A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence...
Saved in:
Published in | eLife Vol. 10 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
04.11.2021
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In
mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with
mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. |
---|---|
AbstractList | Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to [alpha] and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. eLife digest Most human cells have at least one small hair-like structure on their surface called a cilium. These structures can act as antennae and allow the cell to sense signals from the rest of the body. To do this, they contain proteins that differ from the rest of the cell. The content of cilia depends on regulated delivery of these proteins in and out of cilia by a process called the intraflagellar transport or IFT, which involves a large complex made of several proteins. This complex shuttles the cargo proteins back and forth between the base and the tip of the cilia. However, ciliary proteins are not produced in the cilia; instead, they are made in a different part of the cell and then they are transported to the ciliary base. At the point where they enter the cilia, they were thought to bind to the assembling IFT 'trains' and be transported across the ciliary gate to the positions where they are needed in cilia. One of the components of the IFT machinery is a protein called WDR35, also known as IFT121. If the gene that codes for this protein is faulty or missing, it results in severe disorders in both humans and mice including a range of potentially lethal skeletal dysplasias. Interestingly, without WDR35, cells cannot build functional cilia. The absence of this protein not only disrupts IFT, stopping certain ciliary proteins and their associated membranes from entering cilia; it also causes a 'traffic jam' with a pile-up of transport intermediates from the place in cell where they are made to the cilia. It is unclear why a mutation in one of the components of the IFT would have this effect, raising the question of whether WDR35, or IFTs a whole, has another role in bringing the cargo proteins into the cilia. To understand this phenomenon, Quidwai et al. analysed the structure of WDR35 and other IFT proteins and found that they are very similar to a protein complex called COPI, which is involved in transporting membrane proteins around the cell. When certain proteins are newly made, they are stored in small lipid bubbles -- called vesicles -- that then selectively move to where the proteins are needed. COPI coats these vesicles, helping them get to where they need to go in a process called vesicular transport. Quidwai et al. found that WDR35 and other IFT proteins are able to bind to specific types of lipid molecules, suggesting that they might be assisting in a form of vesicle transport too. Indeed, when mouse cells grown in the lab were genetically engineered so they could not produce WDR35, coatless vesicles accumulated around the base of the cilia. Adding back WDR35 to these mutant cells rescued these defects in vesicle transport to cilia as well as allowed functional cilia to be formed. These results provide evidence that WDR35, likely with other IFT proteins, acts as a COPI-like complex to deliver proteins to growing cilia. Further research will investigate the composition of these vesicles that transport proteins to cilia, and help pinpoint where they originate. Quidwai et al.'s findings not only shed light on how different genetic mutations found in patients with cilia dysfunction affect different steps of transporting proteins to and within cilia. They also increase our understanding of the cellular roadmap by which cells shuttle building blocks around in order to assemble these important 'antennae'. Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß′ COPI coatomer subunits and demonstrate an accumulation of ‘coat-less’ vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. Most human cells have at least one small hair-like structure on their surface called a cilium. These structures can act as antennae and allow the cell to sense signals from the rest of the body. To do this, they contain proteins that differ from the rest of the cell. The content of cilia depends on regulated delivery of these proteins in and out of cilia by a process called the intraflagellar transport or IFT, which involves a large complex made of several proteins. This complex shuttles the cargo proteins back and forth between the base and the tip of the cilia. However, ciliary proteins are not produced in the cilia; instead, they are made in a different part of the cell and then they are transported to the ciliary base. At the point where they enter the cilia, they were thought to bind to the assembling IFT ‘trains’ and be transported across the ciliary gate to the positions where they are needed in cilia. One of the components of the IFT machinery is a protein called WDR35, also known as IFT121. If the gene that codes for this protein is faulty or missing, it results in severe disorders in both humans and mice including a range of potentially lethal skeletal dysplasias. Interestingly, without WDR35, cells cannot build functional cilia. The absence of this protein not only disrupts IFT, stopping certain ciliary proteins and their associated membranes from entering cilia; it also causes a ‘traffic jam’ with a pile-up of transport intermediates from the place in cell where they are made to the cilia. It is unclear why a mutation in one of the components of the IFT would have this effect, raising the question of whether WDR35, or IFTs a whole, has another role in bringing the cargo proteins into the cilia. To understand this phenomenon, Quidwai et al. analysed the structure of WDR35 and other IFT proteins and found that they are very similar to a protein complex called COPI, which is involved in transporting membrane proteins around the cell. When certain proteins are newly made, they are stored in small lipid bubbles – called vesicles – that then selectively move to where the proteins are needed. COPI coats these vesicles, helping them get to where they need to go in a process called vesicular transport. Quidwai et al. found that WDR35 and other IFT proteins are able to bind to specific types of lipid molecules, suggesting that they might be assisting in a form of vesicle transport too. Indeed, when mouse cells grown in the lab were genetically engineered so they could not produce WDR35, coatless vesicles accumulated around the base of the cilia. Adding back WDR35 to these mutant cells rescued these defects in vesicle transport to cilia as well as allowed functional cilia to be formed. These results provide evidence that WDR35, likely with other IFT proteins, acts as a COPI-like complex to deliver proteins to growing cilia. Further research will investigate the composition of these vesicles that transport proteins to cilia, and help pinpoint where they originate. Quidwai et al.’s findings not only shed light on how different genetic mutations found in patients with cilia dysfunction affect different steps of transporting proteins to and within cilia. They also increase our understanding of the cellular roadmap by which cells shuttle building blocks around in order to assemble these important ‘antennae’. Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to [alpha] and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. |
Audience | Academic |
Author | Wells, Jonathan N Wang, Jiaolong Marsh, Joseph A Mill, Pleasantine Lorentzen, Esben Hall, Emma A Quidwai, Tooba Keighren, Margaret A Petriman, Narcis A Kiesel, Petra Murphy, Laura C Leng, Weihua Pigino, Gaia |
Author_xml | – sequence: 1 givenname: Tooba orcidid: 0000-0001-5248-9010 surname: Quidwai fullname: Quidwai, Tooba organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom – sequence: 2 givenname: Jiaolong surname: Wang fullname: Wang, Jiaolong organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark – sequence: 3 givenname: Emma A surname: Hall fullname: Hall, Emma A organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom – sequence: 4 givenname: Narcis A orcidid: 0000-0002-3189-7530 surname: Petriman fullname: Petriman, Narcis A organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark – sequence: 5 givenname: Weihua surname: Leng fullname: Leng, Weihua organization: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany – sequence: 6 givenname: Petra surname: Kiesel fullname: Kiesel, Petra organization: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany – sequence: 7 givenname: Jonathan N orcidid: 0000-0003-3700-020X surname: Wells fullname: Wells, Jonathan N organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom – sequence: 8 givenname: Laura C surname: Murphy fullname: Murphy, Laura C organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom – sequence: 9 givenname: Margaret A surname: Keighren fullname: Keighren, Margaret A organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom – sequence: 10 givenname: Joseph A surname: Marsh fullname: Marsh, Joseph A organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom – sequence: 11 givenname: Esben orcidid: 0000-0001-6493-7220 surname: Lorentzen fullname: Lorentzen, Esben organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark – sequence: 12 givenname: Gaia surname: Pigino fullname: Pigino, Gaia organization: Human Technopole, Milan, Italy – sequence: 13 givenname: Pleasantine orcidid: 0000-0001-5218-134X surname: Mill fullname: Mill, Pleasantine organization: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34734804$$D View this record in MEDLINE/PubMed |
BookMark | eNptktuL1DAYxYusuBf3yXcp-KJIx6T5cntZGNbbwICwKoovIU3TmqFtatJZdv97MzPruhWThyRffjlJDuc0Oxr8YLPsGUYLTim8sWvX2AWTXLBH2UmJKCqQgO9HD-bH2XmMG5QaByGwfJIdE-AEBIKT7Mcy__b2itCitqMdajtMufF6ysfgJ-uGtOjHzt7kU9BDHH2YYm5c53S4zXvbV6lqc6ND6_NrG53pbMwnf0CeZo8b3UV7fjeeZV_fv_ty-bFYf_qwulyuCwMSs6LmnOoKMWgqrgmXogROCREAhmKEhWFQS815ZQjBGAEInJBKsKauhCQNOctWB93a640ag-vT65TXTu0LPrRKh2n3NqWxgQqwlBXHANKI2nDCNa_LimhTsqR1cdAat1Vva5P8CLqbic53BvdTtf5aCU4BCE4CL-8Egv-1tXFSvYvGdl0yym-jKqkkVNKSQ0Jf_INu_DYMySpVshIwTpz4S7U6fcANjU_3mp2oWjIhSwYE8UQt_kOlXtvemRSZxqX67MCr2YHETPZmavU2RrX6fDVnXx9YE3yMwTb3fmCkdilU-xSqfQoT_fyhhffsn8yR38FZ1lI |
CitedBy_id | crossref_primary_10_1016_j_celrep_2023_113337 crossref_primary_10_1038_s41594_023_00986_w crossref_primary_10_1007_s12038_023_00326_6 crossref_primary_10_1016_j_semcdb_2022_03_021 crossref_primary_10_1016_j_cell_2022_11_033 crossref_primary_10_3389_fmolb_2022_936070 crossref_primary_10_1016_j_cell_2022_11_010 crossref_primary_10_7554_eLife_79299 crossref_primary_10_1016_j_cell_2022_12_005 crossref_primary_10_1146_annurev_cellbio_120219_034238 crossref_primary_10_1091_mbc_E21_10_0509_T crossref_primary_10_1038_s41576_023_00587_9 crossref_primary_10_1016_j_biopsych_2023_11_004 crossref_primary_10_1126_sciadv_abn0832 crossref_primary_10_15252_embj_2022111807 crossref_primary_10_1126_scitranslmed_abq5930 crossref_primary_10_1242_jcs_260303 crossref_primary_10_1042_BST20231403 crossref_primary_10_1242_jcs_259444 crossref_primary_10_1038_s41422_023_00778_3 crossref_primary_10_1242_jcs_260408 |
Cites_doi | 10.1083/jcb.200907126 10.1016/j.devcel.2014.09.011 10.1073/pnas.1220927110 10.1038/s41556-018-0213-1 10.1101/gad.1025302 10.1083/jcb.202003020 10.1016/j.devcel.2012.04.009 10.1083/jcb.201110049 10.1083/jcb.141.4.979 10.1016/j.cub.2018.08.017 10.1080/21541248.2017.1353847 10.1073/pnas.0505328102 10.1073/pnas.95.5.2279 10.7554/eLife.53322 10.1242/jcs.136903 10.1242/dev.02555 10.1091/mbc.E11-05-0405 10.1074/jbc.M111.287102 10.1016/j.ajhg.2008.06.023 10.1093/bioinformatics/btt276 10.1242/jcs.058883 10.1074/jbc.M117.792937 10.1016/j.cell.2016.11.036 10.1093/hmg/ddv152 10.1371/journal.pgen.1004170 10.1073/pnas.1221011110 10.1007/s00018-010-0603-4 10.1186/s13630-017-0051-y 10.1091/mbc.E16-09-0648 10.1083/jcb.200912001 10.1083/jcb.141.3.611 10.1083/jcb.201007050 10.1016/j.sbi.2016.06.009 10.1242/jcs.073908 10.1074/jbc.M116.713883 10.1016/s0092-8674(00)81650-5 10.1016/j.ajhg.2018.08.015 10.1016/s0092-8674(03)01079-1 10.1016/B978-0-12-397945-2.00010-X 10.1083/jcb.201207139 10.1016/s0092-8674(00)81173-3 10.1083/jcb.200909183 10.1016/j.bbrc.2008.06.001 10.1038/ncomms6482 10.1016/j.cub.2014.03.047 10.1083/jcb.200908133 10.1016/j.cell.2009.04.064 10.1038/s41594-020-0507-4 10.1073/pnas.90.12.5519 10.1016/j.cell.2010.05.030 10.1016/j.semcdb.2018.03.010 10.1038/ncomms6813 10.7554/eLife.06996 10.1083/jcb.147.3.519 10.3390/biology3020320 10.1083/jcb.200707181 10.1091/mbc.e06-09-0805 10.1016/j.neuron.2011.02.032 10.1074/jbc.RA120.015992 10.1091/mbc.e06-02-0133 10.1038/nmeth.1818 10.1074/jbc.M117.780155 10.1016/j.jsb.2005.07.007 10.1038/nrm.2017.60 10.1007/978-1-4939-8736-8_13 10.7554/eLife.11859 10.15252/embj.201593164 10.1016/j.celrep.2013.05.020 10.1371/journal.pgen.1000315 10.1016/s0092-8674(04)00412-x 10.1016/B978-0-12-397945-2.00014-7 10.1083/jcb.200911095 10.1534/genetics.114.161349 10.1016/j.preteyeres.2013.08.004 10.1371/journal.pone.0005384 10.1038/nrm952 10.1126/science.aaf4594 10.1371/journal.pone.0030729 10.1242/jcs.037721 10.1016/j.devcel.2014.09.004 10.1016/j.ajhg.2011.03.015 10.1093/nar/gky427 10.1242/jcs.109.7.1891 10.1016/j.cub.2019.07.090 10.1038/ng1414 10.1242/jcs.114454 10.1038/ncb1977 10.1016/j.celrep.2016.10.018 10.1093/hmg/ddx421 10.1083/jcb.201202126 10.1083/jcb.15.2.363 10.1091/mbc.12.8.2341 10.1681/ASN.2011080829 10.1083/jcb.201102042 10.1091/mbc.e06-06-0571 10.1038/emboj.2008.267 10.7554/eLife.55954 10.1083/jcb.143.6.1591 10.1038/ng.3558 10.1038/nmeth.2019 10.3389/fcell.2019.00291 10.1371/journal.pgen.1004577 10.1083/jcb.200905103 10.1242/jcs.205492 10.7554/eLife.53910 10.7554/eLife.05242 10.1091/mbc.E16-11-0813 10.1038/s41467-018-07037-9 10.1083/jcb.201709041 10.1002/bies.20369 10.1242/jcs.015826 10.1006/jsbi.1996.0013 10.1016/j.cub.2016.11.050 10.1073/pnas.1011410108 10.1242/jcs.059519 10.1073/pnas.1519458113 10.1016/j.cell.2010.05.015 10.1101/gad.207043.112 10.1083/jcb.116.3.737 10.7554/eLife.33067 10.1194/jlr.M016873 10.1038/emboj.2011.110 10.1016/j.str.2019.06.006 10.1534/genetics.109.101915 10.1016/j.devcel.2015.03.012 10.1083/jcb.201604048 10.1038/ncb1774 10.1016/B978-0-12-370873-1.00041-1 10.1038/srep11855 10.1101/gad.1966210 10.1016/j.diff.2011.11.001 10.1371/journal.pgen.1001199 10.1091/mbc.e06-04-0260 10.1038/ng.105 10.1021/bi0351460 10.1371/journal.pgen.1006627 10.1016/j.bpj.2015.08.033 10.1016/j.tibs.2016.06.002 10.1242/jcs.220749 10.1074/jbc.M702968200 10.7554/eLife.26691 10.1016/j.ceb.2018.03.004 10.1128/EC.00090-08 10.1016/j.cell.2007.03.053 10.1016/j.cub.2008.11.020 10.1091/mbc.10.3.693 |
ContentType | Journal Article |
Copyright | 2021, Quidwai et al. COPYRIGHT 2021 eLife Science Publications, Ltd. 2021, Quidwai et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021, Quidwai et al 2021 Quidwai et al |
Copyright_xml | – notice: 2021, Quidwai et al. – notice: COPYRIGHT 2021 eLife Science Publications, Ltd. – notice: 2021, Quidwai et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021, Quidwai et al 2021 Quidwai et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.69786 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Science in Context ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Database Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_a1c4b4199b71449c8dc737a7d2b3ac26 A689264307 10_7554_eLife_69786 34734804 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UU_00007/14 – fundername: Medical Research Council grantid: MC_UU_12018/26 – fundername: ; grantid: Grant No. CF19-0253 – fundername: ; – fundername: ; grantid: Short Term Fellowship number 7961 – fundername: ; grantid: H2020 Grant No. 866355 – fundername: ; grantid: H2020 Grant No. 888322 – fundername: ; grantid: H2020 Grant No. 819826 – fundername: ; grantid: Research Prize Fellow – fundername: ; grantid: Grant No. NNF15OC0014164 – fundername: ; grantid: Core unit funding No. MC_UU_12018/26 |
GroupedDBID | 3V. 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CGR CUY CVF DIK DWQXO ECM EIF EMOBN FRP FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NPM NQS OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RHF RHI RNS RPM UKHRP AAYXX CITATION AFPKN 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c4916-d775ab064fb7a3798247533844c51018c64d9a77bc331104481824b86fdb893f3 |
IEDL.DBID | RPM |
ISSN | 2050-084X |
IngestDate | Tue Oct 22 15:05:08 EDT 2024 Tue Sep 17 21:28:44 EDT 2024 Sat Oct 26 05:48:06 EDT 2024 Mon Dec 16 02:13:08 EST 2024 Tue Nov 19 20:49:20 EST 2024 Tue Nov 12 22:40:36 EST 2024 Thu Aug 01 20:11:18 EDT 2024 Thu Nov 21 21:25:16 EST 2024 Sat Nov 02 12:16:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | membrane cargos chlamydomonas reinhardtii intraflagellar transport CLEM coatomer vesicular traffic mouse cell biology correlative light and electron microscopy IFT COPI cilia transmission electron microscopy TEM ciliary pocket |
Language | English |
License | 2021, Quidwai et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4916-d775ab064fb7a3798247533844c51018c64d9a77bc331104481824b86fdb893f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 UMass Chan Medical School, Worcester, United States. |
ORCID | 0000-0001-5218-134X 0000-0003-3700-020X 0000-0001-5248-9010 0000-0002-3189-7530 0000-0001-6493-7220 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754431/ |
PMID | 34734804 |
PQID | 2624115958 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a1c4b4199b71449c8dc737a7d2b3ac26 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8754431 proquest_miscellaneous_2593595274 proquest_journals_2624115958 gale_infotracmisc_A689264307 gale_infotracacademiconefile_A689264307 gale_incontextgauss_ISR_A689264307 crossref_primary_10_7554_eLife_69786 pubmed_primary_34734804 |
PublicationCentury | 2000 |
PublicationDate | 20211104 |
PublicationDateYYYYMMDD | 2021-11-04 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211104 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2021 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – sequence: 0 name: eLife Sciences Publications Ltd – name: eLife Science Publications, Ltd – name: eLife Sciences Publications, Ltd – name: eLife Sciences Publications Ltd |
References | Mastronarde (bib76) 2005; 152 Keady (bib61) 2012; 22 Zeniou-Meyer (bib146) 2007; 282 Liem (bib74) 2012; 197 Kremer (bib67) 1996; 116 Taschner (bib119) 2016; 35 Toriyama (bib122) 2016; 48 Jin (bib54) 2010; 141 Turriziani (bib125) 2014; 3 Dwyer (bib28) 1998; 93 Fu (bib39) 2016; 17 Mourão (bib83) 2016; 41 Remmert (bib102) 2011; 9 Funabashi (bib40) 2017; 28 Lee (bib71) 2008; 18 Xu (bib141) 2015; 5 Yang (bib143) 2020; 9 Boehlke (bib12) 2010; 123 Zhukovsky (bib148) 2019; 7 Eguether (bib30) 2014; 31 Taschner (bib118) 2012; 83 Ye (bib144) 2018; 217 Klink (bib65) 2020; 9 Scheidel (bib107) 2018; 28 Cole (bib22) 2009 Jordan (bib57) 2018; 20 Jonassen (bib55) 2012; 23 Cevik (bib18) 2010; 188 Li (bib73) 2010; 189 Efimenko (bib29) 2006; 17 Behal (bib7) 2012; 287 Gerondopoulos (bib42) 2019; 29 Katoh (bib60) 2016; 291 Wang (bib131) 2017; 130 Arisz (bib3) 2011; 52 Fölsch (bib38) 1999; 99 Noda (bib88) 2016; 113 Pazour (bib92) 1998; 141 Gotthardt (bib44) 2015; 4 Mill (bib80) 2011; 88 Blacque (bib10) 2006; 17 Rogowski (bib103) 2013; 524 Jékely (bib52) 2006; 28 Joo (bib56) 2013; 110 Shinde (bib111) 2020; 219 Yang (bib142) 2008; 10 Kozminski (bib66) 1993; 90 Signor (bib112) 1999; 147 Diggle (bib24) 2014; 10 Porter (bib97) 1999; 10 Reiter (bib101) 2017; 18 Hirano (bib46) 2017; 28 Wang (bib130) 2014; 38 Jaiswal (bib51) 2009; 137 Lechtreck (bib69) 2009; 187 Follit (bib35) 2006; 17 Dodonova (bib25) 2017; 6 Farmer (bib32) 2021; 296 Tanos (bib117) 2013; 27 Moritz (bib82) 2001; 12 Agbu (bib1) 2018; 217 Cao (bib16) 2015; 4 Sorokin (bib114) 1962; 15 Vince (bib128) 2008; 7 Tran (bib123) 2008; 40 Wood (bib140) 2014; 24 Taschner (bib121) 2018; 7 Alkanderi (bib2) 2018; 103 Jensen (bib53) 2010; 6 Wells (bib135) 2019; 1851 Avidor-Reiss (bib4) 2004; 117 Takahara (bib116) 2018; 27 Sato (bib106) 2014; 127 Cantagrel (bib15) 2008; 83 Qin (bib98) 2011; 108 Graser (bib45) 2007; 179 Caparrós-Martín (bib17) 2015; 24 Waterhouse (bib133) 2018; 46 Piperno (bib96) 1998; 143 Brear (bib14) 2014; 197 Roy (bib105) 2017; 292 Kennedy (bib62) 2011; 69 Chen (bib19) 2002; 16 Sedmak (bib110) 2010; 189 Baron Gaillard (bib6) 2011; 22 Wells (bib134) 2017; 27 Iomini (bib50) 2009; 183 Kapoor (bib59) 2015; 109 Follit (bib36) 2008; 4 Pigino (bib95) 2009; 187 Nager (bib87) 2017; 168 Witzgall (bib138) 2018; 83 Finetti (bib34) 2009; 11 Schmidt (bib109) 2012; 199 Huangfu (bib49) 2005; 102 Mukhopadhyay (bib84) 2010; 24 Picariello (bib94) 2019; 132 Duran (bib27) 2017; 6 Bae (bib5) 2006; 133 Taschner (bib120) 2017; 292 Lee (bib72) 2010; 142 Kiesel (bib63) 2020; 27 Quidwai (bib100) 2021 Lechtreck (bib70) 2013; 201 Milenkovic (bib79) 2009; 187 Criswell (bib23) 1996; 109 (Pt 7) Domire (bib26) 2011; 68 Blacque (bib11) 2018; 9 McMahon (bib78) 2015; 128 Singh (bib113) 2020; 9 Molla-Herman (bib81) 2010; 123 Hoffmeister (bib47) 2011; 192 Zhu (bib147) 2017; 13 Field (bib33) 2011; 193 Wheatley (bib136) 1969; 105 Nachury (bib85) 2007; 129 Chou (bib20) 2019; 27 Follit (bib37) 2014; 10 Futter (bib41) 1998; 141 van Dam (bib127) 2013; 110 Schindelin (bib108) 2012; 9 Yee (bib145) 2015; 32 Bonifacino (bib13) 2004; 116 Mazelova (bib77) 2009; 28 Tyler (bib126) 2009; 122 Fan (bib31) 2004; 36 Kim (bib64) 2014; 5 Behal (bib8) 2013; 524 Kaplan (bib58) 2010; 123 Goedhart (bib43) 2004; 43 Ollion (bib89) 2013; 29 Leaf (bib68) 2015; 4 Bhogaraju (bib9) 2011; 30 Nachury (bib86) 2018; 51 Williams (bib137) 2014; 5 Clement (bib21) 2013; 3 Rosenbaum (bib104) 2002; 3 Pedersen (bib93) 2016; 41 Wang (bib129) 2009; 4 Wood (bib139) 2012; 7 Wang (bib132) 2018; 9 Orci (bib90) 1998; 95 Quarmby (bib99) 1992; 116 Ou (bib91) 2007; 18 Stepanek (bib115) 2016; 352 Tsao (bib124) 2008; 121 Hori (bib48) 2008; 373 Liew (bib75) 2014; 31 |
References_xml | – volume: 187 start-page: 365 year: 2009 ident: bib79 article-title: Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200907126 contributor: fullname: Milenkovic – volume: 31 start-page: 279 year: 2014 ident: bib30 article-title: IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment publication-title: Developmental Cell doi: 10.1016/j.devcel.2014.09.011 contributor: fullname: Eguether – volume: 110 start-page: 5987 year: 2013 ident: bib56 article-title: CCDC41 is required for ciliary vesicle docking to the mother centriole publication-title: PNAS doi: 10.1073/pnas.1220927110 contributor: fullname: Joo – volume: 20 start-page: 1250 year: 2018 ident: bib57 article-title: The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia publication-title: Nature Cell Biology doi: 10.1038/s41556-018-0213-1 contributor: fullname: Jordan – volume: 16 start-page: 2743 year: 2002 ident: bib19 article-title: Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened publication-title: Genes & Development doi: 10.1101/gad.1025302 contributor: fullname: Chen – volume: 219 year: 2020 ident: bib111 article-title: Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia publication-title: The Journal of Cell Biology doi: 10.1083/jcb.202003020 contributor: fullname: Shinde – volume: 22 start-page: 940 year: 2012 ident: bib61 article-title: IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport publication-title: Developmental Cell doi: 10.1016/j.devcel.2012.04.009 contributor: fullname: Keady – volume: 197 start-page: 789 year: 2012 ident: bib74 article-title: The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201110049 contributor: fullname: Liem – volume: 141 start-page: 979 year: 1998 ident: bib92 article-title: A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT) publication-title: The Journal of Cell Biology doi: 10.1083/jcb.141.4.979 contributor: fullname: Pazour – volume: 28 start-page: 3279 year: 2018 ident: bib107 article-title: Intraflagellar Transport Complex A Genes Differentially Regulate Cilium Formation and Transition Zone Gating publication-title: Current Biology doi: 10.1016/j.cub.2018.08.017 contributor: fullname: Scheidel – volume: 9 start-page: 76 year: 2018 ident: bib11 article-title: Rab GTPases in cilium formation and function publication-title: Small GTPases doi: 10.1080/21541248.2017.1353847 contributor: fullname: Blacque – volume: 102 start-page: 11325 year: 2005 ident: bib49 article-title: Cilia and Hedgehog responsiveness in the mouse publication-title: PNAS doi: 10.1073/pnas.0505328102 contributor: fullname: Huangfu – volume: 95 start-page: 2279 year: 1998 ident: bib90 article-title: Vesicles on strings: morphological evidence for processive transport within the Golgi stack publication-title: PNAS doi: 10.1073/pnas.95.5.2279 contributor: fullname: Orci – volume: 9 year: 2020 ident: bib113 article-title: Structure and activation mechanism of the BBSome membrane protein trafficking complex publication-title: eLife doi: 10.7554/eLife.53322 contributor: fullname: Singh – volume: 127 start-page: 422 year: 2014 ident: bib106 article-title: Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis publication-title: Journal of Cell Science doi: 10.1242/jcs.136903 contributor: fullname: Sato – volume: 133 start-page: 3859 year: 2006 ident: bib5 article-title: General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia publication-title: Development doi: 10.1242/dev.02555 contributor: fullname: Bae – volume: 22 start-page: 4549 year: 2011 ident: bib6 article-title: Hook2 is involved in the morphogenesis of the primary cilium publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E11-05-0405 contributor: fullname: Baron Gaillard – volume: 287 start-page: 11689 year: 2012 ident: bib7 article-title: Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M111.287102 contributor: fullname: Behal – volume: 83 start-page: 170 year: 2008 ident: bib15 article-title: Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome publication-title: American Journal of Human Genetics doi: 10.1016/j.ajhg.2008.06.023 contributor: fullname: Cantagrel – volume: 29 start-page: 1840 year: 2013 ident: bib89 article-title: TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt276 contributor: fullname: Ollion – volume: 123 start-page: 1460 year: 2010 ident: bib12 article-title: Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels publication-title: Journal of Cell Science doi: 10.1242/jcs.058883 contributor: fullname: Boehlke – volume: 292 start-page: 17703 year: 2017 ident: bib105 article-title: Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M117.792937 contributor: fullname: Roy – volume: 168 start-page: 252 year: 2017 ident: bib87 article-title: An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling publication-title: Cell doi: 10.1016/j.cell.2016.11.036 contributor: fullname: Nager – volume: 24 start-page: 4126 year: 2015 ident: bib17 article-title: Specific variants in WDR35 cause a distinctive form of Ellis-van Creveld syndrome by disrupting the recruitment of the EvC complex and SMO into the cilium publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddv152 contributor: fullname: Caparrós-Martín – volume: 10 year: 2014 ident: bib37 article-title: Arf4 is required for Mammalian development but dispensable for ciliary assembly publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1004170 contributor: fullname: Follit – volume: 110 start-page: 6943 year: 2013 ident: bib127 article-title: Evolution of modular intraflagellar transport from a coatomer-like progenitor publication-title: PNAS doi: 10.1073/pnas.1221011110 contributor: fullname: van Dam – volume: 68 start-page: 2951 year: 2011 ident: bib26 article-title: Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins publication-title: Cellular and Molecular Life Sciences doi: 10.1007/s00018-010-0603-4 contributor: fullname: Domire – volume: 6 year: 2017 ident: bib27 article-title: Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia publication-title: Cilia doi: 10.1186/s13630-017-0051-y contributor: fullname: Duran – volume: 28 start-page: 624 year: 2017 ident: bib40 article-title: Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E16-09-0648 contributor: fullname: Funabashi – volume: 189 start-page: 1039 year: 2010 ident: bib73 article-title: The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200912001 contributor: fullname: Li – volume: 141 start-page: 611 year: 1998 ident: bib41 article-title: In polarized MDCK cells basolateral vesicles arise from clathrin-gamma-adaptin-coated domains on endosomal tubules publication-title: The Journal of Cell Biology doi: 10.1083/jcb.141.3.611 contributor: fullname: Futter – volume: 192 start-page: 631 year: 2011 ident: bib47 article-title: Polycystin-2 takes different routes to the somatic and ciliary plasma membrane publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201007050 contributor: fullname: Hoffmeister – volume: 41 start-page: 98 year: 2016 ident: bib83 article-title: The intraflagellar transport machinery in ciliary signaling publication-title: Current Opinion in Structural Biology doi: 10.1016/j.sbi.2016.06.009 contributor: fullname: Mourão – volume: 123 start-page: 3966 year: 2010 ident: bib58 article-title: The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport publication-title: Journal of Cell Science doi: 10.1242/jcs.073908 contributor: fullname: Kaplan – volume: 291 start-page: 10962 year: 2016 ident: bib60 article-title: Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M116.713883 contributor: fullname: Katoh – volume: 99 start-page: 189 year: 1999 ident: bib38 article-title: A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells publication-title: Cell doi: 10.1016/s0092-8674(00)81650-5 contributor: fullname: Fölsch – volume: 103 start-page: 612 year: 2018 ident: bib2 article-title: ARL3 Mutations Cause Joubert Syndrome by Disrupting Ciliary Protein Composition publication-title: American Journal of Human Genetics doi: 10.1016/j.ajhg.2018.08.015 contributor: fullname: Alkanderi – volume: 116 start-page: 153 year: 2004 ident: bib13 article-title: The mechanisms of vesicle budding and fusion publication-title: Cell doi: 10.1016/s0092-8674(03)01079-1 contributor: fullname: Bonifacino – volume: 524 start-page: 171 year: 2013 ident: bib8 article-title: Analysis of interactions between intraflagellar transport proteins publication-title: Methods in Enzymology doi: 10.1016/B978-0-12-397945-2.00010-X contributor: fullname: Behal – volume: 201 start-page: 249 year: 2013 ident: bib70 article-title: Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201207139 contributor: fullname: Lechtreck – volume: 93 start-page: 455 year: 1998 ident: bib28 article-title: Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein publication-title: Cell doi: 10.1016/s0092-8674(00)81173-3 contributor: fullname: Dwyer – volume: 187 start-page: 1117 year: 2009 ident: bib69 article-title: The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200909183 contributor: fullname: Lechtreck – volume: 373 start-page: 119 year: 2008 ident: bib48 article-title: Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2008.06.001 contributor: fullname: Hori – volume: 5 year: 2014 ident: bib64 article-title: Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism publication-title: Nature Communications doi: 10.1038/ncomms6482 contributor: fullname: Kim – volume: 24 start-page: 1114 year: 2014 ident: bib140 article-title: Proteins of the ciliary axoneme are found on cytoplasmic membrane vesicles during growth of cilia publication-title: Current Biology doi: 10.1016/j.cub.2014.03.047 contributor: fullname: Wood – volume: 188 start-page: 953 year: 2010 ident: bib18 article-title: Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200908133 contributor: fullname: Cevik – volume: 137 start-page: 1308 year: 2009 ident: bib51 article-title: Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery publication-title: Cell doi: 10.1016/j.cell.2009.04.064 contributor: fullname: Jaiswal – volume: 27 start-page: 1115 year: 2020 ident: bib63 article-title: The molecular structure of mammalian primary cilia revealed by cryo-electron tomography publication-title: Nature Structural & Molecular Biology doi: 10.1038/s41594-020-0507-4 contributor: fullname: Kiesel – volume: 90 start-page: 5519 year: 1993 ident: bib66 article-title: A motility in the eukaryotic flagellum unrelated to flagellar beating publication-title: PNAS doi: 10.1073/pnas.90.12.5519 contributor: fullname: Kozminski – volume: 142 start-page: 123 year: 2010 ident: bib72 article-title: Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats publication-title: Cell doi: 10.1016/j.cell.2010.05.030 contributor: fullname: Lee – volume: 83 start-page: 51 year: 2018 ident: bib138 article-title: Golgi bypass of ciliary proteins publication-title: Seminars in Cell & Developmental Biology doi: 10.1016/j.semcdb.2018.03.010 contributor: fullname: Witzgall – volume: 5 year: 2014 ident: bib137 article-title: Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia publication-title: Nature Communications doi: 10.1038/ncomms6813 contributor: fullname: Williams – volume: 4 year: 2015 ident: bib68 article-title: Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia publication-title: eLife doi: 10.7554/eLife.06996 contributor: fullname: Leaf – volume: 147 start-page: 519 year: 1999 ident: bib112 article-title: Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans publication-title: The Journal of Cell Biology doi: 10.1083/jcb.147.3.519 contributor: fullname: Signor – volume: 3 start-page: 320 year: 2014 ident: bib125 article-title: On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics publication-title: Biology doi: 10.3390/biology3020320 contributor: fullname: Turriziani – volume: 179 start-page: 321 year: 2007 ident: bib45 article-title: Cep164, a novel centriole appendage protein required for primary cilium formation publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200707181 contributor: fullname: Graser – volume: 18 start-page: 1554 year: 2007 ident: bib91 article-title: Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.e06-09-0805 contributor: fullname: Ou – volume: 69 start-page: 856 year: 2011 ident: bib62 article-title: Mechanisms and function of dendritic exocytosis publication-title: Neuron doi: 10.1016/j.neuron.2011.02.032 contributor: fullname: Kennedy – volume: 296 year: 2021 ident: bib32 article-title: Defining the protein and lipid constituents of tubular recycling endosomes publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.RA120.015992 contributor: fullname: Farmer – volume: 17 start-page: 3781 year: 2006 ident: bib35 article-title: The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.e06-02-0133 contributor: fullname: Follit – volume: 9 start-page: 173 year: 2011 ident: bib102 article-title: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment publication-title: Nature Methods doi: 10.1038/nmeth.1818 contributor: fullname: Remmert – volume: 292 start-page: 7462 year: 2017 ident: bib120 article-title: Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46 publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M117.780155 contributor: fullname: Taschner – volume: 152 start-page: 36 year: 2005 ident: bib76 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: Journal of Structural Biology doi: 10.1016/j.jsb.2005.07.007 contributor: fullname: Mastronarde – volume: 18 start-page: 533 year: 2017 ident: bib101 article-title: Genes and molecular pathways underpinning ciliopathies publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/nrm.2017.60 contributor: fullname: Reiter – volume: 1851 start-page: 251 year: 2019 ident: bib135 article-title: A Graph-Based Approach for Detecting Sequence Homology in Highly Diverged Repeat Protein Families publication-title: Methods in Molecular Biology doi: 10.1007/978-1-4939-8736-8_13 contributor: fullname: Wells – volume: 4 year: 2015 ident: bib44 article-title: A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins publication-title: eLife doi: 10.7554/eLife.11859 contributor: fullname: Gotthardt – volume: 35 start-page: 773 year: 2016 ident: bib119 article-title: Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex publication-title: The EMBO Journal doi: 10.15252/embj.201593164 contributor: fullname: Taschner – volume: 3 start-page: 1806 year: 2013 ident: bib21 article-title: TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium publication-title: Cell Reports doi: 10.1016/j.celrep.2013.05.020 contributor: fullname: Clement – volume: 4 year: 2008 ident: bib36 article-title: The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1000315 contributor: fullname: Follit – volume: 117 start-page: 527 year: 2004 ident: bib4 article-title: Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis publication-title: Cell doi: 10.1016/s0092-8674(04)00412-x contributor: fullname: Avidor-Reiss – volume: 524 start-page: 243 year: 2013 ident: bib103 article-title: Electron microscopy of flagella, primary cilia, and intraflagellar transport in flat-embedded cells publication-title: Methods in Enzymology doi: 10.1016/B978-0-12-397945-2.00014-7 contributor: fullname: Rogowski – volume: 189 start-page: 171 year: 2010 ident: bib110 article-title: Intraflagellar transport molecules in ciliary and nonciliary cells of the retina publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200911095 contributor: fullname: Sedmak – volume: 197 start-page: 667 year: 2014 ident: bib14 article-title: Diverse cell type-specific mechanisms localize G protein-coupled receptors to Caenorhabditis elegans sensory cilia publication-title: Genetics doi: 10.1534/genetics.114.161349 contributor: fullname: Brear – volume: 38 start-page: 1 year: 2014 ident: bib130 article-title: Molecular complexes that direct rhodopsin transport to primary cilia publication-title: Progress in Retinal and Eye Research doi: 10.1016/j.preteyeres.2013.08.004 contributor: fullname: Wang – volume: 4 year: 2009 ident: bib129 article-title: Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas publication-title: PLOS ONE doi: 10.1371/journal.pone.0005384 contributor: fullname: Wang – volume: 3 start-page: 813 year: 2002 ident: bib104 article-title: Intraflagellar transport publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/nrm952 contributor: fullname: Rosenbaum – volume: 352 start-page: 721 year: 2016 ident: bib115 article-title: Microtubule doublets are double-track railways for intraflagellar transport trains publication-title: Science doi: 10.1126/science.aaf4594 contributor: fullname: Stepanek – volume: 7 year: 2012 ident: bib139 article-title: IFT proteins accumulate during cell division and localize to the cleavage furrow in Chlamydomonas publication-title: PLOS ONE doi: 10.1371/journal.pone.0030729 contributor: fullname: Wood – volume: 122 start-page: 859 year: 2009 ident: bib126 article-title: Flagellar membrane localization via association with lipid rafts publication-title: Journal of Cell Science doi: 10.1242/jcs.037721 contributor: fullname: Tyler – volume: 31 start-page: 265 year: 2014 ident: bib75 article-title: The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3 publication-title: Developmental Cell doi: 10.1016/j.devcel.2014.09.004 contributor: fullname: Liew – volume: 88 start-page: 508 year: 2011 ident: bib80 article-title: Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis publication-title: American Journal of Human Genetics doi: 10.1016/j.ajhg.2011.03.015 contributor: fullname: Mill – volume: 46 start-page: W296 year: 2018 ident: bib133 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Research doi: 10.1093/nar/gky427 contributor: fullname: Waterhouse – volume: 109 (Pt 7) start-page: 1891 year: 1996 ident: bib23 article-title: A novel cytoplasmic dynein heavy chain: expression of DHC1b in mammalian ciliated epithelial cells publication-title: Journal of Cell Science doi: 10.1242/jcs.109.7.1891 contributor: fullname: Criswell – volume: 29 start-page: 3323 year: 2019 ident: bib42 article-title: Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex publication-title: Current Biology doi: 10.1016/j.cub.2019.07.090 contributor: fullname: Gerondopoulos – volume: 36 start-page: 989 year: 2004 ident: bib31 article-title: Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome publication-title: Nature Genetics doi: 10.1038/ng1414 contributor: fullname: Fan – volume: 128 start-page: 1065 year: 2015 ident: bib78 article-title: Membrane curvature at a glance publication-title: Journal of Cell Science doi: 10.1242/jcs.114454 contributor: fullname: McMahon – volume: 11 start-page: 1332 year: 2009 ident: bib34 article-title: Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse publication-title: Nature Cell Biology doi: 10.1038/ncb1977 contributor: fullname: Finetti – volume: 17 start-page: 1505 year: 2016 ident: bib39 article-title: Role for the IFT-A Complex in Selective Transport to the Primary Cilium publication-title: Cell Reports doi: 10.1016/j.celrep.2016.10.018 contributor: fullname: Fu – volume: 27 start-page: 516 year: 2018 ident: bib116 article-title: Ciliopathy-associated mutations of IFT122 impair ciliary protein trafficking but not ciliogenesis publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddx421 contributor: fullname: Takahara – volume: 199 start-page: 1083 year: 2012 ident: bib109 article-title: Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201202126 contributor: fullname: Schmidt – volume: 15 start-page: 363 year: 1962 ident: bib114 article-title: Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells publication-title: The Journal of Cell Biology doi: 10.1083/jcb.15.2.363 contributor: fullname: Sorokin – volume: 12 start-page: 2341 year: 2001 ident: bib82 article-title: Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.12.8.2341 contributor: fullname: Moritz – volume: 23 start-page: 641 year: 2012 ident: bib55 article-title: Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation publication-title: Journal of the American Society of Nephrology doi: 10.1681/ASN.2011080829 contributor: fullname: Jonassen – volume: 193 start-page: 963 year: 2011 ident: bib33 article-title: Evolution: On a bender--BARs, ESCRTs, COPs, and finally getting your coat publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201102042 contributor: fullname: Field – volume: 17 start-page: 5053 year: 2006 ident: bib10 article-title: The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.e06-06-0571 contributor: fullname: Blacque – volume: 28 start-page: 183 year: 2009 ident: bib77 article-title: Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4 publication-title: The EMBO Journal doi: 10.1038/emboj.2008.267 contributor: fullname: Mazelova – volume: 9 year: 2020 ident: bib143 article-title: Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes publication-title: eLife doi: 10.7554/eLife.55954 contributor: fullname: Yang – volume: 143 start-page: 1591 year: 1998 ident: bib96 article-title: Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects publication-title: The Journal of Cell Biology doi: 10.1083/jcb.143.6.1591 contributor: fullname: Piperno – volume: 48 start-page: 648 year: 2016 ident: bib122 article-title: The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery publication-title: Nature Genetics doi: 10.1038/ng.3558 contributor: fullname: Toriyama – volume: 9 start-page: 676 year: 2012 ident: bib108 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nature Methods doi: 10.1038/nmeth.2019 contributor: fullname: Schindelin – volume: 7 year: 2019 ident: bib148 article-title: Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission publication-title: Frontiers in Cell and Developmental Biology doi: 10.3389/fcell.2019.00291 contributor: fullname: Zhukovsky – volume: 10 year: 2014 ident: bib24 article-title: HEATR2 plays a conserved role in assembly of the ciliary motile apparatus publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1004577 contributor: fullname: Diggle – volume: 187 start-page: 135 year: 2009 ident: bib95 article-title: Electron-tomographic analysis of intraflagellar transport particle trains in situ publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200905103 contributor: fullname: Pigino – volume: 130 start-page: 3975 year: 2017 ident: bib131 article-title: The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking publication-title: Journal of Cell Science doi: 10.1242/jcs.205492 contributor: fullname: Wang – volume: 9 year: 2020 ident: bib65 article-title: Structure of the human BBSome core complex publication-title: eLife doi: 10.7554/eLife.53910 contributor: fullname: Klink – volume: 4 year: 2015 ident: bib16 article-title: Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding publication-title: eLife doi: 10.7554/eLife.05242 contributor: fullname: Cao – volume-title: GitHub year: 2021 ident: bib100 article-title: Quidwai2020_WDR35paper contributor: fullname: Quidwai – volume: 28 start-page: 429 year: 2017 ident: bib46 article-title: Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E16-11-0813 contributor: fullname: Hirano – volume: 9 year: 2018 ident: bib132 article-title: Membrane association and remodeling by intraflagellar transport protein IFT172 publication-title: Nature Communications doi: 10.1038/s41467-018-07037-9 contributor: fullname: Wang – volume: 217 start-page: 1847 year: 2018 ident: bib144 article-title: BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201709041 contributor: fullname: Ye – volume: 28 start-page: 191 year: 2006 ident: bib52 article-title: Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium publication-title: BioEssays doi: 10.1002/bies.20369 contributor: fullname: Jékely – volume: 121 start-page: 428 year: 2008 ident: bib124 article-title: Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body publication-title: Journal of Cell Science doi: 10.1242/jcs.015826 contributor: fullname: Tsao – volume: 116 start-page: 71 year: 1996 ident: bib67 article-title: Computer visualization of three-dimensional image data using IMOD publication-title: Journal of Structural Biology doi: 10.1006/jsbi.1996.0013 contributor: fullname: Kremer – volume: 27 start-page: R17 year: 2017 ident: bib134 article-title: Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins publication-title: Current Biology doi: 10.1016/j.cub.2016.11.050 contributor: fullname: Wells – volume: 108 start-page: 1456 year: 2011 ident: bib98 article-title: Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components publication-title: PNAS doi: 10.1073/pnas.1011410108 contributor: fullname: Qin – volume: 123 start-page: 1785 year: 2010 ident: bib81 article-title: The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia publication-title: Journal of Cell Science doi: 10.1242/jcs.059519 contributor: fullname: Molla-Herman – volume: 113 start-page: E2589 year: 2016 ident: bib88 article-title: Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development publication-title: PNAS doi: 10.1073/pnas.1519458113 contributor: fullname: Noda – volume: 141 start-page: 1208 year: 2010 ident: bib54 article-title: The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia publication-title: Cell doi: 10.1016/j.cell.2010.05.015 contributor: fullname: Jin – volume: 27 start-page: 163 year: 2013 ident: bib117 article-title: Centriole distal appendages promote membrane docking, leading to cilia initiation publication-title: Genes & Development doi: 10.1101/gad.207043.112 contributor: fullname: Tanos – volume: 116 start-page: 737 year: 1992 ident: bib99 article-title: Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii publication-title: The Journal of Cell Biology doi: 10.1083/jcb.116.3.737 contributor: fullname: Quarmby – volume: 7 year: 2018 ident: bib121 article-title: Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis publication-title: eLife doi: 10.7554/eLife.33067 contributor: fullname: Taschner – volume: 52 start-page: 2012 year: 2011 ident: bib3 article-title: The salt stress-induced LPA response in Chlamydomonas is produced via PLA₂ hydrolysis of DGK-generated phosphatidic acid publication-title: Journal of Lipid Research doi: 10.1194/jlr.M016873 contributor: fullname: Arisz – volume: 30 start-page: 1907 year: 2011 ident: bib9 article-title: Crystal structure of the intraflagellar transport complex 25/27 publication-title: The EMBO Journal doi: 10.1038/emboj.2011.110 contributor: fullname: Bhogaraju – volume: 27 start-page: 1384 year: 2019 ident: bib20 article-title: The Molecular Architecture of Native BBSome Obtained by an Integrated Structural Approach publication-title: Structure doi: 10.1016/j.str.2019.06.006 contributor: fullname: Chou – volume: 183 start-page: 885 year: 2009 ident: bib50 article-title: Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii publication-title: Genetics doi: 10.1534/genetics.109.101915 contributor: fullname: Iomini – volume: 32 start-page: 665 year: 2015 ident: bib145 article-title: Ciliary vesicle formation: a prelude to ciliogenesis publication-title: Developmental Cell doi: 10.1016/j.devcel.2015.03.012 contributor: fullname: Yee – volume: 217 start-page: 413 year: 2018 ident: bib1 article-title: The small GTPase RSG1 controls a final step in primary cilia initiation publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201604048 contributor: fullname: Agbu – volume: 10 start-page: 1146 year: 2008 ident: bib142 article-title: A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance publication-title: Nature Cell Biology doi: 10.1038/ncb1774 contributor: fullname: Yang – volume-title: Intraflagellar Transport: The Chlamydomonas Sourcebook year: 2009 ident: bib22 doi: 10.1016/B978-0-12-370873-1.00041-1 contributor: fullname: Cole – volume: 5 year: 2015 ident: bib141 article-title: BBS4 and BBS5 show functional redundancy in the BBSome to regulate the degradative sorting of ciliary sensory receptors publication-title: Scientific Reports doi: 10.1038/srep11855 contributor: fullname: Xu – volume: 24 start-page: 2180 year: 2010 ident: bib84 article-title: TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia publication-title: Genes & Development doi: 10.1101/gad.1966210 contributor: fullname: Mukhopadhyay – volume: 83 start-page: S12 year: 2012 ident: bib118 article-title: Architecture and function of IFT complex proteins in ciliogenesis publication-title: Differentiation; Research in Biological Diversity doi: 10.1016/j.diff.2011.11.001 contributor: fullname: Taschner – volume: 105 start-page: 351 year: 1969 ident: bib136 article-title: Cilia in cell-cultured fibroblasts. I. On their occurrence and relative frequencies in primary cultures and established cell lines publication-title: Journal of Anatomy contributor: fullname: Wheatley – volume: 6 year: 2010 ident: bib53 article-title: Localization of a guanylyl cyclase to chemosensory cilia requires the novel ciliary MYND domain protein DAF-25 publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1001199 contributor: fullname: Jensen – volume: 17 start-page: 4801 year: 2006 ident: bib29 article-title: Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.e06-04-0260 contributor: fullname: Efimenko – volume: 40 start-page: 403 year: 2008 ident: bib123 article-title: THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia publication-title: Nature Genetics doi: 10.1038/ng.105 contributor: fullname: Tran – volume: 43 start-page: 4263 year: 2004 ident: bib43 article-title: Photolysis of caged phosphatidic acid induces flagellar excision in Chlamydomonas publication-title: Biochemistry doi: 10.1021/bi0351460 contributor: fullname: Goedhart – volume: 13 year: 2017 ident: bib147 article-title: Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1006627 contributor: fullname: Zhu – volume: 109 start-page: 1619 year: 2015 ident: bib59 article-title: Effect of the N-Terminal Helix and Nucleotide Loading on the Membrane and Effector Binding of Arl2/3 publication-title: Biophysical Journal doi: 10.1016/j.bpj.2015.08.033 contributor: fullname: Kapoor – volume: 41 start-page: 784 year: 2016 ident: bib93 article-title: Endocytic Control of Cellular Signaling at the Primary Cilium publication-title: Trends in Biochemical Sciences doi: 10.1016/j.tibs.2016.06.002 contributor: fullname: Pedersen – volume: 132 year: 2019 ident: bib94 article-title: A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia publication-title: Journal of Cell Science doi: 10.1242/jcs.220749 contributor: fullname: Picariello – volume: 282 start-page: 21746 year: 2007 ident: bib146 article-title: Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M702968200 contributor: fullname: Zeniou-Meyer – volume: 6 year: 2017 ident: bib25 article-title: 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments publication-title: eLife doi: 10.7554/eLife.26691 contributor: fullname: Dodonova – volume: 51 start-page: 124 year: 2018 ident: bib86 article-title: The molecular machines that traffic signaling receptors into and out of cilia publication-title: Current Opinion in Cell Biology doi: 10.1016/j.ceb.2018.03.004 contributor: fullname: Nachury – volume: 7 start-page: 1256 year: 2008 ident: bib128 article-title: Leishmania adaptor protein-1 subunits are required for normal lysosome traffic, flagellum biogenesis, lipid homeostasis, and adaptation to temperatures encountered in the mammalian host publication-title: Eukaryotic Cell doi: 10.1128/EC.00090-08 contributor: fullname: Vince – volume: 129 start-page: 1201 year: 2007 ident: bib85 article-title: A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis publication-title: Cell doi: 10.1016/j.cell.2007.03.053 contributor: fullname: Nachury – volume: 18 start-page: 1899 year: 2008 ident: bib71 article-title: An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia publication-title: Current Biology doi: 10.1016/j.cub.2008.11.020 contributor: fullname: Lee – volume: 10 start-page: 693 year: 1999 ident: bib97 article-title: Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.10.3.693 contributor: fullname: Porter |
SSID | ssj0000748819 |
Score | 2.4617794 |
Snippet | Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
SubjectTerms | Animals Cell Biology Cells Chlamydomonas reinhardtii - metabolism Cilia Cilia - metabolism ciliary pocket Coat protein coatomer Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Fibroblasts Gene mutations Homology Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism intraflagellar transport Lipids Localization membrane cargos Membrane lipids Membrane proteins Membrane vesicles Membranes Mice Microscopy Mutants Mutation Protein Binding Protein Transport Proteins Retrograde transport Satellites vesicular traffic |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQiK9AQS6qxCl0Yzt2fFxoq4KAQ6Gi4mKNHbuNRBO0ySL67xk72dVGHLhwjSeS_cb2vEnGz4QcBumAKRtysFDlwlU6h6KOFY4q_qURC-7j2eFPn-XZhfhwWV7uXPUVa8JGeeARuCMonLCi0Noq5P7aVbVTXIGqmeXg2Ci2vWA7yVTagxVOzEKPB_IUhswj_7EJ_o3EpEnOQlBS6v97P94JSPNiyZ3oc3qf3JtoI12O3X1A7vj2Ifm-pN-Oz3mZb26yHajrYKBJe6FpaSoX97_psBEw76lrfjSwuqU3_gbT5NZTB6urjv7yfSqPo0M3mjwiF6cnX9-d5dNdCbkTyPDyWqkSLPKLYBVwpRFmTER4JYRLolxOilqDUtZxjhEfkzJMLIStZKgtUpbAH5O9tmv9U0IBFEhc-o4FKZwt9cIL5BlB6hIYU3VGDjfwmZ-jJIbBVCKibBLKJqGckbcR2q1J1LFOD9C7ZvKu-Zd3M_IqOsZEpYo2lsJcwbrvzfsv52YpK41sDjuakdeTUegQUQfTyQIcThS3mlnuzyxxKbl588b_ZlrKvWESSQ6SvrLKyMG2Ob4Zy9Na363RpkwHnDHDz8iTcbpsx81FFBBaYIuaTaQZMPOWtrlOQt9VUicsnv0PJJ-TuyyW48Qv4mKf7A2rtX-BfGqwL9PS-QOtUR1U priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLigIl6BggyqxCl0Ezu2c0LLoyoIOBQqVlyssWMvkWjSbrII_j1jJ1kaIXGNJ5Ezfnwz9sw3hBx6YSGXxqdgQKXcqjKFrAoRjjLc0vAFcyF3-OMncXLG36-K1Xjg1o1hldOeGDfqqrXhjPwoF4g1iL2FenlxmYaqUeF2dSyhcZ3cyHKEcpzPciV3ZywIjwoRb0jLkwicR-5D7d0Lga6TmAFR5Ov_d1e-AkvzkMkrGHS8T26NxiNdDqN9m1xzzR3ybUm_vjllRTrVs-2pbaGnkYGhbmgMGne_aD_RmHfU1j9q2Pym5-4cneXGUQubdUt_ui4GydG-HUTukrPjt19en6RjxYTUcrTz0krKAgxaGd5IYLJEZaM7whTnNlJzWcGrEqQ0ljHEfXTN0L3gRglfGTRcPLtH9pq2cQ8IBZAgcAOwuRfcmqJcOI7WhhdlAXkuq4QcTurTFwMxhkaHImhZRy3rqOWEvAqq3YkENuv4oN2s9bg4NGSWG56VpZHo35VWVVYyCbLKDQOb40eehYHRga-iCQExa9h2nX73-VQvhSrRpsOOJuT5KORb1KiFMb8AfydQXM0kD2aSuKDsvHkafz0u6E7_nX4JebprDm-GILXGtVuUKWKaM_r5Cbk_TJfdfzMeaIQW2CJnE2mmmHlLU3-PdN8qchRmD__frUfkZh7CbcKJNz8ge_1m6x6jvdSbJ3FR_AGH6RTE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKuXBBIL4CBRlUiVOWXduxkxNaPqqCKIfCihUXa-w420htAkkWtf-esZOsGkBc40mUjMee93bHbwg5LKQFpkwRg4E0FjbNYljkvsJR-X9pxJw7f3b45LM8XomP62S9R8ZmnIMD239SO99PatWczy5_Xr3GBY_4daYwG75yn8rCzSTyIXmD3GSYEn1t18mA88OWrDBOQ5MPNk-Clum6P6v35_2T7BRE_P_eqq_lqmkd5bXEdHSH3B4QJV32IXCX7LnqHvm-pN_enfIkHpvcdtTW0NEgy1BWNFSSu0vajdrmLbXleQnNFb1wF8igK0ctNJua_nJtqJyjXd2b3Cero_df3x7HQxuF2AoEf3GuVAIGoUdhFHCV4QwgR-GpEDbodVkp8gyUMpZzBAPI15BzCJPKIjeIZgr-gOxXdeUeEQqgQOKuYFkhhTVJNncCIUghswQYU3lEDkf36R-9WoZGluG9rIOXdfByRN541-5MvMR1uFA3Gz2sGA0LK4xYZJlRSPoym-ZWcQUqZ4aDZfiQF35itBexqHyVzAa2bas_fDnVS5lmCPTwRSPycjAqavSoheHQAX6O172aWB5MLHGV2enwOP96DFLNJOIfxINJGpHnu2F_p69cq1y9RZsknH1G8h-Rh3247L6bC68tNMcRNQmkiWOmI1V5FjTA0yBcuHj8_7d-Qm4xX4PjfwYXB2S_a7buKYKozjwLC-Q3I7kZCQ priority: 102 providerName: Scholars Portal |
Title | A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34734804 https://www.proquest.com/docview/2624115958 https://search.proquest.com/docview/2593595274 https://pubmed.ncbi.nlm.nih.gov/PMC8754431 https://doaj.org/article/a1c4b4199b71449c8dc737a7d2b3ac26 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2ceGCmMaPwKgMmsQp7RI7dnzsxqaB6DQVJioulu04XaQ1mZoUsf-eZyepGu3GJYf4JYqfn_3e57z3GaGTnBkVc52HSqs0pCYVoYoyl-HI3V8aekqsqx2eXbOrW_ptkSz2UNLXwvikfaOLcXm_GpfFnc-tfFiZSZ8nNrmZnaeetS2a7KN9cL87EN0vvxxsMhJtLR4Hbzmx34vcjhngJXdgEaGO0KU7mK13RJ6v_-mqvOOWhimTOz7o8iV60QWPeNp-5CHas-UR-j3Fv77MSRL259k22FSqwZ6BoSixTxq3f3HT05jX2BT3hVo_4pVdAVguLTZqvazwH1v7zuOmakVeodvLi5_nV2F3YkJoKMR5YcZ5ojREGbnminABygY4QlJKjafmMoxmQnGuDSHg9wGaAbygOmV5piFwyclrdFBWpX2LsFJcMVgATJwzanQiTi2FaCNnIlFxzLMAnfTqkw8tMYYEQOEULr3CpVd4gM6carcijs3a36jWS9mNqVSRoZpGQmgO-E6YNDOccMWzWBNlYnjJJzcw0vFVlC4hZqk2dS2__pjLKUsFxHTwoQH63AnlFWjUqK6-ALrjKK4GkscDSZhQZtjcj7_sJnQtYwahDoR-SRqgj9tm96RLUitttQGZxJc5A84P0JvWXLb97q0uQHxgSAPFDFvA-j3dd2ft7_77yffoeewycdxmOD1GB816Yz9AKNXoEUygBR-hZ2cX1zfzkd-QgOuMpiM_qf4BiIAiEQ |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793,73745,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELage4AXBOJX2ACDJvEU1saOHT-hDjZ10FWobGLixbIdp0RiydakCP57zo5TFiHxmrtEztnn784-f0Zov2BGJVwXsdIqi6nJRKwmuatw5G6Xho6JdWeHTxdsdk4_XqQXYcGtCWWV_ZzoJ-q8Nm6N_CBhgDWAvWn27uo6drdGud3VcIXGbbTjmNPTEdo5PFp8Xm5XWQAgM8C87mAeB-g8sPOysG8ZJE9sAEWesf_fefkGMA2LJm-g0PF9dC-Ej3ja9fcDdMtWD9G3Kf76YUnSuL_RtsWmVi32HAxlhX3ZuP2F257IvMGm_FGq9W98aS8hXa4sNmq9qvFP2_gyOdzWncojdH58dPZ-Foc7E2JDIdKLc85TpSHOKDRXhAswNyQkJKPUeHIuw2guFOfaEALID8kZJBhUZ6zINYQuBXmMRlVd2acIK8UVgynAJAWjRqdibCnEGwUTqUoSnkdovzefvOqoMSSkFM7K0ltZeitH6NCZdqvi-Kz9g3q9ksE9pJoYqulECM0hwxMmyw0nXPE80USZBD7y2nWMdIwVlSuJWalN08iTL0s5ZZmAqA4aGqE3QamowaJGhRMG8DuO5GqguTfQBJcyQ3Hf_zK4dCP_DsAIvdqK3ZuuTK2y9QZ0Un_QGTL9CD3phsv2vwl1REJjkPDBQBoYZiipyu-e8DvzLIWTZ_9v1kt0Z3Z2Opfzk8WnXXQ3ccU3fq1oD43a9cY-h-ip1S-Ci_wBYzQZFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagkxAvCMSvsAEGTeIptI0dO3lCHVu1waimwsTEi2U7donEkq1JEfz3nB2nLELiNb5Eydnn7875_Bmhfcu0TLiysVQyi6nO8lhOC8dw5O4vDZ0Q4_YOf1qw43P64SK9CPynJtAq-znRT9RFrd0a-ThhgDWAvWk2toEWcXY4f3d1HbsTpNyf1nCcxm20A6g4SUZo5-BocbbcrrgAWGaAf90mPQ4wOjanpTVvGRRSbABLXr3_3zn6BkgNCZQ3EGl-H90LqSSedX3_AN0y1UP0bYa_Hi5JGven27ZY17LFXo-hrLCnkJtfuO1FzRusyx-lXP_Gl-YSSufKYC3Xqxr_NI2nzOG27kweofP50Zf3x3E4PyHWFLK-uOA8lQpyDqu4JDwH10NxQjJKtRfq0owWueRcaUIgC4BCDYoNqjJmCwVpjCWP0aiqK_MUYSm5ZDAd6MQyqlWaTwwFL1uWpzJJeBGh_d594qqTyRBQXjgvC-9l4b0coQPn2q2J07b2F-r1SoRQEXKqqaLTPFccqr1cZ4XmhEteJIpIncBDXruOEU69onLjYCU3TSNOPi_FjGU5ZHjwohF6E4xsDR7VMuw2gM9xglcDy72BJYSXHjb3_S9CeDfi72CM0Ktts7vTUdYqU2_AJvWbnqHqj9CTbrhsv5tQJyo0gRY-GEgDxwxbqvK7F__OvGLh9Nn_X-slugPRIU5PFh930d3E8XDcUjjdQ6N2vTHPIZFq1YsQIX8AhN0dRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+WDR35-dependent+coat+protein+complex+transports+ciliary+membrane+cargo+vesicles+to+cilia&rft.jtitle=eLife&rft.au=Quidwai%2C+Tooba&rft.au=Wang%2C+Jiaolong&rft.au=Hall%2C+Emma+A&rft.au=Petriman%2C+Narcis+A&rft.date=2021-11-04&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=10&rft_id=info:doi/10.7554%2FeLife.69786&rft.externalDocID=A689264307 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |