Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change

Aim: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models and macroecological models. We then describe the degree to which projections of future species richness differ, employing both modelling ap...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 42; no. 5; pp. 976 - 988
Main Authors Distler, Trisha, Schuetz, Justin G., Velásquez-Tibatá, Jorge, Langham, Gary M.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2015
John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0305-0270
1365-2699
DOI10.1111/jbi.12479

Cover

Abstract Aim: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models and macroecological models. We then describe the degree to which projections of future species richness differ, employing both modelling approaches across multiple emissions scenarios. Location: USA and Canada. Methods: We use Audubon Christmas Bird Count and North American Breeding Bird Survey data to estimate current and future species richness of birds using two distinct approaches. In the first, we model richness by stacking predictions from individual species distribution models. In the second, we model richness directly, ignoring the contributions of specific taxa to richness estimates. Results: The two modelling approaches show similar accuracies when validated with historical observations, particularly winter observations, and result in similar patterns of richness when projected onto current and future climate spaces. Patterns of projected change in species richness differed markedly between winter and summer seasons regardless of modelling approach. Our models suggest that bird species richness in winter will increase or remain stable across much of North America. In contrast, species richness in summer is projected to decrease over much of North America, except part of northern Canada, suggesting that climate may constrain many breeding bird species and communities in the future. Main conclusions: Stacked species distribution models and macroecological models produce similar estimates of current and future species richness for each of two seasons despite being built on different concepts of community assembly. Our results suggest that, although the mechanisms that shape geographical variation in biodiversity remain uncertain, these limitations do not impede our ability to predict patterns of species richness at broad scales. Congruence of species richness projections across modelling approaches is encouraging for conservation planning efforts that focus on retaining biodiversity into the future.
AbstractList AIM: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models and macroecological models. We then describe the degree to which projections of future species richness differ, employing both modelling approaches across multiple emissions scenarios. LOCATION: USA and Canada. METHODS: We use Audubon Christmas Bird Count and North American Breeding Bird Survey data to estimate current and future species richness of birds using two distinct approaches. In the first, we model richness by stacking predictions from individual species distribution models. In the second, we model richness directly, ignoring the contributions of specific taxa to richness estimates. RESULTS: The two modelling approaches show similar accuracies when validated with historical observations, particularly winter observations, and result in similar patterns of richness when projected onto current and future climate spaces. Patterns of projected change in species richness differed markedly between winter and summer seasons regardless of modelling approach. Our models suggest that bird species richness in winter will increase or remain stable across much of North America. In contrast, species richness in summer is projected to decrease over much of North America, except part of northern Canada, suggesting that climate may constrain many breeding bird species and communities in the future. MAIN CONCLUSIONS: Stacked species distribution models and macroecological models produce similar estimates of current and future species richness for each of two seasons despite being built on different concepts of community assembly. Our results suggest that, although the mechanisms that shape geographical variation in biodiversity remain uncertain, these limitations do not impede our ability to predict patterns of species richness at broad scales. Congruence of species richness projections across modelling approaches is encouraging for conservation planning efforts that focus on retaining biodiversity into the future.
Aim Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models and macroecological models. We then describe the degree to which projections of future species richness differ, employing both modelling approaches across multiple emissions scenarios. Location USA and Canada. Methods We use Audubon Christmas Bird Count and North American Breeding Bird Survey data to estimate current and future species richness of birds using two distinct approaches. In the first, we model richness by stacking predictions from individual species distribution models. In the second, we model richness directly, ignoring the contributions of specific taxa to richness estimates. Results The two modelling approaches show similar accuracies when validated with historical observations, particularly winter observations, and result in similar patterns of richness when projected onto current and future climate spaces. Patterns of projected change in species richness differed markedly between winter and summer seasons regardless of modelling approach. Our models suggest that bird species richness in winter will increase or remain stable across much of North America. In contrast, species richness in summer is projected to decrease over much of North America, except part of northern Canada, suggesting that climate may constrain many breeding bird species and communities in the future. Main conclusions Stacked species distribution models and macroecological models produce similar estimates of current and future species richness for each of two seasons despite being built on different concepts of community assembly. Our results suggest that, although the mechanisms that shape geographical variation in biodiversity remain uncertain, these limitations do not impede our ability to predict patterns of species richness at broad scales. Congruence of species richness projections across modelling approaches is encouraging for conservation planning efforts that focus on retaining biodiversity into the future.
Author Schuetz, Justin G.
Langham, Gary M.
Distler, Trisha
Velásquez-Tibatá, Jorge
Author_xml – sequence: 1
  givenname: Trisha
  surname: Distler
  fullname: Distler, Trisha
  email: Correspondence: Trisha Distler, National Audubon Society, 220 Montgomery Street, San Francisco, CA 94104, USA., climatescience@audubon.org
  organization: National Audubon Society, CA, 94104, San Francisco, USA
– sequence: 2
  givenname: Justin G.
  surname: Schuetz
  fullname: Schuetz, Justin G.
  organization: National Audubon Society, CA, 94104, San Francisco, USA
– sequence: 3
  givenname: Jorge
  surname: Velásquez-Tibatá
  fullname: Velásquez-Tibatá, Jorge
  organization: National Audubon Society, CA, 94104, San Francisco, USA
– sequence: 4
  givenname: Gary M.
  surname: Langham
  fullname: Langham, Gary M.
  organization: National Audubon Society, DC, 20036, Washington, USA
BookMark eNp9UU1v1DAQtVArsS0c-AFIlrjAIe3YieP1ESpaWlVFCCgSF8txJlunWXtrJ4X-Bv50vWy7h0rgy0h-H3ozb4_s-OCRkFcMDlh-h33jDhivpHpGZqysRcFrpXbIDEoQBXAJz8leSj0AKFFWM_Ln62jsNbY0rdA6TLR1aYyumUYXPF2GFodEjW_p0tgY0IYhLJw1wyO0iuHWtUht8Is4oR_XPz3atTzR0FFz64zfukdnrzymRCffYqR2cEszZvWV8Qt8QXY7MyR8-TD3yffjj9-OPhXnn09Oj96fF7ZSTBVcAHZgeG0sZxxaC1a2dR4lKCvnorNN2xkJnCE2tpJi3kCl5g2rWMPrrin3yduNb456M2Ea9dIli8NgPIYpaSYZcF5XSmbqmyfUPkzR53Sa1ZJzUQHMM-vdhpVPlFLETq9iXizeaQZ6XYvOtei_tWTu4ROudaNZn2uMxg3_U_xyA97921qffTh9VLzeKPo0hrhVVDksB1lnvNjguWv8vcVNvNa1LKXQPy5O9Jefl0pcimN9Ud4DXSW8XQ
CODEN JBIODN
CitedBy_id crossref_primary_10_1002_ece3_6295
crossref_primary_10_1890_14_1903_1
crossref_primary_10_1002_ece3_9165
crossref_primary_10_1111_ecog_02788
crossref_primary_10_1371_journal_pone_0236103
crossref_primary_10_1016_j_jnc_2025_126850
crossref_primary_10_1080_00207233_2024_2389693
crossref_primary_10_1111_ddi_12607
crossref_primary_10_1111_ecog_02542
crossref_primary_10_1002_ece3_4876
crossref_primary_10_1016_j_pecon_2020_12_006
crossref_primary_10_1111_2041_210X_13915
crossref_primary_10_1111_ecog_03552
crossref_primary_10_1007_s10531_024_02979_7
crossref_primary_10_1007_s10841_022_00406_2
crossref_primary_10_1016_j_scitotenv_2020_139674
crossref_primary_10_1016_j_biocon_2016_07_026
crossref_primary_10_1016_j_ecoinf_2020_101150
crossref_primary_10_7717_peerj_4278
crossref_primary_10_1002_ecs2_3864
crossref_primary_10_1111_ddi_12893
crossref_primary_10_1111_2041_210X_13041
crossref_primary_10_1111_geb_12974
crossref_primary_10_1111_jbi_13929
crossref_primary_10_1111_geb_12731
crossref_primary_10_1016_j_ecoinf_2024_102787
crossref_primary_10_1016_j_ecolind_2021_107699
crossref_primary_10_1371_journal_pone_0135350
crossref_primary_10_1002_ece3_9810
crossref_primary_10_1002_ece3_2544
crossref_primary_10_1016_j_tree_2017_05_003
crossref_primary_10_1016_j_rama_2023_07_002
crossref_primary_10_1126_sciadv_abp9908
crossref_primary_10_1016_j_gecco_2021_e01596
crossref_primary_10_1111_jbi_13696
crossref_primary_10_1111_geb_12695
crossref_primary_10_1002_ecs2_1351
crossref_primary_10_1371_journal_pone_0240225
crossref_primary_10_1111_gcb_15637
crossref_primary_10_1111_jav_01248
crossref_primary_10_7717_peerj_12783
crossref_primary_10_1111_2041_210X_14061
crossref_primary_10_1111_geb_13934
crossref_primary_10_1016_j_biocon_2021_109402
crossref_primary_10_1371_journal_pone_0190557
crossref_primary_10_1002_eap_2934
crossref_primary_10_7717_peerj_14882
crossref_primary_10_1111_gcb_13090
crossref_primary_10_1016_j_gecco_2018_e00433
crossref_primary_10_1016_j_gecco_2018_e00513
crossref_primary_10_1038_s41558_019_0500_2
crossref_primary_10_1007_s00477_022_02172_8
crossref_primary_10_1002_eap_2128
crossref_primary_10_1088_1748_9326_ac4f8c
crossref_primary_10_1111_ddi_13400
crossref_primary_10_1111_gcb_14458
crossref_primary_10_1111_geb_12357
crossref_primary_10_18272_aci_v7i2_256
crossref_primary_10_1111_ddi_13648
crossref_primary_10_1371_journal_pone_0173443
crossref_primary_10_1016_j_heliyon_2023_e13417
crossref_primary_10_1111_2041_210X_12731
crossref_primary_10_1016_j_jaridenv_2016_09_001
crossref_primary_10_1111_ecog_02393
crossref_primary_10_3375_22_25
crossref_primary_10_3390_f13050715
crossref_primary_10_1016_j_limno_2023_126139
crossref_primary_10_1007_s10531_019_01910_9
Cites_doi 10.1111/j.1461-0248.2011.01610.x
10.1098/rspb.2008.0878
10.1086/345459
10.1016/j.ecolmodel.2011.07.011
10.1371/journal.pone.0006825
10.1111/j.1365-2656.2008.01390.x
10.1111/j.1461-0248.2009.01353.x
10.1016/j.tree.2006.09.010
10.1098/rsbl.2008.0715
10.1111/j.0014-3820.2006.tb01872.x
10.1111/j.1461-0248.2011.01736.x
10.1175/2011BAMS3132.1
10.1038/nature02121
10.1111/j.1461-0248.2004.00671.x
10.1146/annurev.ecolsys.36.102803.095431
10.1111/j.1600-0587.2011.06803.x
10.1111/j.1365-2699.2008.01963.x
10.1111/j.1365-2486.2006.01256.x
10.1111/j.1466-822X.2006.00228.x
10.1126/science.1072779
10.2307/3544109
10.1371/journal.pone.0032586
10.32614/CRAN.package.dismo
10.1016/j.baae.2006.11.001
10.1007/s10021-001-0005-4
10.1890/11-1930.1
10.1890/08-0134.1
10.1046/j.1365-2699.2001.00563.x
10.1046/j.1523-1739.2002.00465.x
10.2307/3545479
10.1126/science.1127609
10.1002/joc.1276
10.2193/2007-299
10.1046/j.1466-822X.2003.00042.x
10.1046/j.1365-2486.2003.00616.x
10.1890/11-0066.1
10.1890/08-0823.1
10.1111/j.1365-2664.2006.01149.x
10.1038/35012251
10.1016/j.ecolmodel.2008.05.015
10.1890/03-8006
10.1111/j.1600-0587.2009.05832.x
10.1111/j.1365-2699.2011.02550.x
10.1111/j.1466-822X.2005.00182.x
10.1086/285144
10.1098/rspb.2006.3700
10.1371/journal.pbio.0050157
10.1371/journal.pone.0001439
10.1111/j.1755-263X.2010.00097.x
10.1111/j.0906-7590.2005.03957.x
10.1016/j.biocon.2008.10.006
10.1111/j.1523-1739.2006.00609.x
10.1073/pnas.0901639106
10.1111/j.1466-822X.2004.00095.x
10.1111/j.1472-4642.2011.00792.x
10.1016/j.ecolmodel.2005.03.026
10.1016/j.ecolind.2005.07.005
10.1371/journal.pone.0053315
10.1111/geb.12102
10.1890/06-0539
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons Ltd.
2015 John Wiley & Sons Ltd
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons Ltd.
– notice: 2015 John Wiley & Sons Ltd
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID BSCLL
24P
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/jbi.12479
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Entomology Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
EISSN 1365-2699
Editor Ladle, Richard
Editor_xml – sequence: 5
  givenname: Richard
  surname: Ladle
  fullname: Ladle, Richard
EndPage 988
ExternalDocumentID 3651289001
10_1111_jbi_12479
JBI12479
44002076
ark_67375_WNG_QZV95V5F_N
Genre article
GeographicLocations Canada
United States
GeographicLocations_xml – name: Canada
– name: United States
GrantInformation_xml – fundername: National Landscape Conservation Cooperative Fund
  funderid: F11AP00380/91200‐1‐9700
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AHXOZ
AI.
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SAMSI
SUPJJ
TN5
UB1
VH1
VOH
VQP
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WRC
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
24P
AAYXX
AGHNM
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c4919-250ef0a26ac2120dc0c7d6dc0309c785fcbdfa7021eebc4758b0498b141b26fb3
IEDL.DBID 24P
ISSN 0305-0270
IngestDate Fri Jul 11 18:23:39 EDT 2025
Sun Jul 13 05:16:52 EDT 2025
Sun Jul 06 05:08:25 EDT 2025
Thu Apr 24 23:06:45 EDT 2025
Wed Jan 22 16:22:58 EST 2025
Thu Jul 03 22:32:39 EDT 2025
Wed Oct 30 09:55:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4919-250ef0a26ac2120dc0c7d6dc0309c785fcbdfa7021eebc4758b0498b141b26fb3
Notes Appendix S1 Supplementary methods, figures and tables.Appendix S2 Summary of model performance for winter and summer species.
istex:94F5037F32625304E78BA6167F9EBD1299FF7451
ark:/67375/WNG-QZV95V5F-N
ArticleID:JBI12479
National Landscape Conservation Cooperative Fund - No. F11AP00380/91200-1-9700
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12479
PQID 1672254008
PQPubID 1086398
PageCount 13
ParticipantIDs proquest_miscellaneous_1710226497
proquest_journals_1672254008
crossref_primary_10_1111_jbi_12479
crossref_citationtrail_10_1111_jbi_12479
wiley_primary_10_1111_jbi_12479_JBI12479
jstor_primary_44002076
istex_primary_ark_67375_WNG_QZV95V5F_N
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of biogeography
PublicationTitleAlternate J. Biogeogr
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
References R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/.
Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112.
Sauer, J.R., Hines, J.E., Fallon, J.E., Pardieck, K.L., Ziolkowski, D.J., Jr & Link, W.A. (2011) The North American Breeding Bird Survey, results and analysis 1966-2009. Version 3.23. 2011. US Geological Survey Patuxent Wildlife Research Center, Laurel, MD.
McKenney, D.W., Hutchinson, M.F., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., Milewska, E., Hopkinson, R.F., Price, D. & Owen, T. (2011) Customized spatial climate models for North America. Bulletin of the American Meteorological Society, 92, 1611-1622.
Barbet-Massin, M., Walther, B.A., Thuiller, W., Rahbek, C. & Jiguet, F. (2009) Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biology Letters, 5, 248-251.
Peterson, A.T. (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Global Change Biology, 9, 647-655.
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, R.G. (2003) Energy, water, and broad-scale geographic patterns of richness. Ecology, 84, 3105-3117.
Whittaker, R.J., Willis, K.J. & Field, R. (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470.
Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
Dormann, C.F. (2007) Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8, 387-397.
Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281.
Matthews, S.N., Iverson, L.R., Prasad, A.M. & Peters, M.P. (2011) Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change. Ecography, 34, 933-945.
Root, T.L. & Schneider, S.H. (2002) Climate change: overview and implications for wildlife. Wildlife responses to climate change: North American case studies (ed. by S.H. Schneider and T.L. Root), pp. 1-56. Island Press, Washington, DC.
Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433-1444.
Latham, R.E. & Ricklefs, R.E. (1993) Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos, 67, 325-333.
Kearney, M.R., Wintle, B.A. & Porter, W.P. (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 3, 203-213.
Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.-F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'Brien, E. & Turner, J.R.G. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134.
IPCC (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, S.E. (2004) Extinction risk from climate change. Nature, 427, 145-148.
Mateo, R.G., Felicísimo, Á.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586.
Evans, K.L., James, N.A. & Gaston, K.J. (2006) Abundance, species richness and energy availability in the North American avifauna. Global Ecology and Biogeography, 15, 372-385.
Hurlbert, A.H. & Haskell, J.P. (2003) The effect of energy and seasonality on avian species richness and community composition. The American Naturalist, 161, 83-97.
Araújo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539.
Hijmans, R.J. & van Etten, J. (2011) raster: geographic analysis and modeling with raster data. R package version 1.9-46. Available at: http://cran.r-project.org/package=raster.
Currie, D.J. (2001) Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems, 4, 216-225.
Hannah, L., Midgley, G.F., Lovejoy, T., Bond, W.J., Bush, M., Lovett, J.C., Scott, D. & Woodward, F.I. (2005) Conservation of biodiversity in a changing climate. Conservation Biology, 16, 264-268.
Kujala, H., Moilanen, A., Araújo, M.B. & Cabeza, M. (2013) Conservation planning with uncertain climate change projections. PLoS ONE, 8, e53315.
Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences USA, 106, 19729-19736.
MacArthur, R.H. (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York, USA.
Hitch, A.T. & Leberg, P.L. (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology, 21, 534-539.
Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 1122-1131.
Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58.
Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174.
Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47.
Huntley, B., Collingham, Y.C., Willis, S.G. & Green, R.E. (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE, 3, e1439.
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
Buckley, L.B., Waaser, S.A., MacLean, H.J. & Fox, R. (2011) Does including physiology improve species distribution model predictions of responses to recent climate change? Ecology, 92, 2214-2221.
Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences, 275, 2743-2748.
Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. (2011) Climate change threatens European conservation areas. Ecology Letters, 14, 484-492.
Morin, X.T. & Thuiller, W. (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90, 1301-1313.
Link, W.A., Sauer, J.R. & Niven, D.K. (2008) Combining Breeding Bird Survey and Christmas Bird Count data to evaluate seasonal components of population change in northern bobwhite. Journal of Wildlife Management, 72, 44-51.
Fleishman, E., Noss, R.F. & Noon, B.R. (2006) Utility and limitations of species richness metrics for conservation planning. Ecological Indicators, 6, 543-553.
Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D. & Rodrigues, A.S.L. (2006) Global biodiversity conservation priorities. Science, 313, 58-61.
Hawkins, B.A. (2004) Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America. Global Ecology and Biogeography, 13, 321-325.
Jetz, W., Wilcove, D.S. & Dobson, A.P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, e157.
Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393.
Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393-404.
Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R. & Bartlein, P.J. (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology, 90, 588-597.
Menéndez, R., Megias, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470.
Nenzén, H.K. & Araújo, M.B.
1993; 67
2004; 7
2006; 37
1972
2008; 77
2008; 3
2011; 14
2012; 15
2011; 17
2008; 72
2013; 8
2005; 28
2014; 23
2005; 25
2003; 12
2009; 12
2009; 90
2000; 405
2003; 9
2007; 8
2003; 161
1986
2007; 5
2010; 3
2007; 21
2007; 22
2008; 275
2003; 84
2005; 36
2006; 12
2011
2002; 297
2010
2006; 15
2006; 273
2007
2006; 6
2011; 34
2001; 28
2002
2006; 313
2011; 38
2004; 427
1991; 137
2012; 93
2009; 36
2009; 32
2006; 43
2006; 190
2001; 4
2011; 92
2004; 13
2007; 274
2008; 217
1983; 41
2009; 5
2009; 142
2009; 4
2005; 16
2012; 7
2011; 222
2005; 14
2009; 106
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Ramirez‐Villegas J. (e_1_2_7_61_1) 2010
IPCC (e_1_2_7_37_1) 2007
MacArthur R.H. (e_1_2_7_46_1) 1972
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
R Development Core Team (e_1_2_7_59_1) 2011
Hijmans R.J. (e_1_2_7_30_1) 2011
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
Root T.L. (e_1_2_7_62_1) 2002
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Nix H.A. (e_1_2_7_54_1) 1986
e_1_2_7_51_1
e_1_2_7_53_1
Sauer J.R. (e_1_2_7_63_1) 2011
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – reference: Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
– reference: Huntley, B., Collingham, Y.C., Willis, S.G. & Green, R.E. (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE, 3, e1439.
– reference: Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47.
– reference: Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, R.G. (2003) Energy, water, and broad-scale geographic patterns of richness. Ecology, 84, 3105-3117.
– reference: Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., Alexander, J.D., Wiens, J.A. & Root, T.L. (2009) Re-shuffling of species with climate disruption: a no-analog future for California birds? PLoS ONE, 4, e6825.
– reference: Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
– reference: Link, W.A., Sauer, J.R. & Niven, D.K. (2008) Combining Breeding Bird Survey and Christmas Bird Count data to evaluate seasonal components of population change in northern bobwhite. Journal of Wildlife Management, 72, 44-51.
– reference: Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
– reference: Menéndez, R., Megias, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470.
– reference: Latham, R.E. & Ricklefs, R.E. (1993) Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos, 67, 325-333.
– reference: Nenzén, H.K. & Araújo, M.B. (2011) Choice of threshold alters projections of species range shifts under climate change. Ecological Modelling, 222, 3346-3354.
– reference: Currie, D.J. (2001) Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems, 4, 216-225.
– reference: Matthews, S.N., Iverson, L.R., Prasad, A.M. & Peters, M.P. (2011) Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change. Ecography, 34, 933-945.
– reference: Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, S.E. (2004) Extinction risk from climate change. Nature, 427, 145-148.
– reference: Ramirez-Villegas, J. & Jarvis, A. (2010) Downscaling global circulation model outputs: the delta method decision and policy analysis working paper No. 1. International Center for Tropical Agriculture, Cali, Colombia.
– reference: Field, R., Hawkins, B.A., Cornell, H.V., Currie, D.J., Diniz-Filho, J.A.F., Guégan, J.-F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M. & Turner, J.R.G. (2009) Spatial species-richness gradients across scales: a meta-analysis. Journal of Biogeography, 36, 132-147.
– reference: Hurlbert, A.H. & Haskell, J.P. (2003) The effect of energy and seasonality on avian species richness and community composition. The American Naturalist, 161, 83-97.
– reference: Barbet-Massin, M., Walther, B.A., Thuiller, W., Rahbek, C. & Jiguet, F. (2009) Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biology Letters, 5, 248-251.
– reference: Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281.
– reference: Wright, D.H. (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496-506.
– reference: McKenney, D.W., Hutchinson, M.F., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., Milewska, E., Hopkinson, R.F., Price, D. & Owen, T. (2011) Customized spatial climate models for North America. Bulletin of the American Meteorological Society, 92, 1611-1622.
– reference: Araújo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539.
– reference: Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R. & Bartlein, P.J. (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology, 90, 588-597.
– reference: Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 22-33.
– reference: Hawkins, B.A. (2004) Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America. Global Ecology and Biogeography, 13, 321-325.
– reference: Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R. (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174.
– reference: Dormann, C.F. (2007) Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8, 387-397.
– reference: MacArthur, R.H. (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York, USA.
– reference: Wiens, J.J. & Graham, C.H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519-539.
– reference: Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
– reference: Hijmans, R.J. & van Etten, J. (2011) raster: geographic analysis and modeling with raster data. R package version 1.9-46. Available at: http://cran.r-project.org/package=raster.
– reference: Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58.
– reference: Jetz, W., Wilcove, D.S. & Dobson, A.P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, e157.
– reference: Hitch, A.T. & Leberg, P.L. (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology, 21, 534-539.
– reference: R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/.
– reference: Hannah, L., Midgley, G.F., Lovejoy, T., Bond, W.J., Bush, M., Lovett, J.C., Scott, D. & Woodward, F.I. (2005) Conservation of biodiversity in a changing climate. Conservation Biology, 16, 264-268.
– reference: Evans, K.L., James, N.A. & Gaston, K.J. (2006) Abundance, species richness and energy availability in the North American avifauna. Global Ecology and Biogeography, 15, 372-385.
– reference: Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
– reference: Root, T.L. & Schneider, S.H. (2002) Climate change: overview and implications for wildlife. Wildlife responses to climate change: North American case studies (ed. by S.H. Schneider and T.L. Root), pp. 1-56. Island Press, Washington, DC.
– reference: Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D. & Rodrigues, A.S.L. (2006) Global biodiversity conservation priorities. Science, 313, 58-61.
– reference: Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112.
– reference: Margules, C.R. & Pressey, L.P. (2000) Systematic conservation planning. Nature, 405, 243-253.
– reference: Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
– reference: Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.-F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'Brien, E. & Turner, J.R.G. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134.
– reference: Fleishman, E., Noss, R.F. & Noon, B.R. (2006) Utility and limitations of species richness metrics for conservation planning. Ecological Indicators, 6, 543-553.
– reference: Morin, X.T. & Thuiller, W. (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90, 1301-1313.
– reference: Buckley, L.B., Waaser, S.A., MacLean, H.J. & Fox, R. (2011) Does including physiology improve species distribution model predictions of responses to recent climate change? Ecology, 92, 2214-2221.
– reference: Peterson, A.T. (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Global Change Biology, 9, 647-655.
– reference: Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences, 275, 2743-2748.
– reference: Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393-404.
– reference: Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433-1444.
– reference: Whittaker, R.J., Willis, K.J. & Field, R. (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470.
– reference: IPCC (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
– reference: Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
– reference: Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. (2011) Climate change threatens European conservation areas. Ecology Letters, 14, 484-492.
– reference: Gotelli, N.J., Anderson, M.J., Arita, H.T. et al. (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 12, 873-886.
– reference: Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences USA, 106, 19729-19736.
– reference: Heller, N.E. & Zavaleta, E.S. (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological Conservation, 142, 14-32.
– reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
– reference: Araújo, M.B., Whittaker, R.J., Ladle, R.J. & Erhard, M. (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 14, 529-538.
– reference: Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 1122-1131.
– reference: Kujala, H., Moilanen, A., Araújo, M.B. & Cabeza, M. (2013) Conservation planning with uncertain climate change projections. PLoS ONE, 8, e53315.
– reference: Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393.
– reference: Mateo, R.G., Felicísimo, Á.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586.
– reference: Sauer, J.R., Hines, J.E., Fallon, J.E., Pardieck, K.L., Ziolkowski, D.J., Jr & Link, W.A. (2011) The North American Breeding Bird Survey, results and analysis 1966-2009. Version 3.23. 2011. US Geological Survey Patuxent Wildlife Research Center, Laurel, MD.
– reference: Kearney, M.R., Wintle, B.A. & Porter, W.P. (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 3, 203-213.
– year: 2011
– volume: 6
  start-page: 543
  year: 2006
  end-page: 553
  article-title: Utility and limitations of species richness metrics for conservation planning
  publication-title: Ecological Indicators
– volume: 297
  start-page: 1548
  year: 2002
  end-page: 1551
  article-title: Geographic range size and determinants of avian species richness
  publication-title: Science
– volume: 217
  start-page: 48
  year: 2008
  end-page: 58
  article-title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa
  publication-title: Ecological Modelling
– volume: 21
  start-page: 534
  year: 2007
  end-page: 539
  article-title: Breeding distributions of North American bird species moving north as a result of climate change
  publication-title: Conservation Biology
– volume: 405
  start-page: 243
  year: 2000
  end-page: 253
  article-title: Systematic conservation planning
  publication-title: Nature
– volume: 28
  start-page: 453
  year: 2001
  end-page: 470
  article-title: Scale and species richness: towards a general, hierarchical theory of species diversity
  publication-title: Journal of Biogeography
– volume: 8
  start-page: 387
  year: 2007
  end-page: 397
  article-title: Promising the future? Global change projections of species distributions
  publication-title: Basic and Applied Ecology
– volume: 93
  start-page: 1527
  year: 2012
  end-page: 1539
  article-title: Uses and misuses of bioclimatic envelope modeling
  publication-title: Ecology
– start-page: 4
  year: 1986
  end-page: 15
– volume: 92
  start-page: 1611
  year: 2011
  end-page: 1622
  article-title: Customized spatial climate models for North America
  publication-title: Bulletin of the American Meteorological Society
– volume: 38
  start-page: 1433
  year: 2011
  end-page: 1444
  article-title: SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages
  publication-title: Journal of Biogeography
– volume: 34
  start-page: 933
  year: 2011
  end-page: 945
  article-title: Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change
  publication-title: Ecography
– volume: 4
  start-page: 216
  year: 2001
  end-page: 225
  article-title: Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States
  publication-title: Ecosystems
– volume: 275
  start-page: 2743
  year: 2008
  end-page: 2748
  article-title: Birds are tracking climate warming, but not fast enough
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 43
  start-page: 393
  year: 2006
  end-page: 404
  article-title: Spatial modelling of biodiversity at the community level
  publication-title: Journal of Applied Ecology
– volume: 36
  start-page: 519
  year: 2005
  end-page: 539
  article-title: Niche conservatism: integrating evolution, ecology, and conservation biology
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  article-title: A working guide to boosted regression trees
  publication-title: Journal of Animal Ecology
– volume: 3
  start-page: e1439
  year: 2008
  article-title: Potential impacts of climatic change on European breeding birds
  publication-title: PLoS ONE
– volume: 3
  start-page: 203
  year: 2010
  end-page: 213
  article-title: Correlative and mechanistic models of species distribution provide congruent forecasts under climate change
  publication-title: Conservation Letters
– volume: 12
  start-page: 2272
  year: 2006
  end-page: 2281
  article-title: The ability of climate envelope models to predict the effect of climate change on species distributions
  publication-title: Global Change Biology
– volume: 13
  start-page: 321
  year: 2004
  end-page: 325
  article-title: Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America
  publication-title: Global Ecology and Biogeography
– volume: 84
  start-page: 3105
  year: 2003
  end-page: 3117
  article-title: Energy, water, and broad‐scale geographic patterns of richness
  publication-title: Ecology
– volume: 36
  start-page: 132
  year: 2009
  end-page: 147
  article-title: Spatial species‐richness gradients across scales: a meta‐analysis
  publication-title: Journal of Biogeography
– volume: 12
  start-page: 873
  year: 2009
  end-page: 886
  article-title: Patterns and causes of species richness: a general simulation model for macroecology
  publication-title: Ecology Letters
– year: 1972
– volume: 8
  start-page: e53315
  year: 2013
  article-title: Conservation planning with uncertain climate change projections
  publication-title: PLoS ONE
– volume: 14
  start-page: 484
  year: 2011
  end-page: 492
  article-title: Climate change threatens European conservation areas
  publication-title: Ecology Letters
– volume: 106
  start-page: 19729
  year: 2009
  end-page: 19736
  article-title: Niches, models, and climate change: assessing the assumptions and uncertainties
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 273
  start-page: 1465
  year: 2006
  end-page: 1470
  article-title: Species richness changes lag behind climate change
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 67
  start-page: 325
  year: 1993
  end-page: 333
  article-title: Global patterns of tree species richness in moist forests: energy‐diversity theory does not account for variation in species richness
  publication-title: Oikos
– volume: 17
  start-page: 1122
  year: 2011
  end-page: 1131
  article-title: Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches
  publication-title: Diversity and Distributions
– volume: 32
  start-page: 22
  year: 2009
  end-page: 33
  article-title: Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods
  publication-title: Ecography
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 161
  start-page: 83
  year: 2003
  end-page: 97
  article-title: The effect of energy and seasonality on avian species richness and community composition
  publication-title: The American Naturalist
– volume: 7
  start-page: e32586
  year: 2012
  article-title: Do stacked species distribution models reflect altitudinal diversity patterns?
  publication-title: PLoS ONE
– volume: 15
  start-page: 365
  year: 2012
  end-page: 377
  article-title: Impacts of climate change on the future of biodiversity
  publication-title: Ecology Letters
– volume: 137
  start-page: 27
  year: 1991
  end-page: 49
  article-title: Energy and large‐scale patterns of animal‐ and plant‐species richness
  publication-title: The American Naturalist
– start-page: 1
  year: 2002
  end-page: 56
– year: 2007
– volume: 72
  start-page: 44
  year: 2008
  end-page: 51
  article-title: Combining Breeding Bird Survey and Christmas Bird Count data to evaluate seasonal components of population change in northern bobwhite
  publication-title: Journal of Wildlife Management
– volume: 90
  start-page: 1301
  year: 2009
  end-page: 1313
  article-title: Comparing niche‐ and process‐based models to reduce prediction uncertainty in species range shifts under climate change
  publication-title: Ecology
– volume: 142
  start-page: 14
  year: 2009
  end-page: 32
  article-title: Biodiversity management in the face of climate change: a review of 22 years of recommendations
  publication-title: Biological Conservation
– volume: 92
  start-page: 2214
  year: 2011
  end-page: 2221
  article-title: Does including physiology improve species distribution model predictions of responses to recent climate change?
  publication-title: Ecology
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– year: 2010
– volume: 23
  start-page: 99
  year: 2014
  end-page: 112
  article-title: Stacking species distribution models and adjusting bias by linking them to macroecological models
  publication-title: Global Ecology and Biogeography
– volume: 274
  start-page: 165
  year: 2007
  end-page: 174
  article-title: Predicting continental‐scale patterns of bird species richness with spatially explicit models
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 7
  start-page: 1121
  year: 2004
  end-page: 1134
  article-title: Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness
  publication-title: Ecology Letters
– volume: 37
  start-page: 637
  year: 2006
  end-page: 669
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 4
  start-page: e6825
  year: 2009
  article-title: Re‐shuffling of species with climate disruption: a no‐analog future for California birds?
  publication-title: PLoS ONE
– volume: 5
  start-page: 248
  year: 2009
  end-page: 251
  article-title: Potential impacts of climate change on the winter distribution of Afro‐Palaearctic migrant passerines
  publication-title: Biology Letters
– volume: 15
  start-page: 372
  year: 2006
  end-page: 385
  article-title: Abundance, species richness and energy availability in the North American avifauna
  publication-title: Global Ecology and Biogeography
– volume: 22
  start-page: 42
  year: 2007
  end-page: 47
  article-title: Ensemble forecasting of species distributions
  publication-title: Trends in Ecology and Evolution
– volume: 9
  start-page: 647
  year: 2003
  end-page: 655
  article-title: Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences
  publication-title: Global Change Biology
– volume: 5
  start-page: e157
  year: 2007
  article-title: Projected impacts of climate and land‐use change on the global diversity of birds
  publication-title: PLoS Biology
– volume: 28
  start-page: 385
  year: 2005
  end-page: 393
  article-title: Selecting thresholds of occurrence in the prediction of species distributions
  publication-title: Ecography
– volume: 222
  start-page: 3346
  year: 2011
  end-page: 3354
  article-title: Choice of threshold alters projections of species range shifts under climate change
  publication-title: Ecological Modelling
– volume: 12
  start-page: 361
  year: 2003
  end-page: 371
  article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?
  publication-title: Global Ecology and Biogeography
– volume: 14
  start-page: 529
  year: 2005
  end-page: 538
  article-title: Reducing uncertainty in projections of extinction risk from climate change
  publication-title: Global Ecology and Biogeography
– volume: 313
  start-page: 58
  year: 2006
  end-page: 61
  article-title: Global biodiversity conservation priorities
  publication-title: Science
– volume: 427
  start-page: 145
  year: 2004
  end-page: 148
  article-title: Extinction risk from climate change
  publication-title: Nature
– volume: 16
  start-page: 264
  year: 2005
  end-page: 268
  article-title: Conservation of biodiversity in a changing climate
  publication-title: Conservation Biology
– volume: 90
  start-page: 588
  year: 2009
  end-page: 597
  article-title: Projected climate‐induced faunal change in the Western Hemisphere
  publication-title: Ecology
– volume: 41
  start-page: 496
  year: 1983
  end-page: 506
  article-title: Species‐energy theory: an extension of species‐area theory
  publication-title: Oikos
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1461-0248.2011.01610.x
– ident: e_1_2_7_15_1
  doi: 10.1098/rspb.2008.0878
– ident: e_1_2_7_36_1
  doi: 10.1086/345459
– ident: e_1_2_7_53_1
  doi: 10.1016/j.ecolmodel.2011.07.011
– ident: e_1_2_7_64_1
  doi: 10.1371/journal.pone.0006825
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1365-2656.2008.01390.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1461-0248.2009.01353.x
– ident: e_1_2_7_3_1
  doi: 10.1016/j.tree.2006.09.010
– ident: e_1_2_7_7_1
  doi: 10.1098/rsbl.2008.0715
– volume-title: raster: geographic analysis and modeling with raster data
  year: 2011
  ident: e_1_2_7_30_1
– volume-title: R: a language and environment for statistical computing
  year: 2011
  ident: e_1_2_7_59_1
– ident: e_1_2_7_55_1
  doi: 10.1111/j.0014-3820.2006.tb01872.x
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1461-0248.2011.01736.x
– ident: e_1_2_7_50_1
  doi: 10.1175/2011BAMS3132.1
– ident: e_1_2_7_65_1
  doi: 10.1038/nature02121
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1461-0248.2004.00671.x
– ident: e_1_2_7_67_1
  doi: 10.1146/annurev.ecolsys.36.102803.095431
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1600-0587.2011.06803.x
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-2699.2008.01963.x
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2486.2006.01256.x
– volume-title: Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_7_37_1
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1466-822X.2006.00228.x
– ident: e_1_2_7_38_1
  doi: 10.1126/science.1072779
– ident: e_1_2_7_69_1
  doi: 10.2307/3544109
– ident: e_1_2_7_48_1
  doi: 10.1371/journal.pone.0032586
– ident: e_1_2_7_33_1
  doi: 10.32614/CRAN.package.dismo
– ident: e_1_2_7_16_1
  doi: 10.1016/j.baae.2006.11.001
– ident: e_1_2_7_13_1
  doi: 10.1007/s10021-001-0005-4
– ident: e_1_2_7_4_1
  doi: 10.1890/11-1930.1
– ident: e_1_2_7_52_1
  doi: 10.1890/08-0134.1
– ident: e_1_2_7_66_1
  doi: 10.1046/j.1365-2699.2001.00563.x
– ident: e_1_2_7_26_1
  doi: 10.1046/j.1523-1739.2002.00465.x
– ident: e_1_2_7_42_1
  doi: 10.2307/3545479
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1127609
– ident: e_1_2_7_32_1
  doi: 10.1002/joc.1276
– ident: e_1_2_7_44_1
  doi: 10.2193/2007-299
– ident: e_1_2_7_56_1
  doi: 10.1046/j.1466-822X.2003.00042.x
– ident: e_1_2_7_57_1
  doi: 10.1046/j.1365-2486.2003.00616.x
– ident: e_1_2_7_10_1
  doi: 10.1890/11-0066.1
– ident: e_1_2_7_43_1
  doi: 10.1890/08-0823.1
– volume-title: Downscaling global circulation model outputs: the delta method decision and policy analysis working paper No. 1
  year: 2010
  ident: e_1_2_7_61_1
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2664.2006.01149.x
– ident: e_1_2_7_47_1
  doi: 10.1038/35012251
– start-page: 4
  volume-title: Atlas of elapid snakes of Australia
  year: 1986
  ident: e_1_2_7_54_1
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ecolmodel.2008.05.015
– ident: e_1_2_7_28_1
  doi: 10.1890/03-8006
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1600-0587.2009.05832.x
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1365-2699.2011.02550.x
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1466-822X.2005.00182.x
– ident: e_1_2_7_12_1
  doi: 10.1086/285144
– ident: e_1_2_7_60_1
  doi: 10.1098/rspb.2006.3700
– ident: e_1_2_7_39_1
  doi: 10.1371/journal.pbio.0050157
– ident: e_1_2_7_35_1
  doi: 10.1371/journal.pone.0001439
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1755-263X.2010.00097.x
– ident: e_1_2_7_45_1
  doi: 10.1111/j.0906-7590.2005.03957.x
– volume-title: The North American Breeding Bird Survey, results and analysis 1966–2009
  year: 2011
  ident: e_1_2_7_63_1
– ident: e_1_2_7_29_1
  doi: 10.1016/j.biocon.2008.10.006
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1523-1739.2006.00609.x
– ident: e_1_2_7_68_1
  doi: 10.1073/pnas.0901639106
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1466-822X.2004.00095.x
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1472-4642.2011.00792.x
– ident: e_1_2_7_58_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_7_22_1
  doi: 10.1016/j.ecolind.2005.07.005
– volume-title: Geographical ecology: patterns in the distribution of species
  year: 1972
  ident: e_1_2_7_46_1
– ident: e_1_2_7_41_1
  doi: 10.1371/journal.pone.0053315
– start-page: 1
  volume-title: Climate change: overview and implications for wildlife. Wildlife responses to climate change: North American case studies
  year: 2002
  ident: e_1_2_7_62_1
– ident: e_1_2_7_11_1
  doi: 10.1111/geb.12102
– ident: e_1_2_7_51_1
  doi: 10.1890/06-0539
SSID ssj0009534
Score 2.4054036
Snippet Aim: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution...
Aim Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models...
Aim Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution models...
AIM: Using survey data for North American birds, we assess how well historical patterns of species richness are explained by stacked species distribution...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 976
SubjectTerms Anthropogenic impacts: implications for conservation planning
Biodiversity
biogeography
Birds
breeding
Canada
climate
Climate change
conservation
geographical variation
macroecology
North America
planning
prediction
seasonality
species distribution models
species diversity
Species richness
Summer
surveys
United States
Winter
Title Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change
URI https://api.istex.fr/ark:/67375/WNG-QZV95V5F-N/fulltext.pdf
https://www.jstor.org/stable/44002076
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12479
https://www.proquest.com/docview/1672254008
https://www.proquest.com/docview/1710226497
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9RAFJ4gxOiLAZW4CmQ0xPhS0-nOdDrxCZQFSdioESS-TOZW2YhdswtGfgN_mnOm02ZJNOFld5KebqZ7bt-Zngsh26VlPqiCZaaq8wyEgmdKOeyMWClWBfCxAQuFj8blwTE_PBWnS-RdVwvT9ofoD9xQM6K9RgU3dr6o5HbyFpyTVPfICpbW4tyGgn9a6Lg7bHtHYXZaIfPUViim8XS33nJGK_i__u3yEm8hzkXcGh3PaJU8SoiR7rQsXiNLoXlM7rczJK9gtefS6kEaaH529YRcA4gE_fQUKykhGKYeG-Sm2VY0jr-ZU9N4-svA1oLrTGB3KRXoUYiWf8wuwTHRdGSDUkqnNTV_QK76XwdjeoY2k2JJ2oy68wkAYbg7li48Jcejva_vD7I0dyFzXDGVASoKdW6K0jhwbLl3uZO-hK9hrpysRO2sr40EdBCCdRwiDgtxRmUZZ7YoaztcJ8vNtAnPCPWSGWz5LixEkmVllPcCAAYXw9wzq8oBedMxQLvUlBxnY5zrPjixEx15NSCvetLfbSeOfxG9jlzsKczsJ6auSaG_jff15-8nSpyIkR4PyHpkc0_IOSJnCTva6PiukzrPNSsl2D2gqAbkZX8ZFBHfrpgmTC-BBrEawEsl4aGivPx_m_pw92NcPL876QvyEMCaaJMtN8jyBXB_EwDRhd2Kgg-fH74UN-agBr4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qi9QvvhdPq64i4pccSS7JZsEvvvS81vZAaWsRZNm32KM1J9c7sf4F_7Qzm024ioL46RYyObK5eXlmb-YZgCeFTqwTaRKpsoojVIosEsIQM2IpktJhjHXUKLw3LkYH2c5RfrQCz9temIYfojtwI8vw_poMnA6kl61cT_oYnbi4BGsZAg1KvV6_T5codwcNeRSVp6U8DrxCvo6nvfVCNFqjF_u9LUy8ADmXgauPPMNr8Kl95qbg5KS_mOu--fEbneP_buo6XA2QlL1odOgGrLj6JlxuhlSe42rLhNV6mJh-fH4LfiJKRQdgGbVqYrbNLDHwhuFZzM_XOWOqtuyLwq070_rY9lLoAGSYjn-eLTDysXAmRGbAphVT31Bxu29Hb31MTplRz9uMmdMJIm282_dG3IaD4db-q1EUBjtEJhOJiBB2uSpWaaEMRs7YmthwW-DHIBaGl3lltK0UR_jhnDYZpjQaE5lSJ1mi06LSgw1Yrae1uwPM8kQRp3yuMVUtSiWszRHBZPkgtokWRQ-etT-wNIH1nIZvnMou-9ET6d94Dx53ol8bqo8_CT31WtJJqNkJ1cbxXH4Yv5HvPh6K_DAfynEPNrwadYJZRtCc4xNttnolg784k0nB0bGiRNmDR91ltHT6-0bVbrpAGQKDiF8Fx015Jfr7Y8qdl9t-cfffRR_C-mh_b1fubo_f3oMriAzzprJzE1bnqAn3EX3N9QNvZL8AR24p-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7UFi8v4q24WnUUEV8imewkk8EnL13bqksFW4svw9xiF2u2bFuxv8E_7TmTSdiCgk8ZyEmY5Ny-k5wLwNPKch9UwTNTN3mGQiEypRx1RqwVrwP62ECFwh-n1dae2DkoD1bgZV8L0_WHGD64kWZEe00KfuybZSW3sxfonKS6BGv0s4-0shC7Sx13x13vKMpOK2Se2grFNJ7-0gvOaI3e668-L_EC4lzGrdHxTG7A9YQY2auOxTdhJbS34HI3Q_IcV5sura6mgeaH57fhN4JI1E_PqJISg2HmqUFumm3F4vibE2Zaz34Y3FpwvQnsT6UCPYbR8rfFGTomlj7ZkJSyecPMT5Sr4e5oTA_JZjIqSVswdzRDIIxXx9KFO7A32fz8ZitLcxcyJxRXGaKi0OSmqIxDx5Z7lzvpKzyMc-VkXTbO-sZIRAchWCcw4rAYZ9SWC26LqrHjdVht5224C8xLbqjle2kxkqxqo7wvEWCIcpx7blU1guc9A7RLTclpNsaRHoITO9ORVyN4MpAed504_kb0LHJxoDCL75S6Jkv9ZfpOf_q6r8r9cqKnI1iPbB4IhSDkLHFHGz3fdVLnE80riXYPKeoRPB5OoyLS3xXThvkZ0hBWQ3ipJD5UlJd_b1PvvN6Oi3v_T_oIruy-negP29P39-Ea4rayy7vcgNVTFIQHiI1O7cOoA38ARuMIcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+species+distribution+models+and+macroecological+models+provide+congruent+projections+of+avian+species+richness+under+climate+change&rft.jtitle=Journal+of+biogeography&rft.au=Distler%2C+Trisha&rft.au=Schuetz%2C+Justin+G&rft.au=Vel%C3%A1squez%E2%80%90Tibat%C3%A1%2C+Jorge&rft.au=Langham%2C+Gary+M&rft.date=2015-05-01&rft.issn=0305-0270&rft.volume=42&rft.issue=5+p.976-988&rft.spage=976&rft.epage=988&rft_id=info:doi/10.1111%2Fjbi.12479&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon