Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs

The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome co...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology and immunology Vol. 64; no. 1; p. 33
Main Authors Sekimukai, Hanako, Iwata-Yoshikawa, Naoko, Fukushi, Shuetsu, Tani, Hideki, Kataoka, Michiyo, Suzuki, Tadaki, Hasegawa, Hideki, Niikura, Kenichi, Arai, Katsuhiko, Nagata, Noriyo
Format Journal Article
LanguageEnglish
Published Australia 01.01.2020
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.
AbstractList The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.
Author Iwata-Yoshikawa, Naoko
Arai, Katsuhiko
Suzuki, Tadaki
Kataoka, Michiyo
Niikura, Kenichi
Fukushi, Shuetsu
Sekimukai, Hanako
Nagata, Noriyo
Tani, Hideki
Hasegawa, Hideki
Author_xml – sequence: 1
  givenname: Hanako
  surname: Sekimukai
  fullname: Sekimukai, Hanako
  organization: Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
– sequence: 2
  givenname: Naoko
  surname: Iwata-Yoshikawa
  fullname: Iwata-Yoshikawa, Naoko
  organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
– sequence: 3
  givenname: Shuetsu
  surname: Fukushi
  fullname: Fukushi, Shuetsu
  organization: Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
– sequence: 4
  givenname: Hideki
  surname: Tani
  fullname: Tani, Hideki
  organization: Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
– sequence: 5
  givenname: Michiyo
  surname: Kataoka
  fullname: Kataoka, Michiyo
  organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
– sequence: 6
  givenname: Tadaki
  surname: Suzuki
  fullname: Suzuki, Tadaki
  organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
– sequence: 7
  givenname: Hideki
  orcidid: 0000-0002-6558-2297
  surname: Hasegawa
  fullname: Hasegawa, Hideki
  organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
– sequence: 8
  givenname: Kenichi
  surname: Niikura
  fullname: Niikura, Kenichi
  organization: Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
– sequence: 9
  givenname: Katsuhiko
  surname: Arai
  fullname: Arai, Katsuhiko
  organization: Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
– sequence: 10
  givenname: Noriyo
  orcidid: 0000-0001-9147-1438
  surname: Nagata
  fullname: Nagata, Noriyo
  organization: Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31692019$$D View this record in MEDLINE/PubMed
BookMark eNo9kMlOHDEQhi2UiP2cG6oHSEPb7d6OCJEJEhIHyBm57XKnkMdu2e6R5sG5Y5akLqVa9P9f1Qn75oNHxn7w-pKXuOKNHKpaCn7JRd_KA3b8v3PETlJ6qWvRi0EesqOGd6Oo-XjMXjfBGfDKh0XFTNphpczLulM-o4FHWGLISB7Im1VjAgUpx-BnKAs0o6_SgposabibNxAxLcEnBDUr8ilDwh3GUuo148eUosoh7iHtvYlhi1VEp96tdCiyakdxTcXMos4U_E-Y1gxWkUuQwxfEJ1OZ7_CDYgqG3sm8AUdbyoAhUbnnL7mCVbTI5eJa5EoBbvVzOmPfrXIJz7_yKfvz6_bp5nd1_7C5u7m-r7Qcuay6qVWDrUXTtUMjxSCmqbV10w1919peKNkO_WSN1lIotL01ZtRCi07avh6t5uKUXXzqLuu0RfO8RNqquH_-93_xBkypkCw
CitedBy_id crossref_primary_10_1016_j_micpath_2022_105882
crossref_primary_10_1109_TNB_2020_2997257
crossref_primary_10_3389_fmolb_2021_604447
crossref_primary_10_1186_s43141_022_00368_7
crossref_primary_10_1002_adma_202107781
crossref_primary_10_2217_nnm_2020_0441
crossref_primary_10_1016_j_jconrel_2021_08_046
crossref_primary_10_1016_j_ejphar_2021_173930
crossref_primary_10_1016_j_vaccine_2022_05_081
crossref_primary_10_3389_fnano_2021_651308
crossref_primary_10_1002_jmv_26320
crossref_primary_10_4049_immunohorizons_2200020
crossref_primary_10_2217_nnm_2020_0163
crossref_primary_10_3390_nano12050783
crossref_primary_10_1021_acsabm_2c00123
crossref_primary_10_3389_fnano_2024_1335346
crossref_primary_10_1016_j_jddst_2021_102899
crossref_primary_10_3390_vaccines9060563
crossref_primary_10_1016_j_micpath_2021_105133
crossref_primary_10_1007_s12274_021_3949_z
crossref_primary_10_1039_D3RA06180A
crossref_primary_10_1186_s12951_022_01625_0
crossref_primary_10_1007_s12598_021_01789_y
crossref_primary_10_1021_acsabm_0c01284
crossref_primary_10_1080_24701556_2020_1852252
crossref_primary_10_7759_cureus_75438
crossref_primary_10_1134_S0006297922040022
crossref_primary_10_1016_j_jconrel_2020_08_060
crossref_primary_10_2147_IJN_S280976
crossref_primary_10_1021_acsanm_0c01978
crossref_primary_10_1093_glycob_cwaa052
crossref_primary_10_2147_IJN_S283686
crossref_primary_10_1016_j_lfs_2020_118761
crossref_primary_10_1007_s40011_022_01371_1
crossref_primary_10_1016_j_matpr_2021_08_265
crossref_primary_10_1007_s11684_023_1034_6
crossref_primary_10_1590_1519_6984_279564
crossref_primary_10_1021_acssynbio_3c00133
crossref_primary_10_1016_j_procbio_2020_09_028
crossref_primary_10_3390_nano10061072
crossref_primary_10_1016_j_jddst_2022_103762
crossref_primary_10_1016_j_vaccine_2022_08_049
crossref_primary_10_1016_j_vaccine_2022_12_025
crossref_primary_10_3390_nano11071788
crossref_primary_10_1016_j_prp_2024_155589
crossref_primary_10_1126_sciadv_abh3827
crossref_primary_10_1039_D3RA04373H
crossref_primary_10_1142_S1793984421300119
crossref_primary_10_2174_1568026623666221226091907
crossref_primary_10_1142_S1793984421300077
crossref_primary_10_3390_biom12070933
crossref_primary_10_1016_j_talanta_2020_121704
crossref_primary_10_3390_ijms22136937
crossref_primary_10_1080_14787210_2020_1776115
crossref_primary_10_1002_sstr_202200021
crossref_primary_10_1002_jcla_24328
crossref_primary_10_1002_advs_202100985
crossref_primary_10_1016_j_apsb_2020_05_009
crossref_primary_10_1134_S1070363222060123
crossref_primary_10_1016_j_jpha_2021_08_003
crossref_primary_10_3390_ijms23094902
crossref_primary_10_1128_jvi_01955_21
crossref_primary_10_1016_j_colcom_2020_100356
crossref_primary_10_1007_s11033_022_07132_7
crossref_primary_10_1155_2021_9495126
crossref_primary_10_2217_nnm_2020_0247
crossref_primary_10_1155_2020_7201752
crossref_primary_10_1038_s41598_022_25418_5
crossref_primary_10_2174_2210303112666220829125054
crossref_primary_10_3390_vaccines10040505
crossref_primary_10_2174_1381612827666210715154004
crossref_primary_10_1002_admi_202202511
crossref_primary_10_3390_nano11113118
crossref_primary_10_1016_j_jinorgbio_2021_111454
crossref_primary_10_1016_j_toxrep_2021_07_002
crossref_primary_10_3390_vaccines12010030
crossref_primary_10_2174_2215083808666220321145803
crossref_primary_10_1002_adfm_202107826
crossref_primary_10_3390_molecules28083354
crossref_primary_10_1002_nano_202100078
crossref_primary_10_1016_j_mattod_2022_11_007
crossref_primary_10_1007_s42765_023_00275_7
crossref_primary_10_1016_j_crchbi_2022_100021
crossref_primary_10_1021_acsnano_0c04117
crossref_primary_10_1063_5_0043009
crossref_primary_10_2217_nnm_2020_0358
crossref_primary_10_1039_D2MA00797E
crossref_primary_10_2217_nnm_2020_0117
crossref_primary_10_1016_j_biopha_2025_117844
crossref_primary_10_1080_15567265_2022_2138803
crossref_primary_10_1515_ntrev_2022_0036
crossref_primary_10_1016_j_jddst_2021_102967
crossref_primary_10_1016_j_ebiom_2020_102768
crossref_primary_10_1152_ajplung_00236_2023
crossref_primary_10_1007_s41204_021_00108_1
crossref_primary_10_1186_s12929_020_00663_w
crossref_primary_10_3390_jnt3040014
crossref_primary_10_1038_s41392_023_01557_7
crossref_primary_10_3390_v15030741
crossref_primary_10_1186_s42269_021_00487_0
crossref_primary_10_1111_bph_15092
crossref_primary_10_1208_s12249_020_01908_5
crossref_primary_10_1111_1348_0421_13184
crossref_primary_10_1021_acsami_0c22381
crossref_primary_10_1007_s12011_020_02414_2
crossref_primary_10_3389_fimmu_2020_02173
crossref_primary_10_1080_14760584_2020_1758070
crossref_primary_10_1021_acsabm_4c00537
crossref_primary_10_1177_01455613231211311
crossref_primary_10_1016_j_jddst_2021_102634
crossref_primary_10_1080_13880209_2022_2063341
crossref_primary_10_1093_cei_uxac038
crossref_primary_10_1016_j_xphs_2022_08_036
crossref_primary_10_1038_s41598_022_14997_y
crossref_primary_10_1002_nano_202100255
crossref_primary_10_1080_17460913_2024_2357994
crossref_primary_10_1002_VIW_20200155
crossref_primary_10_1007_s40089_020_00323_9
crossref_primary_10_1016_j_nano_2021_102372
crossref_primary_10_1002_ppsc_202100159
crossref_primary_10_3390_vaccines12080829
crossref_primary_10_1002_mco2_115
crossref_primary_10_3389_fnano_2020_588915
crossref_primary_10_3390_diagnostics11111981
crossref_primary_10_61186_jcbr_7_2_16
crossref_primary_10_1016_j_jddst_2023_104567
ContentType Journal Article
Copyright 2019 The Societies and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2019 The Societies and John Wiley & Sons Australia, Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1111/1348-0421.12754
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1348-0421
ExternalDocumentID 31692019
Genre Journal Article
GrantInformation_xml – fundername: Japan Science and Technology Agency
  grantid: 16K09951
– fundername: Japan Agency for Medical Research and Development
  grantid: 19fk0108072
– fundername: Japan Science and Technology Agency
  grantid: 19K08945
– fundername: Japan Agency for Medical Research and Development
  grantid: JP19fk0108058
– fundername: Japan Agency for Medical Research and Development
  grantid: JP17fk0108313
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1OC
29M
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CGR
COF
CS3
CUY
CVF
D-E
D-F
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
ECM
EIF
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
J0M
JSF
JSH
KQ8
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM.
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NPM
O66
O9-
OHT
OIG
OVD
OVT
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RJT
ROL
RX1
RZJ
SJN
SUPJJ
SV3
TEORI
TKC
TWZ
UB1
V8K
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WXSBR
WYISQ
X7M
XG1
XOL
XSB
ZGI
ZXP
ZZTAW
~IA
~WT
ID FETCH-LOGICAL-c4914-6b5a8f02365834282bb5f0368765f72a4587bfdcc42aef7fdd9c2c264f709fc12
IngestDate Mon Jul 21 06:00:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords coronavirus
eosinophils
immunopathology
mouse model
adjuvant
gold nanoparticles
Language English
License 2019 The Societies and John Wiley & Sons Australia, Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4914-6b5a8f02365834282bb5f0368765f72a4587bfdcc42aef7fdd9c2c264f709fc12
ORCID 0000-0002-6558-2297
0000-0001-9147-1438
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1348-0421.12754
PMID 31692019
ParticipantIDs pubmed_primary_31692019
PublicationCentury 2000
PublicationDate January 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
PublicationTitle Microbiology and immunology
PublicationTitleAlternate Microbiol Immunol
PublicationYear 2020
SSID ssj0027284
Score 2.5827465
Snippet The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking...
SourceID pubmed
SourceType Index Database
StartPage 33
SubjectTerms Adjuvants, Immunologic - pharmacology
Analysis of Variance
Animals
Antibodies, Viral - immunology
Chlorocebus aethiops
Coronavirus - immunology
Coronavirus Infections - immunology
Coronavirus Infections - prevention & control
Coronavirus Infections - virology
Cytokines - metabolism
Disease Models, Animal
Female
Gold - chemistry
Immunization
Immunoglobulin G - immunology
Lung - immunology
Lung - pathology
Metal Nanoparticles - chemistry
Mice
Mice, Inbred BALB C
Recombinant Proteins - immunology
Severe Acute Respiratory Syndrome - immunology
Severe Acute Respiratory Syndrome - prevention & control
Severe Acute Respiratory Syndrome - virology
Severe acute respiratory syndrome-related coronavirus - immunology
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
Toll-Like Receptors
Vaccination
Vaccines, Synthetic
Vero Cells
Viral Envelope Proteins - genetics
Viral Envelope Proteins - immunology
Viral Vaccines - immunology
Viral Vaccines - pharmacology
Viral Vaccines - therapeutic use
Title Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs
URI https://www.ncbi.nlm.nih.gov/pubmed/31692019
Volume 64
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEIBXDQjUC-L9RnPggGRcJfH6dUSINiDBJa1UTtU-W5PUrhK7Ffxv7szs2okbEfG4WI43WW0yX3ZnZ-fB2OtEctyvUcRyEsmQq6EJRRLb0GR5kg11qnhKgcKfvySTI_7pOD7eGbzpeS01tdxTP34bV_I_UsVnKFeKkv0Hya46xQd4j_LFK0oYr38l44NqroNSlLjx9Y2h0N-aS_qxUI0MXA6GglwZdUOOV4IiQyoXlFhTEs6QwizJVSj4eHoQLLy3rAnEqShQaQxwzTR0uqDIlWDRO5LvshyELhDGUFwcdisui0Wz9u5ys5ls6sCKYu7SSPhhBG1mCPJYonHIivwY3RnGnIKtAlMtC_xGZOhR1FsxbzP7kmlm3nSG_a4KVbGZSYoCXq6dFUzNrDhvZr7u9kSUYlat_hBXohbh12p5VszElfDLTbVu329mzdKVPQ6mZ42pfZUYb-kofX-Fxu77tpPxsGc7MX6-j3gW4rw16i8IPq36NfD97O5TdmxZdFZd7VHOfN5_J1Jzce4YjEZJjipX_ufWjSzgXdOADXA_RAVeySrVGRZQx2jTVpGX2sZIdtnt7tMbeyenQx3eZXfazQ-887DeYzumvM9u-XKo3x-wn8QzbOEZptDyDC3PIMDzDJs8A_IMHc_Q8gyeZ3A8Q49n2OQZejzDiue3gDSDoxnqqh0ErGmGNc14q8HRDH2aoU8zvgBH80N2tP_h8P0kbMuShIrnIx4mMhaZpcoLcRbh7n0sZWxREUS9IrbpWPA4S6XVSvGxMDa1WudqrHDjYdNhbtVo_IjdKKvSPGGg1FDLWJtoKCSPbCaUTZSVuYm41qngT9ljL6-TC5975qST5LOtLc_Z7hr1F-ymxcnOvETNuZavHDa_APMs1vo
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+nanoparticle-adjuvanted+S+protein+induces+a+strong+antigen-specific+IgG+response+against+severe+acute+respiratory+syndrome-related+coronavirus+infection%2C+but+fails+to+induce+protective+antibodies+and+limit+eosinophilic+infiltration+in+lungs&rft.jtitle=Microbiology+and+immunology&rft.au=Sekimukai%2C+Hanako&rft.au=Iwata-Yoshikawa%2C+Naoko&rft.au=Fukushi%2C+Shuetsu&rft.au=Tani%2C+Hideki&rft.date=2020-01-01&rft.eissn=1348-0421&rft.volume=64&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1111%2F1348-0421.12754&rft_id=info%3Apmid%2F31692019&rft_id=info%3Apmid%2F31692019&rft.externalDocID=31692019