Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs
The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome co...
Saved in:
Published in | Microbiology and immunology Vol. 64; no. 1; p. 33 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Australia
01.01.2020
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses. |
---|---|
AbstractList | The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses. |
Author | Iwata-Yoshikawa, Naoko Arai, Katsuhiko Suzuki, Tadaki Kataoka, Michiyo Niikura, Kenichi Fukushi, Shuetsu Sekimukai, Hanako Nagata, Noriyo Tani, Hideki Hasegawa, Hideki |
Author_xml | – sequence: 1 givenname: Hanako surname: Sekimukai fullname: Sekimukai, Hanako organization: Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan – sequence: 2 givenname: Naoko surname: Iwata-Yoshikawa fullname: Iwata-Yoshikawa, Naoko organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan – sequence: 3 givenname: Shuetsu surname: Fukushi fullname: Fukushi, Shuetsu organization: Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan – sequence: 4 givenname: Hideki surname: Tani fullname: Tani, Hideki organization: Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan – sequence: 5 givenname: Michiyo surname: Kataoka fullname: Kataoka, Michiyo organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan – sequence: 6 givenname: Tadaki surname: Suzuki fullname: Suzuki, Tadaki organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan – sequence: 7 givenname: Hideki orcidid: 0000-0002-6558-2297 surname: Hasegawa fullname: Hasegawa, Hideki organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan – sequence: 8 givenname: Kenichi surname: Niikura fullname: Niikura, Kenichi organization: Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan – sequence: 9 givenname: Katsuhiko surname: Arai fullname: Arai, Katsuhiko organization: Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan – sequence: 10 givenname: Noriyo orcidid: 0000-0001-9147-1438 surname: Nagata fullname: Nagata, Noriyo organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31692019$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kMlOHDEQhi2UiP2cG6oHSEPb7d6OCJEJEhIHyBm57XKnkMdu2e6R5sG5Y5akLqVa9P9f1Qn75oNHxn7w-pKXuOKNHKpaCn7JRd_KA3b8v3PETlJ6qWvRi0EesqOGd6Oo-XjMXjfBGfDKh0XFTNphpczLulM-o4FHWGLISB7Im1VjAgUpx-BnKAs0o6_SgposabibNxAxLcEnBDUr8ilDwh3GUuo148eUosoh7iHtvYlhi1VEp96tdCiyakdxTcXMos4U_E-Y1gxWkUuQwxfEJ1OZ7_CDYgqG3sm8AUdbyoAhUbnnL7mCVbTI5eJa5EoBbvVzOmPfrXIJz7_yKfvz6_bp5nd1_7C5u7m-r7Qcuay6qVWDrUXTtUMjxSCmqbV10w1919peKNkO_WSN1lIotL01ZtRCi07avh6t5uKUXXzqLuu0RfO8RNqquH_-93_xBkypkCw |
CitedBy_id | crossref_primary_10_1016_j_micpath_2022_105882 crossref_primary_10_1109_TNB_2020_2997257 crossref_primary_10_3389_fmolb_2021_604447 crossref_primary_10_1186_s43141_022_00368_7 crossref_primary_10_1002_adma_202107781 crossref_primary_10_2217_nnm_2020_0441 crossref_primary_10_1016_j_jconrel_2021_08_046 crossref_primary_10_1016_j_ejphar_2021_173930 crossref_primary_10_1016_j_vaccine_2022_05_081 crossref_primary_10_3389_fnano_2021_651308 crossref_primary_10_1002_jmv_26320 crossref_primary_10_4049_immunohorizons_2200020 crossref_primary_10_2217_nnm_2020_0163 crossref_primary_10_3390_nano12050783 crossref_primary_10_1021_acsabm_2c00123 crossref_primary_10_3389_fnano_2024_1335346 crossref_primary_10_1016_j_jddst_2021_102899 crossref_primary_10_3390_vaccines9060563 crossref_primary_10_1016_j_micpath_2021_105133 crossref_primary_10_1007_s12274_021_3949_z crossref_primary_10_1039_D3RA06180A crossref_primary_10_1186_s12951_022_01625_0 crossref_primary_10_1007_s12598_021_01789_y crossref_primary_10_1021_acsabm_0c01284 crossref_primary_10_1080_24701556_2020_1852252 crossref_primary_10_7759_cureus_75438 crossref_primary_10_1134_S0006297922040022 crossref_primary_10_1016_j_jconrel_2020_08_060 crossref_primary_10_2147_IJN_S280976 crossref_primary_10_1021_acsanm_0c01978 crossref_primary_10_1093_glycob_cwaa052 crossref_primary_10_2147_IJN_S283686 crossref_primary_10_1016_j_lfs_2020_118761 crossref_primary_10_1007_s40011_022_01371_1 crossref_primary_10_1016_j_matpr_2021_08_265 crossref_primary_10_1007_s11684_023_1034_6 crossref_primary_10_1590_1519_6984_279564 crossref_primary_10_1021_acssynbio_3c00133 crossref_primary_10_1016_j_procbio_2020_09_028 crossref_primary_10_3390_nano10061072 crossref_primary_10_1016_j_jddst_2022_103762 crossref_primary_10_1016_j_vaccine_2022_08_049 crossref_primary_10_1016_j_vaccine_2022_12_025 crossref_primary_10_3390_nano11071788 crossref_primary_10_1016_j_prp_2024_155589 crossref_primary_10_1126_sciadv_abh3827 crossref_primary_10_1039_D3RA04373H crossref_primary_10_1142_S1793984421300119 crossref_primary_10_2174_1568026623666221226091907 crossref_primary_10_1142_S1793984421300077 crossref_primary_10_3390_biom12070933 crossref_primary_10_1016_j_talanta_2020_121704 crossref_primary_10_3390_ijms22136937 crossref_primary_10_1080_14787210_2020_1776115 crossref_primary_10_1002_sstr_202200021 crossref_primary_10_1002_jcla_24328 crossref_primary_10_1002_advs_202100985 crossref_primary_10_1016_j_apsb_2020_05_009 crossref_primary_10_1134_S1070363222060123 crossref_primary_10_1016_j_jpha_2021_08_003 crossref_primary_10_3390_ijms23094902 crossref_primary_10_1128_jvi_01955_21 crossref_primary_10_1016_j_colcom_2020_100356 crossref_primary_10_1007_s11033_022_07132_7 crossref_primary_10_1155_2021_9495126 crossref_primary_10_2217_nnm_2020_0247 crossref_primary_10_1155_2020_7201752 crossref_primary_10_1038_s41598_022_25418_5 crossref_primary_10_2174_2210303112666220829125054 crossref_primary_10_3390_vaccines10040505 crossref_primary_10_2174_1381612827666210715154004 crossref_primary_10_1002_admi_202202511 crossref_primary_10_3390_nano11113118 crossref_primary_10_1016_j_jinorgbio_2021_111454 crossref_primary_10_1016_j_toxrep_2021_07_002 crossref_primary_10_3390_vaccines12010030 crossref_primary_10_2174_2215083808666220321145803 crossref_primary_10_1002_adfm_202107826 crossref_primary_10_3390_molecules28083354 crossref_primary_10_1002_nano_202100078 crossref_primary_10_1016_j_mattod_2022_11_007 crossref_primary_10_1007_s42765_023_00275_7 crossref_primary_10_1016_j_crchbi_2022_100021 crossref_primary_10_1021_acsnano_0c04117 crossref_primary_10_1063_5_0043009 crossref_primary_10_2217_nnm_2020_0358 crossref_primary_10_1039_D2MA00797E crossref_primary_10_2217_nnm_2020_0117 crossref_primary_10_1016_j_biopha_2025_117844 crossref_primary_10_1080_15567265_2022_2138803 crossref_primary_10_1515_ntrev_2022_0036 crossref_primary_10_1016_j_jddst_2021_102967 crossref_primary_10_1016_j_ebiom_2020_102768 crossref_primary_10_1152_ajplung_00236_2023 crossref_primary_10_1007_s41204_021_00108_1 crossref_primary_10_1186_s12929_020_00663_w crossref_primary_10_3390_jnt3040014 crossref_primary_10_1038_s41392_023_01557_7 crossref_primary_10_3390_v15030741 crossref_primary_10_1186_s42269_021_00487_0 crossref_primary_10_1111_bph_15092 crossref_primary_10_1208_s12249_020_01908_5 crossref_primary_10_1111_1348_0421_13184 crossref_primary_10_1021_acsami_0c22381 crossref_primary_10_1007_s12011_020_02414_2 crossref_primary_10_3389_fimmu_2020_02173 crossref_primary_10_1080_14760584_2020_1758070 crossref_primary_10_1021_acsabm_4c00537 crossref_primary_10_1177_01455613231211311 crossref_primary_10_1016_j_jddst_2021_102634 crossref_primary_10_1080_13880209_2022_2063341 crossref_primary_10_1093_cei_uxac038 crossref_primary_10_1016_j_xphs_2022_08_036 crossref_primary_10_1038_s41598_022_14997_y crossref_primary_10_1002_nano_202100255 crossref_primary_10_1080_17460913_2024_2357994 crossref_primary_10_1002_VIW_20200155 crossref_primary_10_1007_s40089_020_00323_9 crossref_primary_10_1016_j_nano_2021_102372 crossref_primary_10_1002_ppsc_202100159 crossref_primary_10_3390_vaccines12080829 crossref_primary_10_1002_mco2_115 crossref_primary_10_3389_fnano_2020_588915 crossref_primary_10_3390_diagnostics11111981 crossref_primary_10_61186_jcbr_7_2_16 crossref_primary_10_1016_j_jddst_2023_104567 |
ContentType | Journal Article |
Copyright | 2019 The Societies and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2019 The Societies and John Wiley & Sons Australia, Ltd. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1111/1348-0421.12754 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1348-0421 |
ExternalDocumentID | 31692019 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Science and Technology Agency grantid: 16K09951 – fundername: Japan Agency for Medical Research and Development grantid: 19fk0108072 – fundername: Japan Science and Technology Agency grantid: 19K08945 – fundername: Japan Agency for Medical Research and Development grantid: JP19fk0108058 – fundername: Japan Agency for Medical Research and Development grantid: JP17fk0108313 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1OC 29M 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CGR COF CS3 CUY CVF D-E D-F DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBS ECM EIF EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ J0M JSF JSH KQ8 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM. MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NPM O66 O9- OHT OIG OVD OVT P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RJT ROL RX1 RZJ SJN SUPJJ SV3 TEORI TKC TWZ UB1 V8K W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WXSBR WYISQ X7M XG1 XOL XSB ZGI ZXP ZZTAW ~IA ~WT |
ID | FETCH-LOGICAL-c4914-6b5a8f02365834282bb5f0368765f72a4587bfdcc42aef7fdd9c2c264f709fc12 |
IngestDate | Mon Jul 21 06:00:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | coronavirus eosinophils immunopathology mouse model adjuvant gold nanoparticles |
Language | English |
License | 2019 The Societies and John Wiley & Sons Australia, Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4914-6b5a8f02365834282bb5f0368765f72a4587bfdcc42aef7fdd9c2c264f709fc12 |
ORCID | 0000-0002-6558-2297 0000-0001-9147-1438 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1348-0421.12754 |
PMID | 31692019 |
ParticipantIDs | pubmed_primary_31692019 |
PublicationCentury | 2000 |
PublicationDate | January 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Australia |
PublicationPlace_xml | – name: Australia |
PublicationTitle | Microbiology and immunology |
PublicationTitleAlternate | Microbiol Immunol |
PublicationYear | 2020 |
SSID | ssj0027284 |
Score | 2.5827465 |
Snippet | The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 33 |
SubjectTerms | Adjuvants, Immunologic - pharmacology Analysis of Variance Animals Antibodies, Viral - immunology Chlorocebus aethiops Coronavirus - immunology Coronavirus Infections - immunology Coronavirus Infections - prevention & control Coronavirus Infections - virology Cytokines - metabolism Disease Models, Animal Female Gold - chemistry Immunization Immunoglobulin G - immunology Lung - immunology Lung - pathology Metal Nanoparticles - chemistry Mice Mice, Inbred BALB C Recombinant Proteins - immunology Severe Acute Respiratory Syndrome - immunology Severe Acute Respiratory Syndrome - prevention & control Severe Acute Respiratory Syndrome - virology Severe acute respiratory syndrome-related coronavirus - immunology Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Toll-Like Receptors Vaccination Vaccines, Synthetic Vero Cells Viral Envelope Proteins - genetics Viral Envelope Proteins - immunology Viral Vaccines - immunology Viral Vaccines - pharmacology Viral Vaccines - therapeutic use |
Title | Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31692019 |
Volume | 64 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEIBXDQjUC-L9RnPggGRcJfH6dUSINiDBJa1UTtU-W5PUrhK7Ffxv7szs2okbEfG4WI43WW0yX3ZnZ-fB2OtEctyvUcRyEsmQq6EJRRLb0GR5kg11qnhKgcKfvySTI_7pOD7eGbzpeS01tdxTP34bV_I_UsVnKFeKkv0Hya46xQd4j_LFK0oYr38l44NqroNSlLjx9Y2h0N-aS_qxUI0MXA6GglwZdUOOV4IiQyoXlFhTEs6QwizJVSj4eHoQLLy3rAnEqShQaQxwzTR0uqDIlWDRO5LvshyELhDGUFwcdisui0Wz9u5ys5ls6sCKYu7SSPhhBG1mCPJYonHIivwY3RnGnIKtAlMtC_xGZOhR1FsxbzP7kmlm3nSG_a4KVbGZSYoCXq6dFUzNrDhvZr7u9kSUYlat_hBXohbh12p5VszElfDLTbVu329mzdKVPQ6mZ42pfZUYb-kofX-Fxu77tpPxsGc7MX6-j3gW4rw16i8IPq36NfD97O5TdmxZdFZd7VHOfN5_J1Jzce4YjEZJjipX_ufWjSzgXdOADXA_RAVeySrVGRZQx2jTVpGX2sZIdtnt7tMbeyenQx3eZXfazQ-887DeYzumvM9u-XKo3x-wn8QzbOEZptDyDC3PIMDzDJs8A_IMHc_Q8gyeZ3A8Q49n2OQZejzDiue3gDSDoxnqqh0ErGmGNc14q8HRDH2aoU8zvgBH80N2tP_h8P0kbMuShIrnIx4mMhaZpcoLcRbh7n0sZWxREUS9IrbpWPA4S6XVSvGxMDa1WudqrHDjYdNhbtVo_IjdKKvSPGGg1FDLWJtoKCSPbCaUTZSVuYm41qngT9ljL6-TC5975qST5LOtLc_Z7hr1F-ymxcnOvETNuZavHDa_APMs1vo |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+nanoparticle-adjuvanted+S+protein+induces+a+strong+antigen-specific+IgG+response+against+severe+acute+respiratory+syndrome-related+coronavirus+infection%2C+but+fails+to+induce+protective+antibodies+and+limit+eosinophilic+infiltration+in+lungs&rft.jtitle=Microbiology+and+immunology&rft.au=Sekimukai%2C+Hanako&rft.au=Iwata-Yoshikawa%2C+Naoko&rft.au=Fukushi%2C+Shuetsu&rft.au=Tani%2C+Hideki&rft.date=2020-01-01&rft.eissn=1348-0421&rft.volume=64&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1111%2F1348-0421.12754&rft_id=info%3Apmid%2F31692019&rft_id=info%3Apmid%2F31692019&rft.externalDocID=31692019 |