A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia

Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 10
Main Authors Quidwai, Tooba, Wang, Jiaolong, Hall, Emma A, Petriman, Narcis A, Leng, Weihua, Kiesel, Petra, Wells, Jonathan N, Murphy, Laura C, Keighren, Margaret A, Marsh, Joseph A, Lorentzen, Esben, Pigino, Gaia, Mill, Pleasantine
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 04.11.2021
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
AbstractList Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to [alpha] and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. eLife digest Most human cells have at least one small hair-like structure on their surface called a cilium. These structures can act as antennae and allow the cell to sense signals from the rest of the body. To do this, they contain proteins that differ from the rest of the cell. The content of cilia depends on regulated delivery of these proteins in and out of cilia by a process called the intraflagellar transport or IFT, which involves a large complex made of several proteins. This complex shuttles the cargo proteins back and forth between the base and the tip of the cilia. However, ciliary proteins are not produced in the cilia; instead, they are made in a different part of the cell and then they are transported to the ciliary base. At the point where they enter the cilia, they were thought to bind to the assembling IFT 'trains' and be transported across the ciliary gate to the positions where they are needed in cilia. One of the components of the IFT machinery is a protein called WDR35, also known as IFT121. If the gene that codes for this protein is faulty or missing, it results in severe disorders in both humans and mice including a range of potentially lethal skeletal dysplasias. Interestingly, without WDR35, cells cannot build functional cilia. The absence of this protein not only disrupts IFT, stopping certain ciliary proteins and their associated membranes from entering cilia; it also causes a 'traffic jam' with a pile-up of transport intermediates from the place in cell where they are made to the cilia. It is unclear why a mutation in one of the components of the IFT would have this effect, raising the question of whether WDR35, or IFTs a whole, has another role in bringing the cargo proteins into the cilia. To understand this phenomenon, Quidwai et al. analysed the structure of WDR35 and other IFT proteins and found that they are very similar to a protein complex called COPI, which is involved in transporting membrane proteins around the cell. When certain proteins are newly made, they are stored in small lipid bubbles -- called vesicles -- that then selectively move to where the proteins are needed. COPI coats these vesicles, helping them get to where they need to go in a process called vesicular transport. Quidwai et al. found that WDR35 and other IFT proteins are able to bind to specific types of lipid molecules, suggesting that they might be assisting in a form of vesicle transport too. Indeed, when mouse cells grown in the lab were genetically engineered so they could not produce WDR35, coatless vesicles accumulated around the base of the cilia. Adding back WDR35 to these mutant cells rescued these defects in vesicle transport to cilia as well as allowed functional cilia to be formed. These results provide evidence that WDR35, likely with other IFT proteins, acts as a COPI-like complex to deliver proteins to growing cilia. Further research will investigate the composition of these vesicles that transport proteins to cilia, and help pinpoint where they originate. Quidwai et al.'s findings not only shed light on how different genetic mutations found in patients with cilia dysfunction affect different steps of transporting proteins to and within cilia. They also increase our understanding of the cellular roadmap by which cells shuttle building blocks around in order to assemble these important 'antennae'.
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß′ COPI coatomer subunits and demonstrate an accumulation of ‘coat-less’ vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. Most human cells have at least one small hair-like structure on their surface called a cilium. These structures can act as antennae and allow the cell to sense signals from the rest of the body. To do this, they contain proteins that differ from the rest of the cell. The content of cilia depends on regulated delivery of these proteins in and out of cilia by a process called the intraflagellar transport or IFT, which involves a large complex made of several proteins. This complex shuttles the cargo proteins back and forth between the base and the tip of the cilia. However, ciliary proteins are not produced in the cilia; instead, they are made in a different part of the cell and then they are transported to the ciliary base. At the point where they enter the cilia, they were thought to bind to the assembling IFT ‘trains’ and be transported across the ciliary gate to the positions where they are needed in cilia. One of the components of the IFT machinery is a protein called WDR35, also known as IFT121. If the gene that codes for this protein is faulty or missing, it results in severe disorders in both humans and mice including a range of potentially lethal skeletal dysplasias. Interestingly, without WDR35, cells cannot build functional cilia. The absence of this protein not only disrupts IFT, stopping certain ciliary proteins and their associated membranes from entering cilia; it also causes a ‘traffic jam’ with a pile-up of transport intermediates from the place in cell where they are made to the cilia. It is unclear why a mutation in one of the components of the IFT would have this effect, raising the question of whether WDR35, or IFTs a whole, has another role in bringing the cargo proteins into the cilia. To understand this phenomenon, Quidwai et al. analysed the structure of WDR35 and other IFT proteins and found that they are very similar to a protein complex called COPI, which is involved in transporting membrane proteins around the cell. When certain proteins are newly made, they are stored in small lipid bubbles – called vesicles – that then selectively move to where the proteins are needed. COPI coats these vesicles, helping them get to where they need to go in a process called vesicular transport. Quidwai et al. found that WDR35 and other IFT proteins are able to bind to specific types of lipid molecules, suggesting that they might be assisting in a form of vesicle transport too. Indeed, when mouse cells grown in the lab were genetically engineered so they could not produce WDR35, coatless vesicles accumulated around the base of the cilia. Adding back WDR35 to these mutant cells rescued these defects in vesicle transport to cilia as well as allowed functional cilia to be formed. These results provide evidence that WDR35, likely with other IFT proteins, acts as a COPI-like complex to deliver proteins to growing cilia. Further research will investigate the composition of these vesicles that transport proteins to cilia, and help pinpoint where they originate. Quidwai et al.’s findings not only shed light on how different genetic mutations found in patients with cilia dysfunction affect different steps of transporting proteins to and within cilia. They also increase our understanding of the cellular roadmap by which cells shuttle building blocks around in order to assemble these important ‘antennae’.
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to [alpha] and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Audience Academic
Author Wells, Jonathan N
Wang, Jiaolong
Marsh, Joseph A
Mill, Pleasantine
Lorentzen, Esben
Hall, Emma A
Quidwai, Tooba
Keighren, Margaret A
Petriman, Narcis A
Kiesel, Petra
Murphy, Laura C
Leng, Weihua
Pigino, Gaia
Author_xml – sequence: 1
  givenname: Tooba
  orcidid: 0000-0001-5248-9010
  surname: Quidwai
  fullname: Quidwai, Tooba
  organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 2
  givenname: Jiaolong
  surname: Wang
  fullname: Wang, Jiaolong
  organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
– sequence: 3
  givenname: Emma A
  surname: Hall
  fullname: Hall, Emma A
  organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 4
  givenname: Narcis A
  orcidid: 0000-0002-3189-7530
  surname: Petriman
  fullname: Petriman, Narcis A
  organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
– sequence: 5
  givenname: Weihua
  surname: Leng
  fullname: Leng, Weihua
  organization: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
– sequence: 6
  givenname: Petra
  surname: Kiesel
  fullname: Kiesel, Petra
  organization: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
– sequence: 7
  givenname: Jonathan N
  orcidid: 0000-0003-3700-020X
  surname: Wells
  fullname: Wells, Jonathan N
  organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 8
  givenname: Laura C
  surname: Murphy
  fullname: Murphy, Laura C
  organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 9
  givenname: Margaret A
  surname: Keighren
  fullname: Keighren, Margaret A
  organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 10
  givenname: Joseph A
  surname: Marsh
  fullname: Marsh, Joseph A
  organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 11
  givenname: Esben
  orcidid: 0000-0001-6493-7220
  surname: Lorentzen
  fullname: Lorentzen, Esben
  organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
– sequence: 12
  givenname: Gaia
  surname: Pigino
  fullname: Pigino, Gaia
  organization: Human Technopole, Milan, Italy
– sequence: 13
  givenname: Pleasantine
  orcidid: 0000-0001-5218-134X
  surname: Mill
  fullname: Mill, Pleasantine
  organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34734804$$D View this record in MEDLINE/PubMed
BookMark eNptktuL1DAYxYusuBf3yXcp-KJIx6T5cntZGNbbwICwKoovIU3TmqFtatJZdv97MzPruhWThyRffjlJDuc0Oxr8YLPsGUYLTim8sWvX2AWTXLBH2UmJKCqQgO9HD-bH2XmMG5QaByGwfJIdE-AEBIKT7Mcy__b2itCitqMdajtMufF6ysfgJ-uGtOjHzt7kU9BDHH2YYm5c53S4zXvbV6lqc6ND6_NrG53pbMwnf0CeZo8b3UV7fjeeZV_fv_ty-bFYf_qwulyuCwMSs6LmnOoKMWgqrgmXogROCREAhmKEhWFQS815ZQjBGAEInJBKsKauhCQNOctWB93a640ag-vT65TXTu0LPrRKh2n3NqWxgQqwlBXHANKI2nDCNa_LimhTsqR1cdAat1Vva5P8CLqbic53BvdTtf5aCU4BCE4CL-8Egv-1tXFSvYvGdl0yym-jKqkkVNKSQ0Jf_INu_DYMySpVshIwTpz4S7U6fcANjU_3mp2oWjIhSwYE8UQt_kOlXtvemRSZxqX67MCr2YHETPZmavU2RrX6fDVnXx9YE3yMwTb3fmCkdilU-xSqfQoT_fyhhffsn8yR38FZ1lI
CitedBy_id crossref_primary_10_1016_j_celrep_2023_113337
crossref_primary_10_1038_s41594_023_00986_w
crossref_primary_10_1007_s12038_023_00326_6
crossref_primary_10_1016_j_semcdb_2022_03_021
crossref_primary_10_1016_j_cell_2022_11_033
crossref_primary_10_3389_fmolb_2022_936070
crossref_primary_10_1016_j_cell_2022_11_010
crossref_primary_10_7554_eLife_79299
crossref_primary_10_1016_j_cell_2022_12_005
crossref_primary_10_1146_annurev_cellbio_120219_034238
crossref_primary_10_1091_mbc_E21_10_0509_T
crossref_primary_10_1038_s41576_023_00587_9
crossref_primary_10_1016_j_biopsych_2023_11_004
crossref_primary_10_1126_sciadv_abn0832
crossref_primary_10_15252_embj_2022111807
crossref_primary_10_1126_scitranslmed_abq5930
crossref_primary_10_1242_jcs_260303
crossref_primary_10_1042_BST20231403
crossref_primary_10_1242_jcs_259444
crossref_primary_10_1038_s41422_023_00778_3
crossref_primary_10_1242_jcs_260408
Cites_doi 10.1083/jcb.200907126
10.1016/j.devcel.2014.09.011
10.1073/pnas.1220927110
10.1038/s41556-018-0213-1
10.1101/gad.1025302
10.1083/jcb.202003020
10.1016/j.devcel.2012.04.009
10.1083/jcb.201110049
10.1083/jcb.141.4.979
10.1016/j.cub.2018.08.017
10.1080/21541248.2017.1353847
10.1073/pnas.0505328102
10.1073/pnas.95.5.2279
10.7554/eLife.53322
10.1242/jcs.136903
10.1242/dev.02555
10.1091/mbc.E11-05-0405
10.1074/jbc.M111.287102
10.1016/j.ajhg.2008.06.023
10.1093/bioinformatics/btt276
10.1242/jcs.058883
10.1074/jbc.M117.792937
10.1016/j.cell.2016.11.036
10.1093/hmg/ddv152
10.1371/journal.pgen.1004170
10.1073/pnas.1221011110
10.1007/s00018-010-0603-4
10.1186/s13630-017-0051-y
10.1091/mbc.E16-09-0648
10.1083/jcb.200912001
10.1083/jcb.141.3.611
10.1083/jcb.201007050
10.1016/j.sbi.2016.06.009
10.1242/jcs.073908
10.1074/jbc.M116.713883
10.1016/s0092-8674(00)81650-5
10.1016/j.ajhg.2018.08.015
10.1016/s0092-8674(03)01079-1
10.1016/B978-0-12-397945-2.00010-X
10.1083/jcb.201207139
10.1016/s0092-8674(00)81173-3
10.1083/jcb.200909183
10.1016/j.bbrc.2008.06.001
10.1038/ncomms6482
10.1016/j.cub.2014.03.047
10.1083/jcb.200908133
10.1016/j.cell.2009.04.064
10.1038/s41594-020-0507-4
10.1073/pnas.90.12.5519
10.1016/j.cell.2010.05.030
10.1016/j.semcdb.2018.03.010
10.1038/ncomms6813
10.7554/eLife.06996
10.1083/jcb.147.3.519
10.3390/biology3020320
10.1083/jcb.200707181
10.1091/mbc.e06-09-0805
10.1016/j.neuron.2011.02.032
10.1074/jbc.RA120.015992
10.1091/mbc.e06-02-0133
10.1038/nmeth.1818
10.1074/jbc.M117.780155
10.1016/j.jsb.2005.07.007
10.1038/nrm.2017.60
10.1007/978-1-4939-8736-8_13
10.7554/eLife.11859
10.15252/embj.201593164
10.1016/j.celrep.2013.05.020
10.1371/journal.pgen.1000315
10.1016/s0092-8674(04)00412-x
10.1016/B978-0-12-397945-2.00014-7
10.1083/jcb.200911095
10.1534/genetics.114.161349
10.1016/j.preteyeres.2013.08.004
10.1371/journal.pone.0005384
10.1038/nrm952
10.1126/science.aaf4594
10.1371/journal.pone.0030729
10.1242/jcs.037721
10.1016/j.devcel.2014.09.004
10.1016/j.ajhg.2011.03.015
10.1093/nar/gky427
10.1242/jcs.109.7.1891
10.1016/j.cub.2019.07.090
10.1038/ng1414
10.1242/jcs.114454
10.1038/ncb1977
10.1016/j.celrep.2016.10.018
10.1093/hmg/ddx421
10.1083/jcb.201202126
10.1083/jcb.15.2.363
10.1091/mbc.12.8.2341
10.1681/ASN.2011080829
10.1083/jcb.201102042
10.1091/mbc.e06-06-0571
10.1038/emboj.2008.267
10.7554/eLife.55954
10.1083/jcb.143.6.1591
10.1038/ng.3558
10.1038/nmeth.2019
10.3389/fcell.2019.00291
10.1371/journal.pgen.1004577
10.1083/jcb.200905103
10.1242/jcs.205492
10.7554/eLife.53910
10.7554/eLife.05242
10.1091/mbc.E16-11-0813
10.1038/s41467-018-07037-9
10.1083/jcb.201709041
10.1002/bies.20369
10.1242/jcs.015826
10.1006/jsbi.1996.0013
10.1016/j.cub.2016.11.050
10.1073/pnas.1011410108
10.1242/jcs.059519
10.1073/pnas.1519458113
10.1016/j.cell.2010.05.015
10.1101/gad.207043.112
10.1083/jcb.116.3.737
10.7554/eLife.33067
10.1194/jlr.M016873
10.1038/emboj.2011.110
10.1016/j.str.2019.06.006
10.1534/genetics.109.101915
10.1016/j.devcel.2015.03.012
10.1083/jcb.201604048
10.1038/ncb1774
10.1016/B978-0-12-370873-1.00041-1
10.1038/srep11855
10.1101/gad.1966210
10.1016/j.diff.2011.11.001
10.1371/journal.pgen.1001199
10.1091/mbc.e06-04-0260
10.1038/ng.105
10.1021/bi0351460
10.1371/journal.pgen.1006627
10.1016/j.bpj.2015.08.033
10.1016/j.tibs.2016.06.002
10.1242/jcs.220749
10.1074/jbc.M702968200
10.7554/eLife.26691
10.1016/j.ceb.2018.03.004
10.1128/EC.00090-08
10.1016/j.cell.2007.03.053
10.1016/j.cub.2008.11.020
10.1091/mbc.10.3.693
ContentType Journal Article
Copyright 2021, Quidwai et al.
COPYRIGHT 2021 eLife Science Publications, Ltd.
2021, Quidwai et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021, Quidwai et al 2021 Quidwai et al
Copyright_xml – notice: 2021, Quidwai et al.
– notice: COPYRIGHT 2021 eLife Science Publications, Ltd.
– notice: 2021, Quidwai et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021, Quidwai et al 2021 Quidwai et al
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.69786
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Science in Context
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef



MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_a1c4b4199b71449c8dc737a7d2b3ac26
A689264307
10_7554_eLife_69786
34734804
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_00007/14
– fundername: Medical Research Council
  grantid: MC_UU_12018/26
– fundername: ;
  grantid: Grant No. CF19-0253
– fundername: ;
– fundername: ;
  grantid: Short Term Fellowship number 7961
– fundername: ;
  grantid: H2020 Grant No. 866355
– fundername: ;
  grantid: H2020 Grant No. 888322
– fundername: ;
  grantid: H2020 Grant No. 819826
– fundername: ;
  grantid: Research Prize Fellow
– fundername: ;
  grantid: Grant No. NNF15OC0014164
– fundername: ;
  grantid: Core unit funding No. MC_UU_12018/26
GroupedDBID 3V.
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
DIK
DWQXO
ECM
EIF
EMOBN
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NPM
NQS
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RHF
RHI
RNS
RPM
UKHRP
AAYXX
CITATION
AFPKN
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c4916-d775ab064fb7a3798247533844c51018c64d9a77bc331104481824b86fdb893f3
IEDL.DBID RPM
ISSN 2050-084X
IngestDate Tue Oct 22 15:05:08 EDT 2024
Tue Sep 17 21:28:44 EDT 2024
Sat Oct 26 05:48:06 EDT 2024
Mon Dec 16 02:13:08 EST 2024
Tue Nov 19 20:49:20 EST 2024
Tue Nov 12 22:40:36 EST 2024
Thu Aug 01 20:11:18 EDT 2024
Thu Nov 21 21:25:16 EST 2024
Sat Nov 02 12:16:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords membrane cargos
chlamydomonas reinhardtii
intraflagellar transport
CLEM
coatomer
vesicular traffic
mouse
cell biology
correlative light and electron microscopy
IFT
COPI
cilia
transmission electron microscopy
TEM
ciliary pocket
Language English
License 2021, Quidwai et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4916-d775ab064fb7a3798247533844c51018c64d9a77bc331104481824b86fdb893f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
UMass Chan Medical School, Worcester, United States.
ORCID 0000-0001-5218-134X
0000-0003-3700-020X
0000-0001-5248-9010
0000-0002-3189-7530
0000-0001-6493-7220
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754431/
PMID 34734804
PQID 2624115958
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_a1c4b4199b71449c8dc737a7d2b3ac26
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8754431
proquest_miscellaneous_2593595274
proquest_journals_2624115958
gale_infotracmisc_A689264307
gale_infotracacademiconefile_A689264307
gale_incontextgauss_ISR_A689264307
crossref_primary_10_7554_eLife_69786
pubmed_primary_34734804
PublicationCentury 2000
PublicationDate 20211104
PublicationDateYYYYMMDD 2021-11-04
PublicationDate_xml – month: 11
  year: 2021
  text: 20211104
  day: 4
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2021
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – sequence: 0
  name: eLife Sciences Publications Ltd
– name: eLife Science Publications, Ltd
– name: eLife Sciences Publications, Ltd
– name: eLife Sciences Publications Ltd
References Mastronarde (bib76) 2005; 152
Keady (bib61) 2012; 22
Zeniou-Meyer (bib146) 2007; 282
Liem (bib74) 2012; 197
Kremer (bib67) 1996; 116
Taschner (bib119) 2016; 35
Toriyama (bib122) 2016; 48
Jin (bib54) 2010; 141
Turriziani (bib125) 2014; 3
Dwyer (bib28) 1998; 93
Fu (bib39) 2016; 17
Mourão (bib83) 2016; 41
Remmert (bib102) 2011; 9
Funabashi (bib40) 2017; 28
Lee (bib71) 2008; 18
Xu (bib141) 2015; 5
Yang (bib143) 2020; 9
Boehlke (bib12) 2010; 123
Zhukovsky (bib148) 2019; 7
Eguether (bib30) 2014; 31
Taschner (bib118) 2012; 83
Ye (bib144) 2018; 217
Klink (bib65) 2020; 9
Scheidel (bib107) 2018; 28
Cole (bib22) 2009
Jordan (bib57) 2018; 20
Jonassen (bib55) 2012; 23
Cevik (bib18) 2010; 188
Li (bib73) 2010; 189
Efimenko (bib29) 2006; 17
Behal (bib7) 2012; 287
Gerondopoulos (bib42) 2019; 29
Katoh (bib60) 2016; 291
Wang (bib131) 2017; 130
Arisz (bib3) 2011; 52
Fölsch (bib38) 1999; 99
Noda (bib88) 2016; 113
Pazour (bib92) 1998; 141
Gotthardt (bib44) 2015; 4
Mill (bib80) 2011; 88
Blacque (bib10) 2006; 17
Rogowski (bib103) 2013; 524
Jékely (bib52) 2006; 28
Joo (bib56) 2013; 110
Shinde (bib111) 2020; 219
Yang (bib142) 2008; 10
Kozminski (bib66) 1993; 90
Signor (bib112) 1999; 147
Diggle (bib24) 2014; 10
Porter (bib97) 1999; 10
Reiter (bib101) 2017; 18
Hirano (bib46) 2017; 28
Wang (bib130) 2014; 38
Jaiswal (bib51) 2009; 137
Lechtreck (bib69) 2009; 187
Follit (bib35) 2006; 17
Dodonova (bib25) 2017; 6
Farmer (bib32) 2021; 296
Tanos (bib117) 2013; 27
Moritz (bib82) 2001; 12
Agbu (bib1) 2018; 217
Cao (bib16) 2015; 4
Sorokin (bib114) 1962; 15
Vince (bib128) 2008; 7
Tran (bib123) 2008; 40
Wood (bib140) 2014; 24
Taschner (bib121) 2018; 7
Alkanderi (bib2) 2018; 103
Jensen (bib53) 2010; 6
Wells (bib135) 2019; 1851
Avidor-Reiss (bib4) 2004; 117
Takahara (bib116) 2018; 27
Sato (bib106) 2014; 127
Cantagrel (bib15) 2008; 83
Qin (bib98) 2011; 108
Graser (bib45) 2007; 179
Caparrós-Martín (bib17) 2015; 24
Waterhouse (bib133) 2018; 46
Piperno (bib96) 1998; 143
Brear (bib14) 2014; 197
Roy (bib105) 2017; 292
Kennedy (bib62) 2011; 69
Chen (bib19) 2002; 16
Sedmak (bib110) 2010; 189
Baron Gaillard (bib6) 2011; 22
Wells (bib134) 2017; 27
Iomini (bib50) 2009; 183
Kapoor (bib59) 2015; 109
Follit (bib36) 2008; 4
Pigino (bib95) 2009; 187
Nager (bib87) 2017; 168
Witzgall (bib138) 2018; 83
Finetti (bib34) 2009; 11
Schmidt (bib109) 2012; 199
Huangfu (bib49) 2005; 102
Mukhopadhyay (bib84) 2010; 24
Picariello (bib94) 2019; 132
Duran (bib27) 2017; 6
Bae (bib5) 2006; 133
Taschner (bib120) 2017; 292
Lee (bib72) 2010; 142
Kiesel (bib63) 2020; 27
Quidwai (bib100) 2021
Lechtreck (bib70) 2013; 201
Milenkovic (bib79) 2009; 187
Criswell (bib23) 1996; 109 (Pt 7)
Domire (bib26) 2011; 68
Blacque (bib11) 2018; 9
McMahon (bib78) 2015; 128
Singh (bib113) 2020; 9
Molla-Herman (bib81) 2010; 123
Hoffmeister (bib47) 2011; 192
Zhu (bib147) 2017; 13
Field (bib33) 2011; 193
Wheatley (bib136) 1969; 105
Nachury (bib85) 2007; 129
Chou (bib20) 2019; 27
Follit (bib37) 2014; 10
Futter (bib41) 1998; 141
van Dam (bib127) 2013; 110
Schindelin (bib108) 2012; 9
Yee (bib145) 2015; 32
Bonifacino (bib13) 2004; 116
Mazelova (bib77) 2009; 28
Tyler (bib126) 2009; 122
Fan (bib31) 2004; 36
Kim (bib64) 2014; 5
Behal (bib8) 2013; 524
Kaplan (bib58) 2010; 123
Goedhart (bib43) 2004; 43
Ollion (bib89) 2013; 29
Leaf (bib68) 2015; 4
Bhogaraju (bib9) 2011; 30
Nachury (bib86) 2018; 51
Williams (bib137) 2014; 5
Clement (bib21) 2013; 3
Rosenbaum (bib104) 2002; 3
Pedersen (bib93) 2016; 41
Wang (bib129) 2009; 4
Wood (bib139) 2012; 7
Wang (bib132) 2018; 9
Orci (bib90) 1998; 95
Quarmby (bib99) 1992; 116
Ou (bib91) 2007; 18
Stepanek (bib115) 2016; 352
Tsao (bib124) 2008; 121
Hori (bib48) 2008; 373
Liew (bib75) 2014; 31
References_xml – volume: 187
  start-page: 365
  year: 2009
  ident: bib79
  article-title: Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200907126
  contributor:
    fullname: Milenkovic
– volume: 31
  start-page: 279
  year: 2014
  ident: bib30
  article-title: IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2014.09.011
  contributor:
    fullname: Eguether
– volume: 110
  start-page: 5987
  year: 2013
  ident: bib56
  article-title: CCDC41 is required for ciliary vesicle docking to the mother centriole
  publication-title: PNAS
  doi: 10.1073/pnas.1220927110
  contributor:
    fullname: Joo
– volume: 20
  start-page: 1250
  year: 2018
  ident: bib57
  article-title: The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia
  publication-title: Nature Cell Biology
  doi: 10.1038/s41556-018-0213-1
  contributor:
    fullname: Jordan
– volume: 16
  start-page: 2743
  year: 2002
  ident: bib19
  article-title: Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened
  publication-title: Genes & Development
  doi: 10.1101/gad.1025302
  contributor:
    fullname: Chen
– volume: 219
  year: 2020
  ident: bib111
  article-title: Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.202003020
  contributor:
    fullname: Shinde
– volume: 22
  start-page: 940
  year: 2012
  ident: bib61
  article-title: IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2012.04.009
  contributor:
    fullname: Keady
– volume: 197
  start-page: 789
  year: 2012
  ident: bib74
  article-title: The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201110049
  contributor:
    fullname: Liem
– volume: 141
  start-page: 979
  year: 1998
  ident: bib92
  article-title: A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT)
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.141.4.979
  contributor:
    fullname: Pazour
– volume: 28
  start-page: 3279
  year: 2018
  ident: bib107
  article-title: Intraflagellar Transport Complex A Genes Differentially Regulate Cilium Formation and Transition Zone Gating
  publication-title: Current Biology
  doi: 10.1016/j.cub.2018.08.017
  contributor:
    fullname: Scheidel
– volume: 9
  start-page: 76
  year: 2018
  ident: bib11
  article-title: Rab GTPases in cilium formation and function
  publication-title: Small GTPases
  doi: 10.1080/21541248.2017.1353847
  contributor:
    fullname: Blacque
– volume: 102
  start-page: 11325
  year: 2005
  ident: bib49
  article-title: Cilia and Hedgehog responsiveness in the mouse
  publication-title: PNAS
  doi: 10.1073/pnas.0505328102
  contributor:
    fullname: Huangfu
– volume: 95
  start-page: 2279
  year: 1998
  ident: bib90
  article-title: Vesicles on strings: morphological evidence for processive transport within the Golgi stack
  publication-title: PNAS
  doi: 10.1073/pnas.95.5.2279
  contributor:
    fullname: Orci
– volume: 9
  year: 2020
  ident: bib113
  article-title: Structure and activation mechanism of the BBSome membrane protein trafficking complex
  publication-title: eLife
  doi: 10.7554/eLife.53322
  contributor:
    fullname: Singh
– volume: 127
  start-page: 422
  year: 2014
  ident: bib106
  article-title: Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.136903
  contributor:
    fullname: Sato
– volume: 133
  start-page: 3859
  year: 2006
  ident: bib5
  article-title: General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia
  publication-title: Development
  doi: 10.1242/dev.02555
  contributor:
    fullname: Bae
– volume: 22
  start-page: 4549
  year: 2011
  ident: bib6
  article-title: Hook2 is involved in the morphogenesis of the primary cilium
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.E11-05-0405
  contributor:
    fullname: Baron Gaillard
– volume: 287
  start-page: 11689
  year: 2012
  ident: bib7
  article-title: Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M111.287102
  contributor:
    fullname: Behal
– volume: 83
  start-page: 170
  year: 2008
  ident: bib15
  article-title: Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome
  publication-title: American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2008.06.023
  contributor:
    fullname: Cantagrel
– volume: 29
  start-page: 1840
  year: 2013
  ident: bib89
  article-title: TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt276
  contributor:
    fullname: Ollion
– volume: 123
  start-page: 1460
  year: 2010
  ident: bib12
  article-title: Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.058883
  contributor:
    fullname: Boehlke
– volume: 292
  start-page: 17703
  year: 2017
  ident: bib105
  article-title: Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M117.792937
  contributor:
    fullname: Roy
– volume: 168
  start-page: 252
  year: 2017
  ident: bib87
  article-title: An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.036
  contributor:
    fullname: Nager
– volume: 24
  start-page: 4126
  year: 2015
  ident: bib17
  article-title: Specific variants in WDR35 cause a distinctive form of Ellis-van Creveld syndrome by disrupting the recruitment of the EvC complex and SMO into the cilium
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddv152
  contributor:
    fullname: Caparrós-Martín
– volume: 10
  year: 2014
  ident: bib37
  article-title: Arf4 is required for Mammalian development but dispensable for ciliary assembly
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1004170
  contributor:
    fullname: Follit
– volume: 110
  start-page: 6943
  year: 2013
  ident: bib127
  article-title: Evolution of modular intraflagellar transport from a coatomer-like progenitor
  publication-title: PNAS
  doi: 10.1073/pnas.1221011110
  contributor:
    fullname: van Dam
– volume: 68
  start-page: 2951
  year: 2011
  ident: bib26
  article-title: Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins
  publication-title: Cellular and Molecular Life Sciences
  doi: 10.1007/s00018-010-0603-4
  contributor:
    fullname: Domire
– volume: 6
  year: 2017
  ident: bib27
  article-title: Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia
  publication-title: Cilia
  doi: 10.1186/s13630-017-0051-y
  contributor:
    fullname: Duran
– volume: 28
  start-page: 624
  year: 2017
  ident: bib40
  article-title: Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.E16-09-0648
  contributor:
    fullname: Funabashi
– volume: 189
  start-page: 1039
  year: 2010
  ident: bib73
  article-title: The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200912001
  contributor:
    fullname: Li
– volume: 141
  start-page: 611
  year: 1998
  ident: bib41
  article-title: In polarized MDCK cells basolateral vesicles arise from clathrin-gamma-adaptin-coated domains on endosomal tubules
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.141.3.611
  contributor:
    fullname: Futter
– volume: 192
  start-page: 631
  year: 2011
  ident: bib47
  article-title: Polycystin-2 takes different routes to the somatic and ciliary plasma membrane
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201007050
  contributor:
    fullname: Hoffmeister
– volume: 41
  start-page: 98
  year: 2016
  ident: bib83
  article-title: The intraflagellar transport machinery in ciliary signaling
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/j.sbi.2016.06.009
  contributor:
    fullname: Mourão
– volume: 123
  start-page: 3966
  year: 2010
  ident: bib58
  article-title: The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.073908
  contributor:
    fullname: Kaplan
– volume: 291
  start-page: 10962
  year: 2016
  ident: bib60
  article-title: Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M116.713883
  contributor:
    fullname: Katoh
– volume: 99
  start-page: 189
  year: 1999
  ident: bib38
  article-title: A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)81650-5
  contributor:
    fullname: Fölsch
– volume: 103
  start-page: 612
  year: 2018
  ident: bib2
  article-title: ARL3 Mutations Cause Joubert Syndrome by Disrupting Ciliary Protein Composition
  publication-title: American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2018.08.015
  contributor:
    fullname: Alkanderi
– volume: 116
  start-page: 153
  year: 2004
  ident: bib13
  article-title: The mechanisms of vesicle budding and fusion
  publication-title: Cell
  doi: 10.1016/s0092-8674(03)01079-1
  contributor:
    fullname: Bonifacino
– volume: 524
  start-page: 171
  year: 2013
  ident: bib8
  article-title: Analysis of interactions between intraflagellar transport proteins
  publication-title: Methods in Enzymology
  doi: 10.1016/B978-0-12-397945-2.00010-X
  contributor:
    fullname: Behal
– volume: 201
  start-page: 249
  year: 2013
  ident: bib70
  article-title: Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201207139
  contributor:
    fullname: Lechtreck
– volume: 93
  start-page: 455
  year: 1998
  ident: bib28
  article-title: Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)81173-3
  contributor:
    fullname: Dwyer
– volume: 187
  start-page: 1117
  year: 2009
  ident: bib69
  article-title: The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200909183
  contributor:
    fullname: Lechtreck
– volume: 373
  start-page: 119
  year: 2008
  ident: bib48
  article-title: Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/j.bbrc.2008.06.001
  contributor:
    fullname: Hori
– volume: 5
  year: 2014
  ident: bib64
  article-title: Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism
  publication-title: Nature Communications
  doi: 10.1038/ncomms6482
  contributor:
    fullname: Kim
– volume: 24
  start-page: 1114
  year: 2014
  ident: bib140
  article-title: Proteins of the ciliary axoneme are found on cytoplasmic membrane vesicles during growth of cilia
  publication-title: Current Biology
  doi: 10.1016/j.cub.2014.03.047
  contributor:
    fullname: Wood
– volume: 188
  start-page: 953
  year: 2010
  ident: bib18
  article-title: Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200908133
  contributor:
    fullname: Cevik
– volume: 137
  start-page: 1308
  year: 2009
  ident: bib51
  article-title: Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.064
  contributor:
    fullname: Jaiswal
– volume: 27
  start-page: 1115
  year: 2020
  ident: bib63
  article-title: The molecular structure of mammalian primary cilia revealed by cryo-electron tomography
  publication-title: Nature Structural & Molecular Biology
  doi: 10.1038/s41594-020-0507-4
  contributor:
    fullname: Kiesel
– volume: 90
  start-page: 5519
  year: 1993
  ident: bib66
  article-title: A motility in the eukaryotic flagellum unrelated to flagellar beating
  publication-title: PNAS
  doi: 10.1073/pnas.90.12.5519
  contributor:
    fullname: Kozminski
– volume: 142
  start-page: 123
  year: 2010
  ident: bib72
  article-title: Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.030
  contributor:
    fullname: Lee
– volume: 83
  start-page: 51
  year: 2018
  ident: bib138
  article-title: Golgi bypass of ciliary proteins
  publication-title: Seminars in Cell & Developmental Biology
  doi: 10.1016/j.semcdb.2018.03.010
  contributor:
    fullname: Witzgall
– volume: 5
  year: 2014
  ident: bib137
  article-title: Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia
  publication-title: Nature Communications
  doi: 10.1038/ncomms6813
  contributor:
    fullname: Williams
– volume: 4
  year: 2015
  ident: bib68
  article-title: Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia
  publication-title: eLife
  doi: 10.7554/eLife.06996
  contributor:
    fullname: Leaf
– volume: 147
  start-page: 519
  year: 1999
  ident: bib112
  article-title: Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.147.3.519
  contributor:
    fullname: Signor
– volume: 3
  start-page: 320
  year: 2014
  ident: bib125
  article-title: On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics
  publication-title: Biology
  doi: 10.3390/biology3020320
  contributor:
    fullname: Turriziani
– volume: 179
  start-page: 321
  year: 2007
  ident: bib45
  article-title: Cep164, a novel centriole appendage protein required for primary cilium formation
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200707181
  contributor:
    fullname: Graser
– volume: 18
  start-page: 1554
  year: 2007
  ident: bib91
  article-title: Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e06-09-0805
  contributor:
    fullname: Ou
– volume: 69
  start-page: 856
  year: 2011
  ident: bib62
  article-title: Mechanisms and function of dendritic exocytosis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.032
  contributor:
    fullname: Kennedy
– volume: 296
  year: 2021
  ident: bib32
  article-title: Defining the protein and lipid constituents of tubular recycling endosomes
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.RA120.015992
  contributor:
    fullname: Farmer
– volume: 17
  start-page: 3781
  year: 2006
  ident: bib35
  article-title: The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e06-02-0133
  contributor:
    fullname: Follit
– volume: 9
  start-page: 173
  year: 2011
  ident: bib102
  article-title: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1818
  contributor:
    fullname: Remmert
– volume: 292
  start-page: 7462
  year: 2017
  ident: bib120
  article-title: Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M117.780155
  contributor:
    fullname: Taschner
– volume: 152
  start-page: 36
  year: 2005
  ident: bib76
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: Journal of Structural Biology
  doi: 10.1016/j.jsb.2005.07.007
  contributor:
    fullname: Mastronarde
– volume: 18
  start-page: 533
  year: 2017
  ident: bib101
  article-title: Genes and molecular pathways underpinning ciliopathies
  publication-title: Nature Reviews. Molecular Cell Biology
  doi: 10.1038/nrm.2017.60
  contributor:
    fullname: Reiter
– volume: 1851
  start-page: 251
  year: 2019
  ident: bib135
  article-title: A Graph-Based Approach for Detecting Sequence Homology in Highly Diverged Repeat Protein Families
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-4939-8736-8_13
  contributor:
    fullname: Wells
– volume: 4
  year: 2015
  ident: bib44
  article-title: A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins
  publication-title: eLife
  doi: 10.7554/eLife.11859
  contributor:
    fullname: Gotthardt
– volume: 35
  start-page: 773
  year: 2016
  ident: bib119
  article-title: Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex
  publication-title: The EMBO Journal
  doi: 10.15252/embj.201593164
  contributor:
    fullname: Taschner
– volume: 3
  start-page: 1806
  year: 2013
  ident: bib21
  article-title: TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.05.020
  contributor:
    fullname: Clement
– volume: 4
  year: 2008
  ident: bib36
  article-title: The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1000315
  contributor:
    fullname: Follit
– volume: 117
  start-page: 527
  year: 2004
  ident: bib4
  article-title: Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis
  publication-title: Cell
  doi: 10.1016/s0092-8674(04)00412-x
  contributor:
    fullname: Avidor-Reiss
– volume: 524
  start-page: 243
  year: 2013
  ident: bib103
  article-title: Electron microscopy of flagella, primary cilia, and intraflagellar transport in flat-embedded cells
  publication-title: Methods in Enzymology
  doi: 10.1016/B978-0-12-397945-2.00014-7
  contributor:
    fullname: Rogowski
– volume: 189
  start-page: 171
  year: 2010
  ident: bib110
  article-title: Intraflagellar transport molecules in ciliary and nonciliary cells of the retina
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200911095
  contributor:
    fullname: Sedmak
– volume: 197
  start-page: 667
  year: 2014
  ident: bib14
  article-title: Diverse cell type-specific mechanisms localize G protein-coupled receptors to Caenorhabditis elegans sensory cilia
  publication-title: Genetics
  doi: 10.1534/genetics.114.161349
  contributor:
    fullname: Brear
– volume: 38
  start-page: 1
  year: 2014
  ident: bib130
  article-title: Molecular complexes that direct rhodopsin transport to primary cilia
  publication-title: Progress in Retinal and Eye Research
  doi: 10.1016/j.preteyeres.2013.08.004
  contributor:
    fullname: Wang
– volume: 4
  year: 2009
  ident: bib129
  article-title: Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0005384
  contributor:
    fullname: Wang
– volume: 3
  start-page: 813
  year: 2002
  ident: bib104
  article-title: Intraflagellar transport
  publication-title: Nature Reviews. Molecular Cell Biology
  doi: 10.1038/nrm952
  contributor:
    fullname: Rosenbaum
– volume: 352
  start-page: 721
  year: 2016
  ident: bib115
  article-title: Microtubule doublets are double-track railways for intraflagellar transport trains
  publication-title: Science
  doi: 10.1126/science.aaf4594
  contributor:
    fullname: Stepanek
– volume: 7
  year: 2012
  ident: bib139
  article-title: IFT proteins accumulate during cell division and localize to the cleavage furrow in Chlamydomonas
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0030729
  contributor:
    fullname: Wood
– volume: 122
  start-page: 859
  year: 2009
  ident: bib126
  article-title: Flagellar membrane localization via association with lipid rafts
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.037721
  contributor:
    fullname: Tyler
– volume: 31
  start-page: 265
  year: 2014
  ident: bib75
  article-title: The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2014.09.004
  contributor:
    fullname: Liew
– volume: 88
  start-page: 508
  year: 2011
  ident: bib80
  article-title: Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis
  publication-title: American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2011.03.015
  contributor:
    fullname: Mill
– volume: 46
  start-page: W296
  year: 2018
  ident: bib133
  article-title: SWISS-MODEL: homology modelling of protein structures and complexes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gky427
  contributor:
    fullname: Waterhouse
– volume: 109 (Pt 7)
  start-page: 1891
  year: 1996
  ident: bib23
  article-title: A novel cytoplasmic dynein heavy chain: expression of DHC1b in mammalian ciliated epithelial cells
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.109.7.1891
  contributor:
    fullname: Criswell
– volume: 29
  start-page: 3323
  year: 2019
  ident: bib42
  article-title: Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex
  publication-title: Current Biology
  doi: 10.1016/j.cub.2019.07.090
  contributor:
    fullname: Gerondopoulos
– volume: 36
  start-page: 989
  year: 2004
  ident: bib31
  article-title: Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome
  publication-title: Nature Genetics
  doi: 10.1038/ng1414
  contributor:
    fullname: Fan
– volume: 128
  start-page: 1065
  year: 2015
  ident: bib78
  article-title: Membrane curvature at a glance
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.114454
  contributor:
    fullname: McMahon
– volume: 11
  start-page: 1332
  year: 2009
  ident: bib34
  article-title: Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1977
  contributor:
    fullname: Finetti
– volume: 17
  start-page: 1505
  year: 2016
  ident: bib39
  article-title: Role for the IFT-A Complex in Selective Transport to the Primary Cilium
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2016.10.018
  contributor:
    fullname: Fu
– volume: 27
  start-page: 516
  year: 2018
  ident: bib116
  article-title: Ciliopathy-associated mutations of IFT122 impair ciliary protein trafficking but not ciliogenesis
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddx421
  contributor:
    fullname: Takahara
– volume: 199
  start-page: 1083
  year: 2012
  ident: bib109
  article-title: Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201202126
  contributor:
    fullname: Schmidt
– volume: 15
  start-page: 363
  year: 1962
  ident: bib114
  article-title: Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.15.2.363
  contributor:
    fullname: Sorokin
– volume: 12
  start-page: 2341
  year: 2001
  ident: bib82
  article-title: Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.12.8.2341
  contributor:
    fullname: Moritz
– volume: 23
  start-page: 641
  year: 2012
  ident: bib55
  article-title: Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation
  publication-title: Journal of the American Society of Nephrology
  doi: 10.1681/ASN.2011080829
  contributor:
    fullname: Jonassen
– volume: 193
  start-page: 963
  year: 2011
  ident: bib33
  article-title: Evolution: On a bender--BARs, ESCRTs, COPs, and finally getting your coat
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201102042
  contributor:
    fullname: Field
– volume: 17
  start-page: 5053
  year: 2006
  ident: bib10
  article-title: The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e06-06-0571
  contributor:
    fullname: Blacque
– volume: 28
  start-page: 183
  year: 2009
  ident: bib77
  article-title: Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2008.267
  contributor:
    fullname: Mazelova
– volume: 9
  year: 2020
  ident: bib143
  article-title: Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes
  publication-title: eLife
  doi: 10.7554/eLife.55954
  contributor:
    fullname: Yang
– volume: 143
  start-page: 1591
  year: 1998
  ident: bib96
  article-title: Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.143.6.1591
  contributor:
    fullname: Piperno
– volume: 48
  start-page: 648
  year: 2016
  ident: bib122
  article-title: The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery
  publication-title: Nature Genetics
  doi: 10.1038/ng.3558
  contributor:
    fullname: Toriyama
– volume: 9
  start-page: 676
  year: 2012
  ident: bib108
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2019
  contributor:
    fullname: Schindelin
– volume: 7
  year: 2019
  ident: bib148
  article-title: Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission
  publication-title: Frontiers in Cell and Developmental Biology
  doi: 10.3389/fcell.2019.00291
  contributor:
    fullname: Zhukovsky
– volume: 10
  year: 2014
  ident: bib24
  article-title: HEATR2 plays a conserved role in assembly of the ciliary motile apparatus
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1004577
  contributor:
    fullname: Diggle
– volume: 187
  start-page: 135
  year: 2009
  ident: bib95
  article-title: Electron-tomographic analysis of intraflagellar transport particle trains in situ
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200905103
  contributor:
    fullname: Pigino
– volume: 130
  start-page: 3975
  year: 2017
  ident: bib131
  article-title: The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.205492
  contributor:
    fullname: Wang
– volume: 9
  year: 2020
  ident: bib65
  article-title: Structure of the human BBSome core complex
  publication-title: eLife
  doi: 10.7554/eLife.53910
  contributor:
    fullname: Klink
– volume: 4
  year: 2015
  ident: bib16
  article-title: Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding
  publication-title: eLife
  doi: 10.7554/eLife.05242
  contributor:
    fullname: Cao
– volume-title: GitHub
  year: 2021
  ident: bib100
  article-title: Quidwai2020_WDR35paper
  contributor:
    fullname: Quidwai
– volume: 28
  start-page: 429
  year: 2017
  ident: bib46
  article-title: Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.E16-11-0813
  contributor:
    fullname: Hirano
– volume: 9
  year: 2018
  ident: bib132
  article-title: Membrane association and remodeling by intraflagellar transport protein IFT172
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-07037-9
  contributor:
    fullname: Wang
– volume: 217
  start-page: 1847
  year: 2018
  ident: bib144
  article-title: BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201709041
  contributor:
    fullname: Ye
– volume: 28
  start-page: 191
  year: 2006
  ident: bib52
  article-title: Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium
  publication-title: BioEssays
  doi: 10.1002/bies.20369
  contributor:
    fullname: Jékely
– volume: 121
  start-page: 428
  year: 2008
  ident: bib124
  article-title: Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.015826
  contributor:
    fullname: Tsao
– volume: 116
  start-page: 71
  year: 1996
  ident: bib67
  article-title: Computer visualization of three-dimensional image data using IMOD
  publication-title: Journal of Structural Biology
  doi: 10.1006/jsbi.1996.0013
  contributor:
    fullname: Kremer
– volume: 27
  start-page: R17
  year: 2017
  ident: bib134
  article-title: Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins
  publication-title: Current Biology
  doi: 10.1016/j.cub.2016.11.050
  contributor:
    fullname: Wells
– volume: 108
  start-page: 1456
  year: 2011
  ident: bib98
  article-title: Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components
  publication-title: PNAS
  doi: 10.1073/pnas.1011410108
  contributor:
    fullname: Qin
– volume: 123
  start-page: 1785
  year: 2010
  ident: bib81
  article-title: The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.059519
  contributor:
    fullname: Molla-Herman
– volume: 113
  start-page: E2589
  year: 2016
  ident: bib88
  article-title: Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development
  publication-title: PNAS
  doi: 10.1073/pnas.1519458113
  contributor:
    fullname: Noda
– volume: 141
  start-page: 1208
  year: 2010
  ident: bib54
  article-title: The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.015
  contributor:
    fullname: Jin
– volume: 27
  start-page: 163
  year: 2013
  ident: bib117
  article-title: Centriole distal appendages promote membrane docking, leading to cilia initiation
  publication-title: Genes & Development
  doi: 10.1101/gad.207043.112
  contributor:
    fullname: Tanos
– volume: 116
  start-page: 737
  year: 1992
  ident: bib99
  article-title: Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.116.3.737
  contributor:
    fullname: Quarmby
– volume: 7
  year: 2018
  ident: bib121
  article-title: Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis
  publication-title: eLife
  doi: 10.7554/eLife.33067
  contributor:
    fullname: Taschner
– volume: 52
  start-page: 2012
  year: 2011
  ident: bib3
  article-title: The salt stress-induced LPA response in Chlamydomonas is produced via PLA₂ hydrolysis of DGK-generated phosphatidic acid
  publication-title: Journal of Lipid Research
  doi: 10.1194/jlr.M016873
  contributor:
    fullname: Arisz
– volume: 30
  start-page: 1907
  year: 2011
  ident: bib9
  article-title: Crystal structure of the intraflagellar transport complex 25/27
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2011.110
  contributor:
    fullname: Bhogaraju
– volume: 27
  start-page: 1384
  year: 2019
  ident: bib20
  article-title: The Molecular Architecture of Native BBSome Obtained by an Integrated Structural Approach
  publication-title: Structure
  doi: 10.1016/j.str.2019.06.006
  contributor:
    fullname: Chou
– volume: 183
  start-page: 885
  year: 2009
  ident: bib50
  article-title: Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii
  publication-title: Genetics
  doi: 10.1534/genetics.109.101915
  contributor:
    fullname: Iomini
– volume: 32
  start-page: 665
  year: 2015
  ident: bib145
  article-title: Ciliary vesicle formation: a prelude to ciliogenesis
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2015.03.012
  contributor:
    fullname: Yee
– volume: 217
  start-page: 413
  year: 2018
  ident: bib1
  article-title: The small GTPase RSG1 controls a final step in primary cilia initiation
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201604048
  contributor:
    fullname: Agbu
– volume: 10
  start-page: 1146
  year: 2008
  ident: bib142
  article-title: A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1774
  contributor:
    fullname: Yang
– volume-title: Intraflagellar Transport: The Chlamydomonas Sourcebook
  year: 2009
  ident: bib22
  doi: 10.1016/B978-0-12-370873-1.00041-1
  contributor:
    fullname: Cole
– volume: 5
  year: 2015
  ident: bib141
  article-title: BBS4 and BBS5 show functional redundancy in the BBSome to regulate the degradative sorting of ciliary sensory receptors
  publication-title: Scientific Reports
  doi: 10.1038/srep11855
  contributor:
    fullname: Xu
– volume: 24
  start-page: 2180
  year: 2010
  ident: bib84
  article-title: TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia
  publication-title: Genes & Development
  doi: 10.1101/gad.1966210
  contributor:
    fullname: Mukhopadhyay
– volume: 83
  start-page: S12
  year: 2012
  ident: bib118
  article-title: Architecture and function of IFT complex proteins in ciliogenesis
  publication-title: Differentiation; Research in Biological Diversity
  doi: 10.1016/j.diff.2011.11.001
  contributor:
    fullname: Taschner
– volume: 105
  start-page: 351
  year: 1969
  ident: bib136
  article-title: Cilia in cell-cultured fibroblasts. I. On their occurrence and relative frequencies in primary cultures and established cell lines
  publication-title: Journal of Anatomy
  contributor:
    fullname: Wheatley
– volume: 6
  year: 2010
  ident: bib53
  article-title: Localization of a guanylyl cyclase to chemosensory cilia requires the novel ciliary MYND domain protein DAF-25
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1001199
  contributor:
    fullname: Jensen
– volume: 17
  start-page: 4801
  year: 2006
  ident: bib29
  article-title: Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e06-04-0260
  contributor:
    fullname: Efimenko
– volume: 40
  start-page: 403
  year: 2008
  ident: bib123
  article-title: THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia
  publication-title: Nature Genetics
  doi: 10.1038/ng.105
  contributor:
    fullname: Tran
– volume: 43
  start-page: 4263
  year: 2004
  ident: bib43
  article-title: Photolysis of caged phosphatidic acid induces flagellar excision in Chlamydomonas
  publication-title: Biochemistry
  doi: 10.1021/bi0351460
  contributor:
    fullname: Goedhart
– volume: 13
  year: 2017
  ident: bib147
  article-title: Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1006627
  contributor:
    fullname: Zhu
– volume: 109
  start-page: 1619
  year: 2015
  ident: bib59
  article-title: Effect of the N-Terminal Helix and Nucleotide Loading on the Membrane and Effector Binding of Arl2/3
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2015.08.033
  contributor:
    fullname: Kapoor
– volume: 41
  start-page: 784
  year: 2016
  ident: bib93
  article-title: Endocytic Control of Cellular Signaling at the Primary Cilium
  publication-title: Trends in Biochemical Sciences
  doi: 10.1016/j.tibs.2016.06.002
  contributor:
    fullname: Pedersen
– volume: 132
  year: 2019
  ident: bib94
  article-title: A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.220749
  contributor:
    fullname: Picariello
– volume: 282
  start-page: 21746
  year: 2007
  ident: bib146
  article-title: Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M702968200
  contributor:
    fullname: Zeniou-Meyer
– volume: 6
  year: 2017
  ident: bib25
  article-title: 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments
  publication-title: eLife
  doi: 10.7554/eLife.26691
  contributor:
    fullname: Dodonova
– volume: 51
  start-page: 124
  year: 2018
  ident: bib86
  article-title: The molecular machines that traffic signaling receptors into and out of cilia
  publication-title: Current Opinion in Cell Biology
  doi: 10.1016/j.ceb.2018.03.004
  contributor:
    fullname: Nachury
– volume: 7
  start-page: 1256
  year: 2008
  ident: bib128
  article-title: Leishmania adaptor protein-1 subunits are required for normal lysosome traffic, flagellum biogenesis, lipid homeostasis, and adaptation to temperatures encountered in the mammalian host
  publication-title: Eukaryotic Cell
  doi: 10.1128/EC.00090-08
  contributor:
    fullname: Vince
– volume: 129
  start-page: 1201
  year: 2007
  ident: bib85
  article-title: A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2007.03.053
  contributor:
    fullname: Nachury
– volume: 18
  start-page: 1899
  year: 2008
  ident: bib71
  article-title: An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia
  publication-title: Current Biology
  doi: 10.1016/j.cub.2008.11.020
  contributor:
    fullname: Lee
– volume: 10
  start-page: 693
  year: 1999
  ident: bib97
  article-title: Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.10.3.693
  contributor:
    fullname: Porter
SSID ssj0000748819
Score 2.4617794
Snippet Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
SubjectTerms Animals
Cell Biology
Cells
Chlamydomonas reinhardtii - metabolism
Cilia
Cilia - metabolism
ciliary pocket
Coat protein
coatomer
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Fibroblasts
Gene mutations
Homology
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
intraflagellar transport
Lipids
Localization
membrane cargos
Membrane lipids
Membrane proteins
Membrane vesicles
Membranes
Mice
Microscopy
Mutants
Mutation
Protein Binding
Protein Transport
Proteins
Retrograde transport
Satellites
vesicular traffic
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQiK9AQS6qxCl0Yzt2fFxoq4KAQ6Gi4mKNHbuNRBO0ySL67xk72dVGHLhwjSeS_cb2vEnGz4QcBumAKRtysFDlwlU6h6KOFY4q_qURC-7j2eFPn-XZhfhwWV7uXPUVa8JGeeARuCMonLCi0Noq5P7aVbVTXIGqmeXg2Ci2vWA7yVTagxVOzEKPB_IUhswj_7EJ_o3EpEnOQlBS6v97P94JSPNiyZ3oc3qf3JtoI12O3X1A7vj2Ifm-pN-Oz3mZb26yHajrYKBJe6FpaSoX97_psBEw76lrfjSwuqU3_gbT5NZTB6urjv7yfSqPo0M3mjwiF6cnX9-d5dNdCbkTyPDyWqkSLPKLYBVwpRFmTER4JYRLolxOilqDUtZxjhEfkzJMLIStZKgtUpbAH5O9tmv9U0IBFEhc-o4FKZwt9cIL5BlB6hIYU3VGDjfwmZ-jJIbBVCKibBLKJqGckbcR2q1J1LFOD9C7ZvKu-Zd3M_IqOsZEpYo2lsJcwbrvzfsv52YpK41sDjuakdeTUegQUQfTyQIcThS3mlnuzyxxKbl588b_ZlrKvWESSQ6SvrLKyMG2Ob4Zy9Na363RpkwHnDHDz8iTcbpsx81FFBBaYIuaTaQZMPOWtrlOQt9VUicsnv0PJJ-TuyyW48Qv4mKf7A2rtX-BfGqwL9PS-QOtUR1U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLigIl6BggyqxCl0Ezu2c0LLoyoIOBQqVlyssWMvkWjSbrII_j1jJ1kaIXGNJ5Ezfnwz9sw3hBx6YSGXxqdgQKXcqjKFrAoRjjLc0vAFcyF3-OMncXLG36-K1Xjg1o1hldOeGDfqqrXhjPwoF4g1iL2FenlxmYaqUeF2dSyhcZ3cyHKEcpzPciV3ZywIjwoRb0jLkwicR-5D7d0Lga6TmAFR5Ov_d1e-AkvzkMkrGHS8T26NxiNdDqN9m1xzzR3ybUm_vjllRTrVs-2pbaGnkYGhbmgMGne_aD_RmHfU1j9q2Pym5-4cneXGUQubdUt_ui4GydG-HUTukrPjt19en6RjxYTUcrTz0krKAgxaGd5IYLJEZaM7whTnNlJzWcGrEqQ0ljHEfXTN0L3gRglfGTRcPLtH9pq2cQ8IBZAgcAOwuRfcmqJcOI7WhhdlAXkuq4QcTurTFwMxhkaHImhZRy3rqOWEvAqq3YkENuv4oN2s9bg4NGSWG56VpZHo35VWVVYyCbLKDQOb40eehYHRga-iCQExa9h2nX73-VQvhSrRpsOOJuT5KORb1KiFMb8AfydQXM0kD2aSuKDsvHkafz0u6E7_nX4JebprDm-GILXGtVuUKWKaM_r5Cbk_TJfdfzMeaIQW2CJnE2mmmHlLU3-PdN8qchRmD__frUfkZh7CbcKJNz8ge_1m6x6jvdSbJ3FR_AGH6RTE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKuXBBIL4CBRlUiVOWXduxkxNaPqqCKIfCihUXa-w420htAkkWtf-esZOsGkBc40mUjMee93bHbwg5LKQFpkwRg4E0FjbNYljkvsJR-X9pxJw7f3b45LM8XomP62S9R8ZmnIMD239SO99PatWczy5_Xr3GBY_4daYwG75yn8rCzSTyIXmD3GSYEn1t18mA88OWrDBOQ5MPNk-Clum6P6v35_2T7BRE_P_eqq_lqmkd5bXEdHSH3B4QJV32IXCX7LnqHvm-pN_enfIkHpvcdtTW0NEgy1BWNFSSu0vajdrmLbXleQnNFb1wF8igK0ctNJua_nJtqJyjXd2b3Cero_df3x7HQxuF2AoEf3GuVAIGoUdhFHCV4QwgR-GpEDbodVkp8gyUMpZzBAPI15BzCJPKIjeIZgr-gOxXdeUeEQqgQOKuYFkhhTVJNncCIUghswQYU3lEDkf36R-9WoZGluG9rIOXdfByRN541-5MvMR1uFA3Gz2sGA0LK4xYZJlRSPoym-ZWcQUqZ4aDZfiQF35itBexqHyVzAa2bas_fDnVS5lmCPTwRSPycjAqavSoheHQAX6O172aWB5MLHGV2enwOP96DFLNJOIfxINJGpHnu2F_p69cq1y9RZsknH1G8h-Rh3247L6bC68tNMcRNQmkiWOmI1V5FjTA0yBcuHj8_7d-Qm4xX4PjfwYXB2S_a7buKYKozjwLC-Q3I7kZCQ
  priority: 102
  providerName: Scholars Portal
Title A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
URI https://www.ncbi.nlm.nih.gov/pubmed/34734804
https://www.proquest.com/docview/2624115958
https://search.proquest.com/docview/2593595274
https://pubmed.ncbi.nlm.nih.gov/PMC8754431
https://doaj.org/article/a1c4b4199b71449c8dc737a7d2b3ac26
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2ceGCmMaPwKgMmsQp7RI7dnzsxqaB6DQVJioulu04XaQ1mZoUsf-eZyepGu3GJYf4JYqfn_3e57z3GaGTnBkVc52HSqs0pCYVoYoyl-HI3V8aekqsqx2eXbOrW_ptkSz2UNLXwvikfaOLcXm_GpfFnc-tfFiZSZ8nNrmZnaeetS2a7KN9cL87EN0vvxxsMhJtLR4Hbzmx34vcjhngJXdgEaGO0KU7mK13RJ6v_-mqvOOWhimTOz7o8iV60QWPeNp-5CHas-UR-j3Fv77MSRL259k22FSqwZ6BoSixTxq3f3HT05jX2BT3hVo_4pVdAVguLTZqvazwH1v7zuOmakVeodvLi5_nV2F3YkJoKMR5YcZ5ojREGbnminABygY4QlJKjafmMoxmQnGuDSHg9wGaAbygOmV5piFwyclrdFBWpX2LsFJcMVgATJwzanQiTi2FaCNnIlFxzLMAnfTqkw8tMYYEQOEULr3CpVd4gM6carcijs3a36jWS9mNqVSRoZpGQmgO-E6YNDOccMWzWBNlYnjJJzcw0vFVlC4hZqk2dS2__pjLKUsFxHTwoQH63AnlFWjUqK6-ALrjKK4GkscDSZhQZtjcj7_sJnQtYwahDoR-SRqgj9tm96RLUitttQGZxJc5A84P0JvWXLb97q0uQHxgSAPFDFvA-j3dd2ft7_77yffoeewycdxmOD1GB816Yz9AKNXoEUygBR-hZ2cX1zfzkd-QgOuMpiM_qf4BiIAiEQ
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793,73745,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELage4AXBOJX2ACDJvEU1saOHT-hDjZ10FWobGLixbIdp0RiydakCP57zo5TFiHxmrtEztnn784-f0Zov2BGJVwXsdIqi6nJRKwmuatw5G6Xho6JdWeHTxdsdk4_XqQXYcGtCWWV_ZzoJ-q8Nm6N_CBhgDWAvWn27uo6drdGud3VcIXGbbTjmNPTEdo5PFp8Xm5XWQAgM8C87mAeB-g8sPOysG8ZJE9sAEWesf_fefkGMA2LJm-g0PF9dC-Ej3ja9fcDdMtWD9G3Kf76YUnSuL_RtsWmVi32HAxlhX3ZuP2F257IvMGm_FGq9W98aS8hXa4sNmq9qvFP2_gyOdzWncojdH58dPZ-Foc7E2JDIdKLc85TpSHOKDRXhAswNyQkJKPUeHIuw2guFOfaEALID8kZJBhUZ6zINYQuBXmMRlVd2acIK8UVgynAJAWjRqdibCnEGwUTqUoSnkdovzefvOqoMSSkFM7K0ltZeitH6NCZdqvi-Kz9g3q9ksE9pJoYqulECM0hwxMmyw0nXPE80USZBD7y2nWMdIwVlSuJWalN08iTL0s5ZZmAqA4aGqE3QamowaJGhRMG8DuO5GqguTfQBJcyQ3Hf_zK4dCP_DsAIvdqK3ZuuTK2y9QZ0Un_QGTL9CD3phsv2vwl1REJjkPDBQBoYZiipyu-e8DvzLIWTZ_9v1kt0Z3Z2Opfzk8WnXXQ3ccU3fq1oD43a9cY-h-ip1S-Ci_wBYzQZFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagkxAvCMSvsAEGTeIptI0dO3lCHVu1waimwsTEi2U7donEkq1JEfz3nB2nLELiNb5Eydnn7875_Bmhfcu0TLiysVQyi6nO8lhOC8dw5O4vDZ0Q4_YOf1qw43P64SK9CPynJtAq-znRT9RFrd0a-ThhgDWAvWk2toEWcXY4f3d1HbsTpNyf1nCcxm20A6g4SUZo5-BocbbcrrgAWGaAf90mPQ4wOjanpTVvGRRSbABLXr3_3zn6BkgNCZQ3EGl-H90LqSSedX3_AN0y1UP0bYa_Hi5JGven27ZY17LFXo-hrLCnkJtfuO1FzRusyx-lXP_Gl-YSSufKYC3Xqxr_NI2nzOG27kweofP50Zf3x3E4PyHWFLK-uOA8lQpyDqu4JDwH10NxQjJKtRfq0owWueRcaUIgC4BCDYoNqjJmCwVpjCWP0aiqK_MUYSm5ZDAd6MQyqlWaTwwFL1uWpzJJeBGh_d594qqTyRBQXjgvC-9l4b0coQPn2q2J07b2F-r1SoRQEXKqqaLTPFccqr1cZ4XmhEteJIpIncBDXruOEU69onLjYCU3TSNOPi_FjGU5ZHjwohF6E4xsDR7VMuw2gM9xglcDy72BJYSXHjb3_S9CeDfi72CM0Ktts7vTUdYqU2_AJvWbnqHqj9CTbrhsv5tQJyo0gRY-GEgDxwxbqvK7F__OvGLh9Nn_X-slugPRIU5PFh930d3E8XDcUjjdQ6N2vTHPIZFq1YsQIX8AhN0dRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+WDR35-dependent+coat+protein+complex+transports+ciliary+membrane+cargo+vesicles+to+cilia&rft.jtitle=eLife&rft.au=Quidwai%2C+Tooba&rft.au=Wang%2C+Jiaolong&rft.au=Hall%2C+Emma+A&rft.au=Petriman%2C+Narcis+A&rft.date=2021-11-04&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=10&rft_id=info:doi/10.7554%2FeLife.69786&rft.externalDocID=A689264307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon