
  end-page: 303
  ident: bib24
  article-title: Isolation of ibuprofen-metabolites and their importance as pollutants of the aquatic environment
  publication-title: Vom Wasser
– volume: 225
  start-page: 109
  year: 1999
  end-page: 118
  ident: bib36
  article-title: Occurence of antibiotics in the environment
  publication-title: Sci. Total Environ.
– start-page: 253
  year: 2001
  end-page: 259
  ident: bib17
  article-title: Natural attenuation of pharmaceuticals
  publication-title: Proceeding of the Second International Conference on Pharamceuticals and Endocrine Disrupting Chemicals in Water, October 9–11, Minneapolis, MN
– volume: 32
  start-page: 3245
  year: 1998
  end-page: 3260
  ident: bib32
  article-title: Occurrence of drugs in German sewage treatment plants and rivers
  publication-title: Water Res.
– volume: 50
  start-page: 1319
  year: 2002
  end-page: 1330
  ident: bib27
  article-title: Pharmaceuticals in STP effuents and their solar photodegradation in aquatic environment
  publication-title: Chemosphere
– volume: 131
  start-page: 5
  year: 2002
  end-page: 17
  ident: bib1
  article-title: Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data
  publication-title: Toxicol. Lett.
– volume: 50
  start-page: 253
  year: 2004
  end-page: 260
  ident: bib12
  article-title: Removal of Selected NSAIDs, Gemfibrozil, Carbamazepine, β-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment
  publication-title: Water Sci. Technol.
– volume: 1
  start-page: 185
  year: 2001
  end-page: 188
  ident: bib26
  article-title: Drug metabolism
  publication-title: Br. J. Anaesth. CEPD Rev.
– volume: 20
  start-page: 449
  year: 2003
  end-page: 469
  ident: bib10
  article-title: Pharmaceuticals, personal care products and endocrine disrupters in water: implications for water industry
  publication-title: Environ. Eng. Sci.
– volume: 355
  start-page: 1789
  year: 2000
  end-page: 1790
  ident: bib35
  article-title: Presence of therapeutic drugs in the environment
  publication-title: Lancet
– volume: 35
  start-page: 3397
  year: 2001
  end-page: 3406
  ident: bib16
  article-title: Sorption of veterinary pharmaceuticals in soils: a review
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 1
  year: 2000
  end-page: 23
  ident: bib34
  article-title: Non-steroidal antiinflammatory drugs (NSAIDs)
  publication-title: Princ. Drug Action
– volume: 37
  start-page: 1241
  year: 2003
  end-page: 1248
  ident: bib18
  article-title: Strategic survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy
  publication-title: Environ. Sci. Technol.
– volume: 133
  start-page: 175
  year: 1995
  end-page: 184
  ident: bib13
  article-title: Persistence of antibacterial agents in marine sediments
  publication-title: Aquaculture
– reference: I. Dellien, The technical services department at Lund water and sewage works, Sweden, 2003, Personal communication.
– volume: 40
  start-page: 715
  year: 2000
  end-page: 722
  ident: bib14
  article-title: Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil
  publication-title: Chemosphere
– volume: 36
  start-page: 1202
  year: 2002
  end-page: 1211
  ident: bib4
  article-title: Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance
  publication-title: Environ. Sci. Technol.
– reference: J. Niemczynowicz, An investigation of the areal and dynamic properties of rainfall and its influence on rainfall generating processes, Report 1005, Department of Water Resources Engineering, Lund University, Lund, Sweden, 1984.
– volume: 29
  start-page: 1415
  year: 1995
  end-page: 1420
  ident: bib7
  article-title: Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grinsted, Denmark)
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 691
  year: 2000
  end-page: 699
  ident: bib11
  article-title: Drugs in the environment
  publication-title: Chemosphere
– reference: M. Ahel, A. Jelicic, Occurrence of analgetics in a municipal solid waste landfill and adjacent groundwater aquifier, In: S. Matsui (Ed.), Proceedings of the Third IWA Specialized Conference on Hazard Assessment and Control of Environmental Contaminants –ECOHAZARD’99, Otsu, Japan, 1999, pp. 497–504.
– reference: .
– volume: 33
  start-page: 2529
  year: 1999
  ident: 10.1016/j.jhazmat.2005.03.012_bib23
  article-title: Occurrence and environmental behaviour of the chiral pharmaceutical drug Ibuprofen in surface waters and in waste waters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es981014w
– volume: 131
  start-page: 5
  year: 2002
  ident: 10.1016/j.jhazmat.2005.03.012_bib1
  article-title: Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data
  publication-title: Toxicol. Lett.
  doi: 10.1016/S0378-4274(02)00041-3
– volume: 131
  start-page: 137
  year: 2002
  ident: 10.1016/j.jhazmat.2005.03.012_bib25
  article-title: Environmental risk assessment for human pharmaceuticals in the European Union according to the draft guideline/disscussion paper of January
  publication-title: Toxicol. Lett.
  doi: 10.1016/S0378-4274(02)00049-8
– ident: 10.1016/j.jhazmat.2005.03.012_bib29
– volume: 231
  start-page: 919
  year: 1981
  ident: 10.1016/j.jhazmat.2005.03.012_bib9
  article-title: DDT-induced feminization of gull embryos
  publication-title: Science
– volume: 40
  start-page: 715
  year: 2000
  ident: 10.1016/j.jhazmat.2005.03.012_bib14
  article-title: Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00442-7
– volume: 355
  start-page: 1789
  year: 2000
  ident: 10.1016/j.jhazmat.2005.03.012_bib35
  article-title: Presence of therapeutic drugs in the environment
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02270-4
– volume: 40
  start-page: 691
  year: 2000
  ident: 10.1016/j.jhazmat.2005.03.012_bib11
  article-title: Drugs in the environment
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00438-5
– start-page: 253
  year: 2001
  ident: 10.1016/j.jhazmat.2005.03.012_bib17
  article-title: Natural attenuation of pharmaceuticals
– volume: 38
  start-page: 883
  year: 1990
  ident: 10.1016/j.jhazmat.2005.03.012_bib15
  article-title: Sorption/desorption of 14C[efromycin] with soils
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00093a062
– ident: 10.1016/j.jhazmat.2005.03.012_bib20
– volume: 36
  start-page: 357
  year: 1998
  ident: 10.1016/j.jhazmat.2005.03.012_bib3
  article-title: Occurrence, fate, and effects of pharmaceutical substances in the environment—a review
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(97)00354-8
– year: 2001
  ident: 10.1016/j.jhazmat.2005.03.012_bib5
– ident: 10.1016/j.jhazmat.2005.03.012_bib22
– volume: 37
  start-page: 3145
  year: 2003
  ident: 10.1016/j.jhazmat.2005.03.012_bib33
  article-title: Environmental fate of triclosan in the river Aire basin, UK
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(03)00164-7
– volume: 36
  start-page: 1202
  year: 2002
  ident: 10.1016/j.jhazmat.2005.03.012_bib4
  article-title: Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011055j
– volume: 107
  start-page: 907
  year: 1999
  ident: 10.1016/j.jhazmat.2005.03.012_bib2
  article-title: PPCPs in the environment: agents of subtle change
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.99107s6907
– volume: 50
  start-page: 253
  issue: 5
  year: 2004
  ident: 10.1016/j.jhazmat.2005.03.012_bib12
  article-title: Removal of Selected NSAIDs, Gemfibrozil, Carbamazepine, β-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2004.0335
– volume: 2
  start-page: 1
  year: 2000
  ident: 10.1016/j.jhazmat.2005.03.012_bib34
  article-title: Non-steroidal antiinflammatory drugs (NSAIDs)
  publication-title: Princ. Drug Action
– volume: 17
  start-page: 85
  year: 2000
  ident: 10.1016/j.jhazmat.2005.03.012_bib31
  article-title: pH-Metric solubility. Part 2: Correlation between the acid-base titration and the saturation shake-flask solubility–pH methods
  publication-title: Pharm. Res.
