Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change
Aim: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models and macroecological models. We then describe the degree to which projections of future species richness differ, employing both modelling ap...
Saved in:
Published in | Journal of biogeography Vol. 42; no. 5; pp. 976 - 988 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.05.2015
John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0305-0270 1365-2699 |
DOI | 10.1111/jbi.12479 |
Cover
Abstract | Aim: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models and macroecological models. We then describe the degree to which projections of future species richness differ, employing both modelling approaches across multiple emissions scenarios. Location: USA and Canada. Methods: We use Audubon Christmas Bird Count and North American Breeding Bird Survey data to estimate current and future species richness of birds using two distinct approaches. In the first, we model richness by stacking predictions from individual species distribution models. In the second, we model richness directly, ignoring the contributions of specific taxa to richness estimates. Results: The two modelling approaches show similar accuracies when validated with historical observations, particularly winter observations, and result in similar patterns of richness when projected onto current and future climate spaces. Patterns of projected change in species richness differed markedly between winter and summer seasons regardless of modelling approach. Our models suggest that bird species richness in winter will increase or remain stable across much of North America. In contrast, species richness in summer is projected to decrease over much of North America, except part of northern Canada, suggesting that climate may constrain many breeding bird species and communities in the future. Main conclusions: Stacked species distribution models and macroecological models produce similar estimates of current and future species richness for each of two seasons despite being built on different concepts of community assembly. Our results suggest that, although the mechanisms that shape geographical variation in biodiversity remain uncertain, these limitations do not impede our ability to predict patterns of species richness at broad scales. Congruence of species richness projections across modelling approaches is encouraging for conservation planning efforts that focus on retaining biodiversity into the future. |
---|---|
AbstractList | AIM: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models and macroecological models. We then describe the degree to which projections of future species richness differ, employing both modelling approaches across multiple emissions scenarios. LOCATION: USA and Canada. METHODS: We use Audubon Christmas Bird Count and North American Breeding Bird Survey data to estimate current and future species richness of birds using two distinct approaches. In the first, we model richness by stacking predictions from individual species distribution models. In the second, we model richness directly, ignoring the contributions of specific taxa to richness estimates. RESULTS: The two modelling approaches show similar accuracies when validated with historical observations, particularly winter observations, and result in similar patterns of richness when projected onto current and future climate spaces. Patterns of projected change in species richness differed markedly between winter and summer seasons regardless of modelling approach. Our models suggest that bird species richness in winter will increase or remain stable across much of North America. In contrast, species richness in summer is projected to decrease over much of North America, except part of northern Canada, suggesting that climate may constrain many breeding bird species and communities in the future. MAIN CONCLUSIONS: Stacked species distribution models and macroecological models produce similar estimates of current and future species richness for each of two seasons despite being built on different concepts of community assembly. Our results suggest that, although the mechanisms that shape geographical variation in biodiversity remain uncertain, these limitations do not impede our ability to predict patterns of species richness at broad scales. Congruence of species richness projections across modelling approaches is encouraging for conservation planning efforts that focus on retaining biodiversity into the future. Aim Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models and macroecological models. We then describe the degree to which projections of future species richness differ, employing both modelling approaches across multiple emissions scenarios. Location USA and Canada. Methods We use Audubon Christmas Bird Count and North American Breeding Bird Survey data to estimate current and future species richness of birds using two distinct approaches. In the first, we model richness by stacking predictions from individual species distribution models. In the second, we model richness directly, ignoring the contributions of specific taxa to richness estimates. Results The two modelling approaches show similar accuracies when validated with historical observations, particularly winter observations, and result in similar patterns of richness when projected onto current and future climate spaces. Patterns of projected change in species richness differed markedly between winter and summer seasons regardless of modelling approach. Our models suggest that bird species richness in winter will increase or remain stable across much of North America. In contrast, species richness in summer is projected to decrease over much of North America, except part of northern Canada, suggesting that climate may constrain many breeding bird species and communities in the future. Main conclusions Stacked species distribution models and macroecological models produce similar estimates of current and future species richness for each of two seasons despite being built on different concepts of community assembly. Our results suggest that, although the mechanisms that shape geographical variation in biodiversity remain uncertain, these limitations do not impede our ability to predict patterns of species richness at broad scales. Congruence of species richness projections across modelling approaches is encouraging for conservation planning efforts that focus on retaining biodiversity into the future. |
Author | Schuetz, Justin G. Langham, Gary M. Distler, Trisha Velásquez-Tibatá, Jorge |
Author_xml | – sequence: 1 givenname: Trisha surname: Distler fullname: Distler, Trisha email: Correspondence: Trisha Distler, National Audubon Society, 220 Montgomery Street, San Francisco, CA 94104, USA., climatescience@audubon.org organization: National Audubon Society, CA, 94104, San Francisco, USA – sequence: 2 givenname: Justin G. surname: Schuetz fullname: Schuetz, Justin G. organization: National Audubon Society, CA, 94104, San Francisco, USA – sequence: 3 givenname: Jorge surname: Velásquez-Tibatá fullname: Velásquez-Tibatá, Jorge organization: National Audubon Society, CA, 94104, San Francisco, USA – sequence: 4 givenname: Gary M. surname: Langham fullname: Langham, Gary M. organization: National Audubon Society, DC, 20036, Washington, USA |
BookMark | eNp9UU1v1DAQtVArsS0c-AFIlrjAIe3YieP1ESpaWlVFCCgSF8txJlunWXtrJ4X-Bv50vWy7h0rgy0h-H3ozb4_s-OCRkFcMDlh-h33jDhivpHpGZqysRcFrpXbIDEoQBXAJz8leSj0AKFFWM_Ln62jsNbY0rdA6TLR1aYyumUYXPF2GFodEjW_p0tgY0IYhLJw1wyO0iuHWtUht8Is4oR_XPz3atTzR0FFz64zfukdnrzymRCffYqR2cEszZvWV8Qt8QXY7MyR8-TD3yffjj9-OPhXnn09Oj96fF7ZSTBVcAHZgeG0sZxxaC1a2dR4lKCvnorNN2xkJnCE2tpJi3kCl5g2rWMPrrin3yduNb456M2Ea9dIli8NgPIYpaSYZcF5XSmbqmyfUPkzR53Sa1ZJzUQHMM-vdhpVPlFLETq9iXizeaQZ6XYvOtei_tWTu4ROudaNZn2uMxg3_U_xyA97921qffTh9VLzeKPo0hrhVVDksB1lnvNjguWv8vcVNvNa1LKXQPy5O9Jefl0pcimN9Ud4DXSW8XQ |
CODEN | JBIODN |
CitedBy_id | crossref_primary_10_1002_ece3_6295 crossref_primary_10_1890_14_1903_1 crossref_primary_10_1002_ece3_9165 crossref_primary_10_1111_ecog_02788 crossref_primary_10_1371_journal_pone_0236103 crossref_primary_10_1016_j_jnc_2025_126850 crossref_primary_10_1080_00207233_2024_2389693 crossref_primary_10_1111_ddi_12607 crossref_primary_10_1111_ecog_02542 crossref_primary_10_1002_ece3_4876 crossref_primary_10_1016_j_pecon_2020_12_006 crossref_primary_10_1111_2041_210X_13915 crossref_primary_10_1111_ecog_03552 crossref_primary_10_1007_s10531_024_02979_7 crossref_primary_10_1007_s10841_022_00406_2 crossref_primary_10_1016_j_scitotenv_2020_139674 crossref_primary_10_1016_j_biocon_2016_07_026 crossref_primary_10_1016_j_ecoinf_2020_101150 crossref_primary_10_7717_peerj_4278 crossref_primary_10_1002_ecs2_3864 crossref_primary_10_1111_ddi_12893 crossref_primary_10_1111_2041_210X_13041 crossref_primary_10_1111_geb_12974 crossref_primary_10_1111_jbi_13929 crossref_primary_10_1111_geb_12731 crossref_primary_10_1016_j_ecoinf_2024_102787 crossref_primary_10_1016_j_ecolind_2021_107699 crossref_primary_10_1371_journal_pone_0135350 crossref_primary_10_1002_ece3_9810 crossref_primary_10_1002_ece3_2544 crossref_primary_10_1016_j_tree_2017_05_003 crossref_primary_10_1016_j_rama_2023_07_002 crossref_primary_10_1126_sciadv_abp9908 crossref_primary_10_1016_j_gecco_2021_e01596 crossref_primary_10_1111_jbi_13696 crossref_primary_10_1111_geb_12695 crossref_primary_10_1002_ecs2_1351 crossref_primary_10_1371_journal_pone_0240225 crossref_primary_10_1111_gcb_15637 crossref_primary_10_1111_jav_01248 crossref_primary_10_7717_peerj_12783 crossref_primary_10_1111_2041_210X_14061 crossref_primary_10_1111_geb_13934 crossref_primary_10_1016_j_biocon_2021_109402 crossref_primary_10_1371_journal_pone_0190557 crossref_primary_10_1002_eap_2934 crossref_primary_10_7717_peerj_14882 crossref_primary_10_1111_gcb_13090 crossref_primary_10_1016_j_gecco_2018_e00433 crossref_primary_10_1016_j_gecco_2018_e00513 crossref_primary_10_1038_s41558_019_0500_2 crossref_primary_10_1007_s00477_022_02172_8 crossref_primary_10_1002_eap_2128 crossref_primary_10_1088_1748_9326_ac4f8c crossref_primary_10_1111_ddi_13400 crossref_primary_10_1111_gcb_14458 crossref_primary_10_1111_geb_12357 crossref_primary_10_18272_aci_v7i2_256 crossref_primary_10_1111_ddi_13648 crossref_primary_10_1371_journal_pone_0173443 crossref_primary_10_1016_j_heliyon_2023_e13417 crossref_primary_10_1111_2041_210X_12731 crossref_primary_10_1016_j_jaridenv_2016_09_001 crossref_primary_10_1111_ecog_02393 crossref_primary_10_3375_22_25 crossref_primary_10_3390_f13050715 crossref_primary_10_1016_j_limno_2023_126139 crossref_primary_10_1007_s10531_019_01910_9 |
Cites_doi | 10.1111/j.1461-0248.2011.01610.x 10.1098/rspb.2008.0878 10.1086/345459 10.1016/j.ecolmodel.2011.07.011 10.1371/journal.pone.0006825 10.1111/j.1365-2656.2008.01390.x 10.1111/j.1461-0248.2009.01353.x 10.1016/j.tree.2006.09.010 10.1098/rsbl.2008.0715 10.1111/j.0014-3820.2006.tb01872.x 10.1111/j.1461-0248.2011.01736.x 10.1175/2011BAMS3132.1 10.1038/nature02121 10.1111/j.1461-0248.2004.00671.x 10.1146/annurev.ecolsys.36.102803.095431 10.1111/j.1600-0587.2011.06803.x 10.1111/j.1365-2699.2008.01963.x 10.1111/j.1365-2486.2006.01256.x 10.1111/j.1466-822X.2006.00228.x 10.1126/science.1072779 10.2307/3544109 10.1371/journal.pone.0032586 10.32614/CRAN.package.dismo 10.1016/j.baae.2006.11.001 10.1007/s10021-001-0005-4 10.1890/11-1930.1 10.1890/08-0134.1 10.1046/j.1365-2699.2001.00563.x 10.1046/j.1523-1739.2002.00465.x 10.2307/3545479 10.1126/science.1127609 10.1002/joc.1276 10.2193/2007-299 10.1046/j.1466-822X.2003.00042.x 10.1046/j.1365-2486.2003.00616.x 10.1890/11-0066.1 10.1890/08-0823.1 10.1111/j.1365-2664.2006.01149.x 10.1038/35012251 10.1016/j.ecolmodel.2008.05.015 10.1890/03-8006 10.1111/j.1600-0587.2009.05832.x 10.1111/j.1365-2699.2011.02550.x 10.1111/j.1466-822X.2005.00182.x 10.1086/285144 10.1098/rspb.2006.3700 10.1371/journal.pbio.0050157 10.1371/journal.pone.0001439 10.1111/j.1755-263X.2010.00097.x 10.1111/j.0906-7590.2005.03957.x 10.1016/j.biocon.2008.10.006 10.1111/j.1523-1739.2006.00609.x 10.1073/pnas.0901639106 10.1111/j.1466-822X.2004.00095.x 10.1111/j.1472-4642.2011.00792.x 10.1016/j.ecolmodel.2005.03.026 10.1016/j.ecolind.2005.07.005 10.1371/journal.pone.0053315 10.1111/geb.12102 10.1890/06-0539 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons Ltd. 2015 John Wiley & Sons Ltd Copyright © 2015 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons Ltd. – notice: 2015 John Wiley & Sons Ltd – notice: Copyright © 2015 John Wiley & Sons Ltd |
DBID | BSCLL 24P AAYXX CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/jbi.12479 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
Editor | Ladle, Richard |
Editor_xml | – sequence: 5 givenname: Richard surname: Ladle fullname: Ladle, Richard |
EndPage | 988 |
ExternalDocumentID | 3651289001 10_1111_jbi_12479 JBI12479 44002076 ark_67375_WNG_QZV95V5F_N |
Genre | article |
GeographicLocations | Canada United States |
GeographicLocations_xml | – name: Canada – name: United States |
GrantInformation_xml | – fundername: National Landscape Conservation Cooperative Fund funderid: F11AP00380/91200‐1‐9700 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AI. AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TN5 UB1 VH1 VOH VQP W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WRC WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ 24P AAYXX AGHNM CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c4919-250ef0a26ac2120dc0c7d6dc0309c785fcbdfa7021eebc4758b0498b141b26fb3 |
IEDL.DBID | 24P |
ISSN | 0305-0270 |
IngestDate | Fri Jul 11 18:23:39 EDT 2025 Sun Jul 13 05:16:52 EDT 2025 Sun Jul 06 05:08:25 EDT 2025 Thu Apr 24 23:06:45 EDT 2025 Wed Jan 22 16:22:58 EST 2025 Thu Jul 03 22:32:39 EDT 2025 Wed Oct 30 09:55:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4919-250ef0a26ac2120dc0c7d6dc0309c785fcbdfa7021eebc4758b0498b141b26fb3 |
Notes | Appendix S1 Supplementary methods, figures and tables.Appendix S2 Summary of model performance for winter and summer species. istex:94F5037F32625304E78BA6167F9EBD1299FF7451 ark:/67375/WNG-QZV95V5F-N ArticleID:JBI12479 National Landscape Conservation Cooperative Fund - No. F11AP00380/91200-1-9700 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12479 |
PQID | 1672254008 |
PQPubID | 1086398 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1710226497 proquest_journals_1672254008 crossref_primary_10_1111_jbi_12479 crossref_citationtrail_10_1111_jbi_12479 wiley_primary_10_1111_jbi_12479_JBI12479 jstor_primary_44002076 istex_primary_ark_67375_WNG_QZV95V5F_N |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationTitleAlternate | J. Biogeogr |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
References | R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/. Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112. Sauer, J.R., Hines, J.E., Fallon, J.E., Pardieck, K.L., Ziolkowski, D.J., Jr & Link, W.A. (2011) The North American Breeding Bird Survey, results and analysis 1966-2009. Version 3.23. 2011. US Geological Survey Patuxent Wildlife Research Center, Laurel, MD. McKenney, D.W., Hutchinson, M.F., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., Milewska, E., Hopkinson, R.F., Price, D. & Owen, T. (2011) Customized spatial climate models for North America. Bulletin of the American Meteorological Society, 92, 1611-1622. Barbet-Massin, M., Walther, B.A., Thuiller, W., Rahbek, C. & Jiguet, F. (2009) Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biology Letters, 5, 248-251. Peterson, A.T. (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Global Change Biology, 9, 647-655. Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, R.G. (2003) Energy, water, and broad-scale geographic patterns of richness. Ecology, 84, 3105-3117. Whittaker, R.J., Willis, K.J. & Field, R. (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470. Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551. Dormann, C.F. (2007) Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8, 387-397. Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281. Matthews, S.N., Iverson, L.R., Prasad, A.M. & Peters, M.P. (2011) Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change. Ecography, 34, 933-945. Root, T.L. & Schneider, S.H. (2002) Climate change: overview and implications for wildlife. Wildlife responses to climate change: North American case studies (ed. by S.H. Schneider and T.L. Root), pp. 1-56. Island Press, Washington, DC. Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49. Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433-1444. Latham, R.E. & Ricklefs, R.E. (1993) Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos, 67, 325-333. Kearney, M.R., Wintle, B.A. & Porter, W.P. (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 3, 203-213. Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.-F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'Brien, E. & Turner, J.R.G. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134. IPCC (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, S.E. (2004) Extinction risk from climate change. Nature, 427, 145-148. Mateo, R.G., Felicísimo, Á.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586. Evans, K.L., James, N.A. & Gaston, K.J. (2006) Abundance, species richness and energy availability in the North American avifauna. Global Ecology and Biogeography, 15, 372-385. Hurlbert, A.H. & Haskell, J.P. (2003) The effect of energy and seasonality on avian species richness and community composition. The American Naturalist, 161, 83-97. Araújo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539. Hijmans, R.J. & van Etten, J. (2011) raster: geographic analysis and modeling with raster data. R package version 1.9-46. Available at: http://cran.r-project.org/package=raster. Currie, D.J. (2001) Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems, 4, 216-225. Hannah, L., Midgley, G.F., Lovejoy, T., Bond, W.J., Bush, M., Lovett, J.C., Scott, D. & Woodward, F.I. (2005) Conservation of biodiversity in a changing climate. Conservation Biology, 16, 264-268. Kujala, H., Moilanen, A., Araújo, M.B. & Cabeza, M. (2013) Conservation planning with uncertain climate change projections. PLoS ONE, 8, e53315. Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences USA, 106, 19729-19736. MacArthur, R.H. (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York, USA. Hitch, A.T. & Leberg, P.L. (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology, 21, 534-539. Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 1122-1131. Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58. Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174. Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47. Huntley, B., Collingham, Y.C., Willis, S.G. & Green, R.E. (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE, 3, e1439. Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. Buckley, L.B., Waaser, S.A., MacLean, H.J. & Fox, R. (2011) Does including physiology improve species distribution model predictions of responses to recent climate change? Ecology, 92, 2214-2221. Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences, 275, 2743-2748. Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. (2011) Climate change threatens European conservation areas. Ecology Letters, 14, 484-492. Morin, X.T. & Thuiller, W. (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90, 1301-1313. Link, W.A., Sauer, J.R. & Niven, D.K. (2008) Combining Breeding Bird Survey and Christmas Bird Count data to evaluate seasonal components of population change in northern bobwhite. Journal of Wildlife Management, 72, 44-51. Fleishman, E., Noss, R.F. & Noon, B.R. (2006) Utility and limitations of species richness metrics for conservation planning. Ecological Indicators, 6, 543-553. Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D. & Rodrigues, A.S.L. (2006) Global biodiversity conservation priorities. Science, 313, 58-61. Hawkins, B.A. (2004) Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America. Global Ecology and Biogeography, 13, 321-325. Jetz, W., Wilcove, D.S. & Dobson, A.P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, e157. Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393. Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393-404. Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R. & Bartlein, P.J. (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology, 90, 588-597. Menéndez, R., Megias, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470. Nenzén, H.K. & Araújo, M.B. 1993; 67 2004; 7 2006; 37 1972 2008; 77 2008; 3 2011; 14 2012; 15 2011; 17 2008; 72 2013; 8 2005; 28 2014; 23 2005; 25 2003; 12 2009; 12 2009; 90 2000; 405 2003; 9 2007; 8 2003; 161 1986 2007; 5 2010; 3 2007; 21 2007; 22 2008; 275 2003; 84 2005; 36 2006; 12 2011 2002; 297 2010 2006; 15 2006; 273 2007 2006; 6 2011; 34 2001; 28 2002 2006; 313 2011; 38 2004; 427 1991; 137 2012; 93 2009; 36 2009; 32 2006; 43 2006; 190 2001; 4 2011; 92 2004; 13 2007; 274 2008; 217 1983; 41 2009; 5 2009; 142 2009; 4 2005; 16 2012; 7 2011; 222 2005; 14 2009; 106 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Ramirez‐Villegas J. (e_1_2_7_61_1) 2010 IPCC (e_1_2_7_37_1) 2007 MacArthur R.H. (e_1_2_7_46_1) 1972 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_39_1 R Development Core Team (e_1_2_7_59_1) 2011 Hijmans R.J. (e_1_2_7_30_1) 2011 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 Root T.L. (e_1_2_7_62_1) 2002 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Nix H.A. (e_1_2_7_54_1) 1986 e_1_2_7_51_1 e_1_2_7_53_1 Sauer J.R. (e_1_2_7_63_1) 2011 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – reference: Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. – reference: Huntley, B., Collingham, Y.C., Willis, S.G. & Green, R.E. (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE, 3, e1439. – reference: Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47. – reference: Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, R.G. (2003) Energy, water, and broad-scale geographic patterns of richness. Ecology, 84, 3105-3117. – reference: Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., Alexander, J.D., Wiens, J.A. & Root, T.L. (2009) Re-shuffling of species with climate disruption: a no-analog future for California birds? PLoS ONE, 4, e6825. – reference: Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49. – reference: Link, W.A., Sauer, J.R. & Niven, D.K. (2008) Combining Breeding Bird Survey and Christmas Bird Count data to evaluate seasonal components of population change in northern bobwhite. Journal of Wildlife Management, 72, 44-51. – reference: Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371. – reference: Menéndez, R., Megias, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470. – reference: Latham, R.E. & Ricklefs, R.E. (1993) Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos, 67, 325-333. – reference: Nenzén, H.K. & Araújo, M.B. (2011) Choice of threshold alters projections of species range shifts under climate change. Ecological Modelling, 222, 3346-3354. – reference: Currie, D.J. (2001) Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems, 4, 216-225. – reference: Matthews, S.N., Iverson, L.R., Prasad, A.M. & Peters, M.P. (2011) Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change. Ecography, 34, 933-945. – reference: Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, S.E. (2004) Extinction risk from climate change. Nature, 427, 145-148. – reference: Ramirez-Villegas, J. & Jarvis, A. (2010) Downscaling global circulation model outputs: the delta method decision and policy analysis working paper No. 1. International Center for Tropical Agriculture, Cali, Colombia. – reference: Field, R., Hawkins, B.A., Cornell, H.V., Currie, D.J., Diniz-Filho, J.A.F., Guégan, J.-F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M. & Turner, J.R.G. (2009) Spatial species-richness gradients across scales: a meta-analysis. Journal of Biogeography, 36, 132-147. – reference: Hurlbert, A.H. & Haskell, J.P. (2003) The effect of energy and seasonality on avian species richness and community composition. The American Naturalist, 161, 83-97. – reference: Barbet-Massin, M., Walther, B.A., Thuiller, W., Rahbek, C. & Jiguet, F. (2009) Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biology Letters, 5, 248-251. – reference: Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281. – reference: Wright, D.H. (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496-506. – reference: McKenney, D.W., Hutchinson, M.F., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., Milewska, E., Hopkinson, R.F., Price, D. & Owen, T. (2011) Customized spatial climate models for North America. Bulletin of the American Meteorological Society, 92, 1611-1622. – reference: Araújo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539. – reference: Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R. & Bartlein, P.J. (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology, 90, 588-597. – reference: Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 22-33. – reference: Hawkins, B.A. (2004) Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America. Global Ecology and Biogeography, 13, 321-325. – reference: Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174. – reference: Dormann, C.F. (2007) Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8, 387-397. – reference: MacArthur, R.H. (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York, USA. – reference: Wiens, J.J. & Graham, C.H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519-539. – reference: Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669. – reference: Hijmans, R.J. & van Etten, J. (2011) raster: geographic analysis and modeling with raster data. R package version 1.9-46. Available at: http://cran.r-project.org/package=raster. – reference: Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58. – reference: Jetz, W., Wilcove, D.S. & Dobson, A.P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, e157. – reference: Hitch, A.T. & Leberg, P.L. (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology, 21, 534-539. – reference: R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/. – reference: Hannah, L., Midgley, G.F., Lovejoy, T., Bond, W.J., Bush, M., Lovett, J.C., Scott, D. & Woodward, F.I. (2005) Conservation of biodiversity in a changing climate. Conservation Biology, 16, 264-268. – reference: Evans, K.L., James, N.A. & Gaston, K.J. (2006) Abundance, species richness and energy availability in the North American avifauna. Global Ecology and Biogeography, 15, 372-385. – reference: Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. – reference: Root, T.L. & Schneider, S.H. (2002) Climate change: overview and implications for wildlife. Wildlife responses to climate change: North American case studies (ed. by S.H. Schneider and T.L. Root), pp. 1-56. Island Press, Washington, DC. – reference: Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D. & Rodrigues, A.S.L. (2006) Global biodiversity conservation priorities. Science, 313, 58-61. – reference: Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112. – reference: Margules, C.R. & Pressey, L.P. (2000) Systematic conservation planning. Nature, 405, 243-253. – reference: Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377. – reference: Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.-F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'Brien, E. & Turner, J.R.G. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134. – reference: Fleishman, E., Noss, R.F. & Noon, B.R. (2006) Utility and limitations of species richness metrics for conservation planning. Ecological Indicators, 6, 543-553. – reference: Morin, X.T. & Thuiller, W. (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90, 1301-1313. – reference: Buckley, L.B., Waaser, S.A., MacLean, H.J. & Fox, R. (2011) Does including physiology improve species distribution model predictions of responses to recent climate change? Ecology, 92, 2214-2221. – reference: Peterson, A.T. (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Global Change Biology, 9, 647-655. – reference: Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences, 275, 2743-2748. – reference: Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393-404. – reference: Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433-1444. – reference: Whittaker, R.J., Willis, K.J. & Field, R. (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470. – reference: IPCC (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. – reference: Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551. – reference: Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. (2011) Climate change threatens European conservation areas. Ecology Letters, 14, 484-492. – reference: Gotelli, N.J., Anderson, M.J., Arita, H.T. et al. (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 12, 873-886. – reference: Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences USA, 106, 19729-19736. – reference: Heller, N.E. & Zavaleta, E.S. (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological Conservation, 142, 14-32. – reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. – reference: Araújo, M.B., Whittaker, R.J., Ladle, R.J. & Erhard, M. (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 14, 529-538. – reference: Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 1122-1131. – reference: Kujala, H., Moilanen, A., Araújo, M.B. & Cabeza, M. (2013) Conservation planning with uncertain climate change projections. PLoS ONE, 8, e53315. – reference: Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393. – reference: Mateo, R.G., Felicísimo, Á.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586. – reference: Sauer, J.R., Hines, J.E., Fallon, J.E., Pardieck, K.L., Ziolkowski, D.J., Jr & Link, W.A. (2011) The North American Breeding Bird Survey, results and analysis 1966-2009. Version 3.23. 2011. US Geological Survey Patuxent Wildlife Research Center, Laurel, MD. – reference: Kearney, M.R., Wintle, B.A. & Porter, W.P. (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 3, 203-213. – year: 2011 – volume: 6 start-page: 543 year: 2006 end-page: 553 article-title: Utility and limitations of species richness metrics for conservation planning publication-title: Ecological Indicators – volume: 297 start-page: 1548 year: 2002 end-page: 1551 article-title: Geographic range size and determinants of avian species richness publication-title: Science – volume: 217 start-page: 48 year: 2008 end-page: 58 article-title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa publication-title: Ecological Modelling – volume: 21 start-page: 534 year: 2007 end-page: 539 article-title: Breeding distributions of North American bird species moving north as a result of climate change publication-title: Conservation Biology – volume: 405 start-page: 243 year: 2000 end-page: 253 article-title: Systematic conservation planning publication-title: Nature – volume: 28 start-page: 453 year: 2001 end-page: 470 article-title: Scale and species richness: towards a general, hierarchical theory of species diversity publication-title: Journal of Biogeography – volume: 8 start-page: 387 year: 2007 end-page: 397 article-title: Promising the future? Global change projections of species distributions publication-title: Basic and Applied Ecology – volume: 93 start-page: 1527 year: 2012 end-page: 1539 article-title: Uses and misuses of bioclimatic envelope modeling publication-title: Ecology – start-page: 4 year: 1986 end-page: 15 – volume: 92 start-page: 1611 year: 2011 end-page: 1622 article-title: Customized spatial climate models for North America publication-title: Bulletin of the American Meteorological Society – volume: 38 start-page: 1433 year: 2011 end-page: 1444 article-title: SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages publication-title: Journal of Biogeography – volume: 34 start-page: 933 year: 2011 end-page: 945 article-title: Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change publication-title: Ecography – volume: 4 start-page: 216 year: 2001 end-page: 225 article-title: Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States publication-title: Ecosystems – volume: 275 start-page: 2743 year: 2008 end-page: 2748 article-title: Birds are tracking climate warming, but not fast enough publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 43 start-page: 393 year: 2006 end-page: 404 article-title: Spatial modelling of biodiversity at the community level publication-title: Journal of Applied Ecology – volume: 36 start-page: 519 year: 2005 end-page: 539 article-title: Niche conservatism: integrating evolution, ecology, and conservation biology publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 77 start-page: 802 year: 2008 end-page: 813 article-title: A working guide to boosted regression trees publication-title: Journal of Animal Ecology – volume: 3 start-page: e1439 year: 2008 article-title: Potential impacts of climatic change on European breeding birds publication-title: PLoS ONE – volume: 3 start-page: 203 year: 2010 end-page: 213 article-title: Correlative and mechanistic models of species distribution provide congruent forecasts under climate change publication-title: Conservation Letters – volume: 12 start-page: 2272 year: 2006 end-page: 2281 article-title: The ability of climate envelope models to predict the effect of climate change on species distributions publication-title: Global Change Biology – volume: 13 start-page: 321 year: 2004 end-page: 325 article-title: Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America publication-title: Global Ecology and Biogeography – volume: 84 start-page: 3105 year: 2003 end-page: 3117 article-title: Energy, water, and broad‐scale geographic patterns of richness publication-title: Ecology – volume: 36 start-page: 132 year: 2009 end-page: 147 article-title: Spatial species‐richness gradients across scales: a meta‐analysis publication-title: Journal of Biogeography – volume: 12 start-page: 873 year: 2009 end-page: 886 article-title: Patterns and causes of species richness: a general simulation model for macroecology publication-title: Ecology Letters – year: 1972 – volume: 8 start-page: e53315 year: 2013 article-title: Conservation planning with uncertain climate change projections publication-title: PLoS ONE – volume: 14 start-page: 484 year: 2011 end-page: 492 article-title: Climate change threatens European conservation areas publication-title: Ecology Letters – volume: 106 start-page: 19729 year: 2009 end-page: 19736 article-title: Niches, models, and climate change: assessing the assumptions and uncertainties publication-title: Proceedings of the National Academy of Sciences USA – volume: 273 start-page: 1465 year: 2006 end-page: 1470 article-title: Species richness changes lag behind climate change publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 67 start-page: 325 year: 1993 end-page: 333 article-title: Global patterns of tree species richness in moist forests: energy‐diversity theory does not account for variation in species richness publication-title: Oikos – volume: 17 start-page: 1122 year: 2011 end-page: 1131 article-title: Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches publication-title: Diversity and Distributions – volume: 32 start-page: 22 year: 2009 end-page: 33 article-title: Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods publication-title: Ecography – volume: 190 start-page: 231 year: 2006 end-page: 259 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling – volume: 161 start-page: 83 year: 2003 end-page: 97 article-title: The effect of energy and seasonality on avian species richness and community composition publication-title: The American Naturalist – volume: 7 start-page: e32586 year: 2012 article-title: Do stacked species distribution models reflect altitudinal diversity patterns? publication-title: PLoS ONE – volume: 15 start-page: 365 year: 2012 end-page: 377 article-title: Impacts of climate change on the future of biodiversity publication-title: Ecology Letters – volume: 137 start-page: 27 year: 1991 end-page: 49 article-title: Energy and large‐scale patterns of animal‐ and plant‐species richness publication-title: The American Naturalist – start-page: 1 year: 2002 end-page: 56 – year: 2007 – volume: 72 start-page: 44 year: 2008 end-page: 51 article-title: Combining Breeding Bird Survey and Christmas Bird Count data to evaluate seasonal components of population change in northern bobwhite publication-title: Journal of Wildlife Management – volume: 90 start-page: 1301 year: 2009 end-page: 1313 article-title: Comparing niche‐ and process‐based models to reduce prediction uncertainty in species range shifts under climate change publication-title: Ecology – volume: 142 start-page: 14 year: 2009 end-page: 32 article-title: Biodiversity management in the face of climate change: a review of 22 years of recommendations publication-title: Biological Conservation – volume: 92 start-page: 2214 year: 2011 end-page: 2221 article-title: Does including physiology improve species distribution model predictions of responses to recent climate change? publication-title: Ecology – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – year: 2010 – volume: 23 start-page: 99 year: 2014 end-page: 112 article-title: Stacking species distribution models and adjusting bias by linking them to macroecological models publication-title: Global Ecology and Biogeography – volume: 274 start-page: 165 year: 2007 end-page: 174 article-title: Predicting continental‐scale patterns of bird species richness with spatially explicit models publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 7 start-page: 1121 year: 2004 end-page: 1134 article-title: Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness publication-title: Ecology Letters – volume: 37 start-page: 637 year: 2006 end-page: 669 article-title: Ecological and evolutionary responses to recent climate change publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 4 start-page: e6825 year: 2009 article-title: Re‐shuffling of species with climate disruption: a no‐analog future for California birds? publication-title: PLoS ONE – volume: 5 start-page: 248 year: 2009 end-page: 251 article-title: Potential impacts of climate change on the winter distribution of Afro‐Palaearctic migrant passerines publication-title: Biology Letters – volume: 15 start-page: 372 year: 2006 end-page: 385 article-title: Abundance, species richness and energy availability in the North American avifauna publication-title: Global Ecology and Biogeography – volume: 22 start-page: 42 year: 2007 end-page: 47 article-title: Ensemble forecasting of species distributions publication-title: Trends in Ecology and Evolution – volume: 9 start-page: 647 year: 2003 end-page: 655 article-title: Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences publication-title: Global Change Biology – volume: 5 start-page: e157 year: 2007 article-title: Projected impacts of climate and land‐use change on the global diversity of birds publication-title: PLoS Biology – volume: 28 start-page: 385 year: 2005 end-page: 393 article-title: Selecting thresholds of occurrence in the prediction of species distributions publication-title: Ecography – volume: 222 start-page: 3346 year: 2011 end-page: 3354 article-title: Choice of threshold alters projections of species range shifts under climate change publication-title: Ecological Modelling – volume: 12 start-page: 361 year: 2003 end-page: 371 article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? publication-title: Global Ecology and Biogeography – volume: 14 start-page: 529 year: 2005 end-page: 538 article-title: Reducing uncertainty in projections of extinction risk from climate change publication-title: Global Ecology and Biogeography – volume: 313 start-page: 58 year: 2006 end-page: 61 article-title: Global biodiversity conservation priorities publication-title: Science – volume: 427 start-page: 145 year: 2004 end-page: 148 article-title: Extinction risk from climate change publication-title: Nature – volume: 16 start-page: 264 year: 2005 end-page: 268 article-title: Conservation of biodiversity in a changing climate publication-title: Conservation Biology – volume: 90 start-page: 588 year: 2009 end-page: 597 article-title: Projected climate‐induced faunal change in the Western Hemisphere publication-title: Ecology – volume: 41 start-page: 496 year: 1983 end-page: 506 article-title: Species‐energy theory: an extension of species‐area theory publication-title: Oikos – ident: e_1_2_7_6_1 doi: 10.1111/j.1461-0248.2011.01610.x – ident: e_1_2_7_15_1 doi: 10.1098/rspb.2008.0878 – ident: e_1_2_7_36_1 doi: 10.1086/345459 – ident: e_1_2_7_53_1 doi: 10.1016/j.ecolmodel.2011.07.011 – ident: e_1_2_7_64_1 doi: 10.1371/journal.pone.0006825 – ident: e_1_2_7_18_1 doi: 10.1111/j.1365-2656.2008.01390.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1461-0248.2009.01353.x – ident: e_1_2_7_3_1 doi: 10.1016/j.tree.2006.09.010 – ident: e_1_2_7_7_1 doi: 10.1098/rsbl.2008.0715 – volume-title: raster: geographic analysis and modeling with raster data year: 2011 ident: e_1_2_7_30_1 – volume-title: R: a language and environment for statistical computing year: 2011 ident: e_1_2_7_59_1 – ident: e_1_2_7_55_1 doi: 10.1111/j.0014-3820.2006.tb01872.x – ident: e_1_2_7_8_1 doi: 10.1111/j.1461-0248.2011.01736.x – ident: e_1_2_7_50_1 doi: 10.1175/2011BAMS3132.1 – ident: e_1_2_7_65_1 doi: 10.1038/nature02121 – ident: e_1_2_7_14_1 doi: 10.1111/j.1461-0248.2004.00671.x – ident: e_1_2_7_67_1 doi: 10.1146/annurev.ecolsys.36.102803.095431 – ident: e_1_2_7_49_1 doi: 10.1111/j.1600-0587.2011.06803.x – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-2699.2008.01963.x – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2486.2006.01256.x – volume-title: Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_7_37_1 – ident: e_1_2_7_19_1 doi: 10.1111/j.1466-822X.2006.00228.x – ident: e_1_2_7_38_1 doi: 10.1126/science.1072779 – ident: e_1_2_7_69_1 doi: 10.2307/3544109 – ident: e_1_2_7_48_1 doi: 10.1371/journal.pone.0032586 – ident: e_1_2_7_33_1 doi: 10.32614/CRAN.package.dismo – ident: e_1_2_7_16_1 doi: 10.1016/j.baae.2006.11.001 – ident: e_1_2_7_13_1 doi: 10.1007/s10021-001-0005-4 – ident: e_1_2_7_4_1 doi: 10.1890/11-1930.1 – ident: e_1_2_7_52_1 doi: 10.1890/08-0134.1 – ident: e_1_2_7_66_1 doi: 10.1046/j.1365-2699.2001.00563.x – ident: e_1_2_7_26_1 doi: 10.1046/j.1523-1739.2002.00465.x – ident: e_1_2_7_42_1 doi: 10.2307/3545479 – ident: e_1_2_7_9_1 doi: 10.1126/science.1127609 – ident: e_1_2_7_32_1 doi: 10.1002/joc.1276 – ident: e_1_2_7_44_1 doi: 10.2193/2007-299 – ident: e_1_2_7_56_1 doi: 10.1046/j.1466-822X.2003.00042.x – ident: e_1_2_7_57_1 doi: 10.1046/j.1365-2486.2003.00616.x – ident: e_1_2_7_10_1 doi: 10.1890/11-0066.1 – ident: e_1_2_7_43_1 doi: 10.1890/08-0823.1 – volume-title: Downscaling global circulation model outputs: the delta method decision and policy analysis working paper No. 1 year: 2010 ident: e_1_2_7_61_1 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-2664.2006.01149.x – ident: e_1_2_7_47_1 doi: 10.1038/35012251 – start-page: 4 volume-title: Atlas of elapid snakes of Australia year: 1986 ident: e_1_2_7_54_1 – ident: e_1_2_7_23_1 doi: 10.1016/j.ecolmodel.2008.05.015 – ident: e_1_2_7_28_1 doi: 10.1890/03-8006 – ident: e_1_2_7_2_1 doi: 10.1111/j.1600-0587.2009.05832.x – ident: e_1_2_7_25_1 doi: 10.1111/j.1365-2699.2011.02550.x – ident: e_1_2_7_5_1 doi: 10.1111/j.1466-822X.2005.00182.x – ident: e_1_2_7_12_1 doi: 10.1086/285144 – ident: e_1_2_7_60_1 doi: 10.1098/rspb.2006.3700 – ident: e_1_2_7_39_1 doi: 10.1371/journal.pbio.0050157 – ident: e_1_2_7_35_1 doi: 10.1371/journal.pone.0001439 – ident: e_1_2_7_40_1 doi: 10.1111/j.1755-263X.2010.00097.x – ident: e_1_2_7_45_1 doi: 10.1111/j.0906-7590.2005.03957.x – volume-title: The North American Breeding Bird Survey, results and analysis 1966–2009 year: 2011 ident: e_1_2_7_63_1 – ident: e_1_2_7_29_1 doi: 10.1016/j.biocon.2008.10.006 – ident: e_1_2_7_34_1 doi: 10.1111/j.1523-1739.2006.00609.x – ident: e_1_2_7_68_1 doi: 10.1073/pnas.0901639106 – ident: e_1_2_7_27_1 doi: 10.1111/j.1466-822X.2004.00095.x – ident: e_1_2_7_17_1 doi: 10.1111/j.1472-4642.2011.00792.x – ident: e_1_2_7_58_1 doi: 10.1016/j.ecolmodel.2005.03.026 – ident: e_1_2_7_22_1 doi: 10.1016/j.ecolind.2005.07.005 – volume-title: Geographical ecology: patterns in the distribution of species year: 1972 ident: e_1_2_7_46_1 – ident: e_1_2_7_41_1 doi: 10.1371/journal.pone.0053315 – start-page: 1 volume-title: Climate change: overview and implications for wildlife. Wildlife responses to climate change: North American case studies year: 2002 ident: e_1_2_7_62_1 – ident: e_1_2_7_11_1 doi: 10.1111/geb.12102 – ident: e_1_2_7_51_1 doi: 10.1890/06-0539 |
SSID | ssj0009534 |
Score | 2.4054036 |
Snippet | Aim: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution... Aim Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models... Aim Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models... AIM: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 976 |
SubjectTerms | Anthropogenic impacts: implications for conservation planning Biodiversity biogeography Birds breeding Canada climate Climate change conservation geographical variation macroecology North America planning prediction seasonality species distribution models species diversity Species richness Summer surveys United States Winter |
Title | Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change |
URI | https://api.istex.fr/ark:/67375/WNG-QZV95V5F-N/fulltext.pdf https://www.jstor.org/stable/44002076 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12479 https://www.proquest.com/docview/1672254008 https://www.proquest.com/docview/1710226497 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9RAFJ4gxOiLAZW4CmQ0xPhS0-nOdDrxCZQFSdioESS-TOZW2YhdswtGfgN_mnOm02ZJNOFld5KebqZ7bt-Zngsh26VlPqiCZaaq8wyEgmdKOeyMWClWBfCxAQuFj8blwTE_PBWnS-RdVwvT9ofoD9xQM6K9RgU3dr6o5HbyFpyTVPfICpbW4tyGgn9a6Lg7bHtHYXZaIfPUViim8XS33nJGK_i__u3yEm8hzkXcGh3PaJU8SoiR7rQsXiNLoXlM7rczJK9gtefS6kEaaH529YRcA4gE_fQUKykhGKYeG-Sm2VY0jr-ZU9N4-svA1oLrTGB3KRXoUYiWf8wuwTHRdGSDUkqnNTV_QK76XwdjeoY2k2JJ2oy68wkAYbg7li48Jcejva_vD7I0dyFzXDGVASoKdW6K0jhwbLl3uZO-hK9hrpysRO2sr40EdBCCdRwiDgtxRmUZZ7YoaztcJ8vNtAnPCPWSGWz5LixEkmVllPcCAAYXw9wzq8oBedMxQLvUlBxnY5zrPjixEx15NSCvetLfbSeOfxG9jlzsKczsJ6auSaG_jff15-8nSpyIkR4PyHpkc0_IOSJnCTva6PiukzrPNSsl2D2gqAbkZX8ZFBHfrpgmTC-BBrEawEsl4aGivPx_m_pw92NcPL876QvyEMCaaJMtN8jyBXB_EwDRhd2Kgg-fH74UN-agBr4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qi9QvvhdPq64i4pccSS7JZsEvvvS81vZAaWsRZNm32KM1J9c7sf4F_7Qzm024ioL46RYyObK5eXlmb-YZgCeFTqwTaRKpsoojVIosEsIQM2IpktJhjHXUKLw3LkYH2c5RfrQCz9temIYfojtwI8vw_poMnA6kl61cT_oYnbi4BGsZAg1KvV6_T5codwcNeRSVp6U8DrxCvo6nvfVCNFqjF_u9LUy8ADmXgauPPMNr8Kl95qbg5KS_mOu--fEbneP_buo6XA2QlL1odOgGrLj6JlxuhlSe42rLhNV6mJh-fH4LfiJKRQdgGbVqYrbNLDHwhuFZzM_XOWOqtuyLwq070_rY9lLoAGSYjn-eLTDysXAmRGbAphVT31Bxu29Hb31MTplRz9uMmdMJIm282_dG3IaD4db-q1EUBjtEJhOJiBB2uSpWaaEMRs7YmthwW-DHIBaGl3lltK0UR_jhnDYZpjQaE5lSJ1mi06LSgw1Yrae1uwPM8kQRp3yuMVUtSiWszRHBZPkgtokWRQ-etT-wNIH1nIZvnMou-9ET6d94Dx53ol8bqo8_CT31WtJJqNkJ1cbxXH4Yv5HvPh6K_DAfynEPNrwadYJZRtCc4xNttnolg784k0nB0bGiRNmDR91ltHT6-0bVbrpAGQKDiF8Fx015Jfr7Y8qdl9t-cfffRR_C-mh_b1fubo_f3oMriAzzprJzE1bnqAn3EX3N9QNvZL8AR24p-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7UFi8v4q24WnUUEV8imewkk8EnL13bqksFW4svw9xiF2u2bFuxv8E_7TmTSdiCgk8ZyEmY5Ny-k5wLwNPKch9UwTNTN3mGQiEypRx1RqwVrwP62ECFwh-n1dae2DkoD1bgZV8L0_WHGD64kWZEe00KfuybZSW3sxfonKS6BGv0s4-0shC7Sx13x13vKMpOK2Se2grFNJ7-0gvOaI3e668-L_EC4lzGrdHxTG7A9YQY2auOxTdhJbS34HI3Q_IcV5sura6mgeaH57fhN4JI1E_PqJISg2HmqUFumm3F4vibE2Zaz34Y3FpwvQnsT6UCPYbR8rfFGTomlj7ZkJSyecPMT5Sr4e5oTA_JZjIqSVswdzRDIIxXx9KFO7A32fz8ZitLcxcyJxRXGaKi0OSmqIxDx5Z7lzvpKzyMc-VkXTbO-sZIRAchWCcw4rAYZ9SWC26LqrHjdVht5224C8xLbqjle2kxkqxqo7wvEWCIcpx7blU1guc9A7RLTclpNsaRHoITO9ORVyN4MpAed504_kb0LHJxoDCL75S6Jkv9ZfpOf_q6r8r9cqKnI1iPbB4IhSDkLHFHGz3fdVLnE80riXYPKeoRPB5OoyLS3xXThvkZ0hBWQ3ipJD5UlJd_b1PvvN6Oi3v_T_oIruy-negP29P39-Ea4rayy7vcgNVTFIQHiI1O7cOoA38ARuMIcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+species+distribution+models+and+macroecological+models+provide+congruent+projections+of+avian+species+richness+under+climate+change&rft.jtitle=Journal+of+biogeography&rft.au=Distler%2C+Trisha&rft.au=Schuetz%2C+Justin+G&rft.au=Vel%C3%A1squez%E2%80%90Tibat%C3%A1%2C+Jorge&rft.au=Langham%2C+Gary+M&rft.date=2015-05-01&rft.issn=0305-0270&rft.volume=42&rft.issue=5+p.976-988&rft.spage=976&rft.epage=988&rft_id=info:doi/10.1111%2Fjbi.12479&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |