Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices

The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H₂O) ran...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 9; no. 9; pp. 2364 - 2374
Main Authors He, Ji-zheng, Shen, Ju-pei, Zhang, Li-mei, Zhu, Yong-guan, Zheng, Yuan-ming, Xu, Ming-gang, Di, Hongjie
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.09.2007
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H₂O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.
AbstractList The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H₂O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.
Summary The abundance and composition of soil ammonia‐oxidizing bacteria (AOB) and ammonia‐oxidizing archaea (AOA) were investigated by using quantitative real‐time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri‐udic ferrosols with pH (H2O) ranging from 3.7 to 6.0, was sampled in summer and winter from long‐term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia‐oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira‐like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long‐term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H sub(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.
The abundance and composition of soil ammonia‐oxidizing bacteria (AOB) and ammonia‐oxidizing archaea (AOA) were investigated by using quantitative real‐time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri‐udic ferrosols with pH (H 2 O) ranging from 3.7 to 6.0, was sampled in summer and winter from long‐term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia‐oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira‐ like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long‐term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.
Author Zhang, Li-mei
Zheng, Yuan-ming
He, Ji-zheng
Zhu, Yong-guan
Xu, Ming-gang
Di, Hongjie
Shen, Ju-pei
Author_xml – sequence: 1
  fullname: He, Ji-zheng
– sequence: 2
  fullname: Shen, Ju-pei
– sequence: 3
  fullname: Zhang, Li-mei
– sequence: 4
  fullname: Zhu, Yong-guan
– sequence: 5
  fullname: Zheng, Yuan-ming
– sequence: 6
  fullname: Xu, Ming-gang
– sequence: 7
  fullname: Di, Hongjie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17686032$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURH_gFcArdgm28-csQEKjUiqVVhVUSGwsx76Z8ZDYUzuBmb4Yr4eTlFnAYvDGtu53zrV8z2l0ZKyBKEIEJySsN-uEZAWNaUVxQjEuE0zSnCXbJ9HJvnC0PxN6HJ16v8aYlGmJn0XHpCxYgVN6Ev26HYTpdS96_QOQMKLdefDINqhfhXs9GCWMHCsKSdttrNe9tmYERNdZo0Vst1rpB22WqBayB6fFRP9bFk6uBIhJixYrbcADGjbtSDtQyFvdotAQHGqtWcbBq0MNuF63-kFMbTcutNAS_PPoaSNaDy8e97Po7sP5l8XH-Orm4nLx_iqWWUVYXBdSsRpy2kDNMtzkDdBwk1ipPGNMEqgkLlkBtayBqUqyPCUVIbWoZaFylZ5Fr2ffjbP3A_ied9pLaMOjwQ6eF4xktEzTg2BWZjTPCT4IUpzjIowngC8fwaHuQPGN051wO_5neAF4NwPSWe8dNFxOg7Smd0K3nGA-poWv-RgEPoaCj2nhU1r4Nhiwvwz2PQ5L387Sn7qF3X_r-Pmny_EU9PGs176H7V4v3HdehJDm_Ov1Bf9G02uGWcnHz3g1842wXCyd9vzuMw2uwbwqqpKmvwFpXPOy
CitedBy_id crossref_primary_10_1007_s00253_012_4448_7
crossref_primary_10_1016_j_gene_2012_06_083
crossref_primary_10_1111_1574_6968_12164
crossref_primary_10_1021_acs_estlett_7b00571
crossref_primary_10_1111_j_1462_2920_2008_01783_x
crossref_primary_10_1556_CRC_2013_0058
crossref_primary_10_1007_s00284_013_0369_7
crossref_primary_10_1111_j_1462_2920_2010_02153_x
crossref_primary_10_1111_j_1475_2743_2009_00241_x
crossref_primary_10_1002_clen_201200369
crossref_primary_10_1002_jobm_201100211
crossref_primary_10_1016_j_soilbio_2020_107725
crossref_primary_10_1007_s00253_016_7428_5
crossref_primary_10_1038_ismej_2008_128
crossref_primary_10_1002_ece3_1006
crossref_primary_10_1016_S1002_0160_10_60073_2
crossref_primary_10_1016_j_apsoil_2019_05_005
crossref_primary_10_1016_j_chemosphere_2017_10_067
crossref_primary_10_1007_s00253_018_9152_9
crossref_primary_10_1007_s00253_015_6625_y
crossref_primary_10_1016_S2095_3119_16_61391_6
crossref_primary_10_1007_s00374_014_0983_y
crossref_primary_10_1016_j_soilbio_2017_11_003
crossref_primary_10_1007_s11368_018_2188_8
crossref_primary_10_1016_j_soilbio_2013_11_007
crossref_primary_10_1111_j_1574_6941_2011_01091_x
crossref_primary_10_1128_AEM_01213_10
crossref_primary_10_3389_fmicb_2020_01363
crossref_primary_10_1016_j_scitotenv_2023_169630
crossref_primary_10_1111_1462_2920_14098
crossref_primary_10_1016_j_soilbio_2012_08_003
crossref_primary_10_1007_s11274_016_2042_3
crossref_primary_10_1007_s00374_011_0600_2
crossref_primary_10_1093_femsec_fiz113
crossref_primary_10_1093_femsre_fuaa037
crossref_primary_10_1264_jsme2_ME09179
crossref_primary_10_1007_s11368_016_1403_8
crossref_primary_10_1016_j_ejsobi_2021_103354
crossref_primary_10_1007_s11356_011_0482_8
crossref_primary_10_1111_sum_12652
crossref_primary_10_1264_jsme2_ME11127
crossref_primary_10_1016_j_envpol_2017_08_013
crossref_primary_10_1016_j_soilbio_2009_01_001
crossref_primary_10_1073_pnas_1107196108
crossref_primary_10_3390_microorganisms9010118
crossref_primary_10_1007_s11368_014_0872_x
crossref_primary_10_1016_j_apsoil_2018_03_001
crossref_primary_10_3389_fmicb_2017_02226
crossref_primary_10_1038_s41598_018_20044_6
crossref_primary_10_1016_j_jhazmat_2021_127944
crossref_primary_10_1016_j_pedsph_2022_05_001
crossref_primary_10_1111_nph_14057
crossref_primary_10_1080_03036758_2017_1354894
crossref_primary_10_1016_j_ecoleng_2017_04_022
crossref_primary_10_1016_j_scitotenv_2018_03_108
crossref_primary_10_1016_j_soilbio_2020_107863
crossref_primary_10_1016_j_scitotenv_2013_10_011
crossref_primary_10_1007_s11104_012_1377_2
crossref_primary_10_1007_s11368_015_1061_2
crossref_primary_10_1371_journal_pone_0026263
crossref_primary_10_1371_journal_pone_0063375
crossref_primary_10_1016_j_soilbio_2013_11_026
crossref_primary_10_1038_ismej_2007_109
crossref_primary_10_3389_fmicb_2019_02654
crossref_primary_10_1016_j_ecoenv_2019_109947
crossref_primary_10_1016_S1001_0742_12_60178_8
crossref_primary_10_1016_j_biortech_2012_06_029
crossref_primary_10_1080_01490451_2010_514026
crossref_primary_10_1016_j_apsoil_2014_11_017
crossref_primary_10_1007_s00374_012_0713_2
crossref_primary_10_1080_00288230909510502
crossref_primary_10_1007_s00374_016_1151_3
crossref_primary_10_1016_j_soilbio_2016_01_012
crossref_primary_10_3389_fmicb_2019_00117
crossref_primary_10_1007_s00253_012_4623_x
crossref_primary_10_1093_femsec_fix037
crossref_primary_10_1111_j_1574_6941_2010_00961_x
crossref_primary_10_1016_j_apsoil_2009_08_006
crossref_primary_10_1016_j_ejsobi_2020_103153
crossref_primary_10_1371_journal_pone_0100653
crossref_primary_10_1007_s11356_017_9711_0
crossref_primary_10_1007_s11368_018_2154_5
crossref_primary_10_1016_j_ejsobi_2013_10_003
crossref_primary_10_1016_j_chemosphere_2017_02_075
crossref_primary_10_1007_s00253_014_5833_1
crossref_primary_10_1007_s11104_023_05889_9
crossref_primary_10_1016_j_soilbio_2018_04_009
crossref_primary_10_2136_sssaj2011_0098
crossref_primary_10_1016_S2095_3119_14_60784_X
crossref_primary_10_1016_j_apsoil_2019_05_032
crossref_primary_10_1016_j_syapm_2010_11_023
crossref_primary_10_1080_10643389_2012_672072
crossref_primary_10_1371_journal_pone_0132770
crossref_primary_10_1016_j_chnaes_2011_03_009
crossref_primary_10_1016_j_bej_2019_107246
crossref_primary_10_1111_jam_14830
crossref_primary_10_1128_AEM_06132_11
crossref_primary_10_5004_dwt_2017_20168
crossref_primary_10_1371_journal_pone_0096197
crossref_primary_10_1111_j_1462_2920_2007_01556_x
crossref_primary_10_1016_j_apsoil_2016_06_001
crossref_primary_10_1007_s11368_013_0726_y
crossref_primary_10_1371_journal_pone_0086388
crossref_primary_10_1016_j_scitotenv_2020_142521
crossref_primary_10_1016_j_apsoil_2017_08_004
crossref_primary_10_1016_j_soilbio_2016_02_005
crossref_primary_10_1016_j_scitotenv_2017_04_086
crossref_primary_10_1080_01490451_2017_1297511
crossref_primary_10_3390_su152215889
crossref_primary_10_1007_s00248_017_1045_4
crossref_primary_10_1016_j_scitotenv_2017_12_096
crossref_primary_10_1007_s11356_015_5863_y
crossref_primary_10_1038_s41598_018_30532_4
crossref_primary_10_1007_s10705_017_9826_1
crossref_primary_10_1016_j_jes_2015_04_022
crossref_primary_10_1111_j_1574_6941_2009_00741_x
crossref_primary_10_1016_j_jhazmat_2013_05_043
crossref_primary_10_1111_j_1462_2920_2008_01578_x
crossref_primary_10_3390_agronomy12051040
crossref_primary_10_5194_soil_2_523_2016
crossref_primary_10_1016_j_soilbio_2012_10_018
crossref_primary_10_1016_j_scitotenv_2018_08_432
crossref_primary_10_3354_ame01861
crossref_primary_10_1007_s42398_023_00262_z
crossref_primary_10_1111_j_1365_2486_2011_02431_x
crossref_primary_10_1186_2192_1709_2_9
crossref_primary_10_1016_j_apsoil_2015_06_010
crossref_primary_10_1007_s11104_009_9988_y
crossref_primary_10_1016_j_soilbio_2010_06_015
crossref_primary_10_3390_agriculture13020245
crossref_primary_10_1016_j_apsoil_2015_06_014
crossref_primary_10_1016_j_agee_2021_107540
crossref_primary_10_1016_j_soilbio_2012_10_016
crossref_primary_10_1038_srep17056
crossref_primary_10_1016_j_soilbio_2020_107759
crossref_primary_10_1016_j_apsoil_2015_06_006
crossref_primary_10_1016_j_soilbio_2022_108563
crossref_primary_10_2136_sssaj2016_03_0070
crossref_primary_10_1080_01490451003753076
crossref_primary_10_1007_s11368_018_2155_4
crossref_primary_10_1007_s00374_020_01477_6
crossref_primary_10_1007_s11356_016_7115_1
crossref_primary_10_1016_j_ecolind_2011_04_018
crossref_primary_10_1111_j_1462_2920_2011_02679_x
crossref_primary_10_1111_j_1574_6941_2009_00752_x
crossref_primary_10_1080_01490451_2014_925013
crossref_primary_10_1111_j_1574_6941_2009_00775_x
crossref_primary_10_1007_s00248_010_9638_1
crossref_primary_10_1371_journal_pone_0132879
crossref_primary_10_1007_s11368_018_02229_8
crossref_primary_10_1111_ejss_13112
crossref_primary_10_1371_journal_pone_0133763
crossref_primary_10_1007_s00203_017_1380_3
crossref_primary_10_1038_srep25305
crossref_primary_10_1016_j_scitotenv_2017_03_149
crossref_primary_10_1080_01490451_2018_1471108
crossref_primary_10_1038_s41598_020_67528_y
crossref_primary_10_1128_msystems_00309_20
crossref_primary_10_1016_j_envint_2020_105764
crossref_primary_10_1111_j_1574_6941_2010_00971_x
crossref_primary_10_2166_wst_2018_512
crossref_primary_10_1016_j_ejsobi_2022_103441
crossref_primary_10_1016_j_scitotenv_2019_135236
crossref_primary_10_1016_j_apsoil_2017_11_018
crossref_primary_10_1038_ismej_2010_191
crossref_primary_10_1007_s00244_015_0144_9
crossref_primary_10_1007_s11368_017_1700_x
crossref_primary_10_1128_AEM_01960_12
crossref_primary_10_1071_MF19033
crossref_primary_10_1111_jam_14846
crossref_primary_10_3389_fmicb_2017_02136
crossref_primary_10_1007_s00248_012_0122_y
crossref_primary_10_1080_00380768_2015_1023687
crossref_primary_10_1371_journal_pone_0080835
crossref_primary_10_1007_s11368_014_0902_8
crossref_primary_10_1016_j_ecoenv_2018_09_042
crossref_primary_10_1002_clen_201500319
crossref_primary_10_1007_s11051_022_05500_9
crossref_primary_10_1016_j_scitotenv_2020_144824
crossref_primary_10_1111_j_1574_6941_2008_00629_x
crossref_primary_10_1007_s11368_011_0413_9
crossref_primary_10_1016_j_soilbio_2022_108782
crossref_primary_10_1016_j_soilbio_2017_10_023
crossref_primary_10_1038_ismej_2008_2
crossref_primary_10_1016_j_ejsobi_2016_01_008
crossref_primary_10_1002_jobm_201800581
crossref_primary_10_1007_s00374_018_01335_6
crossref_primary_10_1007_s13213_014_0903_2
crossref_primary_10_3389_fpls_2022_860590
crossref_primary_10_1007_s00253_016_7480_1
crossref_primary_10_3390_microorganisms11122871
crossref_primary_10_1016_j_apsoil_2023_105121
crossref_primary_10_1111_1462_2920_14246
crossref_primary_10_1111_j_1574_6941_2010_00970_x
crossref_primary_10_1264_jsme2_ME14137
crossref_primary_10_1128_msystems_00529_22
crossref_primary_10_1111_ejss_12881
crossref_primary_10_1007_s11368_017_1738_9
crossref_primary_10_1111_j_1574_6941_2008_00466_x
crossref_primary_10_3389_fpls_2024_1340336
crossref_primary_10_1016_j_scitotenv_2021_147338
crossref_primary_10_3390_su11154088
crossref_primary_10_1134_S106741361604010X
crossref_primary_10_3389_fmicb_2015_00049
crossref_primary_10_1016_j_geoderma_2014_06_015
crossref_primary_10_1111_1574_6941_12009
crossref_primary_10_1155_2013_289478
crossref_primary_10_1016_j_soilbio_2022_108655
crossref_primary_10_1016_j_apsoil_2021_103972
crossref_primary_10_1016_j_geoderma_2019_04_008
crossref_primary_10_1016_j_scitotenv_2023_166533
crossref_primary_10_1007_s11368_022_03261_5
crossref_primary_10_1016_j_soilbio_2016_11_005
crossref_primary_10_1007_s00253_013_5213_2
crossref_primary_10_1007_s42860_021_00118_9
crossref_primary_10_1016_j_soilbio_2016_11_007
crossref_primary_10_1038_s41396_018_0316_5
crossref_primary_10_1007_s11368_014_0968_3
crossref_primary_10_1128_AEM_00543_13
crossref_primary_10_1007_s11274_020_02818_1
crossref_primary_10_1007_s11368_018_2109_x
crossref_primary_10_1016_j_orggeochem_2015_02_009
crossref_primary_10_1111_1574_6941_12111
crossref_primary_10_1016_j_apsoil_2023_105119
crossref_primary_10_1016_j_ecolind_2022_109655
crossref_primary_10_1016_j_soilbio_2022_108887
crossref_primary_10_1038_ismej_2010_206
crossref_primary_10_3389_fmicb_2019_01501
crossref_primary_10_1021_es5021058
crossref_primary_10_1007_s00253_016_7859_z
crossref_primary_10_1111_1574_6941_12119
crossref_primary_10_1007_s00253_023_12576_3
crossref_primary_10_1007_s11104_009_9947_7
crossref_primary_10_1007_s12088_015_0551_7
crossref_primary_10_1590_0034_737X201562060012
crossref_primary_10_1016_j_apsoil_2021_103984
crossref_primary_10_1007_s10661_014_3678_9
crossref_primary_10_1038_srep11146
crossref_primary_10_3390_land10101039
crossref_primary_10_3389_fpls_2020_572741
crossref_primary_10_2136_sssaj2011_0152
crossref_primary_10_1007_s11783_014_0635_3
crossref_primary_10_1016_j_scitotenv_2013_05_070
crossref_primary_10_1073_pnas_1004947107
crossref_primary_10_1016_j_scitotenv_2020_137248
crossref_primary_10_1016_j_soilbio_2017_05_001
crossref_primary_10_3389_fmicb_2018_00674
crossref_primary_10_1111_1462_2920_15348
crossref_primary_10_1264_jsme2_ME13066
crossref_primary_10_1002_jobm_201100150
crossref_primary_10_1177_1176934319883612
crossref_primary_10_1016_j_apsoil_2024_105501
crossref_primary_10_1038_ismej_2011_168
crossref_primary_10_1111_1574_6941_12340
crossref_primary_10_1016_j_apsoil_2013_03_006
crossref_primary_10_2136_sssaj2010_0459
crossref_primary_10_1016_j_tim_2010_06_003
crossref_primary_10_1016_S2095_3119_15_61229_1
crossref_primary_10_1071_SR08126
crossref_primary_10_1007_s00248_010_9714_6
crossref_primary_10_1007_s12583_018_0982_2
crossref_primary_10_1038_srep32791
crossref_primary_10_1002_jobm_201200671
crossref_primary_10_3390_su17062502
crossref_primary_10_1016_j_biortech_2009_09_050
crossref_primary_10_1007_s00374_018_1293_6
crossref_primary_10_1371_journal_pone_0015897
crossref_primary_10_1080_00380768_2012_664783
crossref_primary_10_1111_j_1574_6941_2009_00761_x
crossref_primary_10_1007_s11356_013_1909_1
crossref_primary_10_1111_1758_2229_12420
crossref_primary_10_3389_fmicb_2016_01373
crossref_primary_10_1128_AEM_00441_08
crossref_primary_10_3389_fmicb_2018_00885
crossref_primary_10_1111_j_1462_2920_2008_01775_x
crossref_primary_10_1007_s00374_015_1044_x
crossref_primary_10_1007_s00253_012_3947_x
crossref_primary_10_1007_s11368_017_1846_6
crossref_primary_10_1111_1574_6941_12336
crossref_primary_10_1186_s40793_022_00419_z
crossref_primary_10_1371_journal_pone_0089568
crossref_primary_10_1016_j_agee_2021_107318
crossref_primary_10_1038_ismej_2009_39
crossref_primary_10_1016_j_ecoleng_2016_01_068
crossref_primary_10_1007_s00374_013_0857_8
crossref_primary_10_1007_s11104_019_04052_7
crossref_primary_10_1007_s00374_016_1121_9
crossref_primary_10_1016_j_apsoil_2013_03_004
crossref_primary_10_1111_1462_2920_14238
crossref_primary_10_1111_ejss_12964
crossref_primary_10_1007_s00374_012_0767_1
crossref_primary_10_7841_ksbbj_2022_37_2_71
crossref_primary_10_1111_gcb_16989
crossref_primary_10_3389_fmicb_2018_00116
crossref_primary_10_1016_j_apsoil_2025_105964
crossref_primary_10_1007_s11104_023_06223_z
crossref_primary_10_1016_j_soilbio_2011_12_013
crossref_primary_10_1016_j_soilbio_2017_06_027
crossref_primary_10_1128_AEM_01031_18
crossref_primary_10_1016_j_soilbio_2017_06_024
crossref_primary_10_1016_j_chemosphere_2020_127032
crossref_primary_10_1016_S2095_3119_13_60426_8
crossref_primary_10_1007_s11707_014_0448_5
crossref_primary_10_1007_s11274_013_1559_y
crossref_primary_10_1007_s11368_009_0120_y
crossref_primary_10_1016_j_ejsobi_2020_103263
crossref_primary_10_1016_j_still_2016_12_014
crossref_primary_10_1080_01490451_2013_797523
crossref_primary_10_1016_j_envres_2020_110671
crossref_primary_10_1038_ismej_2010_138
crossref_primary_10_1016_j_scitotenv_2020_138427
crossref_primary_10_1128_AEM_01031_16
crossref_primary_10_1016_j_apsoil_2024_105691
crossref_primary_10_1038_ismej_2010_130
crossref_primary_10_1111_j_1462_2920_2007_01481_x
crossref_primary_10_1016_j_cej_2022_140172
crossref_primary_10_1016_j_envres_2021_111802
crossref_primary_10_1111_j_1365_2672_2008_04109_x
crossref_primary_10_1002_jpln_201700130
crossref_primary_10_1016_j_geoderma_2018_05_022
crossref_primary_10_1139_cjm_2017_0362
crossref_primary_10_1016_j_envpol_2018_08_079
crossref_primary_10_1007_s00248_017_1098_4
crossref_primary_10_1007_s00253_014_6341_z
crossref_primary_10_5194_bg_13_2051_2016
crossref_primary_10_1016_j_soilbio_2015_02_013
crossref_primary_10_1007_s11368_017_1792_3
crossref_primary_10_1016_j_apsoil_2021_103940
crossref_primary_10_1016_j_ecoenv_2018_08_075
crossref_primary_10_1016_j_ejsobi_2014_10_003
crossref_primary_10_1631_jzus_B1200013
crossref_primary_10_1134_S106422931908012X
crossref_primary_10_1016_S1002_0160_13_60065_X
crossref_primary_10_1016_S1001_0742_11_60747_X
crossref_primary_10_3390_plants9111501
crossref_primary_10_1007_s00253_015_6488_2
crossref_primary_10_1007_s11368_011_0369_9
crossref_primary_10_1007_s11368_015_1086_6
crossref_primary_10_1128_AEM_01787_07
crossref_primary_10_1016_j_soilbio_2012_06_006
crossref_primary_10_3390_agronomy13010010
crossref_primary_10_1007_s11368_014_0910_8
crossref_primary_10_1038_s41522_024_00616_3
crossref_primary_10_1016_j_ejsobi_2017_09_005
crossref_primary_10_1016_j_jenvman_2017_04_066
crossref_primary_10_1111_mec_12786
crossref_primary_10_1007_s11368_013_0843_7
crossref_primary_10_1016_j_ecoleng_2015_12_023
crossref_primary_10_1631_jzus_B1400114
crossref_primary_10_1007_s11368_013_0657_7
crossref_primary_10_1016_j_ecoenv_2018_06_030
crossref_primary_10_1111_j_1758_2229_2009_00130_x
crossref_primary_10_1007_s11368_010_0256_9
crossref_primary_10_3390_agronomy13092420
crossref_primary_10_1016_S1002_0160_18_60055_4
crossref_primary_10_2136_sssaj2008_0059
crossref_primary_10_1007_s00248_014_0391_8
crossref_primary_10_1111_j_1574_6941_2011_01280_x
crossref_primary_10_1016_j_geoderma_2018_11_033
crossref_primary_10_1016_j_scitotenv_2021_145023
crossref_primary_10_1128_AEM_00136_11
crossref_primary_10_3390_agriculture11101012
crossref_primary_10_3390_agriculture14030445
crossref_primary_10_1016_j_scitotenv_2021_147329
crossref_primary_10_1007_s11368_018_2089_x
crossref_primary_10_1016_j_soilbio_2013_08_001
crossref_primary_10_1016_j_tim_2012_08_001
crossref_primary_10_1016_j_apsoil_2021_103966
crossref_primary_10_1016_S1001_0742_11_60832_2
crossref_primary_10_1080_01490451_2013_875298
crossref_primary_10_1038_s41598_017_10185_5
crossref_primary_10_1016_j_apsoil_2014_06_009
crossref_primary_10_1016_j_apsoil_2020_103783
crossref_primary_10_1016_j_chnaes_2016_12_004
crossref_primary_10_3390_agriculture11111040
crossref_primary_10_1016_j_scitotenv_2019_02_427
crossref_primary_10_1080_00380768_2021_1963639
crossref_primary_10_3389_fmicb_2018_01543
crossref_primary_10_1002_eap_1783
crossref_primary_10_1016_j_ejsobi_2017_05_005
crossref_primary_10_1002_saj2_20029
crossref_primary_10_1016_S1002_0160_15_60095_9
crossref_primary_10_1007_s00253_012_4342_3
crossref_primary_10_1080_01490451_2018_1479806
crossref_primary_10_1016_j_resmic_2015_07_012
crossref_primary_10_1007_s13213_013_0625_x
crossref_primary_10_1021_acs_est_0c07703
crossref_primary_10_1080_03650340_2013_831976
crossref_primary_10_1016_j_scitotenv_2015_10_154
crossref_primary_10_1007_s00253_016_7421_z
crossref_primary_10_1016_j_ejsobi_2013_05_008
crossref_primary_10_1099_mic_0_2007_013581_0
crossref_primary_10_1155_2018_8429145
crossref_primary_10_1007_s11368_012_0532_y
crossref_primary_10_1007_s00248_018_1183_3
crossref_primary_10_1007_s11368_021_02897_z
crossref_primary_10_1590_S0100_06832011000500007
crossref_primary_10_1139_cjm_2012_0490
crossref_primary_10_1111_j_1462_2920_2008_01613_x
crossref_primary_10_1007_s13213_014_0979_8
crossref_primary_10_1016_S1001_0742_09_60342_9
crossref_primary_10_1016_j_agee_2015_08_009
crossref_primary_10_1016_j_soilbio_2015_11_003
crossref_primary_10_1016_j_soilbio_2015_11_005
crossref_primary_10_1002_jobm_201300217
crossref_primary_10_1007_s00253_009_2426_5
crossref_primary_10_1007_s00253_012_4683_y
crossref_primary_10_1016_j_apsoil_2013_05_003
crossref_primary_10_1016_j_apsoil_2015_10_011
crossref_primary_10_1086_685688
crossref_primary_10_1111_j_1365_2672_2009_04283_x
crossref_primary_10_1007_s11783_020_1375_1
crossref_primary_10_1065_jss2008_01_270
crossref_primary_10_1099_ijs_0_063172_0
crossref_primary_10_1016_S2095_3119_20_63271_3
crossref_primary_10_1021_acs_est_8b04673
crossref_primary_10_1016_S1002_0160_10_60069_0
crossref_primary_10_1016_j_apsoil_2020_103842
crossref_primary_10_1002_sae2_12115
crossref_primary_10_1007_s11104_021_05121_6
crossref_primary_10_1111_jam_15289
crossref_primary_10_3724_SP_J_1011_2010_00954
crossref_primary_10_1007_s00253_014_6026_7
crossref_primary_10_1007_s11101_009_9137_5
crossref_primary_10_1007_s11356_018_3900_3
crossref_primary_10_1890_ES14_00481_1
crossref_primary_10_5194_bg_10_5739_2013
crossref_primary_10_1007_s11104_016_2902_5
crossref_primary_10_1007_s42773_025_00432_8
crossref_primary_10_1038_s41598_023_44147_x
crossref_primary_10_1002_jobm_201700035
crossref_primary_10_1038_s41598_019_45877_7
crossref_primary_10_1093_femsre_fuv021
crossref_primary_10_1007_s00248_012_0093_z
crossref_primary_10_1186_s13568_017_0479_x
crossref_primary_10_3390_d13070282
crossref_primary_10_1029_2021GB007070
crossref_primary_10_1007_s00248_017_0992_0
crossref_primary_10_1111_1758_2229_12259
crossref_primary_10_1038_s41396_021_01167_7
crossref_primary_10_1371_journal_pone_0218779
crossref_primary_10_1007_s00253_010_2595_2
crossref_primary_10_1016_j_agee_2015_09_028
crossref_primary_10_1080_01490451_2014_932033
crossref_primary_10_1007_s00248_014_0526_y
crossref_primary_10_1007_s00284_014_0714_5
crossref_primary_10_2134_jeq2015_06_0331
crossref_primary_10_1016_j_apsoil_2019_103395
crossref_primary_10_1016_j_chemosphere_2019_02_167
crossref_primary_10_1016_j_soilbio_2024_109361
crossref_primary_10_3389_fmicb_2020_568588
crossref_primary_10_1111_j_1462_2920_2009_02070_x
crossref_primary_10_1007_s11356_013_1905_5
crossref_primary_10_1007_s00248_014_0548_5
crossref_primary_10_1371_journal_pone_0139778
crossref_primary_10_1371_journal_pone_0164932
crossref_primary_10_3389_fmicb_2018_00007
crossref_primary_10_1007_s00253_014_5651_5
crossref_primary_10_1371_journal_pone_0024750
crossref_primary_10_1128_AEM_00432_12
crossref_primary_10_1007_s11104_018_3774_7
crossref_primary_10_1016_S1001_0742_13_60443_X
crossref_primary_10_1007_s00253_015_6804_x
crossref_primary_10_1016_S2095_3119_16_61594_0
crossref_primary_10_1080_09593330_2025_2471044
crossref_primary_10_1186_s12866_021_02313_z
crossref_primary_10_1016_j_envpol_2018_07_028
crossref_primary_10_1016_j_soilbio_2013_07_010
crossref_primary_10_1139_w2012_032
crossref_primary_10_3389_fmicb_2015_01539
crossref_primary_10_1016_j_apsoil_2020_103861
crossref_primary_10_1016_j_scitotenv_2018_07_223
crossref_primary_10_1016_S1002_0160_12_60006_X
crossref_primary_10_1111_1462_2920_12339
crossref_primary_10_1093_femsle_fnw052
crossref_primary_10_1111_j_1574_6941_2011_01294_x
crossref_primary_10_1016_S1002_0160_19_60803_9
crossref_primary_10_1111_1574_6941_12180
crossref_primary_10_1139_cjm_2020_0228
crossref_primary_10_7717_peerj_8844
crossref_primary_10_1016_j_still_2018_02_010
crossref_primary_10_1371_journal_pone_0299518
crossref_primary_10_1111_j_1462_2920_2008_01701_x
crossref_primary_10_1007_s11368_011_0450_4
crossref_primary_10_1111_mec_13010
crossref_primary_10_3389_fmicb_2019_01931
crossref_primary_10_1007_s11104_019_04249_w
crossref_primary_10_1016_j_agee_2022_108224
crossref_primary_10_1128_AEM_00843_08
crossref_primary_10_1080_09064710_2015_1025823
crossref_primary_10_1016_j_apsoil_2020_103812
crossref_primary_10_1016_j_marenvres_2021_105397
crossref_primary_10_1016_j_ecoenv_2016_09_026
crossref_primary_10_1007_s11368_008_0025_1
crossref_primary_10_1038_srep14345
crossref_primary_10_1016_j_jes_2022_02_038
crossref_primary_10_1016_j_geoderma_2020_114814
crossref_primary_10_1007_s12275_008_0311_z
crossref_primary_10_1016_j_apsoil_2021_104062
crossref_primary_10_3389_fmicb_2017_00415
crossref_primary_10_1016_j_ecss_2015_09_008
crossref_primary_10_1111_1574_6941_12391
crossref_primary_10_1080_00288233_2012_670118
crossref_primary_10_1042_ETLS20180018
crossref_primary_10_1007_s00248_021_01763_2
crossref_primary_10_1080_09064710_2019_1576763
crossref_primary_10_3390_agronomy10040546
crossref_primary_10_5004_dwt_2018_22686
crossref_primary_10_1007_s11356_022_19516_0
crossref_primary_10_1007_s11368_009_0174_x
crossref_primary_10_1016_j_soilbio_2018_09_004
crossref_primary_10_1111_j_1462_2920_2012_02740_x
crossref_primary_10_1111_j_1758_2229_2010_00146_x
crossref_primary_10_1016_j_apsoil_2019_03_021
crossref_primary_10_1016_j_soilbio_2010_09_009
crossref_primary_10_1111_1462_2920_14457
crossref_primary_10_1007_s00374_013_0889_0
crossref_primary_10_5194_se_8_1119_2017
crossref_primary_10_1080_10934529_2010_486330
crossref_primary_10_1111_1462_2920_12481
crossref_primary_10_1016_j_apsoil_2011_03_004
crossref_primary_10_1111_1574_6941_12384
crossref_primary_10_1007_s11368_020_02813_x
crossref_primary_10_1016_j_apsoil_2017_05_019
crossref_primary_10_1016_S1002_0160_17_60470_3
crossref_primary_10_1016_j_scitotenv_2015_01_054
crossref_primary_10_1016_j_apsoil_2010_06_015
crossref_primary_10_1016_j_soilbio_2014_10_025
crossref_primary_10_1128_AEM_01617_14
crossref_primary_10_1016_j_soilbio_2018_01_027
crossref_primary_10_1007_s11368_017_1673_9
crossref_primary_10_1080_01490450902744004
crossref_primary_10_1007_s11368_012_0531_z
crossref_primary_10_1039_D2EW00662F
crossref_primary_10_3389_fmicb_2016_01045
crossref_primary_10_1007_s00374_011_0542_8
crossref_primary_10_1016_j_apsoil_2016_03_018
crossref_primary_10_1371_journal_pone_0172767
crossref_primary_10_1016_j_soilbio_2024_109687
crossref_primary_10_3390_f9050239
crossref_primary_10_1007_s11368_008_0047_8
crossref_primary_10_1016_j_ecoleng_2011_12_021
crossref_primary_10_1016_S1002_0160_14_60021_7
crossref_primary_10_1071_SR11288
crossref_primary_10_1016_j_soilbio_2014_03_023
crossref_primary_10_1007_s00248_011_9897_5
crossref_primary_10_1016_j_chemosphere_2011_02_086
crossref_primary_10_1016_j_soilbio_2014_03_021
crossref_primary_10_1007_s13213_015_1143_9
crossref_primary_10_1111_j_1574_6941_2009_00725_x
crossref_primary_10_3389_fmicb_2017_00630
crossref_primary_10_1111_1462_2920_14553
crossref_primary_10_1080_00380768_2019_1704180
crossref_primary_10_1111_j_1462_2920_2008_01735_x
crossref_primary_10_1007_s11368_018_2108_y
crossref_primary_10_1016_j_agee_2024_109007
crossref_primary_10_1128_AEM_03859_14
crossref_primary_10_1111_1574_6941_12013
crossref_primary_10_1111_1758_2229_12109
crossref_primary_10_1016_j_apsoil_2018_06_017
crossref_primary_10_1038_s41598_022_25367_z
crossref_primary_10_1007_s10705_020_10050_4
crossref_primary_10_1016_j_apsoil_2020_103704
crossref_primary_10_1016_j_chemosphere_2018_07_105
crossref_primary_10_2136_sssaj2019_05_0134
crossref_primary_10_1016_j_scitotenv_2024_170380
crossref_primary_10_2134_jeq2017_04_0156
crossref_primary_10_3389_fmicb_2015_00898
crossref_primary_10_1139_w2012_078
crossref_primary_10_3390_agronomy9010014
crossref_primary_10_1007_s10705_016_9762_5
crossref_primary_10_1007_s11104_010_0511_2
crossref_primary_10_1002_ece3_1879
crossref_primary_10_3389_fmicb_2018_00171
crossref_primary_10_3389_fmicb_2022_938481
crossref_primary_10_1016_j_apsoil_2017_05_034
crossref_primary_10_1080_15659801_2015_1137438
crossref_primary_10_1016_j_gdata_2017_03_013
crossref_primary_10_1007_s10333_017_0623_x
crossref_primary_10_1016_j_apsoil_2022_104794
crossref_primary_10_1016_j_soilbio_2017_01_003
crossref_primary_10_1111_j_1462_2920_2009_01891_x
crossref_primary_10_1264_jsme2_ME09104
crossref_primary_10_1007_s11356_020_07952_9
crossref_primary_10_1073_pnas_1013488108
crossref_primary_10_1111_j_1574_6976_2009_00179_x
crossref_primary_10_3389_fmicb_2022_1021080
crossref_primary_10_1073_pnas_0708857105
crossref_primary_10_1111_j_1574_6941_2010_00861_x
crossref_primary_10_1007_s11368_017_1851_9
crossref_primary_10_1007_s11368_022_03246_4
crossref_primary_10_1016_j_apsoil_2014_09_008
crossref_primary_10_1016_j_heliyon_2021_e08142
crossref_primary_10_1016_j_soilbio_2012_03_006
crossref_primary_10_3724_SP_J_1003_2012_10129
crossref_primary_10_1007_s12517_021_08250_5
crossref_primary_10_1016_j_apsoil_2021_104267
crossref_primary_10_1128_AEM_00308_12
crossref_primary_10_1007_s11053_012_9189_x
crossref_primary_10_1007_s11356_017_8373_2
crossref_primary_10_1007_s12517_022_10322_z
crossref_primary_10_1016_j_soilbio_2016_07_023
crossref_primary_10_1016_j_soilbio_2014_07_020
crossref_primary_10_1007_s11368_014_0864_x
crossref_primary_10_1111_geb_13030
crossref_primary_10_1016_j_apsoil_2014_09_003
crossref_primary_10_1016_j_scitotenv_2017_11_234
crossref_primary_10_3390_agronomy10070931
crossref_primary_10_1186_s13568_021_01211_x
crossref_primary_10_1128_AEM_01318_10
crossref_primary_10_1111_aab_12546
crossref_primary_10_1128_AEM_00595_10
crossref_primary_10_3390_microorganisms13010203
crossref_primary_10_1016_j_still_2019_104436
crossref_primary_10_1016_j_envpol_2015_11_023
crossref_primary_10_1016_j_scitotenv_2017_07_146
crossref_primary_10_1007_s00248_010_9730_6
crossref_primary_10_3390_ijerph19052732
crossref_primary_10_3390_agronomy12081911
crossref_primary_10_1007_s42729_019_00120_0
crossref_primary_10_1016_j_biortech_2018_09_042
crossref_primary_10_1016_j_soilbio_2017_01_022
crossref_primary_10_1371_journal_pone_0073778
crossref_primary_10_1071_SR15359
crossref_primary_10_1128_AEM_01394_09
crossref_primary_10_1016_j_apsoil_2015_11_006
crossref_primary_10_1038_ismej_2009_105
crossref_primary_10_1128_mBio_00240_15
crossref_primary_10_1128_AEM_01761_08
crossref_primary_10_1371_journal_pone_0109161
crossref_primary_10_1016_j_still_2019_104463
crossref_primary_10_1007_s00253_013_5242_x
crossref_primary_10_1016_j_agee_2014_05_006
crossref_primary_10_1016_j_pedobi_2013_07_003
crossref_primary_10_1016_j_agee_2023_108445
crossref_primary_10_1016_j_biortech_2017_06_102
crossref_primary_10_3389_fmicb_2021_746524
crossref_primary_10_1016_j_apsoil_2022_104456
crossref_primary_10_1016_j_soilbio_2008_06_024
crossref_primary_10_1080_00288233_2014_924969
crossref_primary_10_3389_fmicb_2015_00982
crossref_primary_10_1016_j_ejsobi_2021_103288
crossref_primary_10_1016_j_scitotenv_2023_162831
crossref_primary_10_1016_j_agee_2023_108439
crossref_primary_10_1007_s11270_009_0253_z
crossref_primary_10_1007_s11368_013_0652_z
crossref_primary_10_1016_j_micres_2011_04_002
crossref_primary_10_1007_s40333_013_0205_8
crossref_primary_10_1111_j_1462_2920_2009_01958_x
crossref_primary_10_1038_srep28981
crossref_primary_10_1007_s42729_023_01600_0
crossref_primary_10_1029_2017JG004182
crossref_primary_10_1007_s42832_020_0044_4
crossref_primary_10_1007_s11356_016_8030_1
crossref_primary_10_1071_SR13160
crossref_primary_10_1007_s11104_014_2343_y
crossref_primary_10_1016_j_jclepro_2022_134071
crossref_primary_10_5194_bg_16_4277_2019
crossref_primary_10_1080_03650340_2018_1455001
crossref_primary_10_1007_s11368_011_0375_y
crossref_primary_10_1093_femsec_fiv013
crossref_primary_10_1016_j_biortech_2020_123633
crossref_primary_10_1007_s12665_013_2773_5
crossref_primary_10_1016_j_soilbio_2017_09_007
crossref_primary_10_1134_S1064229316020101
crossref_primary_10_1016_j_scitotenv_2017_12_084
crossref_primary_10_2139_ssrn_4167625
crossref_primary_10_1071_SR13039
crossref_primary_10_1111_ejss_13017
crossref_primary_10_1016_S2095_3119_15_61158_3
crossref_primary_10_1038_ngeo613
crossref_primary_10_1080_03650340_2020_1855326
crossref_primary_10_1007_s00253_017_8147_2
crossref_primary_10_1016_j_soilbio_2020_107925
crossref_primary_10_1111_1462_2920_13872
crossref_primary_10_1111_1758_2229_13167
crossref_primary_10_1016_j_soilbio_2014_06_024
crossref_primary_10_1016_j_soilbio_2015_08_030
crossref_primary_10_1016_j_agee_2018_02_018
crossref_primary_10_1016_j_geoderma_2023_116711
crossref_primary_10_1016_j_apsoil_2013_08_005
crossref_primary_10_1111_j_1747_0765_2010_00449_x
crossref_primary_10_1128_AEM_02608_10
crossref_primary_10_1007_s11368_018_2039_7
crossref_primary_10_1080_09064710_2012_664164
crossref_primary_10_1007_s10705_015_9713_6
crossref_primary_10_1007_s11104_012_1378_1
crossref_primary_10_1016_j_apsoil_2022_104518
crossref_primary_10_1016_j_soilbio_2018_02_007
crossref_primary_10_1021_acs_est_7b02360
crossref_primary_10_1128_AEM_00831_10
crossref_primary_10_3390_agriculture11060523
crossref_primary_10_1016_j_scitotenv_2020_140065
crossref_primary_10_3390_agronomy13061461
crossref_primary_10_1080_17550874_2014_984786
crossref_primary_10_1007_s11104_023_05911_0
crossref_primary_10_1007_s11368_015_1321_1
crossref_primary_10_1128_AEM_00258_19
crossref_primary_10_1007_s11356_020_09120_5
crossref_primary_10_1016_j_soilbio_2014_06_016
crossref_primary_10_3389_fmicb_2023_1095937
crossref_primary_10_1007_s11356_015_5172_5
crossref_primary_10_1007_s11104_022_05709_6
crossref_primary_10_1016_j_envpol_2020_114140
crossref_primary_10_1016_j_apsoil_2014_01_011
crossref_primary_10_1080_01490451_2016_1225861
crossref_primary_10_1016_j_ecss_2017_09_001
crossref_primary_10_1016_j_apsoil_2021_104114
crossref_primary_10_3389_fmicb_2022_1004836
crossref_primary_10_1016_j_scitotenv_2017_11_147
crossref_primary_10_1016_j_soilbio_2016_09_001
crossref_primary_10_3389_fsoil_2022_869136
crossref_primary_10_1007_s11356_016_7519_y
crossref_primary_10_1007_s11368_019_02540_y
crossref_primary_10_1371_journal_pone_0114723
crossref_primary_10_1007_s11368_015_1278_0
crossref_primary_10_1007_s11368_021_03118_3
crossref_primary_10_1080_00103624_2019_1614606
crossref_primary_10_1128_AEM_01807_20
crossref_primary_10_1080_09064710_2015_1093653
crossref_primary_10_1007_s00253_018_8873_0
crossref_primary_10_1016_j_watres_2021_117774
crossref_primary_10_3389_fmicb_2024_1377721
crossref_primary_10_1016_S2095_3119_16_61498_3
crossref_primary_10_3389_fenvs_2021_709391
crossref_primary_10_3390_environments4040084
crossref_primary_10_1016_j_geoderma_2025_117266
crossref_primary_10_17221_416_2011_PSE
crossref_primary_10_1016_j_soilbio_2019_107609
crossref_primary_10_1016_j_soilbio_2015_07_005
crossref_primary_10_1016_j_apsoil_2010_04_003
crossref_primary_10_1007_s11368_011_0372_1
crossref_primary_10_1007_s11368_011_0406_8
crossref_primary_10_1007_s11104_015_2457_x
crossref_primary_10_3389_fmicb_2015_00938
crossref_primary_10_1007_s11368_009_0060_6
crossref_primary_10_1111_1462_2920_14824
crossref_primary_10_1007_s00253_013_5428_2
crossref_primary_10_1007_s11356_015_5041_2
crossref_primary_10_1016_j_apsoil_2021_104120
crossref_primary_10_1016_j_biortech_2010_11_089
crossref_primary_10_1016_j_soilbio_2016_09_013
crossref_primary_10_1007_s42770_020_00418_7
crossref_primary_10_1016_j_resenv_2025_100210
crossref_primary_10_3390_agronomy12102515
crossref_primary_10_1016_j_resmic_2014_08_003
crossref_primary_10_1016_j_scitotenv_2012_08_091
crossref_primary_10_1007_s11356_015_4232_1
crossref_primary_10_3390_agronomy14092070
crossref_primary_10_1007_s00253_011_3090_0
crossref_primary_10_1016_j_geoderma_2022_115775
crossref_primary_10_1007_s00253_013_5174_5
crossref_primary_10_1016_j_eja_2022_126669
crossref_primary_10_1016_j_soilbio_2013_10_016
crossref_primary_10_1080_10934529_2020_1852845
crossref_primary_10_1016_j_eti_2023_103226
crossref_primary_10_1371_journal_pone_0178342
crossref_primary_10_1016_j_envpol_2015_11_003
crossref_primary_10_1016_j_apsoil_2021_104139
crossref_primary_10_1111_j_1574_6941_2010_00853_x
crossref_primary_10_1016_j_marpolbul_2024_116046
crossref_primary_10_1007_s11738_014_1744_0
crossref_primary_10_1039_D1EW00827G
crossref_primary_10_1007_s00253_023_12363_0
crossref_primary_10_1016_j_watres_2013_01_042
Cites_doi 10.1111/j.1462-2920.2005.00906.x
10.1111/j.1365-2389.2004.00614.x
10.1128/AEM.71.12.8335-8343.2005
10.1016/S0167-7012(99)00094-9
10.1126/science.1093857
10.1016/j.soilbio.2005.09.008
10.1128/AEM.69.10.6152-6164.2003
10.1016/j.femsle.2005.06.057
10.1128/AEM.00402-06
10.1046/j.1462-2920.2000.00080.x
10.1128/AEM.65.9.4155-4162.1999
10.1128/AEM.64.8.2958-2965.1998
10.1146/annurev.micro.55.1.485
10.1038/nature04983
10.1099/00221287-139-6-1147
10.1128/AEM.02154-05
10.1128/AEM.67.2.972-976.2001
10.1128/AEM.70.2.1008-1016.2004
10.1128/AEM.62.11.4147-4154.1996
10.1038/nature03911
10.1128/AEM.66.12.5410-5418.2000
10.1016/j.soilbio.2005.09.011
10.1073/pnas.0600756103
10.1128/AEM.66.11.4605-4614.2000
10.1093/bib/5.2.150
10.1016/0038-0717(92)90039-Z
10.1128/AEM.68.11.5685-5692.2002
10.1007/s00248-007-9320-4
10.1128/AEM.66.12.5368-5382.2000
10.1073/pnas.0506625102
10.1007/s00374-005-0029-6
10.1128/AEM.65.7.2994-3000.1999
ContentType Journal Article
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
8FD
C1K
FR3
P64
7S9
L.6
7X8
DOI 10.1111/j.1462-2920.2007.01358.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Technology Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 2374
ExternalDocumentID 17686032
10_1111_j_1462_2920_2007_01358_x
EMI1358
ark_67375_WNG_Z23N8087_6
US201300796972
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AEUQT
AFPWT
BSCLL
ESX
WRC
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-c4918-b6cd8be52feb840f5fe2e52c0dd5488c1e9c0786ebcbe8d9c8531911babc6d5d3
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Thu Jul 10 18:16:43 EDT 2025
Fri Jul 11 09:57:45 EDT 2025
Fri Jul 11 14:41:09 EDT 2025
Thu Apr 03 07:10:44 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Tue Jul 01 00:42:38 EDT 2025
Wed Jan 22 16:43:11 EST 2025
Wed Oct 30 09:57:23 EDT 2024
Thu Apr 03 09:45:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4918-b6cd8be52feb840f5fe2e52c0dd5488c1e9c0786ebcbe8d9c8531911babc6d5d3
Notes http://dx.doi.org/10.1111/j.1462-2920.2007.01358.x
ark:/67375/WNG-Z23N8087-6
istex:0E0E280994A17F7A1C4D95E840D4471E0297029F
ArticleID:EMI1358
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17686032
PQID 20506686
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_68142733
proquest_miscellaneous_47425510
proquest_miscellaneous_20506686
pubmed_primary_17686032
crossref_citationtrail_10_1111_j_1462_2920_2007_01358_x
crossref_primary_10_1111_j_1462_2920_2007_01358_x
wiley_primary_10_1111_j_1462_2920_2007_01358_x_EMI1358
istex_primary_ark_67375_WNG_Z23N8087_6
fao_agris_US201300796972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2007
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: September 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Enwall, K., Philippot, L., and Hallin, S. (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71: 8335-8343.
Bruns, M.A., Stephen, J.R., Kowalchuk, G.A., Prosser, J.I., and Paul, E.A. (1999) Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl Environ Microbiol 65: 2994-3000.
Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985-1995.
Nyberg, K., Schnurer, A., Sundh, I., Jarvis, A., and Hallin, S. (2006) Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues. Biol Fert Soils 42: 315-323.
Olsson, P.A., Hansson, M.C., and Burleigh, S.H. (2006) Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high-affinity P transporter gene induction in Arbuscular mycorrhiza. Appl Environ Microbiol 72: 4115-4120.
Avrahami, S., and Conrad, R. (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol 69: 6152-6164.
Suzuki, M.T., Taylor, L.T., and DeLong, E.F. (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66: 4605-4614.
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809.
Nugroho, R.A., Roling, W.F.M., Laverman, A.M., and Verhoef, H.A. (2006) Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be tree species specific. Soil Biol Biochem 38: 1166-1171.
Pernes-Debuyser, A., and Tessier, D. (2004) Soil physical properties affected by long-term fertilization. Eur J Soil Sci 55: 505-512.
Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546.
Kowalchuk, G.A., Stienstra, A.W., Heilig, G.H.J., Stephen, J.R., and Woldendorp, J.W. (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2: 99-110.
Head, I.M., Hiorns, W.D., Embley, T.M., Mccarthy, A.J., and Saunders, J.R. (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal-RNA gene-sequences. J Gen Microbiol 139: 1147-1153.
Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., and Insam, H. (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38: 1092-1100.
Kumar, S., Tamura, K., and Nei, M. (2004) mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150-163.
Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., Van Bleijswijk, J., Timmers, P., et al. (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317-12322.
Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66: 5368-5382.
Phillips, C.J., Harris, D., Dollhopf, S.L., Gross, K.L., Prosser, J.I., and Paul, E.A. (2000) Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl Environ Microbiol 66: 5410-5418.
Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., Gebreyesus, B., et al. (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70: 1008-1016.
Avrahami, S., Conrad, R., and Braker, G. (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68: 5685-5692.
Stephen, J.R., Kowalchuk, G.A., Bruns, M.A.V., McCaig, A.E., Philips, C.J., Embley, T.M., and Prosser, J.I. (1998) Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64: 2958-2965.
McAndrew, D.W., and Malhi, S.S. (1992) Long-term N fertilization of a solonetzic soil: effects on chemical and biological properties. Soil Biol Biochem 24: 619-623.
Mendum, T.A., Sockett, R.E., and Hirsch, P.R. (1999) Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl Environ Microbiol 65: 4155-4162.
Stephen, J.R., McCaig, A.E., Smith, Z., Prosser, J.I., and Embley, T.M. (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62: 4147-4154.
Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., et al. (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304: 66-74.
Hermansson, A., and Lindgren, P.E. (2001) Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol 67: 972-976.
Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., and Francis, C.A. (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72: 5643-5647.
Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683-14688.
Kurola, J., Salkinoja-Salonen, M., Aarnio, T., Hultman, J., and Romantschuk, M. (2005) Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol Lett 250: 33-38.
Aakra, A., Utaker, J.B., Nes, I.F., and Bakken, L.R. (1999) An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J Microbiol Methods 39: 23-31.
Kowalchuk, G.A., and Stephen, J.R. (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55: 485-529.
2005; 250
2006; 72
2006; 38
2000; 66
2005; 437
1999; 65
2004; 5
2000; 2
1991
2001; 67
1998; 64
2004; 304
2004; 55
1993; 139
2006; 42
2004; 70
2005; 102
1999; 39
2002; 68
2003; 69
2005; 7
1996; 62
1992; 24
2005; 71
2001; 55
2006; 442
2006; 103
Innerebner G. (e_1_2_6_10_1) 2006; 38
e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Aakra A. (e_1_2_6_2_1) 1999; 39
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
Environ Microbiol. 2007 Dec;9(12):3152
References_xml – reference: Avrahami, S., and Conrad, R. (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol 69: 6152-6164.
– reference: Pernes-Debuyser, A., and Tessier, D. (2004) Soil physical properties affected by long-term fertilization. Eur J Soil Sci 55: 505-512.
– reference: Kowalchuk, G.A., Stienstra, A.W., Heilig, G.H.J., Stephen, J.R., and Woldendorp, J.W. (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2: 99-110.
– reference: Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., Gebreyesus, B., et al. (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70: 1008-1016.
– reference: Olsson, P.A., Hansson, M.C., and Burleigh, S.H. (2006) Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high-affinity P transporter gene induction in Arbuscular mycorrhiza. Appl Environ Microbiol 72: 4115-4120.
– reference: Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., Van Bleijswijk, J., Timmers, P., et al. (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317-12322.
– reference: Kurola, J., Salkinoja-Salonen, M., Aarnio, T., Hultman, J., and Romantschuk, M. (2005) Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol Lett 250: 33-38.
– reference: Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683-14688.
– reference: Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., and Insam, H. (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38: 1092-1100.
– reference: Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., and Francis, C.A. (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72: 5643-5647.
– reference: Phillips, C.J., Harris, D., Dollhopf, S.L., Gross, K.L., Prosser, J.I., and Paul, E.A. (2000) Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl Environ Microbiol 66: 5410-5418.
– reference: Aakra, A., Utaker, J.B., Nes, I.F., and Bakken, L.R. (1999) An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J Microbiol Methods 39: 23-31.
– reference: Avrahami, S., Conrad, R., and Braker, G. (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68: 5685-5692.
– reference: Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546.
– reference: Kowalchuk, G.A., and Stephen, J.R. (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55: 485-529.
– reference: Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809.
– reference: Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66: 5368-5382.
– reference: Stephen, J.R., McCaig, A.E., Smith, Z., Prosser, J.I., and Embley, T.M. (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62: 4147-4154.
– reference: Bruns, M.A., Stephen, J.R., Kowalchuk, G.A., Prosser, J.I., and Paul, E.A. (1999) Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl Environ Microbiol 65: 2994-3000.
– reference: Enwall, K., Philippot, L., and Hallin, S. (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71: 8335-8343.
– reference: Stephen, J.R., Kowalchuk, G.A., Bruns, M.A.V., McCaig, A.E., Philips, C.J., Embley, T.M., and Prosser, J.I. (1998) Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64: 2958-2965.
– reference: Nyberg, K., Schnurer, A., Sundh, I., Jarvis, A., and Hallin, S. (2006) Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues. Biol Fert Soils 42: 315-323.
– reference: Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., et al. (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304: 66-74.
– reference: McAndrew, D.W., and Malhi, S.S. (1992) Long-term N fertilization of a solonetzic soil: effects on chemical and biological properties. Soil Biol Biochem 24: 619-623.
– reference: Head, I.M., Hiorns, W.D., Embley, T.M., Mccarthy, A.J., and Saunders, J.R. (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal-RNA gene-sequences. J Gen Microbiol 139: 1147-1153.
– reference: Mendum, T.A., Sockett, R.E., and Hirsch, P.R. (1999) Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl Environ Microbiol 65: 4155-4162.
– reference: Kumar, S., Tamura, K., and Nei, M. (2004) mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150-163.
– reference: Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985-1995.
– reference: Suzuki, M.T., Taylor, L.T., and DeLong, E.F. (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66: 4605-4614.
– reference: Hermansson, A., and Lindgren, P.E. (2001) Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol 67: 972-976.
– reference: Nugroho, R.A., Roling, W.F.M., Laverman, A.M., and Verhoef, H.A. (2006) Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be tree species specific. Soil Biol Biochem 38: 1166-1171.
– volume: 71
  start-page: 8335
  year: 2005
  end-page: 8343
  article-title: Activity and composition of the denitrifying bacterial community respond differently to long‐term fertilization
  publication-title: Appl Environ Microbiol
– volume: 65
  start-page: 4155
  year: 1999
  end-page: 4162
  article-title: Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia‐oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer
  publication-title: Appl Environ Microbiol
– volume: 304
  start-page: 66
  year: 2004
  end-page: 74
  article-title: Environmental genome shotgun sequencing of the Sargasso sea
  publication-title: Science
– volume: 7
  start-page: 1985
  year: 2005
  end-page: 1995
  article-title: Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling
  publication-title: Environ Microbiol
– volume: 66
  start-page: 5368
  year: 2000
  end-page: 5382
  article-title: Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys
  publication-title: Appl Environ Microbiol
– volume: 250
  start-page: 33
  year: 2005
  end-page: 38
  article-title: Activity, diversity and population size of ammonia‐oxidising bacteria in oil‐contaminated landfarming soil
  publication-title: FEMS Microbiol Lett
– volume: 38
  start-page: 1092
  year: 2006
  end-page: 1100
  article-title: Traceability of ammonia‐oxidizing bacteria in compost‐treated soils
  publication-title: Soil Biol Biochem
– volume: 65
  start-page: 2994
  year: 1999
  end-page: 3000
  article-title: Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils
  publication-title: Appl Environ Microbiol
– volume: 64
  start-page: 2958
  year: 1998
  end-page: 2965
  article-title: Analysis of beta‐subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing
  publication-title: Appl Environ Microbiol
– volume: 103
  start-page: 12317
  year: 2006
  end-page: 12322
  article-title: Archaeal nitrification in the ocean
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 150
  year: 2004
  end-page: 163
  article-title: mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment
  publication-title: Brief Bioinform
– volume: 66
  start-page: 5410
  year: 2000
  end-page: 5418
  article-title: Effects of agronomic treatments on structure and function of ammonia‐oxidizing communities
  publication-title: Appl Environ Microbiol
– volume: 42
  start-page: 315
  year: 2006
  end-page: 323
  article-title: Ammonia‐oxidizing communities in agricultural soil incubated with organic waste residues
  publication-title: Biol Fert Soils
– volume: 55
  start-page: 505
  year: 2004
  end-page: 512
  article-title: Soil physical properties affected by long‐term fertilization
  publication-title: Eur J Soil Sci
– volume: 24
  start-page: 619
  year: 1992
  end-page: 623
  article-title: Long‐term N fertilization of a solonetzic soil: effects on chemical and biological properties
  publication-title: Soil Biol Biochem
– volume: 66
  start-page: 4605
  year: 2000
  end-page: 4614
  article-title: Quantitative analysis of small‐subunit rRNA genes in mixed microbial populations via 5′‐nuclease assays
  publication-title: Appl Environ Microbiol
– volume: 139
  start-page: 1147
  year: 1993
  end-page: 1153
  article-title: The phylogeny of autotrophic ammonia‐oxidizing bacteria as determined by analysis of 16S ribosomal‐RNA gene‐sequences
  publication-title: J Gen Microbiol
– volume: 38
  start-page: 1166
  year: 2006
  end-page: 1171
  article-title: Net nitrification rate and presence of cluster 2 in acid coniferous forest soils appear to be tree species specific
  publication-title: Soil Biol Biochem
– volume: 39
  start-page: 23
  year: 1999
  end-page: 31
  article-title: An evaluated improvement of the extinction dilution method for isolation of ammonia‐oxidizing bacteria
  publication-title: J Microbiol Methods
– volume: 437
  start-page: 543
  year: 2005
  end-page: 546
  article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon
  publication-title: Nature
– volume: 69
  start-page: 6152
  year: 2003
  end-page: 6164
  article-title: Patterns of community change among ammonia oxidizers in meadow soils upon long‐term incubation at different temperatures
  publication-title: Appl Environ Microbiol
– volume: 72
  start-page: 4115
  year: 2006
  end-page: 4120
  article-title: Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high‐affinity P transporter gene induction in
  publication-title: Appl Environ Microbiol
– volume: 442
  start-page: 806
  year: 2006
  end-page: 809
  article-title: Archaea predominate among ammonia‐oxidizing prokaryotes in soils
  publication-title: Nature
– volume: 62
  start-page: 4147
  year: 1996
  end-page: 4154
  article-title: Molecular diversity of soil and marine 16S rRNA gene sequences related to beta‐subgroup ammonia‐oxidizing bacteria
  publication-title: Appl Environ Microbiol
– volume: 102
  start-page: 14683
  year: 2005
  end-page: 14688
  article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proc Natl Acad Sci USA
– volume: 72
  start-page: 5643
  year: 2006
  end-page: 5647
  article-title: Occurrence of ammonia‐oxidizing archaea in wastewater treatment plant bioreactors
  publication-title: Appl Environ Microbiol
– volume: 68
  start-page: 5685
  year: 2002
  end-page: 5692
  article-title: Effect of soil ammonium concentration on N O release and on the community structure of ammonia oxidizers and denitrifiers
  publication-title: Appl Environ Microbiol
– start-page: 115
  year: 1991
  end-page: 175
– volume: 55
  start-page: 485
  year: 2001
  end-page: 529
  article-title: Ammonia‐oxidizing bacteria: a model for molecular microbial ecology
  publication-title: Annu Rev Microbiol
– volume: 2
  start-page: 99
  year: 2000
  end-page: 110
  article-title: Changes in the community structure of ammonia‐oxidizing bacteria during secondary succession of calcareous grasslands
  publication-title: Environ Microbiol
– volume: 67
  start-page: 972
  year: 2001
  end-page: 976
  article-title: Quantification of ammonia‐oxidizing bacteria in arable soil by real‐time PCR
  publication-title: Appl Environ Microbiol
– volume: 70
  start-page: 1008
  year: 2004
  end-page: 1016
  article-title: Application of real‐time PCR to study effects of ammonium on population size of ammonia‐oxidizing bacteria in soil
  publication-title: Appl Environ Microbiol
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1462-2920.2005.00906.x
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2389.2004.00614.x
– ident: e_1_2_6_6_1
  doi: 10.1128/AEM.71.12.8335-8343.2005
– volume: 39
  start-page: 23
  year: 1999
  ident: e_1_2_6_2_1
  article-title: An evaluated improvement of the extinction dilution method for isolation of ammonia‐oxidizing bacteria
  publication-title: J Microbiol Methods
  doi: 10.1016/S0167-7012(99)00094-9
– ident: e_1_2_6_32_1
  doi: 10.1126/science.1093857
– volume: 38
  start-page: 1092
  year: 2006
  ident: e_1_2_6_10_1
  article-title: Traceability of ammonia‐oxidizing bacteria in compost‐treated soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.09.008
– ident: e_1_2_6_3_1
  doi: 10.1128/AEM.69.10.6152-6164.2003
– ident: e_1_2_6_15_1
  doi: 10.1016/j.femsle.2005.06.057
– ident: e_1_2_6_24_1
  doi: 10.1128/AEM.00402-06
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1462-2920.2000.00080.x
– ident: e_1_2_6_19_1
  doi: 10.1128/AEM.65.9.4155-4162.1999
– ident: e_1_2_6_29_1
  doi: 10.1128/AEM.64.8.2958-2965.1998
– ident: e_1_2_6_12_1
  doi: 10.1146/annurev.micro.55.1.485
– ident: e_1_2_6_17_1
  doi: 10.1038/nature04983
– ident: e_1_2_6_8_1
  doi: 10.1099/00221287-139-6-1147
– ident: e_1_2_6_23_1
  doi: 10.1128/AEM.02154-05
– ident: e_1_2_6_9_1
  doi: 10.1128/AEM.67.2.972-976.2001
– ident: e_1_2_6_22_1
  doi: 10.1128/AEM.70.2.1008-1016.2004
– ident: e_1_2_6_28_1
  doi: 10.1128/AEM.62.11.4147-4154.1996
– ident: e_1_2_6_11_1
  doi: 10.1038/nature03911
– ident: e_1_2_6_26_1
  doi: 10.1128/AEM.66.12.5410-5418.2000
– ident: e_1_2_6_20_1
  doi: 10.1016/j.soilbio.2005.09.011
– ident: e_1_2_6_33_1
  doi: 10.1073/pnas.0600756103
– ident: e_1_2_6_30_1
  doi: 10.1128/AEM.66.11.4605-4614.2000
– ident: e_1_2_6_14_1
  doi: 10.1093/bib/5.2.150
– ident: e_1_2_6_18_1
  doi: 10.1016/0038-0717(92)90039-Z
– ident: e_1_2_6_4_1
  doi: 10.1128/AEM.68.11.5685-5692.2002
– ident: e_1_2_6_16_1
  doi: 10.1007/s00248-007-9320-4
– ident: e_1_2_6_27_1
  doi: 10.1128/AEM.66.12.5368-5382.2000
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.0506625102
– ident: e_1_2_6_21_1
  doi: 10.1007/s00374-005-0029-6
– ident: e_1_2_6_5_1
  doi: 10.1128/AEM.65.7.2994-3000.1999
– reference: - Environ Microbiol. 2007 Dec;9(12):3152
SSID ssj0017370
Score 2.4787953
Snippet The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time...
Summary The abundance and composition of soil ammonia‐oxidizing bacteria (AOB) and ammonia‐oxidizing archaea (AOA) were investigated by using quantitative...
The abundance and composition of soil ammonia‐oxidizing bacteria (AOB) and ammonia‐oxidizing archaea (AOA) were investigated by using quantitative real‐time...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2364
SubjectTerms ammonia
Ammonia - metabolism
Archaea
Archaea - classification
Archaea - genetics
Archaea - growth & development
Archaea - metabolism
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - growth & development
Bacteria - metabolism
biogeochemical cycles
China
classification
community structure
Ecosystem
ecosystems
fallow
Fertilizers
Fertilizers - microbiology
field experimentation
genes
genetics
growth & development
metabolism
microbiology
Molecular Sequence Data
nitrification
nitrogen fertilizers
Nitrosospira
nucleotide sequences
nutrients
oxidation
Oxidation-Reduction
phosphorus
Phylogeny
polymerase chain reaction
Population Dynamics
population size
potassium
quantitative analysis
RNA, Ribosomal, 16S
RNA, Ribosomal, 16S - classification
soil bacteria
Soil Microbiology
soil pH
summer
upland soils
winter
Title Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices
URI https://api.istex.fr/ark:/67375/WNG-Z23N8087-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2007.01358.x
https://www.ncbi.nlm.nih.gov/pubmed/17686032
https://www.proquest.com/docview/20506686
https://www.proquest.com/docview/47425510
https://www.proquest.com/docview/68142733
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50QfDiWzeujz6Itwx59uO4iOsiOOBjcPHS9CvLMEOyTCYw7smf4B_yz_hLrOpkRmYYZRFvE6YqSSdV1V93vqoi5IXxlTW6kLHRiYsLzqpYZs7FguVgDYXNE4f7kO_G7HRSvD0rzwb-E-bC9PUhNhtu6BkhXqODa9PuOnkWY7eloRJhmpdihHgSqVuIjz5sKkmlPA994waVdIfUs_dEWzPV9Uo3gF_x0a_2gdFtbBsmp5PbZLYeVs9JmY26pRnZy52Kj_9n3HfIrQHD0uPe6O6Sa76-R270XS2_3ic_3ne6DrlrEEmpDlVPfEubigLYpNpg7gmYGvzjKDLaB9oYCmj0iqn--e17s5q66SXMq9T09aR1kN8nEMo9eR30KfYD962n3QVSNunCO9o20znFXLkFnTf1OejidEQrZJTPhzRUus4Wax-QycnrT69O46FLRGwLmYrYMOuE8WVWeQOr1aqsfAZHNnEOVmPCpl5awEHMG2u8cNIKDDtparSxzJUuf0gO6qb2h4QaWXDPdGXLyhUQeYXFipE8F5kUwkgZEb62CGWHEurYyWOutpZSmcKXgw0-uQovR60ikm40L_oyIlfQOQSjU_ocor2afMzwG3PCJZM8i8jLYImbc-nFDBl6vFSfx2_Ulywfi0RwxSLyfG2qCuIGfgzStW-6Fq5UAtoUf5EoOMRzCNl_lmAiLQD-5hF51HvB77HBw2NJDjfKgi1fedAKog_-evyvikfkZr_9jjTAJ-Rguej8U8CNS_MsRIRfqddipw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYIL79Lw6h4QN0d-7uOIECVAGwloRMVltS9XUSO7ihMp9MRP4A_xZ_glzKydoEQBVYhbrMzYXntm9tv1zDeEPDe-tEbnMjI6dlHOWRnJ1LlIsAysIbdZ7HAf8mjIBqP83Ulx0rUDwlqYlh9iteGGnhHiNTo4bkhvenkaYbuljoowyQrRB0B5DRt8h_XVxxWXVMKz0Dmu00k20nq2nmltrrpa6hoQLD78xTY4uo5uw_R0cJtMlgNrs1LO-vOZ6duLDc7H_zTyO-RWB2Ppy9bu7pIrvrpHrreNLb_eJz8-zHUVytcgmFIdiE98Q-uSAt6k2mD5CVgb_OMoJrV3mWMooNExxvrnt-_1YuzGFzC1UtNSSusgv00gMD55HfQptgT3jafzc8zapFPvaFOPJxTL5aZ0UlenoIszEi0xqXzSVaLSZcFY84CMDl4fvxpEXaOIyOYyEZFh1gnji7T0BhasZVH6FI5s7BwsyIRNvLQAhZg31njhpBUYeZLEaGOZK1y2S3aquvJ7hBqZc890aYvS5RB8hUXSSJ6JVAphpOwRvjQJZTsWdWzmMVFrq6lU4cvBHp9chZejFj2SrDTPWyaRS-jsgdUpfQoBX40-pfiZOeaSSZ72yItgiqtz6ekZJunxQn0evlFf0mwoYsEV65H9pa0qCB34PUhXvp43cKUCAKf4i0TOIaRD1P6zBBNJDgg465GHrRv8Hhs8PBZncKMsGPOlB60gAOGvR_-quE9uDI6PDtXh2-H7x-RmuxuPWYFPyM5sOvdPAUbOzLMQHn4BqZJmwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtNAEG3BIBAX9mHCNn1A3Bx5bXcfEUMYtogtYsSl1esoSmRHWaQwJz6BH-Jn-BKq2k5QooBGiFusVNluu-p1dbvqFSGPtfNGq1xEWsU2ykvmI5FaG3GWgTXkJost7kO-7bPjQf7qpDhp85-wFqbhh1hvuKFnBLxGB59Yv-3kaYTdllomwiQreBfiyUs5izla-NGHNZVUUmahcVyrk2xl9ew808ZUddGrGgJYfPbLXdHoZnAbZqfedTJajatJShl1F3PdNWdblI__Z-A3yLU2iKVPG6u7SS646ha53LS1_Hqb_Hi_UFUoXgMopSrQnrgZrT2FaJMqjcUnYGvwj6WY0t7mjaGAQrcYqp_fvtfLoR2ewcRKdUMorYL8LoHA9-RU0KfYENzNHF1MMGeTTp2ls3o4plgsN6XjujoFXZyPqMeU8nFbh0pX5WKzO2TQe_7p2XHUtomITC4SHmlmLNeuSL3TsFz1hXcpHJnYWliOcZM4YSAQYk4b7bgVhiPuJIlW2jBb2Gyf7FV15Q4I1SIvHVPeFN7mAL3cIGVkmfFUcK6F6JByZRHStBzq2MpjLDfWUqnEl4MdPksZXo5cdkiy1pw0PCLn0DkAo5PqFOBeDj6m-JE5LgUTZdohT4Ilrs-lpiNM0SsL-bn_Qn5Jsz6PeSlZhxyuTFUCcODXIFW5ejGDKxUQbvK_SOQlADpg9p8lGE9yiH-zDrnbeMHvscHDY3EGN8qCLZ970BLgB3_d-1fFQ3Ll3VFPvnnZf32fXG224jEl8AHZm08X7iHEkHP9KIDDL0AhZXo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analyses+of+the+abundance+and+composition+of+ammonia-oxidizing+bacteria+and+ammonia-oxidizing+archaea+of+a+Chinese+upland+red+soil+under+long-term+fertilization+practices&rft.jtitle=Environmental+microbiology&rft.au=He%2C+Ji-zheng&rft.au=Shen%2C+Ju-pei&rft.au=Zhang%2C+Li-mei&rft.au=Zhu%2C+Yong-guan&rft.date=2007-09-01&rft.issn=1462-2912&rft.volume=9&rft.issue=9+p.2364-2374&rft.spage=2364&rft.epage=2374&rft_id=info:doi/10.1111%2Fj.1462-2920.2007.01358.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon