Bifunctional Electrocatalytic Activity of Boron-Doped Graphene Derived from Boron Carbide

A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cell...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 5; no. 17; pp. np - n/a
Main Authors Vineesh, Thazhe Veettil, Kumar, M. Praveen, Takahashi, Chisato, Kalita, Golap, Alwarappan, Subbiah, Pattanayak, Deepak K., Narayanan, Tharangattu N.
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.09.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cells. Here, metal/metal‐oxide free, doped graphene derived from rhombohedral boron carbide (B4C) is demonstrated to be an effective bifunctional catalyst for the first time. B4C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield ≈7% by weight, after the first cycle). This structural conversion of B4C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non‐electrochemically active material, broadening its potential for application in various energy‐related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four‐electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation. Bifunctional catalyst is a novel concept in modern energy technologies, where the same catalyst can be used for water splitting and oxygen reduction reactions. For the first time, a nanoparticle‐free graphene‐based material obtained by a novel preparation route is demonstrated to have favorable bifunctional catalytic properties.
AbstractList A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cells. Here, metal/metal‐oxide free, doped graphene derived from rhombohedral boron carbide (B 4 C) is demonstrated to be an effective bifunctional catalyst for the first time. B 4 C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield ≈7% by weight, after the first cycle). This structural conversion of B 4 C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non‐electrochemically active material, broadening its potential for application in various energy‐related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four‐electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation.
A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new-generation energy-storage systems, such as regenerative fuel cells. Here, metal/metal-oxide free, doped graphene derived from rhombohedral boron carbide (B4C) is demonstrated to be an effective bifunctional catalyst for the first time. B4C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield [asymptotically =]7% by weight, after the first cycle). This structural conversion of B4C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non-electrochemically active material, broadening its potential for application in various energy-related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four-electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation.
A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new-generation energy-storage systems, such as regenerative fuel cells. Here, metal/metal-oxide free, doped graphene derived from rhombohedral boron carbide (B sub(4)C) is demonstrated to be an effective bifunctional catalyst for the first time. B sub(4)C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield approximately 7% by weight, after the first cycle). This structural conversion of B sub(4)C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non-electrochemically active material, broadening its potential for application in various energy-related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four-electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation. Bifunctional catalyst is a novel concept in modern energy technologies, where the same catalyst can be used for water splitting and oxygen reduction reactions. For the first time, a nanoparticle-free graphene-based material obtained by a novel preparation route is demonstrated to have favorable bifunctional catalytic properties.
A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cells. Here, metal/metal‐oxide free, doped graphene derived from rhombohedral boron carbide (B4C) is demonstrated to be an effective bifunctional catalyst for the first time. B4C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield ≈7% by weight, after the first cycle). This structural conversion of B4C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non‐electrochemically active material, broadening its potential for application in various energy‐related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four‐electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation. Bifunctional catalyst is a novel concept in modern energy technologies, where the same catalyst can be used for water splitting and oxygen reduction reactions. For the first time, a nanoparticle‐free graphene‐based material obtained by a novel preparation route is demonstrated to have favorable bifunctional catalytic properties.
Author Kalita, Golap
Narayanan, Tharangattu N.
Alwarappan, Subbiah
Takahashi, Chisato
Pattanayak, Deepak K.
Kumar, M. Praveen
Vineesh, Thazhe Veettil
Author_xml – sequence: 1
  givenname: Thazhe Veettil
  surname: Vineesh
  fullname: Vineesh, Thazhe Veettil
  organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), 630 006, Karaikudi, India
– sequence: 2
  givenname: M. Praveen
  surname: Kumar
  fullname: Kumar, M. Praveen
  organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), 630 006, Karaikudi, India
– sequence: 3
  givenname: Chisato
  surname: Takahashi
  fullname: Takahashi, Chisato
  organization: Pharmaceutical Engineering School of Pharmacy, Aichi Gakuin University, 4648650, Chikusa-ku, Nagoya, Japan
– sequence: 4
  givenname: Golap
  surname: Kalita
  fullname: Kalita, Golap
  organization: Nagoya Institute of Technology, 4668555, Gokisho-cho, Nagoya, Japan
– sequence: 5
  givenname: Subbiah
  surname: Alwarappan
  fullname: Alwarappan, Subbiah
  email: salwarap@gmail.com
  organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), 630 006, Karaikudi, India
– sequence: 6
  givenname: Deepak K.
  surname: Pattanayak
  fullname: Pattanayak, Deepak K.
  email: salwarap@gmail.com
  organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), 630 006, Karaikudi, India
– sequence: 7
  givenname: Tharangattu N.
  surname: Narayanan
  fullname: Narayanan, Tharangattu N.
  email: salwarap@gmail.com
  organization: TIFR-Centre for Interdisciplinary Sciences (TCIS), Tata Institute of Fundamental Research, 500 075, Hyderabad, India
BookMark eNqFkM9P2zAUx60JpDHgunMkLruk-EcS28dS2gICJqRN006W6zxrhjTubJet_z2OgiqENM0XW_bn8_ze9xM66H0PCH0meEIwpuca-vWEYlJj3NTiAzoiDanKRlT4YH9m9CM6jfER51VJghk7Qj8vnN32Jjnf666Yd2BS8EYn3e2SM8U0vzy7tCu8LS588H156TfQFsugN7-gh-ISgnvOFzb49UgUMx1WroUTdGh1F-H0dT9G3xfzb7Or8vbr8no2vS1N7kGUFAxQ20oqGc0tCmLqSptKSMLpSoCleSImBW2sWK2EaLhsjeYgWiJwbSVlx-jLWHcT_O8txKTWLhroOt2D30ZFOMeM85qRjJ69Qx_9NuTBB4pgWgvJh4KTkTLBxxjAqk1wax12imA1hK2GsNU-7CxU7wTjkh4iTUG77t-aHLU_roPdfz5R0_n93Vu3HF0XE_zduzo8qYYzXqsf90v1QGsqmsWNemAv_iijrA
CitedBy_id crossref_primary_10_1002_batt_201900001
crossref_primary_10_3762_bjnano_11_34
crossref_primary_10_1039_C6RA12438K
crossref_primary_10_1039_C7CY00309A
crossref_primary_10_1002_open_202000326
crossref_primary_10_1007_s10853_020_04391_2
crossref_primary_10_1016_j_electacta_2019_135562
crossref_primary_10_1002_celc_201801232
crossref_primary_10_1016_j_jechem_2023_01_037
crossref_primary_10_1016_j_apmt_2015_09_002
crossref_primary_10_1016_j_apcatb_2020_119800
crossref_primary_10_1016_j_catcom_2019_105742
crossref_primary_10_1021_acsami_9b04870
crossref_primary_10_1039_D4CP01217H
crossref_primary_10_1016_j_ijhydene_2020_04_073
crossref_primary_10_1039_D0NR07580A
crossref_primary_10_1039_C7TA00075H
crossref_primary_10_1016_j_electacta_2025_146083
crossref_primary_10_1021_acsami_7b19423
crossref_primary_10_1016_j_apcatb_2023_123471
crossref_primary_10_1021_acsaem_9b00364
crossref_primary_10_1016_j_jcis_2023_09_185
crossref_primary_10_2139_ssrn_3957281
crossref_primary_10_1016_j_carbon_2021_12_056
crossref_primary_10_1016_j_pmatsci_2020_100717
crossref_primary_10_1016_j_cej_2023_142384
crossref_primary_10_59717_j_xinn_mater_2024_100060
crossref_primary_10_1016_j_ijhydene_2018_09_043
crossref_primary_10_1016_j_cej_2023_142267
crossref_primary_10_1016_j_jcis_2023_08_008
crossref_primary_10_1007_s11581_023_05009_8
crossref_primary_10_1039_C9NJ00052F
crossref_primary_10_1016_j_apcatb_2023_122829
crossref_primary_10_1039_D2RA00968D
crossref_primary_10_3390_inorganics12120303
crossref_primary_10_1016_j_snb_2021_129852
crossref_primary_10_1039_C8CP06155F
crossref_primary_10_1016_j_ces_2024_119951
crossref_primary_10_1016_j_biosx_2025_100615
crossref_primary_10_1016_j_carbon_2015_09_086
crossref_primary_10_1016_j_joule_2024_01_014
crossref_primary_10_1016_j_jhazmat_2022_130331
crossref_primary_10_1016_j_carbon_2021_12_061
crossref_primary_10_1007_s10854_022_07850_5
crossref_primary_10_1039_C6RA20627A
crossref_primary_10_1002_advs_201800036
crossref_primary_10_1002_adfm_201604904
crossref_primary_10_1016_j_rser_2016_11_054
crossref_primary_10_1016_j_carbon_2020_09_004
crossref_primary_10_1039_D3RA04495E
crossref_primary_10_1016_j_carbon_2019_05_012
crossref_primary_10_1016_j_carbon_2016_10_046
crossref_primary_10_3390_catal10111290
crossref_primary_10_1039_D1TA00158B
crossref_primary_10_1002_adsu_202000134
crossref_primary_10_1039_D0CY00919A
crossref_primary_10_1016_j_apcatb_2021_120543
crossref_primary_10_1002_slct_201701039
crossref_primary_10_1016_j_carbon_2016_06_102
crossref_primary_10_1021_acscatal_6b00965
crossref_primary_10_1016_j_jcis_2023_09_041
crossref_primary_10_1016_j_jtice_2018_07_040
crossref_primary_10_1142_S1793292020500125
crossref_primary_10_1021_acsami_6b04189
crossref_primary_10_1039_C9NR05919A
crossref_primary_10_1016_j_cej_2024_150967
crossref_primary_10_1016_j_pmatsci_2020_100637
crossref_primary_10_1016_j_apsusc_2016_09_089
crossref_primary_10_20964_2018_04_37
crossref_primary_10_1002_qua_25203
crossref_primary_10_1088_2053_1591_ab6262
crossref_primary_10_3390_catal11091028
crossref_primary_10_1038_srep37731
crossref_primary_10_1016_j_cclet_2022_05_038
crossref_primary_10_1016_j_materresbull_2021_111315
crossref_primary_10_1021_acsanm_3c03100
crossref_primary_10_1016_j_jpowsour_2019_05_079
crossref_primary_10_1149_2_0771803jes
crossref_primary_10_1016_j_jallcom_2021_159627
crossref_primary_10_1016_j_cej_2022_140205
crossref_primary_10_1016_j_ces_2022_118402
crossref_primary_10_1016_j_jpowsour_2019_226770
crossref_primary_10_1016_j_apcatb_2018_12_075
crossref_primary_10_1021_acsami_7b02346
crossref_primary_10_1039_D0DT00010H
crossref_primary_10_1016_j_apsusc_2017_09_213
crossref_primary_10_1039_C8CY01371C
crossref_primary_10_1016_j_mser_2024_100835
crossref_primary_10_1039_C7TA01265A
crossref_primary_10_1088_1361_6528_aad35e
crossref_primary_10_1016_j_apsusc_2019_07_205
crossref_primary_10_1002_smll_201700518
crossref_primary_10_1039_D1GC00659B
crossref_primary_10_1002_aenm_201700544
crossref_primary_10_1002_adsu_201700085
crossref_primary_10_1016_j_joule_2018_06_007
crossref_primary_10_1039_D3MH00335C
crossref_primary_10_1039_C9CC03413G
crossref_primary_10_1002_aenm_201502313
crossref_primary_10_1021_acsaem_1c00678
crossref_primary_10_1039_C6RA19496F
crossref_primary_10_1038_s41467_018_05758_5
crossref_primary_10_1002_slct_202000523
crossref_primary_10_1016_j_jallcom_2017_10_044
crossref_primary_10_1039_C6RA19238F
crossref_primary_10_1557_jmr_2016_130
crossref_primary_10_1039_C7CP02390A
crossref_primary_10_1039_C5TA10599D
crossref_primary_10_1021_acsaem_8b02120
crossref_primary_10_1002_cssc_201501439
crossref_primary_10_1007_s11705_018_1722_y
crossref_primary_10_1021_acs_iecr_3c00224
crossref_primary_10_1002_smll_202400551
crossref_primary_10_1002_celc_202000515
crossref_primary_10_1016_j_jorganchem_2018_02_024
crossref_primary_10_1088_0957_4484_27_27_275402
crossref_primary_10_1016_j_ijhydene_2022_09_259
crossref_primary_10_1021_acsami_5b04609
crossref_primary_10_1016_j_carbon_2018_08_020
crossref_primary_10_1002_adfm_202000503
crossref_primary_10_1039_D0TA09346G
crossref_primary_10_1002_aenm_202000927
crossref_primary_10_1038_s41598_018_21213_3
crossref_primary_10_1039_C6MH00358C
crossref_primary_10_3390_appliedchem2030012
crossref_primary_10_1016_j_apsusc_2020_147381
crossref_primary_10_1039_C9NR06378A
crossref_primary_10_1002_celc_201800373
crossref_primary_10_1039_D0RA07100E
crossref_primary_10_53941_see_2024_100004
crossref_primary_10_1149_2_0601803jes
crossref_primary_10_1007_s40820_024_01366_9
crossref_primary_10_1002_aenm_201900945
crossref_primary_10_1016_j_carbon_2017_03_093
crossref_primary_10_1016_j_jcis_2024_01_072
crossref_primary_10_1149_2_0871908jes
crossref_primary_10_1039_D0TA05008C
crossref_primary_10_1002_ppsc_201700043
crossref_primary_10_1016_j_cartre_2021_100075
crossref_primary_10_1002_sstr_202300036
crossref_primary_10_1016_j_electacta_2017_02_140
crossref_primary_10_1007_s40242_020_0182_3
crossref_primary_10_1016_j_apsusc_2023_157825
Cites_doi 10.1038/nmat3961
10.1021/nl2009058
10.1021/nl071822y
10.1021/nn200766e
10.1039/C4NR02563F
10.1021/cs4011875
10.1021/nn501434a
10.1021/nl803279t
10.1088/0953-8984/24/31/314207
10.1039/C4RA04927F
10.1038/nmat2382
10.1038/nmat3944
10.1021/ja505186m
10.1021/ar300127r
10.1021/ja1036572
10.1016/j.elecom.2012.11.037
10.1063/1.2883941
10.1039/C4CC05069J
10.1002/adma.201201792
10.1021/cs3003098
10.1021/cm902182y
10.1039/c3ee43648a
10.1016/j.carbon.2007.02.034
10.1021/ja502532y
10.1111/j.1551-2916.2011.04865.x
10.1038/503327a
10.1039/C4TA04066J
10.1021/nl503673q
10.1021/nn203393d
10.1039/c3cp51942b
10.1039/c2cs35105f
10.1016/S1388-2481(03)00053-5
10.1021/nn103584t
10.1002/anie.201206720
10.1021/nn404927n
10.1002/anie.201101287
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
7SU
C1K
DOI 10.1002/aenm.201500658
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 3801082921
10_1002_aenm_201500658
AENM201500658
ark_67375_WNG_Q25286FJ_Q
Genre article
GrantInformation_xml – fundername: MULTIFUN
  funderid: CSC 0101
– fundername: Tata Institute of Fundamental Research – Centre for Interdisciplinary Sciences (TCIS), Hyderabad
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
7SU
C1K
ID FETCH-LOGICAL-c4918-2ece2fd9293268381c54ac489172b8ef250039826f8bb88679dca7e8d1805f923
ISSN 1614-6832
IngestDate Fri Jul 11 03:58:02 EDT 2025
Fri Jul 25 12:25:25 EDT 2025
Tue Jul 01 01:43:14 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Jan 22 16:31:09 EST 2025
Wed Oct 30 09:48:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4918-2ece2fd9293268381c54ac489172b8ef250039826f8bb88679dca7e8d1805f923
Notes MULTIFUN - No. CSC 0101
ArticleID:AENM201500658
istex:BA1B53843C29ED6A6F5A93AD0CF3646CF888CC8C
Tata Institute of Fundamental Research - Centre for Interdisciplinary Sciences (TCIS), Hyderabad
ark:/67375/WNG-Q25286FJ-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1710258972
PQPubID 886389
PageCount 8
ParticipantIDs proquest_miscellaneous_1770377531
proquest_journals_1710258972
crossref_primary_10_1002_aenm_201500658
crossref_citationtrail_10_1002_aenm_201500658
wiley_primary_10_1002_aenm_201500658_AENM201500658
istex_primary_ark_67375_WNG_Q25286FJ_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References J. Jin, F. Pan, L. Jiang, X. Fu, A. Liang, Z. Wei, J. Zhang, G. Sun, ACS Nano 2014, 8, 3313.
S. W. Poon, W. Chen, E. S. Tok, A. T. S. Wee, Appl. Phys. Lett. 2008, 92, 104102.
M. Peplow, Nature 2013, 503, 327.
Y. Meng, W. Song, H. Huang, Z. Ren, S. Chen, S. L. Suib, J. Am. Chem. Soc. 2014, 136, 11452.
J. Yang, J. J. Xu, Electrochem. Commun. 2003, 5, 306.
H. M Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472.
K. V Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203.
Z. Sheng, L. Shao, J. Chen, W. Bao, F. Wang, X. Xia, ACS Nano 2011, 5, 4350.
L. Wang, L. Duan, Y. Wang, M. S. G. Ahlquist, L. Sun, Chem. Commun. 2014, 50, 12947.
P. B. Sorokin, A. G. Kvashnin, Z. Zhu, D. Tománek, Nano Lett. 2014, 5, 7126.
K. N. Kudin, B. Ozbas, H. C Schniepp, R. K Prudhomme, I. A. Aksay, R. Car, Nano Lett. 2008, 8, 36.
J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496.
D. A. C. Brownson, D. K. Kampouris, C. E. Banks, Chem. Soc. Rev. 2012, 41, 6944.
M. Praveen Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan, D. K. Pattanayak, RSC Adv. 2014, 4, 38689.
Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205.
Y. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-schifferli, J. Am. Chem. Soc. 2010, 132, 12170.
J. M. Tour, Nat. Mater. 2014, 13, 545.
A. Zhao, J. Masa, W. Xia, A. Maljusch, M. Willinger, G. Clavel, K. Xie, R. Schlo, W. Schuhmann, M. Muhler, J. Am. Chem. Soc. 2014, 136, 7551.
Z. Jin, J. Yao, C. Kittrell, J. M. Tour, ACS Nano 2011, 5, 4112.
S. Boopathi, T. N. Narayanan, S. Senthil Kumar, Nanoscale 2014, 6, 10140.
E. Antolini, ACS Catal. 2014, 4, 1426.
K. R. Paton, Nat. Mater. 2014, 13, 624.
Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2014, 8, 5290.
R. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Phys. Chem. Chem. Phys. 2013, 15, 12220.
S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
B. Zheng, J. Wang, F. Wang, X. Xia, Electrochem. Commun. 2013, 28, 24.
M. R. Philip, T. N. Narayanan, M. Praveen Kumar, S. B. Arya, D. K. Pattanayak, J. Mater. Chem. A 2014, 2, 19488.
V. Domnich, S. Reynaud, R. A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 2011, 94, 3605.
C. Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C. H Tsai, L. Li, J. Chem. Mater. 2009, 21, 5674.
L. Song, Z. Liu, A. L. M. Reddy, N. T. Narayanan, J. T. Tijerina, J. Peng, G. Gao, J. Lou, R. Vajtai, P. M. Ajayan, Adv. Mater. 2012, 24, 4878.
W. Norimatsu, K. Hirata, Y. Yamamoto, S. Arai, M. Kusunoki, J. Phys, Condens. Matter 2012, 24, 314207.
T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765.
D. K. James, J. M. Tour, Acc. Chem. Res. 2013, 46, 2307.
L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132.
T. Palaniselvam, M. O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 2014, 7, 1059.
2013; 28
2009; 21
2013; 46
2013; 503
2011; 11
2008; 8
2008; 92
2011; 5
2014; 136
2012; 51
2014; 5
2013; 15
2012; 2
2014; 4
2014; 2
2011; 94
2011; 50
2010; 132
2009; 9
2014; 13
2009; 8
2003; 5
2012; 6
2012; 24
2014; 8
2014; 50
2014; 7
2014; 6
2007; 45
2012; 41
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Z. Jin, J. Yao, C. Kittrell, J. M. Tour, ACS Nano 2011, 5, 4112.
– reference: Y. Meng, W. Song, H. Huang, Z. Ren, S. Chen, S. L. Suib, J. Am. Chem. Soc. 2014, 136, 11452.
– reference: A. Zhao, J. Masa, W. Xia, A. Maljusch, M. Willinger, G. Clavel, K. Xie, R. Schlo, W. Schuhmann, M. Muhler, J. Am. Chem. Soc. 2014, 136, 7551.
– reference: L. Wang, L. Duan, Y. Wang, M. S. G. Ahlquist, L. Sun, Chem. Commun. 2014, 50, 12947.
– reference: T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765.
– reference: K. N. Kudin, B. Ozbas, H. C Schniepp, R. K Prudhomme, I. A. Aksay, R. Car, Nano Lett. 2008, 8, 36.
– reference: K. V Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203.
– reference: M. Praveen Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan, D. K. Pattanayak, RSC Adv. 2014, 4, 38689.
– reference: S. Boopathi, T. N. Narayanan, S. Senthil Kumar, Nanoscale 2014, 6, 10140.
– reference: H. M Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472.
– reference: B. Zheng, J. Wang, F. Wang, X. Xia, Electrochem. Commun. 2013, 28, 24.
– reference: Z. Sheng, L. Shao, J. Chen, W. Bao, F. Wang, X. Xia, ACS Nano 2011, 5, 4350.
– reference: L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132.
– reference: J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496.
– reference: S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
– reference: D. A. C. Brownson, D. K. Kampouris, C. E. Banks, Chem. Soc. Rev. 2012, 41, 6944.
– reference: L. Song, Z. Liu, A. L. M. Reddy, N. T. Narayanan, J. T. Tijerina, J. Peng, G. Gao, J. Lou, R. Vajtai, P. M. Ajayan, Adv. Mater. 2012, 24, 4878.
– reference: C. Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C. H Tsai, L. Li, J. Chem. Mater. 2009, 21, 5674.
– reference: V. Domnich, S. Reynaud, R. A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 2011, 94, 3605.
– reference: M. Peplow, Nature 2013, 503, 327.
– reference: S. W. Poon, W. Chen, E. S. Tok, A. T. S. Wee, Appl. Phys. Lett. 2008, 92, 104102.
– reference: J. Yang, J. J. Xu, Electrochem. Commun. 2003, 5, 306.
– reference: E. Antolini, ACS Catal. 2014, 4, 1426.
– reference: K. R. Paton, Nat. Mater. 2014, 13, 624.
– reference: Y. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-schifferli, J. Am. Chem. Soc. 2010, 132, 12170.
– reference: T. Palaniselvam, M. O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 2014, 7, 1059.
– reference: J. Jin, F. Pan, L. Jiang, X. Fu, A. Liang, Z. Wei, J. Zhang, G. Sun, ACS Nano 2014, 8, 3313.
– reference: Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Phys. Chem. Chem. Phys. 2013, 15, 12220.
– reference: D. K. James, J. M. Tour, Acc. Chem. Res. 2013, 46, 2307.
– reference: P. B. Sorokin, A. G. Kvashnin, Z. Zhu, D. Tománek, Nano Lett. 2014, 5, 7126.
– reference: W. Norimatsu, K. Hirata, Y. Yamamoto, S. Arai, M. Kusunoki, J. Phys, Condens. Matter 2012, 24, 314207.
– reference: R. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
– reference: M. R. Philip, T. N. Narayanan, M. Praveen Kumar, S. B. Arya, D. K. Pattanayak, J. Mater. Chem. A 2014, 2, 19488.
– reference: J. M. Tour, Nat. Mater. 2014, 13, 545.
– reference: Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2014, 8, 5290.
– reference: Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205.
– volume: 4
  start-page: 38689
  year: 2014
  publication-title: RSC Adv.
– volume: 50
  start-page: 7132
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 545
  year: 2014
  publication-title: Nat. Mater.
– volume: 503
  start-page: 327
  year: 2013
  publication-title: Nature
– volume: 9
  start-page: 1752
  year: 2009
  publication-title: Nano Lett.
– volume: 24
  start-page: 314207
  year: 2012
  publication-title: J. Phys, Condens. Matter
– volume: 5
  start-page: 7126
  year: 2014
  publication-title: Nano Lett.
– volume: 5
  start-page: 4350
  year: 2011
  publication-title: ACS Nano
– volume: 21
  start-page: 5674
  year: 2009
  publication-title: J. Chem. Mater.
– volume: 92
  start-page: 104102
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 4112
  year: 2011
  publication-title: ACS Nano
– volume: 45
  start-page: 1558
  year: 2007
  publication-title: Carbon
– volume: 8
  start-page: 5290
  year: 2014
  publication-title: ACS Nano
– volume: 136
  start-page: 7551
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 12947
  year: 2014
  publication-title: Chem. Commun.
– volume: 8
  start-page: 36
  year: 2008
  publication-title: Nano Lett.
– volume: 4
  start-page: 1426
  year: 2014
  publication-title: ACS Catal.
– volume: 132
  start-page: 12170
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 624
  year: 2014
  publication-title: Nat. Mater.
– volume: 28
  start-page: 24
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 51
  start-page: 11496
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 94
  start-page: 3605
  year: 2011
  publication-title: J. Am. Ceram. Soc.
– volume: 41
  start-page: 6944
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 4878
  year: 2012
  publication-title: Adv. Mater.
– volume: 2
  start-page: 19488
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 136
  start-page: 11452
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 12220
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 46
  start-page: 2307
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 205
  year: 2012
  publication-title: ACS Nano
– volume: 5
  start-page: 306
  year: 2003
  publication-title: Electrochem. Commun.
– volume: 8
  start-page: 203
  year: 2009
  publication-title: Nat. Mater.
– volume: 8
  start-page: 3313
  year: 2014
  publication-title: ACS Nano
– volume: 2
  start-page: 1765
  year: 2012
  publication-title: ACS Catal.
– volume: 11
  start-page: 2472
  year: 2011
  publication-title: Nano Lett.
– volume: 6
  start-page: 10140
  year: 2014
  publication-title: Nanoscale
– volume: 7
  start-page: 1059
  year: 2014
  publication-title: Energy Environ. Sci.
– ident: e_1_2_6_1_1
  doi: 10.1038/nmat3961
– ident: e_1_2_6_25_1
  doi: 10.1021/nl2009058
– ident: e_1_2_6_30_1
  doi: 10.1021/nl071822y
– ident: e_1_2_6_6_1
  doi: 10.1021/nn200766e
– ident: e_1_2_6_14_1
  doi: 10.1039/C4NR02563F
– ident: e_1_2_6_20_1
  doi: 10.1021/cs4011875
– ident: e_1_2_6_27_1
  doi: 10.1021/nn501434a
– ident: e_1_2_6_7_1
  doi: 10.1021/nl803279t
– ident: e_1_2_6_11_1
  doi: 10.1088/0953-8984/24/31/314207
– ident: e_1_2_6_8_1
  doi: 10.1039/C4RA04927F
– ident: e_1_2_6_10_1
  doi: 10.1038/nmat2382
– ident: e_1_2_6_4_1
  doi: 10.1038/nmat3944
– ident: e_1_2_6_22_1
  doi: 10.1021/ja505186m
– ident: e_1_2_6_3_1
  doi: 10.1021/ar300127r
– ident: e_1_2_6_17_1
  doi: 10.1021/ja1036572
– ident: e_1_2_6_26_1
  doi: 10.1016/j.elecom.2012.11.037
– ident: e_1_2_6_9_1
  doi: 10.1063/1.2883941
– ident: e_1_2_6_21_1
  doi: 10.1039/C4CC05069J
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201201792
– ident: e_1_2_6_36_1
  doi: 10.1021/cs3003098
– ident: e_1_2_6_32_1
  doi: 10.1021/cm902182y
– ident: e_1_2_6_35_1
  doi: 10.1039/c3ee43648a
– ident: e_1_2_6_33_1
  doi: 10.1016/j.carbon.2007.02.034
– ident: e_1_2_6_23_1
  doi: 10.1021/ja502532y
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1551-2916.2011.04865.x
– ident: e_1_2_6_2_1
  doi: 10.1038/503327a
– ident: e_1_2_6_29_1
  doi: 10.1039/C4TA04066J
– ident: e_1_2_6_12_1
  doi: 10.1021/nl503673q
– ident: e_1_2_6_18_1
  doi: 10.1021/nn203393d
– ident: e_1_2_6_24_1
  doi: 10.1039/c3cp51942b
– ident: e_1_2_6_13_1
  doi: 10.1039/c2cs35105f
– ident: e_1_2_6_19_1
  doi: 10.1016/S1388-2481(03)00053-5
– ident: e_1_2_6_16_1
  doi: 10.1021/nn103584t
– ident: e_1_2_6_28_1
  doi: 10.1002/anie.201206720
– ident: e_1_2_6_15_1
  doi: 10.1021/nn404927n
– ident: e_1_2_6_34_1
  doi: 10.1002/anie.201101287
SSID ssj0000491033
Score 2.5052722
Snippet A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms bifunctional catalysts
Boron
Boron carbide
Catalysts
doped graphene
electrocatalysis
Fuel cells
Graphene
Methyl alcohol
Nanostructure
Oxidation
oxygen reduction reaction
Reduction
regenerative fuel cells
Title Bifunctional Electrocatalytic Activity of Boron-Doped Graphene Derived from Boron Carbide
URI https://api.istex.fr/ark:/67375/WNG-Q25286FJ-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201500658
https://www.proquest.com/docview/1710258972
https://www.proquest.com/docview/1770377531
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq9QUe0PgShYGChOApkLhN4jxmrN00tUUT7ShPlu1cxDTUVm06wf4Z_lXu4iRN0YDBS9Q6bpP4zvfh_O5nxl5p40NsPHABDZ_bAy9wRdDTbpwZ3w_DNOa6QFuMw5Np73QWzFqtHw3U0ibXb831jXUl_yNVbEO5UpXsP0i2_lNswM8oXzyihPF4KxkfXpBbKlfz-nZDm2I95jvRsCam3BkC48FDIipwjxZLoPUnRcAuAgyt0NaltsSk6EH4D32R7sCDkgolALZMEENc-2yVrM6J0HD9xcKN1DXq3TlAnm-xGzWMe0T0SFewrT6bqEsqKSs2FiZUyFrli_pXlCEUoe0xpt_L5vKEH9T4q9sawYbxxVDBDUW53gnNNkvpVFnsoKmY0Y2OwBLLKpgT2wAGvRRpbV1e9Zp__EEOpsOhnPRnk92z1sOj-6baYyIqaHPMQ9CQtpOj0fBjvYyHCZbvdYsyjuruK2pQj7_bvf5O6NOmWfxtJ69pZkdFeDPZZ_fKvMRJrJLdZy2YP2B3G2yVD9nnpro5v6qbU6mbs8ichro5lbo5pbo5pG62h1Oq2yM2HfQn70_ccmcO1-Dz4iQEAzzDiUzRv8CgzwQ9ZXoCc3-uBWQYV3vdGDPXTGgtiNMxNSoCkfrCCzLMKR6zvfliDk-YozPoZrSrZET8-l0e6xQUT70sEgrTWb_D3GrQpClp62n3lK_SEm5zSYMs60HusDd1_6UlbPltz9eFDOpuanVJMMcokJ_Gx_KMB1yEg1N51mEHlZBkOfvX0qfQPBBxxDvsZX0abTO9cFNzWGyoD_rTKEI312G8EO5fbkkm_fGo_vb0z9d9xu5sJ9wB28tXG3iOEXKuX5Ra-hM9lbrh
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+Electrocatalytic+Activity+of+Boron-Doped+Graphene+Derived+from+Boron+Carbide&rft.jtitle=Advanced+energy+materials&rft.au=Vineesh%2C+Thazhe+Veettil&rft.au=Kumar%2C+M+Praveen&rft.au=Takahashi%2C+Chisato&rft.au=Kalita%2C+Golap&rft.date=2015-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=5&rft.issue=17&rft_id=info:doi/10.1002%2Faenm.201500658&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3801082921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon