Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H₂O) ran...
Saved in:
Published in | Environmental microbiology Vol. 9; no. 9; pp. 2364 - 2374 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2007
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H₂O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. |
---|---|
AbstractList | The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H₂O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. Summary The abundance and composition of soil ammonia‐oxidizing bacteria (AOB) and ammonia‐oxidizing archaea (AOA) were investigated by using quantitative real‐time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri‐udic ferrosols with pH (H2O) ranging from 3.7 to 6.0, was sampled in summer and winter from long‐term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia‐oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira‐like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long‐term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H sub(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. The abundance and composition of soil ammonia‐oxidizing bacteria (AOB) and ammonia‐oxidizing archaea (AOA) were investigated by using quantitative real‐time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri‐udic ferrosols with pH (H 2 O) ranging from 3.7 to 6.0, was sampled in summer and winter from long‐term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia‐oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira‐ like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long‐term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. |
Author | Zhang, Li-mei Zheng, Yuan-ming He, Ji-zheng Zhu, Yong-guan Xu, Ming-gang Di, Hongjie Shen, Ju-pei |
Author_xml | – sequence: 1 fullname: He, Ji-zheng – sequence: 2 fullname: Shen, Ju-pei – sequence: 3 fullname: Zhang, Li-mei – sequence: 4 fullname: Zhu, Yong-guan – sequence: 5 fullname: Zheng, Yuan-ming – sequence: 6 fullname: Xu, Ming-gang – sequence: 7 fullname: Di, Hongjie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17686032$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhSNURH_gFcArdgm28-csQEKjUiqVVhVUSGwsx76Z8ZDYUzuBmb4Yr4eTlFnAYvDGtu53zrV8z2l0ZKyBKEIEJySsN-uEZAWNaUVxQjEuE0zSnCXbJ9HJvnC0PxN6HJ16v8aYlGmJn0XHpCxYgVN6Ev26HYTpdS96_QOQMKLdefDINqhfhXs9GCWMHCsKSdttrNe9tmYERNdZo0Vst1rpB22WqBayB6fFRP9bFk6uBIhJixYrbcADGjbtSDtQyFvdotAQHGqtWcbBq0MNuF63-kFMbTcutNAS_PPoaSNaDy8e97Po7sP5l8XH-Orm4nLx_iqWWUVYXBdSsRpy2kDNMtzkDdBwk1ipPGNMEqgkLlkBtayBqUqyPCUVIbWoZaFylZ5Fr2ffjbP3A_ied9pLaMOjwQ6eF4xktEzTg2BWZjTPCT4IUpzjIowngC8fwaHuQPGN051wO_5neAF4NwPSWe8dNFxOg7Smd0K3nGA-poWv-RgEPoaCj2nhU1r4Nhiwvwz2PQ5L387Sn7qF3X_r-Pmny_EU9PGs176H7V4v3HdehJDm_Ov1Bf9G02uGWcnHz3g1842wXCyd9vzuMw2uwbwqqpKmvwFpXPOy |
CitedBy_id | crossref_primary_10_1007_s00253_012_4448_7 crossref_primary_10_1016_j_gene_2012_06_083 crossref_primary_10_1111_1574_6968_12164 crossref_primary_10_1021_acs_estlett_7b00571 crossref_primary_10_1111_j_1462_2920_2008_01783_x crossref_primary_10_1556_CRC_2013_0058 crossref_primary_10_1007_s00284_013_0369_7 crossref_primary_10_1111_j_1462_2920_2010_02153_x crossref_primary_10_1111_j_1475_2743_2009_00241_x crossref_primary_10_1002_clen_201200369 crossref_primary_10_1002_jobm_201100211 crossref_primary_10_1016_j_soilbio_2020_107725 crossref_primary_10_1007_s00253_016_7428_5 crossref_primary_10_1038_ismej_2008_128 crossref_primary_10_1002_ece3_1006 crossref_primary_10_1016_S1002_0160_10_60073_2 crossref_primary_10_1016_j_apsoil_2019_05_005 crossref_primary_10_1016_j_chemosphere_2017_10_067 crossref_primary_10_1007_s00253_018_9152_9 crossref_primary_10_1007_s00253_015_6625_y crossref_primary_10_1016_S2095_3119_16_61391_6 crossref_primary_10_1007_s00374_014_0983_y crossref_primary_10_1016_j_soilbio_2017_11_003 crossref_primary_10_1007_s11368_018_2188_8 crossref_primary_10_1016_j_soilbio_2013_11_007 crossref_primary_10_1111_j_1574_6941_2011_01091_x crossref_primary_10_1128_AEM_01213_10 crossref_primary_10_3389_fmicb_2020_01363 crossref_primary_10_1016_j_scitotenv_2023_169630 crossref_primary_10_1111_1462_2920_14098 crossref_primary_10_1016_j_soilbio_2012_08_003 crossref_primary_10_1007_s11274_016_2042_3 crossref_primary_10_1007_s00374_011_0600_2 crossref_primary_10_1093_femsec_fiz113 crossref_primary_10_1093_femsre_fuaa037 crossref_primary_10_1264_jsme2_ME09179 crossref_primary_10_1007_s11368_016_1403_8 crossref_primary_10_1016_j_ejsobi_2021_103354 crossref_primary_10_1007_s11356_011_0482_8 crossref_primary_10_1111_sum_12652 crossref_primary_10_1264_jsme2_ME11127 crossref_primary_10_1016_j_envpol_2017_08_013 crossref_primary_10_1016_j_soilbio_2009_01_001 crossref_primary_10_1073_pnas_1107196108 crossref_primary_10_3390_microorganisms9010118 crossref_primary_10_1007_s11368_014_0872_x crossref_primary_10_1016_j_apsoil_2018_03_001 crossref_primary_10_3389_fmicb_2017_02226 crossref_primary_10_1038_s41598_018_20044_6 crossref_primary_10_1016_j_jhazmat_2021_127944 crossref_primary_10_1016_j_pedsph_2022_05_001 crossref_primary_10_1111_nph_14057 crossref_primary_10_1080_03036758_2017_1354894 crossref_primary_10_1016_j_ecoleng_2017_04_022 crossref_primary_10_1016_j_scitotenv_2018_03_108 crossref_primary_10_1016_j_soilbio_2020_107863 crossref_primary_10_1016_j_scitotenv_2013_10_011 crossref_primary_10_1007_s11104_012_1377_2 crossref_primary_10_1007_s11368_015_1061_2 crossref_primary_10_1371_journal_pone_0026263 crossref_primary_10_1371_journal_pone_0063375 crossref_primary_10_1016_j_soilbio_2013_11_026 crossref_primary_10_1038_ismej_2007_109 crossref_primary_10_3389_fmicb_2019_02654 crossref_primary_10_1016_j_ecoenv_2019_109947 crossref_primary_10_1016_S1001_0742_12_60178_8 crossref_primary_10_1016_j_biortech_2012_06_029 crossref_primary_10_1080_01490451_2010_514026 crossref_primary_10_1016_j_apsoil_2014_11_017 crossref_primary_10_1007_s00374_012_0713_2 crossref_primary_10_1080_00288230909510502 crossref_primary_10_1007_s00374_016_1151_3 crossref_primary_10_1016_j_soilbio_2016_01_012 crossref_primary_10_3389_fmicb_2019_00117 crossref_primary_10_1007_s00253_012_4623_x crossref_primary_10_1093_femsec_fix037 crossref_primary_10_1111_j_1574_6941_2010_00961_x crossref_primary_10_1016_j_apsoil_2009_08_006 crossref_primary_10_1016_j_ejsobi_2020_103153 crossref_primary_10_1371_journal_pone_0100653 crossref_primary_10_1007_s11356_017_9711_0 crossref_primary_10_1007_s11368_018_2154_5 crossref_primary_10_1016_j_ejsobi_2013_10_003 crossref_primary_10_1016_j_chemosphere_2017_02_075 crossref_primary_10_1007_s00253_014_5833_1 crossref_primary_10_1007_s11104_023_05889_9 crossref_primary_10_1016_j_soilbio_2018_04_009 crossref_primary_10_2136_sssaj2011_0098 crossref_primary_10_1016_S2095_3119_14_60784_X crossref_primary_10_1016_j_apsoil_2019_05_032 crossref_primary_10_1016_j_syapm_2010_11_023 crossref_primary_10_1080_10643389_2012_672072 crossref_primary_10_1371_journal_pone_0132770 crossref_primary_10_1016_j_chnaes_2011_03_009 crossref_primary_10_1016_j_bej_2019_107246 crossref_primary_10_1111_jam_14830 crossref_primary_10_1128_AEM_06132_11 crossref_primary_10_5004_dwt_2017_20168 crossref_primary_10_1371_journal_pone_0096197 crossref_primary_10_1111_j_1462_2920_2007_01556_x crossref_primary_10_1016_j_apsoil_2016_06_001 crossref_primary_10_1007_s11368_013_0726_y crossref_primary_10_1371_journal_pone_0086388 crossref_primary_10_1016_j_scitotenv_2020_142521 crossref_primary_10_1016_j_apsoil_2017_08_004 crossref_primary_10_1016_j_soilbio_2016_02_005 crossref_primary_10_1016_j_scitotenv_2017_04_086 crossref_primary_10_1080_01490451_2017_1297511 crossref_primary_10_3390_su152215889 crossref_primary_10_1007_s00248_017_1045_4 crossref_primary_10_1016_j_scitotenv_2017_12_096 crossref_primary_10_1007_s11356_015_5863_y crossref_primary_10_1038_s41598_018_30532_4 crossref_primary_10_1007_s10705_017_9826_1 crossref_primary_10_1016_j_jes_2015_04_022 crossref_primary_10_1111_j_1574_6941_2009_00741_x crossref_primary_10_1016_j_jhazmat_2013_05_043 crossref_primary_10_1111_j_1462_2920_2008_01578_x crossref_primary_10_3390_agronomy12051040 crossref_primary_10_5194_soil_2_523_2016 crossref_primary_10_1016_j_soilbio_2012_10_018 crossref_primary_10_1016_j_scitotenv_2018_08_432 crossref_primary_10_3354_ame01861 crossref_primary_10_1007_s42398_023_00262_z crossref_primary_10_1111_j_1365_2486_2011_02431_x crossref_primary_10_1186_2192_1709_2_9 crossref_primary_10_1016_j_apsoil_2015_06_010 crossref_primary_10_1007_s11104_009_9988_y crossref_primary_10_1016_j_soilbio_2010_06_015 crossref_primary_10_3390_agriculture13020245 crossref_primary_10_1016_j_apsoil_2015_06_014 crossref_primary_10_1016_j_agee_2021_107540 crossref_primary_10_1016_j_soilbio_2012_10_016 crossref_primary_10_1038_srep17056 crossref_primary_10_1016_j_soilbio_2020_107759 crossref_primary_10_1016_j_apsoil_2015_06_006 crossref_primary_10_1016_j_soilbio_2022_108563 crossref_primary_10_2136_sssaj2016_03_0070 crossref_primary_10_1080_01490451003753076 crossref_primary_10_1007_s11368_018_2155_4 crossref_primary_10_1007_s00374_020_01477_6 crossref_primary_10_1007_s11356_016_7115_1 crossref_primary_10_1016_j_ecolind_2011_04_018 crossref_primary_10_1111_j_1462_2920_2011_02679_x crossref_primary_10_1111_j_1574_6941_2009_00752_x crossref_primary_10_1080_01490451_2014_925013 crossref_primary_10_1111_j_1574_6941_2009_00775_x crossref_primary_10_1007_s00248_010_9638_1 crossref_primary_10_1371_journal_pone_0132879 crossref_primary_10_1007_s11368_018_02229_8 crossref_primary_10_1111_ejss_13112 crossref_primary_10_1371_journal_pone_0133763 crossref_primary_10_1007_s00203_017_1380_3 crossref_primary_10_1038_srep25305 crossref_primary_10_1016_j_scitotenv_2017_03_149 crossref_primary_10_1080_01490451_2018_1471108 crossref_primary_10_1038_s41598_020_67528_y crossref_primary_10_1128_msystems_00309_20 crossref_primary_10_1016_j_envint_2020_105764 crossref_primary_10_1111_j_1574_6941_2010_00971_x crossref_primary_10_2166_wst_2018_512 crossref_primary_10_1016_j_ejsobi_2022_103441 crossref_primary_10_1016_j_scitotenv_2019_135236 crossref_primary_10_1016_j_apsoil_2017_11_018 crossref_primary_10_1038_ismej_2010_191 crossref_primary_10_1007_s00244_015_0144_9 crossref_primary_10_1007_s11368_017_1700_x crossref_primary_10_1128_AEM_01960_12 crossref_primary_10_1071_MF19033 crossref_primary_10_1111_jam_14846 crossref_primary_10_3389_fmicb_2017_02136 crossref_primary_10_1007_s00248_012_0122_y crossref_primary_10_1080_00380768_2015_1023687 crossref_primary_10_1371_journal_pone_0080835 crossref_primary_10_1007_s11368_014_0902_8 crossref_primary_10_1016_j_ecoenv_2018_09_042 crossref_primary_10_1002_clen_201500319 crossref_primary_10_1007_s11051_022_05500_9 crossref_primary_10_1016_j_scitotenv_2020_144824 crossref_primary_10_1111_j_1574_6941_2008_00629_x crossref_primary_10_1007_s11368_011_0413_9 crossref_primary_10_1016_j_soilbio_2022_108782 crossref_primary_10_1016_j_soilbio_2017_10_023 crossref_primary_10_1038_ismej_2008_2 crossref_primary_10_1016_j_ejsobi_2016_01_008 crossref_primary_10_1002_jobm_201800581 crossref_primary_10_1007_s00374_018_01335_6 crossref_primary_10_1007_s13213_014_0903_2 crossref_primary_10_3389_fpls_2022_860590 crossref_primary_10_1007_s00253_016_7480_1 crossref_primary_10_3390_microorganisms11122871 crossref_primary_10_1016_j_apsoil_2023_105121 crossref_primary_10_1111_1462_2920_14246 crossref_primary_10_1111_j_1574_6941_2010_00970_x crossref_primary_10_1264_jsme2_ME14137 crossref_primary_10_1128_msystems_00529_22 crossref_primary_10_1111_ejss_12881 crossref_primary_10_1007_s11368_017_1738_9 crossref_primary_10_1111_j_1574_6941_2008_00466_x crossref_primary_10_3389_fpls_2024_1340336 crossref_primary_10_1016_j_scitotenv_2021_147338 crossref_primary_10_3390_su11154088 crossref_primary_10_1134_S106741361604010X crossref_primary_10_3389_fmicb_2015_00049 crossref_primary_10_1016_j_geoderma_2014_06_015 crossref_primary_10_1111_1574_6941_12009 crossref_primary_10_1155_2013_289478 crossref_primary_10_1016_j_soilbio_2022_108655 crossref_primary_10_1016_j_apsoil_2021_103972 crossref_primary_10_1016_j_geoderma_2019_04_008 crossref_primary_10_1016_j_scitotenv_2023_166533 crossref_primary_10_1007_s11368_022_03261_5 crossref_primary_10_1016_j_soilbio_2016_11_005 crossref_primary_10_1007_s00253_013_5213_2 crossref_primary_10_1007_s42860_021_00118_9 crossref_primary_10_1016_j_soilbio_2016_11_007 crossref_primary_10_1038_s41396_018_0316_5 crossref_primary_10_1007_s11368_014_0968_3 crossref_primary_10_1128_AEM_00543_13 crossref_primary_10_1007_s11274_020_02818_1 crossref_primary_10_1007_s11368_018_2109_x crossref_primary_10_1016_j_orggeochem_2015_02_009 crossref_primary_10_1111_1574_6941_12111 crossref_primary_10_1016_j_apsoil_2023_105119 crossref_primary_10_1016_j_ecolind_2022_109655 crossref_primary_10_1016_j_soilbio_2022_108887 crossref_primary_10_1038_ismej_2010_206 crossref_primary_10_3389_fmicb_2019_01501 crossref_primary_10_1021_es5021058 crossref_primary_10_1007_s00253_016_7859_z crossref_primary_10_1111_1574_6941_12119 crossref_primary_10_1007_s00253_023_12576_3 crossref_primary_10_1007_s11104_009_9947_7 crossref_primary_10_1007_s12088_015_0551_7 crossref_primary_10_1590_0034_737X201562060012 crossref_primary_10_1016_j_apsoil_2021_103984 crossref_primary_10_1007_s10661_014_3678_9 crossref_primary_10_1038_srep11146 crossref_primary_10_3390_land10101039 crossref_primary_10_3389_fpls_2020_572741 crossref_primary_10_2136_sssaj2011_0152 crossref_primary_10_1007_s11783_014_0635_3 crossref_primary_10_1016_j_scitotenv_2013_05_070 crossref_primary_10_1073_pnas_1004947107 crossref_primary_10_1016_j_scitotenv_2020_137248 crossref_primary_10_1016_j_soilbio_2017_05_001 crossref_primary_10_3389_fmicb_2018_00674 crossref_primary_10_1111_1462_2920_15348 crossref_primary_10_1264_jsme2_ME13066 crossref_primary_10_1002_jobm_201100150 crossref_primary_10_1177_1176934319883612 crossref_primary_10_1016_j_apsoil_2024_105501 crossref_primary_10_1038_ismej_2011_168 crossref_primary_10_1111_1574_6941_12340 crossref_primary_10_1016_j_apsoil_2013_03_006 crossref_primary_10_2136_sssaj2010_0459 crossref_primary_10_1016_j_tim_2010_06_003 crossref_primary_10_1016_S2095_3119_15_61229_1 crossref_primary_10_1071_SR08126 crossref_primary_10_1007_s00248_010_9714_6 crossref_primary_10_1007_s12583_018_0982_2 crossref_primary_10_1038_srep32791 crossref_primary_10_1002_jobm_201200671 crossref_primary_10_3390_su17062502 crossref_primary_10_1016_j_biortech_2009_09_050 crossref_primary_10_1007_s00374_018_1293_6 crossref_primary_10_1371_journal_pone_0015897 crossref_primary_10_1080_00380768_2012_664783 crossref_primary_10_1111_j_1574_6941_2009_00761_x crossref_primary_10_1007_s11356_013_1909_1 crossref_primary_10_1111_1758_2229_12420 crossref_primary_10_3389_fmicb_2016_01373 crossref_primary_10_1128_AEM_00441_08 crossref_primary_10_3389_fmicb_2018_00885 crossref_primary_10_1111_j_1462_2920_2008_01775_x crossref_primary_10_1007_s00374_015_1044_x crossref_primary_10_1007_s00253_012_3947_x crossref_primary_10_1007_s11368_017_1846_6 crossref_primary_10_1111_1574_6941_12336 crossref_primary_10_1186_s40793_022_00419_z crossref_primary_10_1371_journal_pone_0089568 crossref_primary_10_1016_j_agee_2021_107318 crossref_primary_10_1038_ismej_2009_39 crossref_primary_10_1016_j_ecoleng_2016_01_068 crossref_primary_10_1007_s00374_013_0857_8 crossref_primary_10_1007_s11104_019_04052_7 crossref_primary_10_1007_s00374_016_1121_9 crossref_primary_10_1016_j_apsoil_2013_03_004 crossref_primary_10_1111_1462_2920_14238 crossref_primary_10_1111_ejss_12964 crossref_primary_10_1007_s00374_012_0767_1 crossref_primary_10_7841_ksbbj_2022_37_2_71 crossref_primary_10_1111_gcb_16989 crossref_primary_10_3389_fmicb_2018_00116 crossref_primary_10_1016_j_apsoil_2025_105964 crossref_primary_10_1007_s11104_023_06223_z crossref_primary_10_1016_j_soilbio_2011_12_013 crossref_primary_10_1016_j_soilbio_2017_06_027 crossref_primary_10_1128_AEM_01031_18 crossref_primary_10_1016_j_soilbio_2017_06_024 crossref_primary_10_1016_j_chemosphere_2020_127032 crossref_primary_10_1016_S2095_3119_13_60426_8 crossref_primary_10_1007_s11707_014_0448_5 crossref_primary_10_1007_s11274_013_1559_y crossref_primary_10_1007_s11368_009_0120_y crossref_primary_10_1016_j_ejsobi_2020_103263 crossref_primary_10_1016_j_still_2016_12_014 crossref_primary_10_1080_01490451_2013_797523 crossref_primary_10_1016_j_envres_2020_110671 crossref_primary_10_1038_ismej_2010_138 crossref_primary_10_1016_j_scitotenv_2020_138427 crossref_primary_10_1128_AEM_01031_16 crossref_primary_10_1016_j_apsoil_2024_105691 crossref_primary_10_1038_ismej_2010_130 crossref_primary_10_1111_j_1462_2920_2007_01481_x crossref_primary_10_1016_j_cej_2022_140172 crossref_primary_10_1016_j_envres_2021_111802 crossref_primary_10_1111_j_1365_2672_2008_04109_x crossref_primary_10_1002_jpln_201700130 crossref_primary_10_1016_j_geoderma_2018_05_022 crossref_primary_10_1139_cjm_2017_0362 crossref_primary_10_1016_j_envpol_2018_08_079 crossref_primary_10_1007_s00248_017_1098_4 crossref_primary_10_1007_s00253_014_6341_z crossref_primary_10_5194_bg_13_2051_2016 crossref_primary_10_1016_j_soilbio_2015_02_013 crossref_primary_10_1007_s11368_017_1792_3 crossref_primary_10_1016_j_apsoil_2021_103940 crossref_primary_10_1016_j_ecoenv_2018_08_075 crossref_primary_10_1016_j_ejsobi_2014_10_003 crossref_primary_10_1631_jzus_B1200013 crossref_primary_10_1134_S106422931908012X crossref_primary_10_1016_S1002_0160_13_60065_X crossref_primary_10_1016_S1001_0742_11_60747_X crossref_primary_10_3390_plants9111501 crossref_primary_10_1007_s00253_015_6488_2 crossref_primary_10_1007_s11368_011_0369_9 crossref_primary_10_1007_s11368_015_1086_6 crossref_primary_10_1128_AEM_01787_07 crossref_primary_10_1016_j_soilbio_2012_06_006 crossref_primary_10_3390_agronomy13010010 crossref_primary_10_1007_s11368_014_0910_8 crossref_primary_10_1038_s41522_024_00616_3 crossref_primary_10_1016_j_ejsobi_2017_09_005 crossref_primary_10_1016_j_jenvman_2017_04_066 crossref_primary_10_1111_mec_12786 crossref_primary_10_1007_s11368_013_0843_7 crossref_primary_10_1016_j_ecoleng_2015_12_023 crossref_primary_10_1631_jzus_B1400114 crossref_primary_10_1007_s11368_013_0657_7 crossref_primary_10_1016_j_ecoenv_2018_06_030 crossref_primary_10_1111_j_1758_2229_2009_00130_x crossref_primary_10_1007_s11368_010_0256_9 crossref_primary_10_3390_agronomy13092420 crossref_primary_10_1016_S1002_0160_18_60055_4 crossref_primary_10_2136_sssaj2008_0059 crossref_primary_10_1007_s00248_014_0391_8 crossref_primary_10_1111_j_1574_6941_2011_01280_x crossref_primary_10_1016_j_geoderma_2018_11_033 crossref_primary_10_1016_j_scitotenv_2021_145023 crossref_primary_10_1128_AEM_00136_11 crossref_primary_10_3390_agriculture11101012 crossref_primary_10_3390_agriculture14030445 crossref_primary_10_1016_j_scitotenv_2021_147329 crossref_primary_10_1007_s11368_018_2089_x crossref_primary_10_1016_j_soilbio_2013_08_001 crossref_primary_10_1016_j_tim_2012_08_001 crossref_primary_10_1016_j_apsoil_2021_103966 crossref_primary_10_1016_S1001_0742_11_60832_2 crossref_primary_10_1080_01490451_2013_875298 crossref_primary_10_1038_s41598_017_10185_5 crossref_primary_10_1016_j_apsoil_2014_06_009 crossref_primary_10_1016_j_apsoil_2020_103783 crossref_primary_10_1016_j_chnaes_2016_12_004 crossref_primary_10_3390_agriculture11111040 crossref_primary_10_1016_j_scitotenv_2019_02_427 crossref_primary_10_1080_00380768_2021_1963639 crossref_primary_10_3389_fmicb_2018_01543 crossref_primary_10_1002_eap_1783 crossref_primary_10_1016_j_ejsobi_2017_05_005 crossref_primary_10_1002_saj2_20029 crossref_primary_10_1016_S1002_0160_15_60095_9 crossref_primary_10_1007_s00253_012_4342_3 crossref_primary_10_1080_01490451_2018_1479806 crossref_primary_10_1016_j_resmic_2015_07_012 crossref_primary_10_1007_s13213_013_0625_x crossref_primary_10_1021_acs_est_0c07703 crossref_primary_10_1080_03650340_2013_831976 crossref_primary_10_1016_j_scitotenv_2015_10_154 crossref_primary_10_1007_s00253_016_7421_z crossref_primary_10_1016_j_ejsobi_2013_05_008 crossref_primary_10_1099_mic_0_2007_013581_0 crossref_primary_10_1155_2018_8429145 crossref_primary_10_1007_s11368_012_0532_y crossref_primary_10_1007_s00248_018_1183_3 crossref_primary_10_1007_s11368_021_02897_z crossref_primary_10_1590_S0100_06832011000500007 crossref_primary_10_1139_cjm_2012_0490 crossref_primary_10_1111_j_1462_2920_2008_01613_x crossref_primary_10_1007_s13213_014_0979_8 crossref_primary_10_1016_S1001_0742_09_60342_9 crossref_primary_10_1016_j_agee_2015_08_009 crossref_primary_10_1016_j_soilbio_2015_11_003 crossref_primary_10_1016_j_soilbio_2015_11_005 crossref_primary_10_1002_jobm_201300217 crossref_primary_10_1007_s00253_009_2426_5 crossref_primary_10_1007_s00253_012_4683_y crossref_primary_10_1016_j_apsoil_2013_05_003 crossref_primary_10_1016_j_apsoil_2015_10_011 crossref_primary_10_1086_685688 crossref_primary_10_1111_j_1365_2672_2009_04283_x crossref_primary_10_1007_s11783_020_1375_1 crossref_primary_10_1065_jss2008_01_270 crossref_primary_10_1099_ijs_0_063172_0 crossref_primary_10_1016_S2095_3119_20_63271_3 crossref_primary_10_1021_acs_est_8b04673 crossref_primary_10_1016_S1002_0160_10_60069_0 crossref_primary_10_1016_j_apsoil_2020_103842 crossref_primary_10_1002_sae2_12115 crossref_primary_10_1007_s11104_021_05121_6 crossref_primary_10_1111_jam_15289 crossref_primary_10_3724_SP_J_1011_2010_00954 crossref_primary_10_1007_s00253_014_6026_7 crossref_primary_10_1007_s11101_009_9137_5 crossref_primary_10_1007_s11356_018_3900_3 crossref_primary_10_1890_ES14_00481_1 crossref_primary_10_5194_bg_10_5739_2013 crossref_primary_10_1007_s11104_016_2902_5 crossref_primary_10_1007_s42773_025_00432_8 crossref_primary_10_1038_s41598_023_44147_x crossref_primary_10_1002_jobm_201700035 crossref_primary_10_1038_s41598_019_45877_7 crossref_primary_10_1093_femsre_fuv021 crossref_primary_10_1007_s00248_012_0093_z crossref_primary_10_1186_s13568_017_0479_x crossref_primary_10_3390_d13070282 crossref_primary_10_1029_2021GB007070 crossref_primary_10_1007_s00248_017_0992_0 crossref_primary_10_1111_1758_2229_12259 crossref_primary_10_1038_s41396_021_01167_7 crossref_primary_10_1371_journal_pone_0218779 crossref_primary_10_1007_s00253_010_2595_2 crossref_primary_10_1016_j_agee_2015_09_028 crossref_primary_10_1080_01490451_2014_932033 crossref_primary_10_1007_s00248_014_0526_y crossref_primary_10_1007_s00284_014_0714_5 crossref_primary_10_2134_jeq2015_06_0331 crossref_primary_10_1016_j_apsoil_2019_103395 crossref_primary_10_1016_j_chemosphere_2019_02_167 crossref_primary_10_1016_j_soilbio_2024_109361 crossref_primary_10_3389_fmicb_2020_568588 crossref_primary_10_1111_j_1462_2920_2009_02070_x crossref_primary_10_1007_s11356_013_1905_5 crossref_primary_10_1007_s00248_014_0548_5 crossref_primary_10_1371_journal_pone_0139778 crossref_primary_10_1371_journal_pone_0164932 crossref_primary_10_3389_fmicb_2018_00007 crossref_primary_10_1007_s00253_014_5651_5 crossref_primary_10_1371_journal_pone_0024750 crossref_primary_10_1128_AEM_00432_12 crossref_primary_10_1007_s11104_018_3774_7 crossref_primary_10_1016_S1001_0742_13_60443_X crossref_primary_10_1007_s00253_015_6804_x crossref_primary_10_1016_S2095_3119_16_61594_0 crossref_primary_10_1080_09593330_2025_2471044 crossref_primary_10_1186_s12866_021_02313_z crossref_primary_10_1016_j_envpol_2018_07_028 crossref_primary_10_1016_j_soilbio_2013_07_010 crossref_primary_10_1139_w2012_032 crossref_primary_10_3389_fmicb_2015_01539 crossref_primary_10_1016_j_apsoil_2020_103861 crossref_primary_10_1016_j_scitotenv_2018_07_223 crossref_primary_10_1016_S1002_0160_12_60006_X crossref_primary_10_1111_1462_2920_12339 crossref_primary_10_1093_femsle_fnw052 crossref_primary_10_1111_j_1574_6941_2011_01294_x crossref_primary_10_1016_S1002_0160_19_60803_9 crossref_primary_10_1111_1574_6941_12180 crossref_primary_10_1139_cjm_2020_0228 crossref_primary_10_7717_peerj_8844 crossref_primary_10_1016_j_still_2018_02_010 crossref_primary_10_1371_journal_pone_0299518 crossref_primary_10_1111_j_1462_2920_2008_01701_x crossref_primary_10_1007_s11368_011_0450_4 crossref_primary_10_1111_mec_13010 crossref_primary_10_3389_fmicb_2019_01931 crossref_primary_10_1007_s11104_019_04249_w crossref_primary_10_1016_j_agee_2022_108224 crossref_primary_10_1128_AEM_00843_08 crossref_primary_10_1080_09064710_2015_1025823 crossref_primary_10_1016_j_apsoil_2020_103812 crossref_primary_10_1016_j_marenvres_2021_105397 crossref_primary_10_1016_j_ecoenv_2016_09_026 crossref_primary_10_1007_s11368_008_0025_1 crossref_primary_10_1038_srep14345 crossref_primary_10_1016_j_jes_2022_02_038 crossref_primary_10_1016_j_geoderma_2020_114814 crossref_primary_10_1007_s12275_008_0311_z crossref_primary_10_1016_j_apsoil_2021_104062 crossref_primary_10_3389_fmicb_2017_00415 crossref_primary_10_1016_j_ecss_2015_09_008 crossref_primary_10_1111_1574_6941_12391 crossref_primary_10_1080_00288233_2012_670118 crossref_primary_10_1042_ETLS20180018 crossref_primary_10_1007_s00248_021_01763_2 crossref_primary_10_1080_09064710_2019_1576763 crossref_primary_10_3390_agronomy10040546 crossref_primary_10_5004_dwt_2018_22686 crossref_primary_10_1007_s11356_022_19516_0 crossref_primary_10_1007_s11368_009_0174_x crossref_primary_10_1016_j_soilbio_2018_09_004 crossref_primary_10_1111_j_1462_2920_2012_02740_x crossref_primary_10_1111_j_1758_2229_2010_00146_x crossref_primary_10_1016_j_apsoil_2019_03_021 crossref_primary_10_1016_j_soilbio_2010_09_009 crossref_primary_10_1111_1462_2920_14457 crossref_primary_10_1007_s00374_013_0889_0 crossref_primary_10_5194_se_8_1119_2017 crossref_primary_10_1080_10934529_2010_486330 crossref_primary_10_1111_1462_2920_12481 crossref_primary_10_1016_j_apsoil_2011_03_004 crossref_primary_10_1111_1574_6941_12384 crossref_primary_10_1007_s11368_020_02813_x crossref_primary_10_1016_j_apsoil_2017_05_019 crossref_primary_10_1016_S1002_0160_17_60470_3 crossref_primary_10_1016_j_scitotenv_2015_01_054 crossref_primary_10_1016_j_apsoil_2010_06_015 crossref_primary_10_1016_j_soilbio_2014_10_025 crossref_primary_10_1128_AEM_01617_14 crossref_primary_10_1016_j_soilbio_2018_01_027 crossref_primary_10_1007_s11368_017_1673_9 crossref_primary_10_1080_01490450902744004 crossref_primary_10_1007_s11368_012_0531_z crossref_primary_10_1039_D2EW00662F crossref_primary_10_3389_fmicb_2016_01045 crossref_primary_10_1007_s00374_011_0542_8 crossref_primary_10_1016_j_apsoil_2016_03_018 crossref_primary_10_1371_journal_pone_0172767 crossref_primary_10_1016_j_soilbio_2024_109687 crossref_primary_10_3390_f9050239 crossref_primary_10_1007_s11368_008_0047_8 crossref_primary_10_1016_j_ecoleng_2011_12_021 crossref_primary_10_1016_S1002_0160_14_60021_7 crossref_primary_10_1071_SR11288 crossref_primary_10_1016_j_soilbio_2014_03_023 crossref_primary_10_1007_s00248_011_9897_5 crossref_primary_10_1016_j_chemosphere_2011_02_086 crossref_primary_10_1016_j_soilbio_2014_03_021 crossref_primary_10_1007_s13213_015_1143_9 crossref_primary_10_1111_j_1574_6941_2009_00725_x crossref_primary_10_3389_fmicb_2017_00630 crossref_primary_10_1111_1462_2920_14553 crossref_primary_10_1080_00380768_2019_1704180 crossref_primary_10_1111_j_1462_2920_2008_01735_x crossref_primary_10_1007_s11368_018_2108_y crossref_primary_10_1016_j_agee_2024_109007 crossref_primary_10_1128_AEM_03859_14 crossref_primary_10_1111_1574_6941_12013 crossref_primary_10_1111_1758_2229_12109 crossref_primary_10_1016_j_apsoil_2018_06_017 crossref_primary_10_1038_s41598_022_25367_z crossref_primary_10_1007_s10705_020_10050_4 crossref_primary_10_1016_j_apsoil_2020_103704 crossref_primary_10_1016_j_chemosphere_2018_07_105 crossref_primary_10_2136_sssaj2019_05_0134 crossref_primary_10_1016_j_scitotenv_2024_170380 crossref_primary_10_2134_jeq2017_04_0156 crossref_primary_10_3389_fmicb_2015_00898 crossref_primary_10_1139_w2012_078 crossref_primary_10_3390_agronomy9010014 crossref_primary_10_1007_s10705_016_9762_5 crossref_primary_10_1007_s11104_010_0511_2 crossref_primary_10_1002_ece3_1879 crossref_primary_10_3389_fmicb_2018_00171 crossref_primary_10_3389_fmicb_2022_938481 crossref_primary_10_1016_j_apsoil_2017_05_034 crossref_primary_10_1080_15659801_2015_1137438 crossref_primary_10_1016_j_gdata_2017_03_013 crossref_primary_10_1007_s10333_017_0623_x crossref_primary_10_1016_j_apsoil_2022_104794 crossref_primary_10_1016_j_soilbio_2017_01_003 crossref_primary_10_1111_j_1462_2920_2009_01891_x crossref_primary_10_1264_jsme2_ME09104 crossref_primary_10_1007_s11356_020_07952_9 crossref_primary_10_1073_pnas_1013488108 crossref_primary_10_1111_j_1574_6976_2009_00179_x crossref_primary_10_3389_fmicb_2022_1021080 crossref_primary_10_1073_pnas_0708857105 crossref_primary_10_1111_j_1574_6941_2010_00861_x crossref_primary_10_1007_s11368_017_1851_9 crossref_primary_10_1007_s11368_022_03246_4 crossref_primary_10_1016_j_apsoil_2014_09_008 crossref_primary_10_1016_j_heliyon_2021_e08142 crossref_primary_10_1016_j_soilbio_2012_03_006 crossref_primary_10_3724_SP_J_1003_2012_10129 crossref_primary_10_1007_s12517_021_08250_5 crossref_primary_10_1016_j_apsoil_2021_104267 crossref_primary_10_1128_AEM_00308_12 crossref_primary_10_1007_s11053_012_9189_x crossref_primary_10_1007_s11356_017_8373_2 crossref_primary_10_1007_s12517_022_10322_z crossref_primary_10_1016_j_soilbio_2016_07_023 crossref_primary_10_1016_j_soilbio_2014_07_020 crossref_primary_10_1007_s11368_014_0864_x crossref_primary_10_1111_geb_13030 crossref_primary_10_1016_j_apsoil_2014_09_003 crossref_primary_10_1016_j_scitotenv_2017_11_234 crossref_primary_10_3390_agronomy10070931 crossref_primary_10_1186_s13568_021_01211_x crossref_primary_10_1128_AEM_01318_10 crossref_primary_10_1111_aab_12546 crossref_primary_10_1128_AEM_00595_10 crossref_primary_10_3390_microorganisms13010203 crossref_primary_10_1016_j_still_2019_104436 crossref_primary_10_1016_j_envpol_2015_11_023 crossref_primary_10_1016_j_scitotenv_2017_07_146 crossref_primary_10_1007_s00248_010_9730_6 crossref_primary_10_3390_ijerph19052732 crossref_primary_10_3390_agronomy12081911 crossref_primary_10_1007_s42729_019_00120_0 crossref_primary_10_1016_j_biortech_2018_09_042 crossref_primary_10_1016_j_soilbio_2017_01_022 crossref_primary_10_1371_journal_pone_0073778 crossref_primary_10_1071_SR15359 crossref_primary_10_1128_AEM_01394_09 crossref_primary_10_1016_j_apsoil_2015_11_006 crossref_primary_10_1038_ismej_2009_105 crossref_primary_10_1128_mBio_00240_15 crossref_primary_10_1128_AEM_01761_08 crossref_primary_10_1371_journal_pone_0109161 crossref_primary_10_1016_j_still_2019_104463 crossref_primary_10_1007_s00253_013_5242_x crossref_primary_10_1016_j_agee_2014_05_006 crossref_primary_10_1016_j_pedobi_2013_07_003 crossref_primary_10_1016_j_agee_2023_108445 crossref_primary_10_1016_j_biortech_2017_06_102 crossref_primary_10_3389_fmicb_2021_746524 crossref_primary_10_1016_j_apsoil_2022_104456 crossref_primary_10_1016_j_soilbio_2008_06_024 crossref_primary_10_1080_00288233_2014_924969 crossref_primary_10_3389_fmicb_2015_00982 crossref_primary_10_1016_j_ejsobi_2021_103288 crossref_primary_10_1016_j_scitotenv_2023_162831 crossref_primary_10_1016_j_agee_2023_108439 crossref_primary_10_1007_s11270_009_0253_z crossref_primary_10_1007_s11368_013_0652_z crossref_primary_10_1016_j_micres_2011_04_002 crossref_primary_10_1007_s40333_013_0205_8 crossref_primary_10_1111_j_1462_2920_2009_01958_x crossref_primary_10_1038_srep28981 crossref_primary_10_1007_s42729_023_01600_0 crossref_primary_10_1029_2017JG004182 crossref_primary_10_1007_s42832_020_0044_4 crossref_primary_10_1007_s11356_016_8030_1 crossref_primary_10_1071_SR13160 crossref_primary_10_1007_s11104_014_2343_y crossref_primary_10_1016_j_jclepro_2022_134071 crossref_primary_10_5194_bg_16_4277_2019 crossref_primary_10_1080_03650340_2018_1455001 crossref_primary_10_1007_s11368_011_0375_y crossref_primary_10_1093_femsec_fiv013 crossref_primary_10_1016_j_biortech_2020_123633 crossref_primary_10_1007_s12665_013_2773_5 crossref_primary_10_1016_j_soilbio_2017_09_007 crossref_primary_10_1134_S1064229316020101 crossref_primary_10_1016_j_scitotenv_2017_12_084 crossref_primary_10_2139_ssrn_4167625 crossref_primary_10_1071_SR13039 crossref_primary_10_1111_ejss_13017 crossref_primary_10_1016_S2095_3119_15_61158_3 crossref_primary_10_1038_ngeo613 crossref_primary_10_1080_03650340_2020_1855326 crossref_primary_10_1007_s00253_017_8147_2 crossref_primary_10_1016_j_soilbio_2020_107925 crossref_primary_10_1111_1462_2920_13872 crossref_primary_10_1111_1758_2229_13167 crossref_primary_10_1016_j_soilbio_2014_06_024 crossref_primary_10_1016_j_soilbio_2015_08_030 crossref_primary_10_1016_j_agee_2018_02_018 crossref_primary_10_1016_j_geoderma_2023_116711 crossref_primary_10_1016_j_apsoil_2013_08_005 crossref_primary_10_1111_j_1747_0765_2010_00449_x crossref_primary_10_1128_AEM_02608_10 crossref_primary_10_1007_s11368_018_2039_7 crossref_primary_10_1080_09064710_2012_664164 crossref_primary_10_1007_s10705_015_9713_6 crossref_primary_10_1007_s11104_012_1378_1 crossref_primary_10_1016_j_apsoil_2022_104518 crossref_primary_10_1016_j_soilbio_2018_02_007 crossref_primary_10_1021_acs_est_7b02360 crossref_primary_10_1128_AEM_00831_10 crossref_primary_10_3390_agriculture11060523 crossref_primary_10_1016_j_scitotenv_2020_140065 crossref_primary_10_3390_agronomy13061461 crossref_primary_10_1080_17550874_2014_984786 crossref_primary_10_1007_s11104_023_05911_0 crossref_primary_10_1007_s11368_015_1321_1 crossref_primary_10_1128_AEM_00258_19 crossref_primary_10_1007_s11356_020_09120_5 crossref_primary_10_1016_j_soilbio_2014_06_016 crossref_primary_10_3389_fmicb_2023_1095937 crossref_primary_10_1007_s11356_015_5172_5 crossref_primary_10_1007_s11104_022_05709_6 crossref_primary_10_1016_j_envpol_2020_114140 crossref_primary_10_1016_j_apsoil_2014_01_011 crossref_primary_10_1080_01490451_2016_1225861 crossref_primary_10_1016_j_ecss_2017_09_001 crossref_primary_10_1016_j_apsoil_2021_104114 crossref_primary_10_3389_fmicb_2022_1004836 crossref_primary_10_1016_j_scitotenv_2017_11_147 crossref_primary_10_1016_j_soilbio_2016_09_001 crossref_primary_10_3389_fsoil_2022_869136 crossref_primary_10_1007_s11356_016_7519_y crossref_primary_10_1007_s11368_019_02540_y crossref_primary_10_1371_journal_pone_0114723 crossref_primary_10_1007_s11368_015_1278_0 crossref_primary_10_1007_s11368_021_03118_3 crossref_primary_10_1080_00103624_2019_1614606 crossref_primary_10_1128_AEM_01807_20 crossref_primary_10_1080_09064710_2015_1093653 crossref_primary_10_1007_s00253_018_8873_0 crossref_primary_10_1016_j_watres_2021_117774 crossref_primary_10_3389_fmicb_2024_1377721 crossref_primary_10_1016_S2095_3119_16_61498_3 crossref_primary_10_3389_fenvs_2021_709391 crossref_primary_10_3390_environments4040084 crossref_primary_10_1016_j_geoderma_2025_117266 crossref_primary_10_17221_416_2011_PSE crossref_primary_10_1016_j_soilbio_2019_107609 crossref_primary_10_1016_j_soilbio_2015_07_005 crossref_primary_10_1016_j_apsoil_2010_04_003 crossref_primary_10_1007_s11368_011_0372_1 crossref_primary_10_1007_s11368_011_0406_8 crossref_primary_10_1007_s11104_015_2457_x crossref_primary_10_3389_fmicb_2015_00938 crossref_primary_10_1007_s11368_009_0060_6 crossref_primary_10_1111_1462_2920_14824 crossref_primary_10_1007_s00253_013_5428_2 crossref_primary_10_1007_s11356_015_5041_2 crossref_primary_10_1016_j_apsoil_2021_104120 crossref_primary_10_1016_j_biortech_2010_11_089 crossref_primary_10_1016_j_soilbio_2016_09_013 crossref_primary_10_1007_s42770_020_00418_7 crossref_primary_10_1016_j_resenv_2025_100210 crossref_primary_10_3390_agronomy12102515 crossref_primary_10_1016_j_resmic_2014_08_003 crossref_primary_10_1016_j_scitotenv_2012_08_091 crossref_primary_10_1007_s11356_015_4232_1 crossref_primary_10_3390_agronomy14092070 crossref_primary_10_1007_s00253_011_3090_0 crossref_primary_10_1016_j_geoderma_2022_115775 crossref_primary_10_1007_s00253_013_5174_5 crossref_primary_10_1016_j_eja_2022_126669 crossref_primary_10_1016_j_soilbio_2013_10_016 crossref_primary_10_1080_10934529_2020_1852845 crossref_primary_10_1016_j_eti_2023_103226 crossref_primary_10_1371_journal_pone_0178342 crossref_primary_10_1016_j_envpol_2015_11_003 crossref_primary_10_1016_j_apsoil_2021_104139 crossref_primary_10_1111_j_1574_6941_2010_00853_x crossref_primary_10_1016_j_marpolbul_2024_116046 crossref_primary_10_1007_s11738_014_1744_0 crossref_primary_10_1039_D1EW00827G crossref_primary_10_1007_s00253_023_12363_0 crossref_primary_10_1016_j_watres_2013_01_042 |
Cites_doi | 10.1111/j.1462-2920.2005.00906.x 10.1111/j.1365-2389.2004.00614.x 10.1128/AEM.71.12.8335-8343.2005 10.1016/S0167-7012(99)00094-9 10.1126/science.1093857 10.1016/j.soilbio.2005.09.008 10.1128/AEM.69.10.6152-6164.2003 10.1016/j.femsle.2005.06.057 10.1128/AEM.00402-06 10.1046/j.1462-2920.2000.00080.x 10.1128/AEM.65.9.4155-4162.1999 10.1128/AEM.64.8.2958-2965.1998 10.1146/annurev.micro.55.1.485 10.1038/nature04983 10.1099/00221287-139-6-1147 10.1128/AEM.02154-05 10.1128/AEM.67.2.972-976.2001 10.1128/AEM.70.2.1008-1016.2004 10.1128/AEM.62.11.4147-4154.1996 10.1038/nature03911 10.1128/AEM.66.12.5410-5418.2000 10.1016/j.soilbio.2005.09.011 10.1073/pnas.0600756103 10.1128/AEM.66.11.4605-4614.2000 10.1093/bib/5.2.150 10.1016/0038-0717(92)90039-Z 10.1128/AEM.68.11.5685-5692.2002 10.1007/s00248-007-9320-4 10.1128/AEM.66.12.5368-5382.2000 10.1073/pnas.0506625102 10.1007/s00374-005-0029-6 10.1128/AEM.65.7.2994-3000.1999 |
ContentType | Journal Article |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 8FD C1K FR3 P64 7S9 L.6 7X8 |
DOI | 10.1111/j.1462-2920.2007.01358.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Bacteriology Abstracts (Microbiology B) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 2374 |
ExternalDocumentID | 17686032 10_1111_j_1462_2920_2007_01358_x EMI1358 ark_67375_WNG_Z23N8087_6 US201300796972 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AEUQT AFPWT BSCLL ESX WRC AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c4918-b6cd8be52feb840f5fe2e52c0dd5488c1e9c0786ebcbe8d9c8531911babc6d5d3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 |
IngestDate | Thu Jul 10 18:16:43 EDT 2025 Fri Jul 11 09:57:45 EDT 2025 Fri Jul 11 14:41:09 EDT 2025 Thu Apr 03 07:10:44 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Tue Jul 01 00:42:38 EDT 2025 Wed Jan 22 16:43:11 EST 2025 Wed Oct 30 09:57:23 EDT 2024 Thu Apr 03 09:45:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4918-b6cd8be52feb840f5fe2e52c0dd5488c1e9c0786ebcbe8d9c8531911babc6d5d3 |
Notes | http://dx.doi.org/10.1111/j.1462-2920.2007.01358.x ark:/67375/WNG-Z23N8087-6 istex:0E0E280994A17F7A1C4D95E840D4471E0297029F ArticleID:EMI1358 These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17686032 |
PQID | 20506686 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_68142733 proquest_miscellaneous_47425510 proquest_miscellaneous_20506686 pubmed_primary_17686032 crossref_citationtrail_10_1111_j_1462_2920_2007_01358_x crossref_primary_10_1111_j_1462_2920_2007_01358_x wiley_primary_10_1111_j_1462_2920_2007_01358_x_EMI1358 istex_primary_ark_67375_WNG_Z23N8087_6 fao_agris_US201300796972 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2007 |
PublicationDateYYYYMMDD | 2007-09-01 |
PublicationDate_xml | – month: 09 year: 2007 text: September 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2007 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Enwall, K., Philippot, L., and Hallin, S. (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71: 8335-8343. Bruns, M.A., Stephen, J.R., Kowalchuk, G.A., Prosser, J.I., and Paul, E.A. (1999) Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl Environ Microbiol 65: 2994-3000. Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985-1995. Nyberg, K., Schnurer, A., Sundh, I., Jarvis, A., and Hallin, S. (2006) Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues. Biol Fert Soils 42: 315-323. Olsson, P.A., Hansson, M.C., and Burleigh, S.H. (2006) Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high-affinity P transporter gene induction in Arbuscular mycorrhiza. Appl Environ Microbiol 72: 4115-4120. Avrahami, S., and Conrad, R. (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol 69: 6152-6164. Suzuki, M.T., Taylor, L.T., and DeLong, E.F. (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66: 4605-4614. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809. Nugroho, R.A., Roling, W.F.M., Laverman, A.M., and Verhoef, H.A. (2006) Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be tree species specific. Soil Biol Biochem 38: 1166-1171. Pernes-Debuyser, A., and Tessier, D. (2004) Soil physical properties affected by long-term fertilization. Eur J Soil Sci 55: 505-512. Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. Kowalchuk, G.A., Stienstra, A.W., Heilig, G.H.J., Stephen, J.R., and Woldendorp, J.W. (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2: 99-110. Head, I.M., Hiorns, W.D., Embley, T.M., Mccarthy, A.J., and Saunders, J.R. (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal-RNA gene-sequences. J Gen Microbiol 139: 1147-1153. Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., and Insam, H. (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38: 1092-1100. Kumar, S., Tamura, K., and Nei, M. (2004) mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150-163. Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., Van Bleijswijk, J., Timmers, P., et al. (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317-12322. Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66: 5368-5382. Phillips, C.J., Harris, D., Dollhopf, S.L., Gross, K.L., Prosser, J.I., and Paul, E.A. (2000) Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl Environ Microbiol 66: 5410-5418. Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., Gebreyesus, B., et al. (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70: 1008-1016. Avrahami, S., Conrad, R., and Braker, G. (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68: 5685-5692. Stephen, J.R., Kowalchuk, G.A., Bruns, M.A.V., McCaig, A.E., Philips, C.J., Embley, T.M., and Prosser, J.I. (1998) Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64: 2958-2965. McAndrew, D.W., and Malhi, S.S. (1992) Long-term N fertilization of a solonetzic soil: effects on chemical and biological properties. Soil Biol Biochem 24: 619-623. Mendum, T.A., Sockett, R.E., and Hirsch, P.R. (1999) Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl Environ Microbiol 65: 4155-4162. Stephen, J.R., McCaig, A.E., Smith, Z., Prosser, J.I., and Embley, T.M. (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62: 4147-4154. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., et al. (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304: 66-74. Hermansson, A., and Lindgren, P.E. (2001) Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol 67: 972-976. Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., and Francis, C.A. (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72: 5643-5647. Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683-14688. Kurola, J., Salkinoja-Salonen, M., Aarnio, T., Hultman, J., and Romantschuk, M. (2005) Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol Lett 250: 33-38. Aakra, A., Utaker, J.B., Nes, I.F., and Bakken, L.R. (1999) An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J Microbiol Methods 39: 23-31. Kowalchuk, G.A., and Stephen, J.R. (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55: 485-529. 2005; 250 2006; 72 2006; 38 2000; 66 2005; 437 1999; 65 2004; 5 2000; 2 1991 2001; 67 1998; 64 2004; 304 2004; 55 1993; 139 2006; 42 2004; 70 2005; 102 1999; 39 2002; 68 2003; 69 2005; 7 1996; 62 1992; 24 2005; 71 2001; 55 2006; 442 2006; 103 Innerebner G. (e_1_2_6_10_1) 2006; 38 e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 Aakra A. (e_1_2_6_2_1) 1999; 39 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 Environ Microbiol. 2007 Dec;9(12):3152 |
References_xml | – reference: Avrahami, S., and Conrad, R. (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol 69: 6152-6164. – reference: Pernes-Debuyser, A., and Tessier, D. (2004) Soil physical properties affected by long-term fertilization. Eur J Soil Sci 55: 505-512. – reference: Kowalchuk, G.A., Stienstra, A.W., Heilig, G.H.J., Stephen, J.R., and Woldendorp, J.W. (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2: 99-110. – reference: Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., Gebreyesus, B., et al. (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70: 1008-1016. – reference: Olsson, P.A., Hansson, M.C., and Burleigh, S.H. (2006) Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high-affinity P transporter gene induction in Arbuscular mycorrhiza. Appl Environ Microbiol 72: 4115-4120. – reference: Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., Van Bleijswijk, J., Timmers, P., et al. (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317-12322. – reference: Kurola, J., Salkinoja-Salonen, M., Aarnio, T., Hultman, J., and Romantschuk, M. (2005) Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol Lett 250: 33-38. – reference: Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683-14688. – reference: Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., and Insam, H. (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38: 1092-1100. – reference: Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., and Francis, C.A. (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72: 5643-5647. – reference: Phillips, C.J., Harris, D., Dollhopf, S.L., Gross, K.L., Prosser, J.I., and Paul, E.A. (2000) Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl Environ Microbiol 66: 5410-5418. – reference: Aakra, A., Utaker, J.B., Nes, I.F., and Bakken, L.R. (1999) An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J Microbiol Methods 39: 23-31. – reference: Avrahami, S., Conrad, R., and Braker, G. (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68: 5685-5692. – reference: Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. – reference: Kowalchuk, G.A., and Stephen, J.R. (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55: 485-529. – reference: Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809. – reference: Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66: 5368-5382. – reference: Stephen, J.R., McCaig, A.E., Smith, Z., Prosser, J.I., and Embley, T.M. (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62: 4147-4154. – reference: Bruns, M.A., Stephen, J.R., Kowalchuk, G.A., Prosser, J.I., and Paul, E.A. (1999) Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl Environ Microbiol 65: 2994-3000. – reference: Enwall, K., Philippot, L., and Hallin, S. (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71: 8335-8343. – reference: Stephen, J.R., Kowalchuk, G.A., Bruns, M.A.V., McCaig, A.E., Philips, C.J., Embley, T.M., and Prosser, J.I. (1998) Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64: 2958-2965. – reference: Nyberg, K., Schnurer, A., Sundh, I., Jarvis, A., and Hallin, S. (2006) Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues. Biol Fert Soils 42: 315-323. – reference: Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., et al. (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304: 66-74. – reference: McAndrew, D.W., and Malhi, S.S. (1992) Long-term N fertilization of a solonetzic soil: effects on chemical and biological properties. Soil Biol Biochem 24: 619-623. – reference: Head, I.M., Hiorns, W.D., Embley, T.M., Mccarthy, A.J., and Saunders, J.R. (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal-RNA gene-sequences. J Gen Microbiol 139: 1147-1153. – reference: Mendum, T.A., Sockett, R.E., and Hirsch, P.R. (1999) Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl Environ Microbiol 65: 4155-4162. – reference: Kumar, S., Tamura, K., and Nei, M. (2004) mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150-163. – reference: Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985-1995. – reference: Suzuki, M.T., Taylor, L.T., and DeLong, E.F. (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66: 4605-4614. – reference: Hermansson, A., and Lindgren, P.E. (2001) Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol 67: 972-976. – reference: Nugroho, R.A., Roling, W.F.M., Laverman, A.M., and Verhoef, H.A. (2006) Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be tree species specific. Soil Biol Biochem 38: 1166-1171. – volume: 71 start-page: 8335 year: 2005 end-page: 8343 article-title: Activity and composition of the denitrifying bacterial community respond differently to long‐term fertilization publication-title: Appl Environ Microbiol – volume: 65 start-page: 4155 year: 1999 end-page: 4162 article-title: Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia‐oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer publication-title: Appl Environ Microbiol – volume: 304 start-page: 66 year: 2004 end-page: 74 article-title: Environmental genome shotgun sequencing of the Sargasso sea publication-title: Science – volume: 7 start-page: 1985 year: 2005 end-page: 1995 article-title: Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling publication-title: Environ Microbiol – volume: 66 start-page: 5368 year: 2000 end-page: 5382 article-title: Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys publication-title: Appl Environ Microbiol – volume: 250 start-page: 33 year: 2005 end-page: 38 article-title: Activity, diversity and population size of ammonia‐oxidising bacteria in oil‐contaminated landfarming soil publication-title: FEMS Microbiol Lett – volume: 38 start-page: 1092 year: 2006 end-page: 1100 article-title: Traceability of ammonia‐oxidizing bacteria in compost‐treated soils publication-title: Soil Biol Biochem – volume: 65 start-page: 2994 year: 1999 end-page: 3000 article-title: Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils publication-title: Appl Environ Microbiol – volume: 64 start-page: 2958 year: 1998 end-page: 2965 article-title: Analysis of beta‐subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing publication-title: Appl Environ Microbiol – volume: 103 start-page: 12317 year: 2006 end-page: 12322 article-title: Archaeal nitrification in the ocean publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 150 year: 2004 end-page: 163 article-title: mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment publication-title: Brief Bioinform – volume: 66 start-page: 5410 year: 2000 end-page: 5418 article-title: Effects of agronomic treatments on structure and function of ammonia‐oxidizing communities publication-title: Appl Environ Microbiol – volume: 42 start-page: 315 year: 2006 end-page: 323 article-title: Ammonia‐oxidizing communities in agricultural soil incubated with organic waste residues publication-title: Biol Fert Soils – volume: 55 start-page: 505 year: 2004 end-page: 512 article-title: Soil physical properties affected by long‐term fertilization publication-title: Eur J Soil Sci – volume: 24 start-page: 619 year: 1992 end-page: 623 article-title: Long‐term N fertilization of a solonetzic soil: effects on chemical and biological properties publication-title: Soil Biol Biochem – volume: 66 start-page: 4605 year: 2000 end-page: 4614 article-title: Quantitative analysis of small‐subunit rRNA genes in mixed microbial populations via 5′‐nuclease assays publication-title: Appl Environ Microbiol – volume: 139 start-page: 1147 year: 1993 end-page: 1153 article-title: The phylogeny of autotrophic ammonia‐oxidizing bacteria as determined by analysis of 16S ribosomal‐RNA gene‐sequences publication-title: J Gen Microbiol – volume: 38 start-page: 1166 year: 2006 end-page: 1171 article-title: Net nitrification rate and presence of cluster 2 in acid coniferous forest soils appear to be tree species specific publication-title: Soil Biol Biochem – volume: 39 start-page: 23 year: 1999 end-page: 31 article-title: An evaluated improvement of the extinction dilution method for isolation of ammonia‐oxidizing bacteria publication-title: J Microbiol Methods – volume: 437 start-page: 543 year: 2005 end-page: 546 article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon publication-title: Nature – volume: 69 start-page: 6152 year: 2003 end-page: 6164 article-title: Patterns of community change among ammonia oxidizers in meadow soils upon long‐term incubation at different temperatures publication-title: Appl Environ Microbiol – volume: 72 start-page: 4115 year: 2006 end-page: 4120 article-title: Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high‐affinity P transporter gene induction in publication-title: Appl Environ Microbiol – volume: 442 start-page: 806 year: 2006 end-page: 809 article-title: Archaea predominate among ammonia‐oxidizing prokaryotes in soils publication-title: Nature – volume: 62 start-page: 4147 year: 1996 end-page: 4154 article-title: Molecular diversity of soil and marine 16S rRNA gene sequences related to beta‐subgroup ammonia‐oxidizing bacteria publication-title: Appl Environ Microbiol – volume: 102 start-page: 14683 year: 2005 end-page: 14688 article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean publication-title: Proc Natl Acad Sci USA – volume: 72 start-page: 5643 year: 2006 end-page: 5647 article-title: Occurrence of ammonia‐oxidizing archaea in wastewater treatment plant bioreactors publication-title: Appl Environ Microbiol – volume: 68 start-page: 5685 year: 2002 end-page: 5692 article-title: Effect of soil ammonium concentration on N O release and on the community structure of ammonia oxidizers and denitrifiers publication-title: Appl Environ Microbiol – start-page: 115 year: 1991 end-page: 175 – volume: 55 start-page: 485 year: 2001 end-page: 529 article-title: Ammonia‐oxidizing bacteria: a model for molecular microbial ecology publication-title: Annu Rev Microbiol – volume: 2 start-page: 99 year: 2000 end-page: 110 article-title: Changes in the community structure of ammonia‐oxidizing bacteria during secondary succession of calcareous grasslands publication-title: Environ Microbiol – volume: 67 start-page: 972 year: 2001 end-page: 976 article-title: Quantification of ammonia‐oxidizing bacteria in arable soil by real‐time PCR publication-title: Appl Environ Microbiol – volume: 70 start-page: 1008 year: 2004 end-page: 1016 article-title: Application of real‐time PCR to study effects of ammonium on population size of ammonia‐oxidizing bacteria in soil publication-title: Appl Environ Microbiol – ident: e_1_2_6_31_1 doi: 10.1111/j.1462-2920.2005.00906.x – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-2389.2004.00614.x – ident: e_1_2_6_6_1 doi: 10.1128/AEM.71.12.8335-8343.2005 – volume: 39 start-page: 23 year: 1999 ident: e_1_2_6_2_1 article-title: An evaluated improvement of the extinction dilution method for isolation of ammonia‐oxidizing bacteria publication-title: J Microbiol Methods doi: 10.1016/S0167-7012(99)00094-9 – ident: e_1_2_6_32_1 doi: 10.1126/science.1093857 – volume: 38 start-page: 1092 year: 2006 ident: e_1_2_6_10_1 article-title: Traceability of ammonia‐oxidizing bacteria in compost‐treated soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.09.008 – ident: e_1_2_6_3_1 doi: 10.1128/AEM.69.10.6152-6164.2003 – ident: e_1_2_6_15_1 doi: 10.1016/j.femsle.2005.06.057 – ident: e_1_2_6_24_1 doi: 10.1128/AEM.00402-06 – ident: e_1_2_6_13_1 doi: 10.1046/j.1462-2920.2000.00080.x – ident: e_1_2_6_19_1 doi: 10.1128/AEM.65.9.4155-4162.1999 – ident: e_1_2_6_29_1 doi: 10.1128/AEM.64.8.2958-2965.1998 – ident: e_1_2_6_12_1 doi: 10.1146/annurev.micro.55.1.485 – ident: e_1_2_6_17_1 doi: 10.1038/nature04983 – ident: e_1_2_6_8_1 doi: 10.1099/00221287-139-6-1147 – ident: e_1_2_6_23_1 doi: 10.1128/AEM.02154-05 – ident: e_1_2_6_9_1 doi: 10.1128/AEM.67.2.972-976.2001 – ident: e_1_2_6_22_1 doi: 10.1128/AEM.70.2.1008-1016.2004 – ident: e_1_2_6_28_1 doi: 10.1128/AEM.62.11.4147-4154.1996 – ident: e_1_2_6_11_1 doi: 10.1038/nature03911 – ident: e_1_2_6_26_1 doi: 10.1128/AEM.66.12.5410-5418.2000 – ident: e_1_2_6_20_1 doi: 10.1016/j.soilbio.2005.09.011 – ident: e_1_2_6_33_1 doi: 10.1073/pnas.0600756103 – ident: e_1_2_6_30_1 doi: 10.1128/AEM.66.11.4605-4614.2000 – ident: e_1_2_6_14_1 doi: 10.1093/bib/5.2.150 – ident: e_1_2_6_18_1 doi: 10.1016/0038-0717(92)90039-Z – ident: e_1_2_6_4_1 doi: 10.1128/AEM.68.11.5685-5692.2002 – ident: e_1_2_6_16_1 doi: 10.1007/s00248-007-9320-4 – ident: e_1_2_6_27_1 doi: 10.1128/AEM.66.12.5368-5382.2000 – ident: e_1_2_6_7_1 doi: 10.1073/pnas.0506625102 – ident: e_1_2_6_21_1 doi: 10.1007/s00374-005-0029-6 – ident: e_1_2_6_5_1 doi: 10.1128/AEM.65.7.2994-3000.1999 – reference: - Environ Microbiol. 2007 Dec;9(12):3152 |
SSID | ssj0017370 |
Score | 2.4787953 |
Snippet | The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time... Summary The abundance and composition of soil ammonia‐oxidizing bacteria (AOB) and ammonia‐oxidizing archaea (AOA) were investigated by using quantitative... The abundance and composition of soil ammonia‐oxidizing bacteria (AOB) and ammonia‐oxidizing archaea (AOA) were investigated by using quantitative real‐time... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2364 |
SubjectTerms | ammonia Ammonia - metabolism Archaea Archaea - classification Archaea - genetics Archaea - growth & development Archaea - metabolism Bacteria Bacteria - classification Bacteria - genetics Bacteria - growth & development Bacteria - metabolism biogeochemical cycles China classification community structure Ecosystem ecosystems fallow Fertilizers Fertilizers - microbiology field experimentation genes genetics growth & development metabolism microbiology Molecular Sequence Data nitrification nitrogen fertilizers Nitrosospira nucleotide sequences nutrients oxidation Oxidation-Reduction phosphorus Phylogeny polymerase chain reaction Population Dynamics population size potassium quantitative analysis RNA, Ribosomal, 16S RNA, Ribosomal, 16S - classification soil bacteria Soil Microbiology soil pH summer upland soils winter |
Title | Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices |
URI | https://api.istex.fr/ark:/67375/WNG-Z23N8087-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2007.01358.x https://www.ncbi.nlm.nih.gov/pubmed/17686032 https://www.proquest.com/docview/20506686 https://www.proquest.com/docview/47425510 https://www.proquest.com/docview/68142733 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50QfDiWzeujz6Itwx59uO4iOsiOOBjcPHS9CvLMEOyTCYw7smf4B_yz_hLrOpkRmYYZRFvE6YqSSdV1V93vqoi5IXxlTW6kLHRiYsLzqpYZs7FguVgDYXNE4f7kO_G7HRSvD0rzwb-E-bC9PUhNhtu6BkhXqODa9PuOnkWY7eloRJhmpdihHgSqVuIjz5sKkmlPA994waVdIfUs_dEWzPV9Uo3gF_x0a_2gdFtbBsmp5PbZLYeVs9JmY26pRnZy52Kj_9n3HfIrQHD0uPe6O6Sa76-R270XS2_3ic_3ne6DrlrEEmpDlVPfEubigLYpNpg7gmYGvzjKDLaB9oYCmj0iqn--e17s5q66SXMq9T09aR1kN8nEMo9eR30KfYD962n3QVSNunCO9o20znFXLkFnTf1OejidEQrZJTPhzRUus4Wax-QycnrT69O46FLRGwLmYrYMOuE8WVWeQOr1aqsfAZHNnEOVmPCpl5awEHMG2u8cNIKDDtparSxzJUuf0gO6qb2h4QaWXDPdGXLyhUQeYXFipE8F5kUwkgZEb62CGWHEurYyWOutpZSmcKXgw0-uQovR60ikm40L_oyIlfQOQSjU_ocor2afMzwG3PCJZM8i8jLYImbc-nFDBl6vFSfx2_Ulywfi0RwxSLyfG2qCuIGfgzStW-6Fq5UAtoUf5EoOMRzCNl_lmAiLQD-5hF51HvB77HBw2NJDjfKgi1fedAKog_-evyvikfkZr_9jjTAJ-Rguej8U8CNS_MsRIRfqddipw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYIL79Lw6h4QN0d-7uOIECVAGwloRMVltS9XUSO7ihMp9MRP4A_xZ_glzKydoEQBVYhbrMzYXntm9tv1zDeEPDe-tEbnMjI6dlHOWRnJ1LlIsAysIbdZ7HAf8mjIBqP83Ulx0rUDwlqYlh9iteGGnhHiNTo4bkhvenkaYbuljoowyQrRB0B5DRt8h_XVxxWXVMKz0Dmu00k20nq2nmltrrpa6hoQLD78xTY4uo5uw_R0cJtMlgNrs1LO-vOZ6duLDc7H_zTyO-RWB2Ppy9bu7pIrvrpHrreNLb_eJz8-zHUVytcgmFIdiE98Q-uSAt6k2mD5CVgb_OMoJrV3mWMooNExxvrnt-_1YuzGFzC1UtNSSusgv00gMD55HfQptgT3jafzc8zapFPvaFOPJxTL5aZ0UlenoIszEi0xqXzSVaLSZcFY84CMDl4fvxpEXaOIyOYyEZFh1gnji7T0BhasZVH6FI5s7BwsyIRNvLQAhZg31njhpBUYeZLEaGOZK1y2S3aquvJ7hBqZc890aYvS5RB8hUXSSJ6JVAphpOwRvjQJZTsWdWzmMVFrq6lU4cvBHp9chZejFj2SrDTPWyaRS-jsgdUpfQoBX40-pfiZOeaSSZ72yItgiqtz6ekZJunxQn0evlFf0mwoYsEV65H9pa0qCB34PUhXvp43cKUCAKf4i0TOIaRD1P6zBBNJDgg465GHrRv8Hhs8PBZncKMsGPOlB60gAOGvR_-quE9uDI6PDtXh2-H7x-RmuxuPWYFPyM5sOvdPAUbOzLMQHn4BqZJmwg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtNAEG3BIBAX9mHCNn1A3Bx5bXcfEUMYtogtYsSl1esoSmRHWaQwJz6BH-Jn-BKq2k5QooBGiFusVNluu-p1dbvqFSGPtfNGq1xEWsU2ykvmI5FaG3GWgTXkJost7kO-7bPjQf7qpDhp85-wFqbhh1hvuKFnBLxGB59Yv-3kaYTdllomwiQreBfiyUs5izla-NGHNZVUUmahcVyrk2xl9ew808ZUddGrGgJYfPbLXdHoZnAbZqfedTJajatJShl1F3PdNWdblI__Z-A3yLU2iKVPG6u7SS646ha53LS1_Hqb_Hi_UFUoXgMopSrQnrgZrT2FaJMqjcUnYGvwj6WY0t7mjaGAQrcYqp_fvtfLoR2ewcRKdUMorYL8LoHA9-RU0KfYENzNHF1MMGeTTp2ls3o4plgsN6XjujoFXZyPqMeU8nFbh0pX5WKzO2TQe_7p2XHUtomITC4SHmlmLNeuSL3TsFz1hXcpHJnYWliOcZM4YSAQYk4b7bgVhiPuJIlW2jBb2Gyf7FV15Q4I1SIvHVPeFN7mAL3cIGVkmfFUcK6F6JByZRHStBzq2MpjLDfWUqnEl4MdPksZXo5cdkiy1pw0PCLn0DkAo5PqFOBeDj6m-JE5LgUTZdohT4Ilrs-lpiNM0SsL-bn_Qn5Jsz6PeSlZhxyuTFUCcODXIFW5ejGDKxUQbvK_SOQlADpg9p8lGE9yiH-zDrnbeMHvscHDY3EGN8qCLZ970BLgB3_d-1fFQ3Ll3VFPvnnZf32fXG224jEl8AHZm08X7iHEkHP9KIDDL0AhZXo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analyses+of+the+abundance+and+composition+of+ammonia-oxidizing+bacteria+and+ammonia-oxidizing+archaea+of+a+Chinese+upland+red+soil+under+long-term+fertilization+practices&rft.jtitle=Environmental+microbiology&rft.au=He%2C+Ji-zheng&rft.au=Shen%2C+Ju-pei&rft.au=Zhang%2C+Li-mei&rft.au=Zhu%2C+Yong-guan&rft.date=2007-09-01&rft.issn=1462-2912&rft.volume=9&rft.issue=9+p.2364-2374&rft.spage=2364&rft.epage=2374&rft_id=info:doi/10.1111%2Fj.1462-2920.2007.01358.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |