Patterns and Causes of Signed Linkage Disequilibria in Flies and Plants

Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill–Rober...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 38; no. 10; pp. 4310 - 4321
Main Authors Sandler, George, Wright, Stephen I, Agrawal, Aneil F
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.10.2021
Subjects
Online AccessGet full text
ISSN1537-1719
0737-4038
1537-1719
DOI10.1093/molbev/msab169

Cover

Loading…
Abstract Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill–Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.
AbstractList Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.
Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.
Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis. Key words: Hill-Robertson interference, epistasis, linkage disequilibrium, admixture.
Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill–Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.
Audience Academic
Author Wright, Stephen I
Agrawal, Aneil F
Sandler, George
AuthorAffiliation 2 Center for Analysis of Genome Evolution and Function, University of Toronto , Toronto, ON, Canada
1 Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON, Canada
AuthorAffiliation_xml – name: 2 Center for Analysis of Genome Evolution and Function, University of Toronto , Toronto, ON, Canada
– name: 1 Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON, Canada
Author_xml – sequence: 1
  givenname: George
  surname: Sandler
  fullname: Sandler, George
  email: george.sandler@mail.utoronto.ca
  organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: Stephen I
  orcidid: 0000-0001-9973-9697
  surname: Wright
  fullname: Wright, Stephen I
  organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
– sequence: 3
  givenname: Aneil F
  surname: Agrawal
  fullname: Agrawal, Aneil F
  organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34097067$$D View this record in MEDLINE/PubMed
BookMark eNqFUctq3DAUFSWhebTbLouhm2YxiWTJkr0phMmjhYEG2q7FtXw9VSpLE8kO9O-jwdM0DYSihYR0Hjr3HJE9HzwS8o7RU0YbfjYE1-L92ZCgZbJ5RQ5ZxdWCKdbsPTkfkKOUbillQkj5mhxwQRtFpTok1zcwjhh9KsB3xRKmhKkIffHNrj12xcr6X7DG4sImvJuss220UFhfXDmLM-fGgR_TG7Lfg0v4drcfkx9Xl9-Xnxerr9dfluerhRENGxclF6rkVIkSWFOVpucCJVfADO-Y4iXnIEEA7Ywsu5LWdSXrvq0b2VVcmL7hx-TTrLuZ2gE7g36M4PQm2gHibx3A6n9fvP2p1-Fe10JJJlUW-LgTiOFuwjTqwSaDLqfAMCVdVrymFWX11uvDM-htmKLP8TTPU-WUVSXNqNMZtQaH2vo-ZF-TV4eDNbmt3ub7c6WEUEJymQnvn0Z4_PufUv4qmhhSitg_QhjV29b13LretZ4J4hnB2BFGG7YjsO5l2slMC9PmfxYPJLfAqQ
CitedBy_id crossref_primary_10_2478_sg_2023_0019
crossref_primary_10_1007_s11056_023_10009_7
crossref_primary_10_1086_726736
crossref_primary_10_1093_genetics_iyab211
crossref_primary_10_1093_genetics_iyac097
crossref_primary_10_1093_genetics_iyad058
crossref_primary_10_1093_genetics_iyac004
crossref_primary_10_7554_eLife_76073
crossref_primary_10_1093_plcell_koad296
Cites_doi 10.1093/molbev/msu301
10.1073/pnas.76.1.396
10.1007/BF01245622
10.1093/genetics/54.6.1337
10.1086/519795
10.1534/genetics.106.062828
10.1038/37108
10.1101/gr.119636.110
10.1371/journal.pgen.1003056
10.1073/pnas.1319032110
10.1126/science.aah5238
10.1017/S0016672300033139
10.1017/S0016672300019194
10.1126/science.aaf0965
10.1086/316935
10.1534/g3.115.019554
10.1186/1471-2105-13-20
10.1017/S0016672300033140
10.1073/pnas.1503027112
10.1093/molbev/msy228
10.1016/j.tree.2010.05.003
10.4161/fly.19695
10.1093/bioinformatics/btx301
10.1038/hdy.2012.15
10.1093/nar/gkaa1026
10.1093/molbev/msz003
10.1093/bioinformatics/btr509
10.1073/pnas.85.23.9119
10.1017/S0016672300010156
10.1093/nar/gky1003
10.1101/gr.6386707
10.1016/j.cub.2011.05.013
10.1093/gbe/evv182
10.1007/s00239-004-0153-1
10.1371/journal.pgen.1002905
10.1038/ng.2766
10.1038/ng.2669
10.1534/genetics.115.174664
10.1093/nar/gkv1070
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
COPYRIGHT 2021 Oxford University Press
The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
– notice: COPYRIGHT 2021 Oxford University Press
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1093/molbev/msab169
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-1719
EndPage 4321
ExternalDocumentID PMC8476167
A774474636
34097067
10_1093_molbev_msab169
10.1093/molbev/msab169
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
-E4
-~X
.2P
.GJ
.I3
.ZR
0R~
18M
1TH
29M
2WC
4.4
48X
53G
5VS
5WA
70D
7X7
AAFWJ
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEJV
ABEUO
ABGNP
ABIXL
ABKDP
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABSMQ
ABTAH
ABXVV
ABZBJ
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPRK
ACUFI
ACUTO
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADJQC
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFIYH
AFOFC
AFPKN
AFRAH
AFULF
AFXEN
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASAOO
ATDFG
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
BTRTY
BVRKM
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLIZI
FOTVD
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HH5
HW0
HZ~
IAO
IGS
IHR
IOX
ITC
J21
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NLBLG
NMDNZ
NOYVH
NTWIH
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RHF
RNI
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
RZO
TEORI
TJP
TJX
TLC
TN5
TOX
TR2
VQA
W8F
WOQ
X7H
XJT
XSW
YAYTL
YHZ
YKOAZ
YXANX
ZCA
ZCG
ZKX
ZXP
ZY4
~02
~91
88E
8AO
8FI
8FJ
8G5
AAYXX
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
CITATION
DWQXO
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
M1P
M2O
M7P
PHGZM
PHGZT
PSQYO
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FE
8FH
8FK
C1K
FR3
H94
K9.
LK8
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c491t-2347230742a1952cf34e637a1c3d173233a6a4a0dc62d2088568fb896d534cf93
IEDL.DBID 7X7
ISSN 1537-1719
0737-4038
IngestDate Thu Aug 21 18:14:03 EDT 2025
Fri Jul 11 01:08:30 EDT 2025
Fri Jul 25 19:27:41 EDT 2025
Tue Jun 10 21:16:59 EDT 2025
Mon Jul 21 05:49:38 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Tue Jul 01 03:45:57 EDT 2025
Fri Feb 07 10:35:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Hill–Robertson interference
epistasis
admixture
linkage disequilibrium
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-2347230742a1952cf34e637a1c3d173233a6a4a0dc62d2088568fb896d534cf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Stephen I Wright and Aneil F Agrawal authors contributed equally to this work.
ORCID 0000-0001-9973-9697
OpenAccessLink https://dx.doi.org/10.1093/molbev/msab169
PMID 34097067
PQID 3171301520
PQPubID 36253
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8476167
proquest_miscellaneous_2538050189
proquest_journals_3171301520
gale_infotracacademiconefile_A774474636
pubmed_primary_34097067
crossref_primary_10_1093_molbev_msab169
crossref_citationtrail_10_1093_molbev_msab169
oup_primary_10_1093_molbev_msab169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Molecular biology and evolution
PublicationTitleAlternate Mol Biol Evol
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Schrider (2021092720220826900_msab169-B38) 2011; 21
Crow (2021092720220826900_msab169-B11) 1970
Lack (2021092720220826900_msab169-B26) 2015; 199
Hill (2021092720220826900_msab169-B19) 1968; 38
Chakraborty (2021092720220826900_msab169-B5) 1988; 85
Kanehisa (2021092720220826900_msab169-B22) 2016; 44
Puchta (2021092720220826900_msab169-B33) 2016; 352
Sainudiin (2021092720220826900_msab169-B36) 2005; 60
Auton (2021092720220826900_msab169-B2) 2007; 17
Barton (2021092720220826900_msab169-B4) 1995; 65
Hill (2021092720220826900_msab169-B18) 1966; 8
McEvoy (2021092720220826900_msab169-B30) 2011; 21
Sohail (2021092720220826900_msab169-B41) 2017; 356
Stephens (2021092720220826900_msab169-B42) 1994; 55
Kondrashov (2021092720220826900_msab169-B25) 1995; 65
Larkin (2021092720220826900_msab169-B28) 2021; 49
Elena (2021092720220826900_msab169-B13) 1997; 390
Bank (2021092720220826900_msab169-B3) 2015; 32
Sales (2021092720220826900_msab169-B37) 2012; 13
Cingolani (2021092720220826900_msab169-B8) 2012; 6
Haller (2021092720220826900_msab169-B16) 2019; 36
Lalić (2021092720220826900_msab169-B27) 2012; 109
Slotte (2021092720220826900_msab169-B39) 2013; 45
Pfaff (2021092720220826900_msab169-B32) 2001; 68
Houle (2021092720220826900_msab169-B20) 2015; 5
Li (2021092720220826900_msab169-B29) 2011; 27
Purcell (2021092720220826900_msab169-B34) 2007; 81
Comeron (2021092720220826900_msab169-B9) 2012; 8
Hellsten (2021092720220826900_msab169-B17) 2013; 110
Josephs (2021092720220826900_msab169-B21) 2015; 112
Smukowski Heil (2021092720220826900_msab169-B40) 2015; 7
Hervas (2021092720220826900_msab169-B57394952) 2017; 33
Kondrashov (2021092720220826900_msab169-B24) 1982; 40
Agrawal (2021092720220826900_msab169-B1) 2010; 25
Kimura (2021092720220826900_msab169-B23) 1966; 54
Weber (2021092720220826900_msab169-B44) 2019; 36
Chiu (2021092720220826900_msab169-B6) 2012; 279
Thurmond (2021092720220826900_msab169-B43) 2019; 47
Corbett-Detig (2021092720220826900_msab169-B10) 2012; 8
McVean (2021092720220826900_msab169-B31) 2007; 175
Crow (2021092720220826900_msab169-B12) 1979; 76
Choi (2021092720220826900_msab169-B7) 2013; 45
References_xml – volume: 32
  start-page: 229
  issue: 1
  year: 2015
  ident: 2021092720220826900_msab169-B3
  article-title: A systematic survey of an intragenic epistatic landscape
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu301
– volume: 76
  start-page: 396
  issue: 1
  year: 1979
  ident: 2021092720220826900_msab169-B12
  article-title: Efficiency of truncation selection
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.76.1.396
– volume: 38
  start-page: 226
  issue: 6
  year: 1968
  ident: 2021092720220826900_msab169-B19
  article-title: Linkage disequilibrium in finite populations
  publication-title: Theor Appl Genet
  doi: 10.1007/BF01245622
– volume: 54
  start-page: 1337
  issue: 6
  year: 1966
  ident: 2021092720220826900_msab169-B23
  article-title: The mutational load with epistatic gene interactions in fitness
  publication-title: Genetics
  doi: 10.1093/genetics/54.6.1337
– volume: 81
  start-page: 559
  issue: 3
  year: 2007
  ident: 2021092720220826900_msab169-B34
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– volume: 175
  start-page: 1395
  issue: 3
  year: 2007
  ident: 2021092720220826900_msab169-B31
  article-title: The structure of linkage disequilibrium around a selective sweep
  publication-title: Genetics
  doi: 10.1534/genetics.106.062828
– volume: 390
  start-page: 395
  issue: 6658
  year: 1997
  ident: 2021092720220826900_msab169-B13
  article-title: Test of synergistic interactions among deleterious mutations in bacteria
  publication-title: Nature
  doi: 10.1038/37108
– volume: 21
  start-page: 821
  issue: 6
  year: 2011
  ident: 2021092720220826900_msab169-B30
  article-title: Human population dispersal “Out of Africa” estimated from linkage disequilibrium and allele frequencies of SNPs
  publication-title: Genome Res
  doi: 10.1101/gr.119636.110
– volume: 55
  start-page: 809
  issue: 4
  year: 1994
  ident: 2021092720220826900_msab169-B42
  article-title: Mapping by admixture linkage disequilibrium in human populations: limits and guidelines
  publication-title: Am J Hum Genet
– volume: 8
  start-page: e1003056
  issue: 12
  year: 2012
  ident: 2021092720220826900_msab169-B10
  article-title: Population genomics of inversion polymorphisms in Drosophila melanogaster
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003056
– volume: 110
  start-page: 19478
  issue: 48
  year: 2013
  ident: 2021092720220826900_msab169-B17
  article-title: Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1319032110
– volume: 356
  start-page: 539
  issue: 6337
  year: 2017
  ident: 2021092720220826900_msab169-B41
  article-title: Negative selection in humans and fruit flies involves synergistic epistasis
  publication-title: Science
  doi: 10.1126/science.aah5238
– volume: 279
  start-page: 4156
  issue: 1745
  year: 2012
  ident: 2021092720220826900_msab169-B6
  article-title: Epistasis from functional dependence of fitness on underlying traits
  publication-title: Proc Biol Sci
– volume: 65
  start-page: 113
  issue: 2
  year: 1995
  ident: 2021092720220826900_msab169-B25
  article-title: Dynamics of unconditionally deleterious mutations: gaussian approximation and soft selection
  publication-title: Genet Res
  doi: 10.1017/S0016672300033139
– volume: 40
  start-page: 325
  issue: 3
  year: 1982
  ident: 2021092720220826900_msab169-B24
  article-title: Selection against harmful mutations in large sexual and asexual populations
  publication-title: Genet Res
  doi: 10.1017/S0016672300019194
– volume: 352
  start-page: 840
  issue: 6287
  year: 2016
  ident: 2021092720220826900_msab169-B33
  article-title: Network of epistatic interactions within a yeast snoRNA
  publication-title: Science
  doi: 10.1126/science.aaf0965
– volume: 68
  start-page: 198
  issue: 1
  year: 2001
  ident: 2021092720220826900_msab169-B32
  article-title: Population structure in admixed populations: effect of admixture dynamics on the pattern of linkage disequilibrium
  publication-title: Am J Hum Genet
  doi: 10.1086/316935
– volume: 5
  start-page: 1695
  year: 2015
  ident: 2021092720220826900_msab169-B20
  article-title: Linkage disequilibrium and inversion-typing of the Drosophila melanogaster genome reference panel
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.115.019554
– volume: 13
  start-page: 20
  year: 2012
  ident: 2021092720220826900_msab169-B37
  article-title: graphite – a Bioconductor package to convert pathway topology to gene network
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-20
– volume: 65
  start-page: 123
  issue: 2
  year: 1995
  ident: 2021092720220826900_msab169-B4
  article-title: A general model for the evolution of recombination
  publication-title: Genet Res
  doi: 10.1017/S0016672300033140
– volume: 112
  start-page: 15390
  issue: 50
  year: 2015
  ident: 2021092720220826900_msab169-B21
  article-title: Association mapping reveals the role of purifying selection in the maintenance of genomic variation in gene expression
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1503027112
– volume: 36
  start-page: 632
  issue: 3
  year: 2019
  ident: 2021092720220826900_msab169-B16
  article-title: SLiM 3: forward genetic simulations beyond the Wright–Fisher model
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy228
– volume-title: An introduction to population genetics theory
  year: 1970
  ident: 2021092720220826900_msab169-B11
– volume: 25
  start-page: 450
  issue: 8
  year: 2010
  ident: 2021092720220826900_msab169-B1
  article-title: Environmental duress and epistasis: how does stress affect the strength of selection on new mutations?
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2010.05.003
– volume: 6
  start-page: 80
  issue: 2
  year: 2012
  ident: 2021092720220826900_msab169-B8
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms
  publication-title: Fly (Austin)
  doi: 10.4161/fly.19695
– volume: 33
  start-page: 2779
  issue: 17
  year: 2017
  ident: 2021092720220826900_msab169-B57394952
  article-title: PopFly: the Drosophila population genomics browser
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx301
– volume: 109
  start-page: 71
  issue: 2
  year: 2012
  ident: 2021092720220826900_msab169-B27
  article-title: Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus
  publication-title: Heredity
  doi: 10.1038/hdy.2012.15
– volume: 49
  start-page: D899
  issue: D1
  year: 2021
  ident: 2021092720220826900_msab169-B28
  article-title: FlyBase: updates to the Drosophila melanogaster knowledge base
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1026
– volume: 36
  start-page: 679
  issue: 4
  year: 2019
  ident: 2021092720220826900_msab169-B44
  article-title: Physicochemical amino acid properties better describe substitution rates in large populations
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msz003
– volume: 27
  start-page: 2987
  issue: 21
  year: 2011
  ident: 2021092720220826900_msab169-B29
  article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr509
– volume: 85
  start-page: 9119
  issue: 23
  year: 1988
  ident: 2021092720220826900_msab169-B5
  article-title: Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.85.23.9119
– volume: 8
  start-page: 269
  issue: 3
  year: 1966
  ident: 2021092720220826900_msab169-B18
  article-title: The effect of linkage on limits to artificial selection
  publication-title: Genet Res
  doi: 10.1017/S0016672300010156
– volume: 47
  start-page: D759
  issue: D1
  year: 2019
  ident: 2021092720220826900_msab169-B43
  article-title: FlyBase 2.0: the next generation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1003
– volume: 17
  start-page: 1219
  issue: 8
  year: 2007
  ident: 2021092720220826900_msab169-B2
  article-title: Recombination rate estimation in the presence of hotspots
  publication-title: Genome Res
  doi: 10.1101/gr.6386707
– volume: 21
  start-page: 1051
  issue: 12
  year: 2011
  ident: 2021092720220826900_msab169-B38
  article-title: Pervasive multinucleotide mutational events in eukaryotes
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.05.013
– volume: 7
  start-page: 2829
  issue: 10
  year: 2015
  ident: 2021092720220826900_msab169-B40
  article-title: Recombining without hotspots: a comprehensive evolutionary portrait of recombination in two closely related species of Drosophila
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evv182
– volume: 60
  start-page: 315
  issue: 3
  year: 2005
  ident: 2021092720220826900_msab169-B36
  article-title: Detecting site-specific physicochemical selective pressures: applications to the class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system
  publication-title: J Mol Evol
  doi: 10.1007/s00239-004-0153-1
– volume: 8
  start-page: e1002905
  issue: 10
  year: 2012
  ident: 2021092720220826900_msab169-B9
  article-title: The many landscapes of recombination in Drosophila melanogaster
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002905
– volume: 45
  start-page: 1327
  issue: 11
  year: 2013
  ident: 2021092720220826900_msab169-B7
  article-title: Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters
  publication-title: Nat Genet
  doi: 10.1038/ng.2766
– volume: 45
  start-page: 831
  issue: 7
  year: 2013
  ident: 2021092720220826900_msab169-B39
  article-title: The Capsella rubella genome and the genomic consequences of rapid mating system evolution
  publication-title: Nat Genet
  doi: 10.1038/ng.2669
– volume: 199
  start-page: 1229
  issue: 4
  year: 2015
  ident: 2021092720220826900_msab169-B26
  article-title: The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population
  publication-title: Genetics
  doi: 10.1534/genetics.115.174664
– volume: 44
  start-page: D457
  issue: D1
  year: 2016
  ident: 2021092720220826900_msab169-B22
  article-title: KEGG as a reference resource for gene and protein annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1070
SSID ssj0014466
Score 2.4160185
Snippet Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4310
SubjectTerms Analysis
Animals
Capsella - genetics
Discoveries
Drosophila
Drosophila melanogaster - genetics
Epistasis
Fruit flies
Genes
Genome, Plant
Genomes
Genomics
Linkage Disequilibrium
Missense mutation
Mutation
Plant genetics
Title Patterns and Causes of Signed Linkage Disequilibria in Flies and Plants
URI https://www.ncbi.nlm.nih.gov/pubmed/34097067
https://www.proquest.com/docview/3171301520
https://www.proquest.com/docview/2538050189
https://pubmed.ncbi.nlm.nih.gov/PMC8476167
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagFRIXxJuUsjIIiZO160fs5IRK6VIhUSpopb1ZjuOUSG1Sml0k_j0ziTfsIgGXXOzYlseet78h5DVXRYWGB-N5WjFV-sAQVJ2BdOJlykHj7h1un0708bn6uEgX0eHWxbTKNU_sGXXZevSRT0HOAbsFaTN7e_2dYdUojK7GEhq3yS5Cl6HxZRajwcXXsUojDdhJMhtBG-X0qr0swo_pVecKjsnOG0Ipsuat924bauef2ZMb4mh-n9yLeiQ9GAj_gNwKzUNyZ6gs-fMR-XDa42Y2HXVNSQ_dqgsdbSv6tb4AvkrRAgVGQt_XmEpd93n_jtYNnYNKOvyD1YyW3WNyPj86OzxmsWYC8yrnSyakMpjbrYSDDRG-kipoaRz3suRGCimddsrNSq9FKYDFpDqriizXZSqVr3L5hOw0bROeEaqDy4XIUlMWufJFnsls5jPPPRg1yjufELbeNOsjoDjWtbi0Q2Bb2mGTbdzkhLwZ-18PUBp_74k0sHjHYESYa3gqAOtCtCp7ADqrMgh1lpBXQKb_Dre_pqKNN7Szv89TQl6OzXC3MGDimtCuOitAGswQ8RCGeDoQfZxKIlAYiPqEmK3jMHZA3O7tlqb-1uN3g0KguTZ7_17Wc3JXYP5Mnzi4T3aWN6vwAhSgZTHpT_mE7L47Ojn9MundCPA9-7z4BQkMCD0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAAYNAnKKNH4mTA0JVy7KlDyHRSnszju1ApDYpZBfUP8VvZCYvdpGAU89xbMsznodn5htCXjCZF-h4hCyLi1A660MEVQ9BOzEXM7C42we3w6NkdiLfz-P5Bvk51MJgWuUgE1tB7WqLb-QT0HMgbkHbRG_Ov4bYNQqjq0MLjY4t9v3FD3DZmtd7u0Dfl5xP3x7vzMK-q0BoZcYWIRdSYfaz5Ab2x20hpE-EMswKx5TgQpjESBM5m3DH4RLGSVrkaZa4WEhbIPgSiPwroHgjTCFU89HBY0NsVAkFfplIR5BIMTmrT3P_fXLWmJxhcvWKEuxVwVp93YqZ-2e25or6m94kN3q7lW53jHaLbPjqNrnadbK8uEPefWhxOquGmsrRHbNsfEPrgn4sP4Mcp-jxguCiuyWmbpdtnYGhZUWnYAJ3_2D3pEVzl5xcymneI5tVXfkHhCbeZJynsXJ5Jm2epSKNbGqZBSdKWmMDEg6Hpm0PYI59NE51F0gXujtk3R9yQF6N48876I6_j0QaaLzTMCOs1ZUmwL4QHUtvg40sFUKrBeQ5kOm_020NVNS9RGj0b_4NyLPxM9xlDNCYytfLRnPQPhEiLMIU9zuij0sJBCYD0yIgao0dxgGIE77-pSq_tHjhYIAkLFEP_72tp-Ta7PjwQB_sHe0_Itc55u60SYtbZHPxbekfg_G1yJ-0HE_Jp8u-Yr8A5Ks-5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+and+Causes+of+Signed+Linkage+Disequilibria+in+Flies+and+Plants&rft.jtitle=Molecular+biology+and+evolution&rft.au=Sandler%2C+George&rft.au=Wright%2C+Stephen+I&rft.au=Agrawal%2C+Aneil+F&rft.date=2021-10-01&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.volume=38&rft.issue=10&rft.spage=4310&rft_id=info:doi/10.1093%2Fmolbev%2Fmsab169&rft.externalDocID=A774474636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-1719&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-1719&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-1719&client=summon