Bifunctional Electrocatalytic Activity of Boron-Doped Graphene Derived from Boron Carbide
A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cell...
Saved in:
Published in | Advanced energy materials Vol. 5; no. 17; pp. np - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.09.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cells. Here, metal/metal‐oxide free, doped graphene derived from rhombohedral boron carbide (B4C) is demonstrated to be an effective bifunctional catalyst for the first time. B4C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield ≈7% by weight, after the first cycle). This structural conversion of B4C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non‐electrochemically active material, broadening its potential for application in various energy‐related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four‐electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation.
Bifunctional catalyst
is a novel concept in modern energy technologies, where the same catalyst can be used for water splitting and oxygen reduction reactions. For the first time, a nanoparticle‐free graphene‐based material obtained by a novel preparation route is demonstrated to have favorable bifunctional catalytic properties. |
---|---|
AbstractList | A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cells. Here, metal/metal‐oxide free, doped graphene derived from rhombohedral boron carbide (B
4
C) is demonstrated to be an effective bifunctional catalyst for the first time. B
4
C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield ≈7% by weight, after the first cycle). This structural conversion of B
4
C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non‐electrochemically active material, broadening its potential for application in various energy‐related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four‐electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation. A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new-generation energy-storage systems, such as regenerative fuel cells. Here, metal/metal-oxide free, doped graphene derived from rhombohedral boron carbide (B4C) is demonstrated to be an effective bifunctional catalyst for the first time. B4C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield [asymptotically =]7% by weight, after the first cycle). This structural conversion of B4C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non-electrochemically active material, broadening its potential for application in various energy-related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four-electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation. A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new-generation energy-storage systems, such as regenerative fuel cells. Here, metal/metal-oxide free, doped graphene derived from rhombohedral boron carbide (B sub(4)C) is demonstrated to be an effective bifunctional catalyst for the first time. B sub(4)C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield approximately 7% by weight, after the first cycle). This structural conversion of B sub(4)C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non-electrochemically active material, broadening its potential for application in various energy-related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four-electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation. Bifunctional catalyst is a novel concept in modern energy technologies, where the same catalyst can be used for water splitting and oxygen reduction reactions. For the first time, a nanoparticle-free graphene-based material obtained by a novel preparation route is demonstrated to have favorable bifunctional catalytic properties. A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cells. Here, metal/metal‐oxide free, doped graphene derived from rhombohedral boron carbide (B4C) is demonstrated to be an effective bifunctional catalyst for the first time. B4C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield ≈7% by weight, after the first cycle). This structural conversion of B4C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non‐electrochemically active material, broadening its potential for application in various energy‐related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four‐electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation. Bifunctional catalyst is a novel concept in modern energy technologies, where the same catalyst can be used for water splitting and oxygen reduction reactions. For the first time, a nanoparticle‐free graphene‐based material obtained by a novel preparation route is demonstrated to have favorable bifunctional catalytic properties. |
Author | Kalita, Golap Narayanan, Tharangattu N. Alwarappan, Subbiah Takahashi, Chisato Pattanayak, Deepak K. Kumar, M. Praveen Vineesh, Thazhe Veettil |
Author_xml | – sequence: 1 givenname: Thazhe Veettil surname: Vineesh fullname: Vineesh, Thazhe Veettil organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), 630 006, Karaikudi, India – sequence: 2 givenname: M. Praveen surname: Kumar fullname: Kumar, M. Praveen organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), 630 006, Karaikudi, India – sequence: 3 givenname: Chisato surname: Takahashi fullname: Takahashi, Chisato organization: Pharmaceutical Engineering School of Pharmacy, Aichi Gakuin University, 4648650, Chikusa-ku, Nagoya, Japan – sequence: 4 givenname: Golap surname: Kalita fullname: Kalita, Golap organization: Nagoya Institute of Technology, 4668555, Gokisho-cho, Nagoya, Japan – sequence: 5 givenname: Subbiah surname: Alwarappan fullname: Alwarappan, Subbiah email: salwarap@gmail.com organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), 630 006, Karaikudi, India – sequence: 6 givenname: Deepak K. surname: Pattanayak fullname: Pattanayak, Deepak K. email: salwarap@gmail.com organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), 630 006, Karaikudi, India – sequence: 7 givenname: Tharangattu N. surname: Narayanan fullname: Narayanan, Tharangattu N. email: salwarap@gmail.com organization: TIFR-Centre for Interdisciplinary Sciences (TCIS), Tata Institute of Fundamental Research, 500 075, Hyderabad, India |
BookMark | eNqFkM9P2zAUx60JpDHgunMkLruk-EcS28dS2gICJqRN006W6zxrhjTubJet_z2OgiqENM0XW_bn8_ze9xM66H0PCH0meEIwpuca-vWEYlJj3NTiAzoiDanKRlT4YH9m9CM6jfER51VJghk7Qj8vnN32Jjnf666Yd2BS8EYn3e2SM8U0vzy7tCu8LS588H156TfQFsugN7-gh-ISgnvOFzb49UgUMx1WroUTdGh1F-H0dT9G3xfzb7Or8vbr8no2vS1N7kGUFAxQ20oqGc0tCmLqSptKSMLpSoCleSImBW2sWK2EaLhsjeYgWiJwbSVlx-jLWHcT_O8txKTWLhroOt2D30ZFOMeM85qRjJ69Qx_9NuTBB4pgWgvJh4KTkTLBxxjAqk1wax12imA1hK2GsNU-7CxU7wTjkh4iTUG77t-aHLU_roPdfz5R0_n93Vu3HF0XE_zduzo8qYYzXqsf90v1QGsqmsWNemAv_iijrA |
CitedBy_id | crossref_primary_10_1002_batt_201900001 crossref_primary_10_3762_bjnano_11_34 crossref_primary_10_1039_C6RA12438K crossref_primary_10_1039_C7CY00309A crossref_primary_10_1002_open_202000326 crossref_primary_10_1007_s10853_020_04391_2 crossref_primary_10_1016_j_electacta_2019_135562 crossref_primary_10_1002_celc_201801232 crossref_primary_10_1016_j_jechem_2023_01_037 crossref_primary_10_1016_j_apmt_2015_09_002 crossref_primary_10_1016_j_apcatb_2020_119800 crossref_primary_10_1016_j_catcom_2019_105742 crossref_primary_10_1021_acsami_9b04870 crossref_primary_10_1039_D4CP01217H crossref_primary_10_1016_j_ijhydene_2020_04_073 crossref_primary_10_1039_D0NR07580A crossref_primary_10_1039_C7TA00075H crossref_primary_10_1016_j_electacta_2025_146083 crossref_primary_10_1021_acsami_7b19423 crossref_primary_10_1016_j_apcatb_2023_123471 crossref_primary_10_1021_acsaem_9b00364 crossref_primary_10_1016_j_jcis_2023_09_185 crossref_primary_10_2139_ssrn_3957281 crossref_primary_10_1016_j_carbon_2021_12_056 crossref_primary_10_1016_j_pmatsci_2020_100717 crossref_primary_10_1016_j_cej_2023_142384 crossref_primary_10_59717_j_xinn_mater_2024_100060 crossref_primary_10_1016_j_ijhydene_2018_09_043 crossref_primary_10_1016_j_cej_2023_142267 crossref_primary_10_1016_j_jcis_2023_08_008 crossref_primary_10_1007_s11581_023_05009_8 crossref_primary_10_1039_C9NJ00052F crossref_primary_10_1016_j_apcatb_2023_122829 crossref_primary_10_1039_D2RA00968D crossref_primary_10_3390_inorganics12120303 crossref_primary_10_1016_j_snb_2021_129852 crossref_primary_10_1039_C8CP06155F crossref_primary_10_1016_j_ces_2024_119951 crossref_primary_10_1016_j_biosx_2025_100615 crossref_primary_10_1016_j_carbon_2015_09_086 crossref_primary_10_1016_j_joule_2024_01_014 crossref_primary_10_1016_j_jhazmat_2022_130331 crossref_primary_10_1016_j_carbon_2021_12_061 crossref_primary_10_1007_s10854_022_07850_5 crossref_primary_10_1039_C6RA20627A crossref_primary_10_1002_advs_201800036 crossref_primary_10_1002_adfm_201604904 crossref_primary_10_1016_j_rser_2016_11_054 crossref_primary_10_1016_j_carbon_2020_09_004 crossref_primary_10_1039_D3RA04495E crossref_primary_10_1016_j_carbon_2019_05_012 crossref_primary_10_1016_j_carbon_2016_10_046 crossref_primary_10_3390_catal10111290 crossref_primary_10_1039_D1TA00158B crossref_primary_10_1002_adsu_202000134 crossref_primary_10_1039_D0CY00919A crossref_primary_10_1016_j_apcatb_2021_120543 crossref_primary_10_1002_slct_201701039 crossref_primary_10_1016_j_carbon_2016_06_102 crossref_primary_10_1021_acscatal_6b00965 crossref_primary_10_1016_j_jcis_2023_09_041 crossref_primary_10_1016_j_jtice_2018_07_040 crossref_primary_10_1142_S1793292020500125 crossref_primary_10_1021_acsami_6b04189 crossref_primary_10_1039_C9NR05919A crossref_primary_10_1016_j_cej_2024_150967 crossref_primary_10_1016_j_pmatsci_2020_100637 crossref_primary_10_1016_j_apsusc_2016_09_089 crossref_primary_10_20964_2018_04_37 crossref_primary_10_1002_qua_25203 crossref_primary_10_1088_2053_1591_ab6262 crossref_primary_10_3390_catal11091028 crossref_primary_10_1038_srep37731 crossref_primary_10_1016_j_cclet_2022_05_038 crossref_primary_10_1016_j_materresbull_2021_111315 crossref_primary_10_1021_acsanm_3c03100 crossref_primary_10_1016_j_jpowsour_2019_05_079 crossref_primary_10_1149_2_0771803jes crossref_primary_10_1016_j_jallcom_2021_159627 crossref_primary_10_1016_j_cej_2022_140205 crossref_primary_10_1016_j_ces_2022_118402 crossref_primary_10_1016_j_jpowsour_2019_226770 crossref_primary_10_1016_j_apcatb_2018_12_075 crossref_primary_10_1021_acsami_7b02346 crossref_primary_10_1039_D0DT00010H crossref_primary_10_1016_j_apsusc_2017_09_213 crossref_primary_10_1039_C8CY01371C crossref_primary_10_1016_j_mser_2024_100835 crossref_primary_10_1039_C7TA01265A crossref_primary_10_1088_1361_6528_aad35e crossref_primary_10_1016_j_apsusc_2019_07_205 crossref_primary_10_1002_smll_201700518 crossref_primary_10_1039_D1GC00659B crossref_primary_10_1002_aenm_201700544 crossref_primary_10_1002_adsu_201700085 crossref_primary_10_1016_j_joule_2018_06_007 crossref_primary_10_1039_D3MH00335C crossref_primary_10_1039_C9CC03413G crossref_primary_10_1002_aenm_201502313 crossref_primary_10_1021_acsaem_1c00678 crossref_primary_10_1039_C6RA19496F crossref_primary_10_1038_s41467_018_05758_5 crossref_primary_10_1002_slct_202000523 crossref_primary_10_1016_j_jallcom_2017_10_044 crossref_primary_10_1039_C6RA19238F crossref_primary_10_1557_jmr_2016_130 crossref_primary_10_1039_C7CP02390A crossref_primary_10_1039_C5TA10599D crossref_primary_10_1021_acsaem_8b02120 crossref_primary_10_1002_cssc_201501439 crossref_primary_10_1007_s11705_018_1722_y crossref_primary_10_1021_acs_iecr_3c00224 crossref_primary_10_1002_smll_202400551 crossref_primary_10_1002_celc_202000515 crossref_primary_10_1016_j_jorganchem_2018_02_024 crossref_primary_10_1088_0957_4484_27_27_275402 crossref_primary_10_1016_j_ijhydene_2022_09_259 crossref_primary_10_1021_acsami_5b04609 crossref_primary_10_1016_j_carbon_2018_08_020 crossref_primary_10_1002_adfm_202000503 crossref_primary_10_1039_D0TA09346G crossref_primary_10_1002_aenm_202000927 crossref_primary_10_1038_s41598_018_21213_3 crossref_primary_10_1039_C6MH00358C crossref_primary_10_3390_appliedchem2030012 crossref_primary_10_1016_j_apsusc_2020_147381 crossref_primary_10_1039_C9NR06378A crossref_primary_10_1002_celc_201800373 crossref_primary_10_1039_D0RA07100E crossref_primary_10_53941_see_2024_100004 crossref_primary_10_1149_2_0601803jes crossref_primary_10_1007_s40820_024_01366_9 crossref_primary_10_1002_aenm_201900945 crossref_primary_10_1016_j_carbon_2017_03_093 crossref_primary_10_1016_j_jcis_2024_01_072 crossref_primary_10_1149_2_0871908jes crossref_primary_10_1039_D0TA05008C crossref_primary_10_1002_ppsc_201700043 crossref_primary_10_1016_j_cartre_2021_100075 crossref_primary_10_1002_sstr_202300036 crossref_primary_10_1016_j_electacta_2017_02_140 crossref_primary_10_1007_s40242_020_0182_3 crossref_primary_10_1016_j_apsusc_2023_157825 |
Cites_doi | 10.1038/nmat3961 10.1021/nl2009058 10.1021/nl071822y 10.1021/nn200766e 10.1039/C4NR02563F 10.1021/cs4011875 10.1021/nn501434a 10.1021/nl803279t 10.1088/0953-8984/24/31/314207 10.1039/C4RA04927F 10.1038/nmat2382 10.1038/nmat3944 10.1021/ja505186m 10.1021/ar300127r 10.1021/ja1036572 10.1016/j.elecom.2012.11.037 10.1063/1.2883941 10.1039/C4CC05069J 10.1002/adma.201201792 10.1021/cs3003098 10.1021/cm902182y 10.1039/c3ee43648a 10.1016/j.carbon.2007.02.034 10.1021/ja502532y 10.1111/j.1551-2916.2011.04865.x 10.1038/503327a 10.1039/C4TA04066J 10.1021/nl503673q 10.1021/nn203393d 10.1039/c3cp51942b 10.1039/c2cs35105f 10.1016/S1388-2481(03)00053-5 10.1021/nn103584t 10.1002/anie.201206720 10.1021/nn404927n 10.1002/anie.201101287 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M 7SU C1K |
DOI | 10.1002/aenm.201500658 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 3801082921 10_1002_aenm_201500658 AENM201500658 ark_67375_WNG_Q25286FJ_Q |
Genre | article |
GrantInformation_xml | – fundername: MULTIFUN funderid: CSC 0101 – fundername: Tata Institute of Fundamental Research – Centre for Interdisciplinary Sciences (TCIS), Hyderabad |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M 7SU C1K |