  doi: 10.1023/A:1007526826979
– volume: 37
  start-page: 1
  year: 1985
  ident: 10.1016/j.jhazmat.2005.03.012_bib28
  article-title: The fate of pharmaceuticals in the aquatic environment
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.1985.tb04922.x
– volume: 91
  start-page: 291
  year: 1998
  ident: 10.1016/j.jhazmat.2005.03.012_bib24
  article-title: Isolation of ibuprofen-metabolites and their importance as pollutants of the aquatic environment
  publication-title: Vom Wasser
– volume: 37
  start-page: 1241
  year: 2003
  ident: 10.1016/j.jhazmat.2005.03.012_bib18
  article-title: Strategic survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es020158e
– volume: 32
  start-page: 3245
  year: 1998
  ident: 10.1016/j.jhazmat.2005.03.012_bib32
  article-title: Occurrence of drugs in German sewage treatment plants and rivers
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00099-2
– volume: 35
  start-page: 3397
  year: 2001
  ident: 10.1016/j.jhazmat.2005.03.012_bib16
  article-title: Sorption of veterinary pharmaceuticals in soils: a review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0003021
– volume: 1
  start-page: 185
  year: 2001
  ident: 10.1016/j.jhazmat.2005.03.012_bib26
  article-title: Drug metabolism
  publication-title: Br. J. Anaesth. CEPD Rev.
– volume: 225
  start-page: 109
  year: 1999
  ident: 10.1016/j.jhazmat.2005.03.012_bib36
  article-title: Occurence of antibiotics in the environment
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(98)00337-4
– volume: 20
  start-page: 449
  issue: 5
  year: 2003
  ident: 10.1016/j.jhazmat.2005.03.012_bib10
  article-title: Pharmaceuticals, personal care products and endocrine disrupters in water: implications for water industry
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/109287503768335931
– volume: 29
  start-page: 1415
  year: 1995
  ident: 10.1016/j.jhazmat.2005.03.012_bib7
  article-title: Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grinsted, Denmark)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00005a039
– volume: 26
  start-page: 549
  issue: 1
  year: 1990
  ident: 10.1016/j.jhazmat.2005.03.012_bib19
  article-title: Transport and sedimentation of pollutants in a river reach: a chemical mass balance approach
  publication-title: Water Resour. Res.
– ident: 10.1016/j.jhazmat.2005.03.012_bib21
– volume: 42
  start-page: 323
  year: 2000
  ident: 10.1016/j.jhazmat.2005.03.012_bib8
  article-title: Organic compounds in municipal landfill leachates
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2000.0585
– ident: 10.1016/j.jhazmat.2005.03.012_bib6
– volume: 50
  start-page: 1319
  year: 2002
  ident: 10.1016/j.jhazmat.2005.03.012_bib27
  article-title: Pharmaceuticals in STP effuents and their solar photodegradation in aquatic environment
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00769-5
– ident: 10.1016/j.jhazmat.2005.03.012_bib30
– volume: 133
  start-page: 175
  year: 1995
  ident: 10.1016/j.jhazmat.2005.03.012_bib13
  article-title: Persistence of antibacterial agents in marine sediments
  publication-title: Aquaculture
  doi: 10.1016/0044-8486(94)00310-K
SSID ssj0001754
Score 2.4141781
Snippet Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 195
SubjectTerms Adrenergic beta-Antagonists - analysis
Anti-Bacterial Agents - analysis
Carbamazepine - analysis
Diclofenac - analysis
Environmental Monitoring - methods
Humans
Ibuprofen - analysis
Osmolar Concentration
Persistence
Pharmaceutical
Pharmaceutical Preparations - analysis
Recipient
Rivers - chemistry
Sewage
Sewage - chemistry
Sweden
Transport
Water Pollutants, Chemical - analysis
Water Pollution, Chemical - analysis
Title Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden
URI https://dx.doi.org/10.1016/j.jhazmat.2005.03.012
https://www.ncbi.nlm.nih.gov/pubmed/15967274
https://www.proquest.com/docview/20087368
https://www.proquest.com/docview/29117354
https://www.proquest.com/docview/67959904
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYovbQH1AItPy31gWOz68Q_sXtDqGjbAocCErfIdhztrlB2BYsQHHgsXqAv1hkn6W4PW6Reo7HkZMYzXzwz3xCyr1MlLU9VEjxYsNCVT1yJ1xzWmZJrz0KGzcknp2pwIb5fyssVctj1wmBZZev7G58evXX7pN9-zf50NOqfYVIPwi0gDgQKsaNciBytvPc4L_OA8NhQSGEGAKTnXTz9cW88tA8ADNurFd5jabYsPi3DnzEOHb0hay2ApAfNHt-SlVCvk9cLtILr5MWxvdsgUyQQvo7NfNTWJa0AVdJJRafDxVvsq3tqo8ujWFyOM5Zu6KimAAvpQg_cZ2qph3hHIxvtFzr49TQO9CfWdKD02V0A97VJLo6-nh8Okna-QuKFSWdJ5lWW2jQt08AAxmkLoRrOb5A6twaHOTrvWKVcZUQuS50Z5FarSlExzn3pFH9HVutJHbYIrTKmwBaUDxr-T5g3TvuQc1NK7XLwCttEdF-18C35OM7AuCq6KrNx0SoDB2PKgvEClLFNen-WTRv2jecW6E5lxV9mVECEeG7pp07FBRwxzJvYOkxub-Kkzpwr_Q8JCBk5l2K5hMKZ7oaBxPvGeubvIw1mw8XO_299l7yKjLLI9yk_kNXZ9W34CFhp5vbiYdgjLw--_Ric_gZeZhRm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoeqkJbCm3Bhx6bXSd-xO6tQkULXTgUkLhZtuOIXaHsChah9sDP6h_oH-tMHuz2sCBxjcaSk3l9sWe-IeSzTpV0PFVJDGDBQpch8QUeczhvCq4Dixk2Jx8dq8GZODyX5ytkr-uFwbLKNvY3Mb2O1u2Tfvs1-9PRqH-Cl3qQbgFxIFDAjvI1Ae6LYwx6d_M6D8iPDYcUXgGA-LyNpz_ujS_cb0CG7dkK77E0W5aglgHQOhHtvyavWgRJvzWbXCcrsdogLxd4BTfIs6G7fUOmyCB8VXfzUVcVtARYSSclnV4sHmNf_qKujnkUq8txyNI1HVUUcCFdaIL7Qh0NkPBoTUf7lQ7-_hlH-hOLOlD65DZC_HpLzva_n-4NknbAQhKESWdJFlSWujQt0sgAx2kHuRocOEqdO4PTHH3wrFS-NCKXhc4MkquVhSgZ56Hwir8jq9Wkiu8JLTOmwBhUiBp-UFgwXoeYc1NI7XMIC1tEdF_VhpZ9HIdgXNquzGxsW2XgZExpGbegjC3Su182beg3HlugO5XZ_-zIQop4bOlup2ILPoYXJ66Kk5vrelRnzpV-QAJyRs6lWC6hcKi7YSCx2VjP_H2kwetwsf30re-S54PTo6EdHhz_-EBe1PSySP4pP5LV2dVN_ATAaeZ3asf4B4WjFfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occurrence+and+fate+of+pharmaceutically+active+compounds+in+the+environment%2C+a+case+study%3A+H%C3%B6je+River+in+Sweden&rft.jtitle=Journal+of+hazardous+materials&rft.au=Bendz%2C+David&rft.au=Pax%C3%A9us%2C+Nicklas+A.&rft.au=Ginn%2C+Timothy+R.&rft.au=Loge%2C+Frank+J.&rft.date=2005-07-15&rft.issn=0304-3894&rft.volume=122&rft.issue=3&rft.spage=195&rft.epage=204&rft_id=info:doi/10.1016%2Fj.jhazmat.2005.03.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2005_03_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon