Patterns and Causes of Signed Linkage Disequilibria in Flies and Plants
Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill–Rober...
Saved in:
Published in | Molecular biology and evolution Vol. 38; no. 10; pp. 4310 - 4321 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1537-1719 0737-4038 1537-1719 |
DOI | 10.1093/molbev/msab169 |
Cover
Loading…
Abstract | Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill–Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis. |
---|---|
AbstractList | Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis. Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis. Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis. Key words: Hill-Robertson interference, epistasis, linkage disequilibrium, admixture. Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill–Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis. |
Audience | Academic |
Author | Wright, Stephen I Agrawal, Aneil F Sandler, George |
AuthorAffiliation | 2 Center for Analysis of Genome Evolution and Function, University of Toronto , Toronto, ON, Canada 1 Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON, Canada |
AuthorAffiliation_xml | – name: 2 Center for Analysis of Genome Evolution and Function, University of Toronto , Toronto, ON, Canada – name: 1 Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON, Canada |
Author_xml | – sequence: 1 givenname: George surname: Sandler fullname: Sandler, George email: george.sandler@mail.utoronto.ca organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada – sequence: 2 givenname: Stephen I orcidid: 0000-0001-9973-9697 surname: Wright fullname: Wright, Stephen I organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada – sequence: 3 givenname: Aneil F surname: Agrawal fullname: Agrawal, Aneil F organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34097067$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctq3DAUFSWhebTbLouhm2YxiWTJkr0phMmjhYEG2q7FtXw9VSpLE8kO9O-jwdM0DYSihYR0Hjr3HJE9HzwS8o7RU0YbfjYE1-L92ZCgZbJ5RQ5ZxdWCKdbsPTkfkKOUbillQkj5mhxwQRtFpTok1zcwjhh9KsB3xRKmhKkIffHNrj12xcr6X7DG4sImvJuss220UFhfXDmLM-fGgR_TG7Lfg0v4drcfkx9Xl9-Xnxerr9dfluerhRENGxclF6rkVIkSWFOVpucCJVfADO-Y4iXnIEEA7Ywsu5LWdSXrvq0b2VVcmL7hx-TTrLuZ2gE7g36M4PQm2gHibx3A6n9fvP2p1-Fe10JJJlUW-LgTiOFuwjTqwSaDLqfAMCVdVrymFWX11uvDM-htmKLP8TTPU-WUVSXNqNMZtQaH2vo-ZF-TV4eDNbmt3ub7c6WEUEJymQnvn0Z4_PufUv4qmhhSitg_QhjV29b13LretZ4J4hnB2BFGG7YjsO5l2slMC9PmfxYPJLfAqQ |
CitedBy_id | crossref_primary_10_2478_sg_2023_0019 crossref_primary_10_1007_s11056_023_10009_7 crossref_primary_10_1086_726736 crossref_primary_10_1093_genetics_iyab211 crossref_primary_10_1093_genetics_iyac097 crossref_primary_10_1093_genetics_iyad058 crossref_primary_10_1093_genetics_iyac004 crossref_primary_10_7554_eLife_76073 crossref_primary_10_1093_plcell_koad296 |
Cites_doi | 10.1093/molbev/msu301 10.1073/pnas.76.1.396 10.1007/BF01245622 10.1093/genetics/54.6.1337 10.1086/519795 10.1534/genetics.106.062828 10.1038/37108 10.1101/gr.119636.110 10.1371/journal.pgen.1003056 10.1073/pnas.1319032110 10.1126/science.aah5238 10.1017/S0016672300033139 10.1017/S0016672300019194 10.1126/science.aaf0965 10.1086/316935 10.1534/g3.115.019554 10.1186/1471-2105-13-20 10.1017/S0016672300033140 10.1073/pnas.1503027112 10.1093/molbev/msy228 10.1016/j.tree.2010.05.003 10.4161/fly.19695 10.1093/bioinformatics/btx301 10.1038/hdy.2012.15 10.1093/nar/gkaa1026 10.1093/molbev/msz003 10.1093/bioinformatics/btr509 10.1073/pnas.85.23.9119 10.1017/S0016672300010156 10.1093/nar/gky1003 10.1101/gr.6386707 10.1016/j.cub.2011.05.013 10.1093/gbe/evv182 10.1007/s00239-004-0153-1 10.1371/journal.pgen.1002905 10.1038/ng.2766 10.1038/ng.2669 10.1534/genetics.115.174664 10.1093/nar/gkv1070 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. COPYRIGHT 2021 Oxford University Press The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. – notice: COPYRIGHT 2021 Oxford University Press – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1093/molbev/msab169 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-1719 |
EndPage | 4321 |
ExternalDocumentID | PMC8476167 A774474636 34097067 10_1093_molbev_msab169 10.1093/molbev/msab169 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- -E4 -~X .2P .GJ .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 53G 5VS 5WA 70D 7X7 AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABQTQ ABSMQ ABTAH ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPRK ACUFI ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADJQC ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFIYH AFOFC AFPKN AFRAH AFULF AFXEN AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASAOO ATDFG AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM C1A CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HH5 HW0 HZ~ IAO IGS IHR IOX ITC J21 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NLBLG NMDNZ NOYVH NTWIH NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RHF RNI ROL ROX ROZ RPM RUSNO RW1 RXO RZO TEORI TJP TJX TLC TN5 TOX TR2 VQA W8F WOQ X7H XJT XSW YAYTL YHZ YKOAZ YXANX ZCA ZCG ZKX ZXP ZY4 ~02 ~91 88E 8AO 8FI 8FJ 8G5 AAYXX ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU CITATION DWQXO FYUFA GNUQQ GUQSH HCIFZ HMCUK M1P M2O M7P PHGZM PHGZT PSQYO UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FE 8FH 8FK C1K FR3 H94 K9. LK8 M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c491t-2347230742a1952cf34e637a1c3d173233a6a4a0dc62d2088568fb896d534cf93 |
IEDL.DBID | 7X7 |
ISSN | 1537-1719 0737-4038 |
IngestDate | Thu Aug 21 18:14:03 EDT 2025 Fri Jul 11 01:08:30 EDT 2025 Fri Jul 25 19:27:41 EDT 2025 Tue Jun 10 21:16:59 EDT 2025 Mon Jul 21 05:49:38 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 03:45:57 EDT 2025 Fri Feb 07 10:35:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Hill–Robertson interference epistasis admixture linkage disequilibrium |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-2347230742a1952cf34e637a1c3d173233a6a4a0dc62d2088568fb896d534cf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Stephen I Wright and Aneil F Agrawal authors contributed equally to this work. |
ORCID | 0000-0001-9973-9697 |
OpenAccessLink | https://dx.doi.org/10.1093/molbev/msab169 |
PMID | 34097067 |
PQID | 3171301520 |
PQPubID | 36253 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8476167 proquest_miscellaneous_2538050189 proquest_journals_3171301520 gale_infotracacademiconefile_A774474636 pubmed_primary_34097067 crossref_primary_10_1093_molbev_msab169 crossref_citationtrail_10_1093_molbev_msab169 oup_primary_10_1093_molbev_msab169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Molecular biology and evolution |
PublicationTitleAlternate | Mol Biol Evol |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Schrider (2021092720220826900_msab169-B38) 2011; 21 Crow (2021092720220826900_msab169-B11) 1970 Lack (2021092720220826900_msab169-B26) 2015; 199 Hill (2021092720220826900_msab169-B19) 1968; 38 Chakraborty (2021092720220826900_msab169-B5) 1988; 85 Kanehisa (2021092720220826900_msab169-B22) 2016; 44 Puchta (2021092720220826900_msab169-B33) 2016; 352 Sainudiin (2021092720220826900_msab169-B36) 2005; 60 Auton (2021092720220826900_msab169-B2) 2007; 17 Barton (2021092720220826900_msab169-B4) 1995; 65 Hill (2021092720220826900_msab169-B18) 1966; 8 McEvoy (2021092720220826900_msab169-B30) 2011; 21 Sohail (2021092720220826900_msab169-B41) 2017; 356 Stephens (2021092720220826900_msab169-B42) 1994; 55 Kondrashov (2021092720220826900_msab169-B25) 1995; 65 Larkin (2021092720220826900_msab169-B28) 2021; 49 Elena (2021092720220826900_msab169-B13) 1997; 390 Bank (2021092720220826900_msab169-B3) 2015; 32 Sales (2021092720220826900_msab169-B37) 2012; 13 Cingolani (2021092720220826900_msab169-B8) 2012; 6 Haller (2021092720220826900_msab169-B16) 2019; 36 Lalić (2021092720220826900_msab169-B27) 2012; 109 Slotte (2021092720220826900_msab169-B39) 2013; 45 Pfaff (2021092720220826900_msab169-B32) 2001; 68 Houle (2021092720220826900_msab169-B20) 2015; 5 Li (2021092720220826900_msab169-B29) 2011; 27 Purcell (2021092720220826900_msab169-B34) 2007; 81 Comeron (2021092720220826900_msab169-B9) 2012; 8 Hellsten (2021092720220826900_msab169-B17) 2013; 110 Josephs (2021092720220826900_msab169-B21) 2015; 112 Smukowski Heil (2021092720220826900_msab169-B40) 2015; 7 Hervas (2021092720220826900_msab169-B57394952) 2017; 33 Kondrashov (2021092720220826900_msab169-B24) 1982; 40 Agrawal (2021092720220826900_msab169-B1) 2010; 25 Kimura (2021092720220826900_msab169-B23) 1966; 54 Weber (2021092720220826900_msab169-B44) 2019; 36 Chiu (2021092720220826900_msab169-B6) 2012; 279 Thurmond (2021092720220826900_msab169-B43) 2019; 47 Corbett-Detig (2021092720220826900_msab169-B10) 2012; 8 McVean (2021092720220826900_msab169-B31) 2007; 175 Crow (2021092720220826900_msab169-B12) 1979; 76 Choi (2021092720220826900_msab169-B7) 2013; 45 |
References_xml | – volume: 32 start-page: 229 issue: 1 year: 2015 ident: 2021092720220826900_msab169-B3 article-title: A systematic survey of an intragenic epistatic landscape publication-title: Mol Biol Evol doi: 10.1093/molbev/msu301 – volume: 76 start-page: 396 issue: 1 year: 1979 ident: 2021092720220826900_msab169-B12 article-title: Efficiency of truncation selection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.76.1.396 – volume: 38 start-page: 226 issue: 6 year: 1968 ident: 2021092720220826900_msab169-B19 article-title: Linkage disequilibrium in finite populations publication-title: Theor Appl Genet doi: 10.1007/BF01245622 – volume: 54 start-page: 1337 issue: 6 year: 1966 ident: 2021092720220826900_msab169-B23 article-title: The mutational load with epistatic gene interactions in fitness publication-title: Genetics doi: 10.1093/genetics/54.6.1337 – volume: 81 start-page: 559 issue: 3 year: 2007 ident: 2021092720220826900_msab169-B34 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses publication-title: Am J Hum Genet doi: 10.1086/519795 – volume: 175 start-page: 1395 issue: 3 year: 2007 ident: 2021092720220826900_msab169-B31 article-title: The structure of linkage disequilibrium around a selective sweep publication-title: Genetics doi: 10.1534/genetics.106.062828 – volume: 390 start-page: 395 issue: 6658 year: 1997 ident: 2021092720220826900_msab169-B13 article-title: Test of synergistic interactions among deleterious mutations in bacteria publication-title: Nature doi: 10.1038/37108 – volume: 21 start-page: 821 issue: 6 year: 2011 ident: 2021092720220826900_msab169-B30 article-title: Human population dispersal “Out of Africa” estimated from linkage disequilibrium and allele frequencies of SNPs publication-title: Genome Res doi: 10.1101/gr.119636.110 – volume: 55 start-page: 809 issue: 4 year: 1994 ident: 2021092720220826900_msab169-B42 article-title: Mapping by admixture linkage disequilibrium in human populations: limits and guidelines publication-title: Am J Hum Genet – volume: 8 start-page: e1003056 issue: 12 year: 2012 ident: 2021092720220826900_msab169-B10 article-title: Population genomics of inversion polymorphisms in Drosophila melanogaster publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003056 – volume: 110 start-page: 19478 issue: 48 year: 2013 ident: 2021092720220826900_msab169-B17 article-title: Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1319032110 – volume: 356 start-page: 539 issue: 6337 year: 2017 ident: 2021092720220826900_msab169-B41 article-title: Negative selection in humans and fruit flies involves synergistic epistasis publication-title: Science doi: 10.1126/science.aah5238 – volume: 279 start-page: 4156 issue: 1745 year: 2012 ident: 2021092720220826900_msab169-B6 article-title: Epistasis from functional dependence of fitness on underlying traits publication-title: Proc Biol Sci – volume: 65 start-page: 113 issue: 2 year: 1995 ident: 2021092720220826900_msab169-B25 article-title: Dynamics of unconditionally deleterious mutations: gaussian approximation and soft selection publication-title: Genet Res doi: 10.1017/S0016672300033139 – volume: 40 start-page: 325 issue: 3 year: 1982 ident: 2021092720220826900_msab169-B24 article-title: Selection against harmful mutations in large sexual and asexual populations publication-title: Genet Res doi: 10.1017/S0016672300019194 – volume: 352 start-page: 840 issue: 6287 year: 2016 ident: 2021092720220826900_msab169-B33 article-title: Network of epistatic interactions within a yeast snoRNA publication-title: Science doi: 10.1126/science.aaf0965 – volume: 68 start-page: 198 issue: 1 year: 2001 ident: 2021092720220826900_msab169-B32 article-title: Population structure in admixed populations: effect of admixture dynamics on the pattern of linkage disequilibrium publication-title: Am J Hum Genet doi: 10.1086/316935 – volume: 5 start-page: 1695 year: 2015 ident: 2021092720220826900_msab169-B20 article-title: Linkage disequilibrium and inversion-typing of the Drosophila melanogaster genome reference panel publication-title: G3 (Bethesda) doi: 10.1534/g3.115.019554 – volume: 13 start-page: 20 year: 2012 ident: 2021092720220826900_msab169-B37 article-title: graphite – a Bioconductor package to convert pathway topology to gene network publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-20 – volume: 65 start-page: 123 issue: 2 year: 1995 ident: 2021092720220826900_msab169-B4 article-title: A general model for the evolution of recombination publication-title: Genet Res doi: 10.1017/S0016672300033140 – volume: 112 start-page: 15390 issue: 50 year: 2015 ident: 2021092720220826900_msab169-B21 article-title: Association mapping reveals the role of purifying selection in the maintenance of genomic variation in gene expression publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1503027112 – volume: 36 start-page: 632 issue: 3 year: 2019 ident: 2021092720220826900_msab169-B16 article-title: SLiM 3: forward genetic simulations beyond the Wright–Fisher model publication-title: Mol Biol Evol doi: 10.1093/molbev/msy228 – volume-title: An introduction to population genetics theory year: 1970 ident: 2021092720220826900_msab169-B11 – volume: 25 start-page: 450 issue: 8 year: 2010 ident: 2021092720220826900_msab169-B1 article-title: Environmental duress and epistasis: how does stress affect the strength of selection on new mutations? publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2010.05.003 – volume: 6 start-page: 80 issue: 2 year: 2012 ident: 2021092720220826900_msab169-B8 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms publication-title: Fly (Austin) doi: 10.4161/fly.19695 – volume: 33 start-page: 2779 issue: 17 year: 2017 ident: 2021092720220826900_msab169-B57394952 article-title: PopFly: the Drosophila population genomics browser publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx301 – volume: 109 start-page: 71 issue: 2 year: 2012 ident: 2021092720220826900_msab169-B27 article-title: Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus publication-title: Heredity doi: 10.1038/hdy.2012.15 – volume: 49 start-page: D899 issue: D1 year: 2021 ident: 2021092720220826900_msab169-B28 article-title: FlyBase: updates to the Drosophila melanogaster knowledge base publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1026 – volume: 36 start-page: 679 issue: 4 year: 2019 ident: 2021092720220826900_msab169-B44 article-title: Physicochemical amino acid properties better describe substitution rates in large populations publication-title: Mol Biol Evol doi: 10.1093/molbev/msz003 – volume: 27 start-page: 2987 issue: 21 year: 2011 ident: 2021092720220826900_msab169-B29 article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr509 – volume: 85 start-page: 9119 issue: 23 year: 1988 ident: 2021092720220826900_msab169-B5 article-title: Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.85.23.9119 – volume: 8 start-page: 269 issue: 3 year: 1966 ident: 2021092720220826900_msab169-B18 article-title: The effect of linkage on limits to artificial selection publication-title: Genet Res doi: 10.1017/S0016672300010156 – volume: 47 start-page: D759 issue: D1 year: 2019 ident: 2021092720220826900_msab169-B43 article-title: FlyBase 2.0: the next generation publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1003 – volume: 17 start-page: 1219 issue: 8 year: 2007 ident: 2021092720220826900_msab169-B2 article-title: Recombination rate estimation in the presence of hotspots publication-title: Genome Res doi: 10.1101/gr.6386707 – volume: 21 start-page: 1051 issue: 12 year: 2011 ident: 2021092720220826900_msab169-B38 article-title: Pervasive multinucleotide mutational events in eukaryotes publication-title: Curr Biol doi: 10.1016/j.cub.2011.05.013 – volume: 7 start-page: 2829 issue: 10 year: 2015 ident: 2021092720220826900_msab169-B40 article-title: Recombining without hotspots: a comprehensive evolutionary portrait of recombination in two closely related species of Drosophila publication-title: Genome Biol Evol doi: 10.1093/gbe/evv182 – volume: 60 start-page: 315 issue: 3 year: 2005 ident: 2021092720220826900_msab169-B36 article-title: Detecting site-specific physicochemical selective pressures: applications to the class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system publication-title: J Mol Evol doi: 10.1007/s00239-004-0153-1 – volume: 8 start-page: e1002905 issue: 10 year: 2012 ident: 2021092720220826900_msab169-B9 article-title: The many landscapes of recombination in Drosophila melanogaster publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002905 – volume: 45 start-page: 1327 issue: 11 year: 2013 ident: 2021092720220826900_msab169-B7 article-title: Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters publication-title: Nat Genet doi: 10.1038/ng.2766 – volume: 45 start-page: 831 issue: 7 year: 2013 ident: 2021092720220826900_msab169-B39 article-title: The Capsella rubella genome and the genomic consequences of rapid mating system evolution publication-title: Nat Genet doi: 10.1038/ng.2669 – volume: 199 start-page: 1229 issue: 4 year: 2015 ident: 2021092720220826900_msab169-B26 article-title: The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population publication-title: Genetics doi: 10.1534/genetics.115.174664 – volume: 44 start-page: D457 issue: D1 year: 2016 ident: 2021092720220826900_msab169-B22 article-title: KEGG as a reference resource for gene and protein annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1070 |
SSID | ssj0014466 |
Score | 2.4160185 |
Snippet | Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic... |
SourceID | pubmedcentral proquest gale pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4310 |
SubjectTerms | Analysis Animals Capsella - genetics Discoveries Drosophila Drosophila melanogaster - genetics Epistasis Fruit flies Genes Genome, Plant Genomes Genomics Linkage Disequilibrium Missense mutation Mutation Plant genetics |
Title | Patterns and Causes of Signed Linkage Disequilibria in Flies and Plants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34097067 https://www.proquest.com/docview/3171301520 https://www.proquest.com/docview/2538050189 https://pubmed.ncbi.nlm.nih.gov/PMC8476167 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagFRIXxJuUsjIIiZO160fs5IRK6VIhUSpopb1ZjuOUSG1Sml0k_j0ziTfsIgGXXOzYlseet78h5DVXRYWGB-N5WjFV-sAQVJ2BdOJlykHj7h1un0708bn6uEgX0eHWxbTKNU_sGXXZevSRT0HOAbsFaTN7e_2dYdUojK7GEhq3yS5Cl6HxZRajwcXXsUojDdhJMhtBG-X0qr0swo_pVecKjsnOG0Ipsuat924bauef2ZMb4mh-n9yLeiQ9GAj_gNwKzUNyZ6gs-fMR-XDa42Y2HXVNSQ_dqgsdbSv6tb4AvkrRAgVGQt_XmEpd93n_jtYNnYNKOvyD1YyW3WNyPj86OzxmsWYC8yrnSyakMpjbrYSDDRG-kipoaRz3suRGCimddsrNSq9FKYDFpDqriizXZSqVr3L5hOw0bROeEaqDy4XIUlMWufJFnsls5jPPPRg1yjufELbeNOsjoDjWtbi0Q2Bb2mGTbdzkhLwZ-18PUBp_74k0sHjHYESYa3gqAOtCtCp7ADqrMgh1lpBXQKb_Dre_pqKNN7Szv89TQl6OzXC3MGDimtCuOitAGswQ8RCGeDoQfZxKIlAYiPqEmK3jMHZA3O7tlqb-1uN3g0KguTZ7_17Wc3JXYP5Mnzi4T3aWN6vwAhSgZTHpT_mE7L47Ojn9MundCPA9-7z4BQkMCD0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAAYNAnKKNH4mTA0JVy7KlDyHRSnszju1ApDYpZBfUP8VvZCYvdpGAU89xbMsznodn5htCXjCZF-h4hCyLi1A660MEVQ9BOzEXM7C42we3w6NkdiLfz-P5Bvk51MJgWuUgE1tB7WqLb-QT0HMgbkHbRG_Ov4bYNQqjq0MLjY4t9v3FD3DZmtd7u0Dfl5xP3x7vzMK-q0BoZcYWIRdSYfaz5Ab2x20hpE-EMswKx5TgQpjESBM5m3DH4RLGSVrkaZa4WEhbIPgSiPwroHgjTCFU89HBY0NsVAkFfplIR5BIMTmrT3P_fXLWmJxhcvWKEuxVwVp93YqZ-2e25or6m94kN3q7lW53jHaLbPjqNrnadbK8uEPefWhxOquGmsrRHbNsfEPrgn4sP4Mcp-jxguCiuyWmbpdtnYGhZUWnYAJ3_2D3pEVzl5xcymneI5tVXfkHhCbeZJynsXJ5Jm2epSKNbGqZBSdKWmMDEg6Hpm0PYI59NE51F0gXujtk3R9yQF6N48876I6_j0QaaLzTMCOs1ZUmwL4QHUtvg40sFUKrBeQ5kOm_020NVNS9RGj0b_4NyLPxM9xlDNCYytfLRnPQPhEiLMIU9zuij0sJBCYD0yIgao0dxgGIE77-pSq_tHjhYIAkLFEP_72tp-Ta7PjwQB_sHe0_Itc55u60SYtbZHPxbekfg_G1yJ-0HE_Jp8u-Yr8A5Ks-5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+and+Causes+of+Signed+Linkage+Disequilibria+in+Flies+and+Plants&rft.jtitle=Molecular+biology+and+evolution&rft.au=Sandler%2C+George&rft.au=Wright%2C+Stephen+I&rft.au=Agrawal%2C+Aneil+F&rft.date=2021-10-01&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.volume=38&rft.issue=10&rft.spage=4310&rft_id=info:doi/10.1093%2Fmolbev%2Fmsab169&rft.externalDocID=A774474636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-1719&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-1719&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-1719&client=summon |