ID | FETCH-LOGICAL-c4918-2ece2fd9293268381c54ac489172b8ef250039826f8bb88679dca7e8d1805f923 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 11 03:58:02 EDT 2025 Fri Jul 25 12:25:25 EDT 2025 Tue Jul 01 01:43:14 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Jan 22 16:31:09 EST 2025 Wed Oct 30 09:48:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4918-2ece2fd9293268381c54ac489172b8ef250039826f8bb88679dca7e8d1805f923 |
Notes | MULTIFUN - No. CSC 0101 ArticleID:AENM201500658 istex:BA1B53843C29ED6A6F5A93AD0CF3646CF888CC8C Tata Institute of Fundamental Research - Centre for Interdisciplinary Sciences (TCIS), Hyderabad ark:/67375/WNG-Q25286FJ-Q ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1710258972 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1770377531 proquest_journals_1710258972 crossref_primary_10_1002_aenm_201500658 crossref_citationtrail_10_1002_aenm_201500658 wiley_primary_10_1002_aenm_201500658_AENM201500658 istex_primary_ark_67375_WNG_Q25286FJ_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | J. Jin, F. Pan, L. Jiang, X. Fu, A. Liang, Z. Wei, J. Zhang, G. Sun, ACS Nano 2014, 8, 3313. S. W. Poon, W. Chen, E. S. Tok, A. T. S. Wee, Appl. Phys. Lett. 2008, 92, 104102. M. Peplow, Nature 2013, 503, 327. Y. Meng, W. Song, H. Huang, Z. Ren, S. Chen, S. L. Suib, J. Am. Chem. Soc. 2014, 136, 11452. J. Yang, J. J. Xu, Electrochem. Commun. 2003, 5, 306. H. M Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472. K. V Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203. Z. Sheng, L. Shao, J. Chen, W. Bao, F. Wang, X. Xia, ACS Nano 2011, 5, 4350. L. Wang, L. Duan, Y. Wang, M. S. G. Ahlquist, L. Sun, Chem. Commun. 2014, 50, 12947. P. B. Sorokin, A. G. Kvashnin, Z. Zhu, D. Tománek, Nano Lett. 2014, 5, 7126. K. N. Kudin, B. Ozbas, H. C Schniepp, R. K Prudhomme, I. A. Aksay, R. Car, Nano Lett. 2008, 8, 36. J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496. D. A. C. Brownson, D. K. Kampouris, C. E. Banks, Chem. Soc. Rev. 2012, 41, 6944. M. Praveen Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan, D. K. Pattanayak, RSC Adv. 2014, 4, 38689. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205. Y. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-schifferli, J. Am. Chem. Soc. 2010, 132, 12170. J. M. Tour, Nat. Mater. 2014, 13, 545. A. Zhao, J. Masa, W. Xia, A. Maljusch, M. Willinger, G. Clavel, K. Xie, R. Schlo, W. Schuhmann, M. Muhler, J. Am. Chem. Soc. 2014, 136, 7551. Z. Jin, J. Yao, C. Kittrell, J. M. Tour, ACS Nano 2011, 5, 4112. S. Boopathi, T. N. Narayanan, S. Senthil Kumar, Nanoscale 2014, 6, 10140. E. Antolini, ACS Catal. 2014, 4, 1426. K. R. Paton, Nat. Mater. 2014, 13, 624. Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2014, 8, 5290. R. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752. Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Phys. Chem. Chem. Phys. 2013, 15, 12220. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558. B. Zheng, J. Wang, F. Wang, X. Xia, Electrochem. Commun. 2013, 28, 24. M. R. Philip, T. N. Narayanan, M. Praveen Kumar, S. B. Arya, D. K. Pattanayak, J. Mater. Chem. A 2014, 2, 19488. V. Domnich, S. Reynaud, R. A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 2011, 94, 3605. C. Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C. H Tsai, L. Li, J. Chem. Mater. 2009, 21, 5674. L. Song, Z. Liu, A. L. M. Reddy, N. T. Narayanan, J. T. Tijerina, J. Peng, G. Gao, J. Lou, R. Vajtai, P. M. Ajayan, Adv. Mater. 2012, 24, 4878. W. Norimatsu, K. Hirata, Y. Yamamoto, S. Arai, M. Kusunoki, J. Phys, Condens. Matter 2012, 24, 314207. T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765. D. K. James, J. M. Tour, Acc. Chem. Res. 2013, 46, 2307. L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132. T. Palaniselvam, M. O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 2014, 7, 1059. 2013; 28 2009; 21 2013; 46 2013; 503 2011; 11 2008; 8 2008; 92 2011; 5 2014; 136 2012; 51 2014; 5 2013; 15 2012; 2 2014; 4 2014; 2 2011; 94 2011; 50 2010; 132 2009; 9 2014; 13 2009; 8 2003; 5 2012; 6 2012; 24 2014; 8 2014; 50 2014; 7 2014; 6 2007; 45 2012; 41 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Z. Jin, J. Yao, C. Kittrell, J. M. Tour, ACS Nano 2011, 5, 4112. – reference: Y. Meng, W. Song, H. Huang, Z. Ren, S. Chen, S. L. Suib, J. Am. Chem. Soc. 2014, 136, 11452. – reference: A. Zhao, J. Masa, W. Xia, A. Maljusch, M. Willinger, G. Clavel, K. Xie, R. Schlo, W. Schuhmann, M. Muhler, J. Am. Chem. Soc. 2014, 136, 7551. – reference: L. Wang, L. Duan, Y. Wang, M. S. G. Ahlquist, L. Sun, Chem. Commun. 2014, 50, 12947. – reference: T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765. – reference: K. N. Kudin, B. Ozbas, H. C Schniepp, R. K Prudhomme, I. A. Aksay, R. Car, Nano Lett. 2008, 8, 36. – reference: K. V Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203. – reference: M. Praveen Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan, D. K. Pattanayak, RSC Adv. 2014, 4, 38689. – reference: S. Boopathi, T. N. Narayanan, S. Senthil Kumar, Nanoscale 2014, 6, 10140. – reference: H. M Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472. – reference: B. Zheng, J. Wang, F. Wang, X. Xia, Electrochem. Commun. 2013, 28, 24. – reference: Z. Sheng, L. Shao, J. Chen, W. Bao, F. Wang, X. Xia, ACS Nano 2011, 5, 4350. – reference: L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132. – reference: J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496. – reference: S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558. – reference: D. A. C. Brownson, D. K. Kampouris, C. E. Banks, Chem. Soc. Rev. 2012, 41, 6944. – reference: L. Song, Z. Liu, A. L. M. Reddy, N. T. Narayanan, J. T. Tijerina, J. Peng, G. Gao, J. Lou, R. Vajtai, P. M. Ajayan, Adv. Mater. 2012, 24, 4878. – reference: C. Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C. H Tsai, L. Li, J. Chem. Mater. 2009, 21, 5674. – reference: V. Domnich, S. Reynaud, R. A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 2011, 94, 3605. – reference: M. Peplow, Nature 2013, 503, 327. – reference: S. W. Poon, W. Chen, E. S. Tok, A. T. S. Wee, Appl. Phys. Lett. 2008, 92, 104102. – reference: J. Yang, J. J. Xu, Electrochem. Commun. 2003, 5, 306. – reference: E. Antolini, ACS Catal. 2014, 4, 1426. – reference: K. R. Paton, Nat. Mater. 2014, 13, 624. – reference: Y. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-schifferli, J. Am. Chem. Soc. 2010, 132, 12170. – reference: T. Palaniselvam, M. O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 2014, 7, 1059. – reference: J. Jin, F. Pan, L. Jiang, X. Fu, A. Liang, Z. Wei, J. Zhang, G. Sun, ACS Nano 2014, 8, 3313. – reference: Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Phys. Chem. Chem. Phys. 2013, 15, 12220. – reference: D. K. James, J. M. Tour, Acc. Chem. Res. 2013, 46, 2307. – reference: P. B. Sorokin, A. G. Kvashnin, Z. Zhu, D. Tománek, Nano Lett. 2014, 5, 7126. – reference: W. Norimatsu, K. Hirata, Y. Yamamoto, S. Arai, M. Kusunoki, J. Phys, Condens. Matter 2012, 24, 314207. – reference: R. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752. – reference: M. R. Philip, T. N. Narayanan, M. Praveen Kumar, S. B. Arya, D. K. Pattanayak, J. Mater. Chem. A 2014, 2, 19488. – reference: J. M. Tour, Nat. Mater. 2014, 13, 545. – reference: Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2014, 8, 5290. – reference: Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205. – volume: 4 start-page: 38689 year: 2014 publication-title: RSC Adv. – volume: 50 start-page: 7132 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 545 year: 2014 publication-title: Nat. Mater. – volume: 503 start-page: 327 year: 2013 publication-title: Nature – volume: 9 start-page: 1752 year: 2009 publication-title: Nano Lett. – volume: 24 start-page: 314207 year: 2012 publication-title: J. Phys, Condens. Matter – volume: 5 start-page: 7126 year: 2014 publication-title: Nano Lett. – volume: 5 start-page: 4350 year: 2011 publication-title: ACS Nano – volume: 21 start-page: 5674 year: 2009 publication-title: J. Chem. Mater. – volume: 92 start-page: 104102 year: 2008 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 4112 year: 2011 publication-title: ACS Nano – volume: 45 start-page: 1558 year: 2007 publication-title: Carbon – volume: 8 start-page: 5290 year: 2014 publication-title: ACS Nano – volume: 136 start-page: 7551 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 12947 year: 2014 publication-title: Chem. Commun. – volume: 8 start-page: 36 year: 2008 publication-title: Nano Lett. – volume: 4 start-page: 1426 year: 2014 publication-title: ACS Catal. – volume: 132 start-page: 12170 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 624 year: 2014 publication-title: Nat. Mater. – volume: 28 start-page: 24 year: 2013 publication-title: Electrochem. Commun. – volume: 51 start-page: 11496 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 94 start-page: 3605 year: 2011 publication-title: J. Am. Ceram. Soc. – volume: 41 start-page: 6944 year: 2012 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 4878 year: 2012 publication-title: Adv. Mater. – volume: 2 start-page: 19488 year: 2014 publication-title: J. Mater. Chem. A – volume: 136 start-page: 11452 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 12220 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 46 start-page: 2307 year: 2013 publication-title: Acc. Chem. Res. – volume: 6 start-page: 205 year: 2012 publication-title: ACS Nano – volume: 5 start-page: 306 year: 2003 publication-title: Electrochem. Commun. – volume: 8 start-page: 203 year: 2009 publication-title: Nat. Mater. – volume: 8 start-page: 3313 year: 2014 publication-title: ACS Nano – volume: 2 start-page: 1765 year: 2012 publication-title: ACS Catal. – volume: 11 start-page: 2472 year: 2011 publication-title: Nano Lett. – volume: 6 start-page: 10140 year: 2014 publication-title: Nanoscale – volume: 7 start-page: 1059 year: 2014 publication-title: Energy Environ. Sci. – ident: e_1_2_6_1_1 doi: 10.1038/nmat3961 – ident: e_1_2_6_25_1 doi: 10.1021/nl2009058 – ident: e_1_2_6_30_1 doi: 10.1021/nl071822y – ident: e_1_2_6_6_1 doi: 10.1021/nn200766e – ident: e_1_2_6_14_1 doi: 10.1039/C4NR02563F – ident: e_1_2_6_20_1 doi: 10.1021/cs4011875 – ident: e_1_2_6_27_1 doi: 10.1021/nn501434a – ident: e_1_2_6_7_1 doi: 10.1021/nl803279t – ident: e_1_2_6_11_1 doi: 10.1088/0953-8984/24/31/314207 – ident: e_1_2_6_8_1 doi: 10.1039/C4RA04927F – ident: e_1_2_6_10_1 doi: 10.1038/nmat2382 – ident: e_1_2_6_4_1 doi: 10.1038/nmat3944 – ident: e_1_2_6_22_1 doi: 10.1021/ja505186m – ident: e_1_2_6_3_1 doi: 10.1021/ar300127r – ident: e_1_2_6_17_1 doi: 10.1021/ja1036572 – ident: e_1_2_6_26_1 doi: 10.1016/j.elecom.2012.11.037 – ident: e_1_2_6_9_1 doi: 10.1063/1.2883941 – ident: e_1_2_6_21_1 doi: 10.1039/C4CC05069J – ident: e_1_2_6_5_1 doi: 10.1002/adma.201201792 – ident: e_1_2_6_36_1 doi: 10.1021/cs3003098 – ident: e_1_2_6_32_1 doi: 10.1021/cm902182y – ident: e_1_2_6_35_1 doi: 10.1039/c3ee43648a – ident: e_1_2_6_33_1 doi: 10.1016/j.carbon.2007.02.034 – ident: e_1_2_6_23_1 doi: 10.1021/ja502532y – ident: e_1_2_6_31_1 doi: 10.1111/j.1551-2916.2011.04865.x – ident: e_1_2_6_2_1 doi: 10.1038/503327a – ident: e_1_2_6_29_1 doi: 10.1039/C4TA04066J – ident: e_1_2_6_12_1 doi: 10.1021/nl503673q – ident: e_1_2_6_18_1 doi: 10.1021/nn203393d – ident: e_1_2_6_24_1 doi: 10.1039/c3cp51942b – ident: e_1_2_6_13_1 doi: 10.1039/c2cs35105f – ident: e_1_2_6_19_1 doi: 10.1016/S1388-2481(03)00053-5 – ident: e_1_2_6_16_1 doi: 10.1021/nn103584t – ident: e_1_2_6_28_1 doi: 10.1002/anie.201206720 – ident: e_1_2_6_15_1 doi: 10.1021/nn404927n – ident: e_1_2_6_34_1 doi: 10.1002/anie.201101287 |
SSID | ssj0000491033 |
Score | 2.5052722 |
Snippet | A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | bifunctional catalysts Boron Boron carbide Catalysts doped graphene electrocatalysis Fuel cells Graphene Methyl alcohol Nanostructure Oxidation oxygen reduction reaction Reduction regenerative fuel cells |
Title | Bifunctional Electrocatalytic Activity of Boron-Doped Graphene Derived from Boron Carbide |
URI | https://api.istex.fr/ark:/67375/WNG-Q25286FJ-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201500658 https://www.proquest.com/docview/1710258972 https://www.proquest.com/docview/1770377531 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq9QUe0PgShYGChOApkLhN4jxmrN00tUUT7ShPlu1cxDTUVm06wf4Z_lXu4iRN0YDBS9Q6bpP4zvfh_O5nxl5p40NsPHABDZ_bAy9wRdDTbpwZ3w_DNOa6QFuMw5Np73QWzFqtHw3U0ibXb831jXUl_yNVbEO5UpXsP0i2_lNswM8oXzyihPF4KxkfXpBbKlfz-nZDm2I95jvRsCam3BkC48FDIipwjxZLoPUnRcAuAgyt0NaltsSk6EH4D32R7sCDkgolALZMEENc-2yVrM6J0HD9xcKN1DXq3TlAnm-xGzWMe0T0SFewrT6bqEsqKSs2FiZUyFrli_pXlCEUoe0xpt_L5vKEH9T4q9sawYbxxVDBDUW53gnNNkvpVFnsoKmY0Y2OwBLLKpgT2wAGvRRpbV1e9Zp__EEOpsOhnPRnk92z1sOj-6baYyIqaHPMQ9CQtpOj0fBjvYyHCZbvdYsyjuruK2pQj7_bvf5O6NOmWfxtJ69pZkdFeDPZZ_fKvMRJrJLdZy2YP2B3G2yVD9nnpro5v6qbU6mbs8ichro5lbo5pbo5pG62h1Oq2yM2HfQn70_ccmcO1-Dz4iQEAzzDiUzRv8CgzwQ9ZXoCc3-uBWQYV3vdGDPXTGgtiNMxNSoCkfrCCzLMKR6zvfliDk-YozPoZrSrZET8-l0e6xQUT70sEgrTWb_D3GrQpClp62n3lK_SEm5zSYMs60HusDd1_6UlbPltz9eFDOpuanVJMMcokJ_Gx_KMB1yEg1N51mEHlZBkOfvX0qfQPBBxxDvsZX0abTO9cFNzWGyoD_rTKEI312G8EO5fbkkm_fGo_vb0z9d9xu5sJ9wB28tXG3iOEXKuX5Ra-hM9lbrh |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+Electrocatalytic+Activity+of+Boron-Doped+Graphene+Derived+from+Boron+Carbide&rft.jtitle=Advanced+energy+materials&rft.au=Vineesh%2C+Thazhe+Veettil&rft.au=Kumar%2C+M+Praveen&rft.au=Takahashi%2C+Chisato&rft.au=Kalita%2C+Golap&rft.date=2015-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=5&rft.issue=17&rft_id=info:doi/10.1002%2Faenm.201500658&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3801082921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |