Reducing emissions from agriculture to meet the 2 °C target
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identi...
Saved in:
Published in | Global change biology Vol. 22; no. 12; pp. 3859 - 3864 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr−1 by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. |
---|---|
AbstractList | More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr−1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr−1 by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. More than 100 countries pledged to reduce agricultural greenhouse gas ( GHG ) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 Gt CO 2 e yr −1 by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO e yr by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO₂e yr⁻¹ by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. |
Author | Carter, Sarah Roman-Cuesta, Rosa Maria West, Paul C. Dickie, Amy Amonette, James E. Campbell, Bruce M. Westhoek, Henk Wollenberg, Eva Gerber, Pierre Vermeulen, Sonja Sommer, Rolf Sadler, Marc Smith, Pete Neufeldt, Henry Herrero, Mario Herold, Martin Soussana, Jean-François Opio, Carolyn Sapkota, Tek Verchot, Louis Stehfest, Elke Falcucci, Alessandra Wassmann, Reiner Reisinger, Andrew Richards, Meryl Havlík, Petr Rufino, Mariana C. Thornton, Philip K. Baedeker, Tobias Tubiello, Francesco N. Obersteiner, Michael Ortiz-Monasterio, Ivan Sander, Björn O. van Vuuren, Detlef P. |
Author_xml | – sequence: 1 givenname: Eva surname: Wollenberg fullname: Wollenberg, Eva email: lini.wollenberg@uvm.edu, lini.wollenberg@uvm.edu organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark – sequence: 2 givenname: Meryl surname: Richards fullname: Richards, Meryl organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark – sequence: 3 givenname: Pete surname: Smith fullname: Smith, Pete organization: Scottish Food Security Alliance-Crops, Aberdeen, UK – sequence: 4 givenname: Petr surname: Havlík fullname: Havlík, Petr organization: International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria – sequence: 5 givenname: Michael surname: Obersteiner fullname: Obersteiner, Michael organization: International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria – sequence: 6 givenname: Francesco N. surname: Tubiello fullname: Tubiello, Francesco N. organization: Food and Agriculture Organization of the United Nations (FAO), Rome, Italy – sequence: 7 givenname: Martin surname: Herold fullname: Herold, Martin organization: Wageningen University and Research Centre (WUR), Wageningen, The Netherlands – sequence: 8 givenname: Pierre surname: Gerber fullname: Gerber, Pierre organization: Food and Agriculture Organization of the United Nations (FAO), Rome, Italy – sequence: 9 givenname: Sarah surname: Carter fullname: Carter, Sarah organization: Wageningen University and Research Centre (WUR), Wageningen, The Netherlands – sequence: 10 givenname: Andrew surname: Reisinger fullname: Reisinger, Andrew organization: New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Wellington, New Zealand – sequence: 11 givenname: Detlef P. surname: van Vuuren fullname: van Vuuren, Detlef P. organization: Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands – sequence: 12 givenname: Amy surname: Dickie fullname: Dickie, Amy organization: California Environmental Associates (CEA), CA, San Francisco, USA – sequence: 13 givenname: Henry surname: Neufeldt fullname: Neufeldt, Henry organization: World Agroforestry Centre (ICRAF), Nairobi, Kenya – sequence: 14 givenname: Björn O. surname: Sander fullname: Sander, Björn O. organization: International Rice Research Institute (IRRI), Los Baños, Philippines – sequence: 15 givenname: Reiner surname: Wassmann fullname: Wassmann, Reiner organization: International Rice Research Institute (IRRI), Los Baños, Philippines – sequence: 16 givenname: Rolf surname: Sommer fullname: Sommer, Rolf organization: International Center for Tropical Agriculture (CIAT), Cali, Colombia – sequence: 17 givenname: James E. surname: Amonette fullname: Amonette, James E. organization: Pacific Northwest National Laboratory (PNNL), WA, Richland, USA – sequence: 18 givenname: Alessandra surname: Falcucci fullname: Falcucci, Alessandra organization: Food and Agriculture Organization of the United Nations (FAO), Rome, Italy – sequence: 19 givenname: Mario surname: Herrero fullname: Herrero, Mario organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Qld, Brisbane, Australia – sequence: 20 givenname: Carolyn surname: Opio fullname: Opio, Carolyn organization: Food and Agriculture Organization of the United Nations (FAO), Rome, Italy – sequence: 21 givenname: Rosa Maria surname: Roman-Cuesta fullname: Roman-Cuesta, Rosa Maria organization: Wageningen University and Research Centre (WUR), Wageningen, The Netherlands – sequence: 22 givenname: Elke surname: Stehfest fullname: Stehfest, Elke organization: Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands – sequence: 23 givenname: Henk surname: Westhoek fullname: Westhoek, Henk organization: Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands – sequence: 24 givenname: Ivan surname: Ortiz-Monasterio fullname: Ortiz-Monasterio, Ivan organization: International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico – sequence: 25 givenname: Tek surname: Sapkota fullname: Sapkota, Tek organization: International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico – sequence: 26 givenname: Mariana C. surname: Rufino fullname: Rufino, Mariana C. organization: Center for International Forestry Research (CIFOR), Nairobi, Kenya – sequence: 27 givenname: Philip K. surname: Thornton fullname: Thornton, Philip K. organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark – sequence: 28 givenname: Louis surname: Verchot fullname: Verchot, Louis organization: Center for International Forestry Research (CIFOR), Nairobi, Kenya – sequence: 29 givenname: Paul C. surname: West fullname: West, Paul C. organization: Institute on the Environment (IONE), University of Minnesota, MN, Saint Paul, USA – sequence: 30 givenname: Jean-François surname: Soussana fullname: Soussana, Jean-François organization: French National Institute for Agricultural Research (INRA), Clermont-Ferrand, France – sequence: 31 givenname: Tobias surname: Baedeker fullname: Baedeker, Tobias organization: World Bank (WB), DC, Washington, USA – sequence: 32 givenname: Marc surname: Sadler fullname: Sadler, Marc organization: World Bank (WB), DC, Washington, USA – sequence: 33 givenname: Sonja surname: Vermeulen fullname: Vermeulen, Sonja organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark – sequence: 34 givenname: Bruce M. surname: Campbell fullname: Campbell, Bruce M. organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27185416$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhiNURC-w4AVQJDZ0kdZ3O0hdwKgdkCpAXITExnKck-CScQbb0dC34RF4hj4ZDtN2UQnw5ljW9x2d43-_2PGjh6J4jNERzue4t80RppShe8UepoJXhCmxM985qzDCdLfYj_ECIUQJEg-KXSKx4gyLveLkPbSTdb4vYeVidKOPZRfGVWn64Ow0pClAmcZyBZDK9BVKcvXz6teiTCb0kB4W9zszRHh0XQ-KT2enHxevqvO3y9eLF-eVZTVGVdsoA0paJSmtFbO87Zq2gw5U20jMTMtrJBXrmGjA8vldYtnKjoi2EcAxPSieb_tuTA8-TwteexOsi3o0Tg-uCSZc6s0UtB_msp6aqDlREvEsP9vK6zB-nyAmnTe1MAzGwzhFTRBBSsia4P-iWBEhlKjRjD69g16MU_D5FzLF8tqUcJqpJ9fU1Kyg1evgVvOkNwFk4HAL2DDGGKC7RTDSc7g6h6v_hJvZ4zusdcmknFkKxg3_MjZugMu_t9bLxcsbo9oaLib4cWuY8E0LSSXXn98sNfrwTp6JL0pL-hvEHcTN |
CitedBy_id | crossref_primary_10_1088_1748_9326_abb10a crossref_primary_10_3390_agronomy9090491 crossref_primary_10_1088_1748_9326_aabdc4 crossref_primary_10_3389_fsufs_2019_00014 crossref_primary_10_1021_acs_est_7b02600 crossref_primary_10_1038_s41467_023_43860_5 crossref_primary_10_1016_j_crsust_2020_100015 crossref_primary_10_1111_gcb_14529 crossref_primary_10_1371_journal_pone_0231764 crossref_primary_10_3390_jimaging4040052 crossref_primary_10_3390_land9090309 crossref_primary_10_1016_j_gfs_2019_02_003 crossref_primary_10_1016_j_scitotenv_2019_04_320 crossref_primary_10_1038_sdata_2018_45 crossref_primary_10_3390_su11051372 crossref_primary_10_1016_j_cjpre_2021_04_010 crossref_primary_10_1016_j_nbsj_2023_100071 crossref_primary_10_1371_journal_pone_0315571 crossref_primary_10_1002_ghg_2066 crossref_primary_10_1007_s10098_022_02272_7 crossref_primary_10_1016_j_landusepol_2020_104823 crossref_primary_10_3389_fenvs_2021_657608 crossref_primary_10_1007_s13593_017_0452_8 crossref_primary_10_1038_s41558_019_0591_9 crossref_primary_10_1016_j_jenvman_2023_119322 crossref_primary_10_1016_j_cosust_2018_06_005 crossref_primary_10_3389_fsufs_2022_965767 crossref_primary_10_3390_agriculture12071043 crossref_primary_10_1111_agec_12534 crossref_primary_10_1126_science_abo2364 crossref_primary_10_3390_agronomy11112102 crossref_primary_10_1016_j_agee_2021_107736 crossref_primary_10_1016_j_resconrec_2020_104912 crossref_primary_10_3390_ijerph20010189 crossref_primary_10_3390_agriengineering6030113 crossref_primary_10_1080_14693062_2023_2267021 crossref_primary_10_3390_plants9091094 crossref_primary_10_1111_gcb_14425 crossref_primary_10_1108_SRJ_05_2024_0354 crossref_primary_10_1007_s13762_019_02520_2 crossref_primary_10_1021_acs_est_2c03509 crossref_primary_10_1007_s10668_024_05871_0 crossref_primary_10_1016_j_gloenvcha_2018_02_005 crossref_primary_10_1016_j_scitotenv_2017_12_343 crossref_primary_10_1016_j_still_2017_12_002 crossref_primary_10_1002_2017EF000688 crossref_primary_10_1029_2019EF001361 crossref_primary_10_1111_gcb_15873 crossref_primary_10_1016_j_fcr_2018_05_019 crossref_primary_10_1016_j_gloenvcha_2022_102586 crossref_primary_10_3846_16486897_2017_1319375 crossref_primary_10_1016_j_heliyon_2023_e20544 crossref_primary_10_1007_s11356_022_22748_9 crossref_primary_10_1038_s43247_023_01038_3 crossref_primary_10_1371_journal_pone_0247887 crossref_primary_10_1007_s11356_021_15481_2 crossref_primary_10_2139_ssrn_3671527 crossref_primary_10_1016_j_eja_2021_126440 crossref_primary_10_1016_j_foodpol_2018_05_003 crossref_primary_10_1111_een_12777 crossref_primary_10_1177_1946756716673640 crossref_primary_10_1136_bmj_m2322 crossref_primary_10_1016_j_cosust_2020_04_006 crossref_primary_10_1016_j_agee_2018_11_002 crossref_primary_10_1111_ppl_12891 crossref_primary_10_3390_land11020208 crossref_primary_10_1007_s11027_021_09940_x crossref_primary_10_1016_j_spc_2024_09_022 crossref_primary_10_1088_1748_9326_aa9007 crossref_primary_10_3390_en16186601 crossref_primary_10_1016_j_scitotenv_2018_09_227 crossref_primary_10_2139_ssrn_4587367 crossref_primary_10_3390_su11082349 crossref_primary_10_1088_1748_9326_aa8c83 crossref_primary_10_1093_femsec_fiz203 crossref_primary_10_1016_j_scitotenv_2020_139353 crossref_primary_10_1038_nclimate3404 crossref_primary_10_1016_j_jclepro_2017_10_269 crossref_primary_10_1016_j_cosust_2020_11_001 crossref_primary_10_1038_d41586_025_00222_z crossref_primary_10_1007_s11027_017_9752_1 crossref_primary_10_1080_14693062_2018_1559793 crossref_primary_10_1016_j_jclepro_2018_11_118 crossref_primary_10_3354_cr01520 crossref_primary_10_1007_s11027_017_9737_0 crossref_primary_10_3390_su151310533 crossref_primary_10_1186_s13021_020_00158_z crossref_primary_10_1073_pnas_1620229114 crossref_primary_10_1029_2023AV001052 crossref_primary_10_46830_wrirpt_20_00006 crossref_primary_10_1016_j_resconrec_2022_106576 crossref_primary_10_3390_agronomy9010031 crossref_primary_10_1016_j_scitotenv_2021_148590 crossref_primary_10_1007_s11104_024_06999_8 crossref_primary_10_1007_s12571_019_00991_2 crossref_primary_10_1016_j_still_2019_104381 crossref_primary_10_1111_gcb_14984 crossref_primary_10_1038_s41586_018_0594_0 crossref_primary_10_2139_ssrn_3156044 crossref_primary_10_1017_S2047102517000395 crossref_primary_10_3389_fmicb_2019_02207 crossref_primary_10_1016_j_jclepro_2024_141150 crossref_primary_10_1016_j_scitotenv_2020_143505 crossref_primary_10_1007_s10584_025_03902_x crossref_primary_10_1134_S1064229321100112 crossref_primary_10_5194_bg_18_3981_2021 crossref_primary_10_1016_j_geoderma_2018_03_035 crossref_primary_10_1016_j_jclepro_2018_11_018 crossref_primary_10_5194_bg_13_4253_2016 crossref_primary_10_1016_j_agee_2023_108412 crossref_primary_10_1016_j_jclepro_2021_128406 crossref_primary_10_1016_j_scitotenv_2022_153342 crossref_primary_10_3390_agriculture13061210 crossref_primary_10_1007_s10584_023_03544_x crossref_primary_10_1016_j_jenvman_2020_111798 crossref_primary_10_1016_S0140_6736_18_31788_4 crossref_primary_10_1016_j_resconrec_2020_105102 crossref_primary_10_1007_s41247_022_00100_6 crossref_primary_10_3390_su10082616 crossref_primary_10_1007_s11027_017_9743_2 crossref_primary_10_1007_s10640_020_00473_6 crossref_primary_10_1016_j_scitotenv_2017_12_286 crossref_primary_10_3389_fanim_2021_795200 crossref_primary_10_1186_s43591_021_00004_0 crossref_primary_10_1038_s41538_018_0021_9 crossref_primary_10_1038_s41558_023_01605_8 crossref_primary_10_1016_j_jclepro_2017_06_085 crossref_primary_10_3390_agriculture12070907 crossref_primary_10_1111_gfs_12353 crossref_primary_10_1371_journal_pone_0207700 crossref_primary_10_31073_mivg202201_318 crossref_primary_10_1016_j_cub_2018_05_087 crossref_primary_10_1016_j_scitotenv_2017_03_110 crossref_primary_10_1016_j_scitotenv_2021_147344 crossref_primary_10_1016_j_agee_2017_11_004 crossref_primary_10_3389_fpls_2022_1033953 crossref_primary_10_1080_14693062_2017_1397495 crossref_primary_10_1007_s10098_021_02153_5 crossref_primary_10_1016_j_jenvman_2021_113058 crossref_primary_10_1016_j_plaphy_2024_108408 crossref_primary_10_1016_j_agee_2017_06_001 crossref_primary_10_1007_s10584_021_03047_7 crossref_primary_10_3390_foods11213459 crossref_primary_10_1016_j_agee_2017_06_004 crossref_primary_10_1016_j_scitotenv_2022_159738 crossref_primary_10_1186_s42523_019_0016_0 crossref_primary_10_3390_agronomy12040924 crossref_primary_10_1016_j_landusepol_2021_105459 crossref_primary_10_1038_nbt_4110 crossref_primary_10_1111_gcb_13975 crossref_primary_10_5194_bg_14_1403_2017 crossref_primary_10_1016_j_earscirev_2023_104462 crossref_primary_10_3390_en15166002 crossref_primary_10_1007_s10113_021_01837_4 crossref_primary_10_1016_j_geoderma_2024_117026 crossref_primary_10_1080_14693062_2018_1430018 crossref_primary_10_1098_rsta_2020_0452 crossref_primary_10_1038_s41558_018_0358_8 crossref_primary_10_1016_j_landusepol_2022_106382 crossref_primary_10_1016_j_foodpol_2018_01_011 crossref_primary_10_1016_j_crsust_2021_100110 crossref_primary_10_3390_su17051980 crossref_primary_10_1038_s41558_018_0230_x crossref_primary_10_1093_advances_nmz037 crossref_primary_10_1088_1748_9326_11_12_120207 crossref_primary_10_1016_j_ancene_2019_100213 crossref_primary_10_1088_1748_9326_ab542a crossref_primary_10_1038_s41558_024_01947_x crossref_primary_10_1016_j_cosust_2018_01_006 crossref_primary_10_1057_s41301_017_0092_y crossref_primary_10_1038_s41477_018_0108_y crossref_primary_10_1016_j_apsoil_2024_105759 crossref_primary_10_1177_15598276241280245 crossref_primary_10_1016_j_jenvman_2021_112503 crossref_primary_10_1080_17583004_2020_1750229 crossref_primary_10_1111_gcb_15342 crossref_primary_10_3390_su11123433 crossref_primary_10_1016_j_fcr_2021_108366 crossref_primary_10_1111_1477_8947_12304 crossref_primary_10_1088_1748_9326_abc2f7 crossref_primary_10_1080_14693062_2016_1244508 crossref_primary_10_3389_fsufs_2018_00002 crossref_primary_10_1088_1748_9326_aba5b2 crossref_primary_10_1007_s10705_023_10335_4 crossref_primary_10_1007_s11356_021_13975_7 crossref_primary_10_3389_fsufs_2020_00069 crossref_primary_10_1016_j_still_2018_10_009 crossref_primary_10_1016_j_eiar_2022_106735 crossref_primary_10_1007_s13593_017_0430_1 crossref_primary_10_1016_j_pedsph_2024_10_002 crossref_primary_10_3389_fsufs_2021_439881 crossref_primary_10_1088_1748_9326_aa9ea4 crossref_primary_10_1007_s10584_020_02673_x crossref_primary_10_1016_j_agee_2017_10_003 crossref_primary_10_1080_14693062_2024_2447486 crossref_primary_10_1088_1748_9326_ac9b50 crossref_primary_10_1007_s11027_017_9779_3 crossref_primary_10_3389_fenvs_2021_786087 crossref_primary_10_1146_annurev_environ_102016_060946 crossref_primary_10_1016_j_agrformet_2021_108777 crossref_primary_10_1088_1748_9326_ac3605 crossref_primary_10_36543_kauiibfd_2024_026 crossref_primary_10_3389_fsufs_2021_692137 crossref_primary_10_1088_1748_9326_aab0b0 crossref_primary_10_1016_j_gfs_2021_100537 crossref_primary_10_1038_s41467_018_05340_z crossref_primary_10_1016_j_gloenvcha_2019_101983 crossref_primary_10_1016_j_rser_2019_109338 crossref_primary_10_1038_nclimate3155 crossref_primary_10_1088_1748_9326_ab28a3 crossref_primary_10_1111_grow_12384 crossref_primary_10_17221_250_2020_AGRICECON crossref_primary_10_1007_s11027_021_09980_3 crossref_primary_10_3389_fsufs_2020_00055 crossref_primary_10_3390_biology10080766 crossref_primary_10_1016_j_biortech_2018_07_100 crossref_primary_10_1016_j_scitotenv_2018_10_060 crossref_primary_10_3390_min11060651 crossref_primary_10_1038_s41467_018_03489_1 crossref_primary_10_3390_agriculture8110181 crossref_primary_10_1088_1748_9326_ac065f crossref_primary_10_1007_s00394_022_02835_w crossref_primary_10_1088_1748_9326_ad1cb6 crossref_primary_10_1007_s42773_023_00279_x crossref_primary_10_1016_j_still_2018_04_011 crossref_primary_10_1515_pwp_2018_0034 crossref_primary_10_3389_fsufs_2019_00105 crossref_primary_10_2139_ssrn_3671605 crossref_primary_10_1002_jeq2_20041 crossref_primary_10_1016_j_jclepro_2021_129337 crossref_primary_10_2139_ssrn_2854591 crossref_primary_10_1177_0030727018815332 crossref_primary_10_24193_subbbiol_2022_1_10 crossref_primary_10_1016_j_jclepro_2021_129584 crossref_primary_10_1016_j_agsy_2023_103620 crossref_primary_10_3168_jds_2016_11954 crossref_primary_10_1038_s43016_024_01038_2 crossref_primary_10_1186_s12866_020_02037_6 crossref_primary_10_1016_j_envsci_2022_12_006 crossref_primary_10_1111_febs_16549 crossref_primary_10_12944_CWE_15_2_14 crossref_primary_10_1080_17583004_2022_2151939 crossref_primary_10_3389_fsufs_2024_1481005 crossref_primary_10_1111_gcb_16631 crossref_primary_10_1007_s10584_020_02838_8 |
Cites_doi | 10.1016/j.gloenvcha.2015.04.010 10.1111/j.1574-0862.2008.00286.x 10.1007/s10584-011-0152-3 10.1111/j.1365-2389.2010.01342.x 10.1016/j.envsci.2006.10.007 10.1038/nature17174 10.1038/nclimate2353 10.1126/science.1100103 10.1007/s10584-012-0593-3 10.1111/gcb.12113 10.1038/530153a 10.1890/120058 10.1080/14693062.2014.849452 10.1007/s10584-014-1104-5 10.1073/pnas.1504124112 10.1088/1748‐9326/8/1/015009 10.1111/gcb.12160 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-5 10.1073/pnas.1308044111 10.1016/j.agsy.2012.07.002 10.5194/bgd-12-5435-2015 10.1098/rstb.2007.2184 10.1038/nclimate2925 10.1016/j.plantsci.2015.01.012 |
ContentType | Journal Article |
Copyright | 2016 The Authors Published by John Wiley & Sons Ltd. 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd Wageningen University & Research |
Copyright_xml | – notice: 2016 The Authors Published by John Wiley & Sons Ltd. – notice: 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd – notice: Wageningen University & Research |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 QVL |
DOI | 10.1111/gcb.13340 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 3864 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_528705 4266330071 27185416 10_1111_gcb_13340 GCB13340 ark_67375_WNG_0SP7F6Z8_7 |
Genre | commentary Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Union (EU) |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT 24P AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 AAPBV ABHUG ABPTK ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ PQEST QVL UMP |
ID | FETCH-LOGICAL-c4910-db8ae87c8733984c5dfbdfefe8db714ad590784f46bec5efe8717d7f26db6e513 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Thu Oct 13 09:30:50 EDT 2022 Fri Jul 11 18:15:37 EDT 2025 Thu Jul 10 23:06:19 EDT 2025 Fri Jul 25 10:50:43 EDT 2025 Wed Feb 19 02:41:31 EST 2025 Tue Jul 01 03:52:55 EDT 2025 Thu Apr 24 23:05:52 EDT 2025 Wed Aug 20 07:27:39 EDT 2025 Wed Oct 30 09:53:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | agriculture mitigation United Nations Framework Convention on Climate Change integrated assessment modeling climate change policy target |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4910-db8ae87c8733984c5dfbdfefe8db714ad590784f46bec5efe8717d7f26db6e513 |
Notes | Appendix S1. Overview of methods, including Tables S1-S4. Appendix S2. Data sources and methods, including Figure S1 and Tables S5-S10. Appendix S3. 2030 reference levels. Appendix S4. References. ArticleID:GCB13340 European Union (EU) ark:/67375/WNG-0SP7F6Z8-7 istex:057FFBFFAE95CC715D012E580FCCBF67D168F13F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4293-3290 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13340 |
PMID | 27185416 |
PQID | 1844913253 |
PQPubID | 30327 |
PageCount | 6 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_528705 proquest_miscellaneous_2020867921 proquest_miscellaneous_1826686901 proquest_journals_1844913253 pubmed_primary_27185416 crossref_primary_10_1111_gcb_13340 crossref_citationtrail_10_1111_gcb_13340 wiley_primary_10_1111_gcb_13340_GCB13340 istex_primary_ark_67375_WNG_0SP7F6Z8_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Havlík P, Valin H, Herrero M et al. (2014) Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 111, 3709-3714. Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature, 532, 49-57. Höhne N, den Elzen M, Escalante D (2014) Regional GHG reduction targets based on effort sharing: a comparison of studies. Climate Policy, 14, 122-147. Hedenus F, Wirsenius S, Johansson DJA (2014) The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Climatic Change, 124, 79-91. Smith P, Haberl H, Popp A et al. (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19, 2285-2302. Carter S, Herold M, Rufino MC, Neumann K, Kooistra L, Verchot L (2015) Mitigation of agriculture emissions in the tropics: comparing forest land-sparing options at the national level. Biogeosciences Discussions, 12, 5435-5475. Herrero M, Henderson B, Havlík P et al. (2016) Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6, 452-461. Beach RH, Deangelo BJ, Rose S, Li C, Salas W, Delgrosso SJ (2008) Mitigation potential and costs for global agricultural greenhouse gas emissions. Agricultural Economics, 38, 109-115. Subbarao GV, Yoshihashi T, Worthington M et al. (2015) Suppression of soil nitrification by plants. Plant Science, 233, 155-164. Reisinger A, Havlík P, Riahi K, van Vliet O, Obersteiner M, Herrero M (2013) Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677-690. Cotrufo MF, Wallenstein M, Boot CM, Denef K, Paul EA (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995. DeAngelo BJ, de la Chesnaye F, Beach RH, Sommer A, Murray BC (2006) Methane and nitrous oxide mitigation in agriculture. The Energy Journal, 27, 89-108. Richards M, Bruun T, Campbell BM et al. (2016) How Countries Plan to Address Agricultural Adaptation and Mitigation: An Analysis of Intended Nationally Determined Contributions CCAFS dataset version 1.1. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen. Gernaat DEHJ, Calvin K, Lucas PL et al. (2015) Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environmental Change, 33, 142-153. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science, 305, 968-972. Cafaro P (2013) Avoiding Catastrophic Climate Change: Why Technological Innovation is Necessary but not Sufficient. Ethics and Emerging Technologies, pp. 424-438. Palgrave Macmillan, New York. van Vuuren DP, Stehfest E, den Elzen MGJ et al. (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 degrees C. Climatic Change, 109, 95-116. Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science and Policy, 10, 85-103. Hristov AN, Oh J, Giallongo F et al. (2015) An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America, 112, 10663-10668. Del Grosso SJ, Cavigelli MJ (2012) Climate stabilization wedges revisited: can agricultural production and greenhouse gas reduction goals be accomplished? Frontiers in Ecology and the Environment, 10, 571-578. Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nature Climate Change, 4, 924-929. Richards MB, Wollenberg E, Buglion-Gluck S (2015) Agriculture's Contributions to National Emissions. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen. Gerber PJ, Steinfeld H, Henderson B et al. (2013) Tackling Climate Change Through Livestock - A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. Tubiello FN, Salvatore M, Ferrara A et al. (2013) The FAOSTAT GHG database. Environmental Research Letters, 8, doi:10.1088/1748-9326/8/1/015009. Williamson P (2016) Scrutinizing CO2 removal methods. Nature, 530, 153-155. Smith P, Martino D, Cai Z et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 789-813. Wise M, Calvin K, Kyle P, Luckow P, Edmonds J (2014) Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon. Climatic Change Economics, 5, 145003. Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science, 62, 42-55. Herd RM, Bird SH, Donoghue KA, Arthur PF, Hegarty RF (2013) Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 20, 286-289. Stehfest E, Berg MVD, Woltjer G, Msangi S, Westhoek H (2013) Options to reduce the environmental effects of livestock production - comparison of two economic models. Agricultural Systems, 114, 38-53. 2015; 12 2008; 38 2015; 33 2013; 20 2011; 62 2014; 111 2007; 10 2013; 8 2004; 305 2008; 363 2012; 10 2013; 19 2016; 6 2011; 109 2014; 5 2014; 4 2006; 27 2015; 233 2015; 112 2013; 117 2016; 530 2014; 14 2013; 114 2016 2015 2014 2013 2016; 532 2014; 124 e_1_2_9_30_1 e_1_2_9_31_1 Gerber PJ (e_1_2_9_9_1) 2013 e_1_2_9_11_1 e_1_2_9_10_1 Smith P (e_1_2_9_27_1) 2014 e_1_2_9_32_1 Wise M (e_1_2_9_33_1) 2014; 5 e_1_2_9_12_1 Cafaro P (e_1_2_9_4_1) 2013 DeAngelo BJ (e_1_2_9_7_1) 2006; 27 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 Richards M (e_1_2_9_24_1) 2016 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 Herd RM (e_1_2_9_13_1) 2013; 20 e_1_2_9_3_1 e_1_2_9_2_1 Richards MB (e_1_2_9_23_1) 2015 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_29_1 |
References_xml | – reference: Höhne N, den Elzen M, Escalante D (2014) Regional GHG reduction targets based on effort sharing: a comparison of studies. Climate Policy, 14, 122-147. – reference: Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature, 532, 49-57. – reference: Richards M, Bruun T, Campbell BM et al. (2016) How Countries Plan to Address Agricultural Adaptation and Mitigation: An Analysis of Intended Nationally Determined Contributions CCAFS dataset version 1.1. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen. – reference: Hristov AN, Oh J, Giallongo F et al. (2015) An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America, 112, 10663-10668. – reference: Herd RM, Bird SH, Donoghue KA, Arthur PF, Hegarty RF (2013) Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 20, 286-289. – reference: van Vuuren DP, Stehfest E, den Elzen MGJ et al. (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 degrees C. Climatic Change, 109, 95-116. – reference: Williamson P (2016) Scrutinizing CO2 removal methods. Nature, 530, 153-155. – reference: Wise M, Calvin K, Kyle P, Luckow P, Edmonds J (2014) Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon. Climatic Change Economics, 5, 145003. – reference: Del Grosso SJ, Cavigelli MJ (2012) Climate stabilization wedges revisited: can agricultural production and greenhouse gas reduction goals be accomplished? Frontiers in Ecology and the Environment, 10, 571-578. – reference: Herrero M, Henderson B, Havlík P et al. (2016) Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6, 452-461. – reference: Hedenus F, Wirsenius S, Johansson DJA (2014) The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Climatic Change, 124, 79-91. – reference: Smith P, Haberl H, Popp A et al. (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19, 2285-2302. – reference: Gernaat DEHJ, Calvin K, Lucas PL et al. (2015) Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environmental Change, 33, 142-153. – reference: Cotrufo MF, Wallenstein M, Boot CM, Denef K, Paul EA (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995. – reference: Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nature Climate Change, 4, 924-929. – reference: Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science, 62, 42-55. – reference: Gerber PJ, Steinfeld H, Henderson B et al. (2013) Tackling Climate Change Through Livestock - A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. – reference: Carter S, Herold M, Rufino MC, Neumann K, Kooistra L, Verchot L (2015) Mitigation of agriculture emissions in the tropics: comparing forest land-sparing options at the national level. Biogeosciences Discussions, 12, 5435-5475. – reference: Stehfest E, Berg MVD, Woltjer G, Msangi S, Westhoek H (2013) Options to reduce the environmental effects of livestock production - comparison of two economic models. Agricultural Systems, 114, 38-53. – reference: Smith P, Martino D, Cai Z et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 789-813. – reference: Havlík P, Valin H, Herrero M et al. (2014) Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 111, 3709-3714. – reference: Subbarao GV, Yoshihashi T, Worthington M et al. (2015) Suppression of soil nitrification by plants. Plant Science, 233, 155-164. – reference: Cafaro P (2013) Avoiding Catastrophic Climate Change: Why Technological Innovation is Necessary but not Sufficient. Ethics and Emerging Technologies, pp. 424-438. Palgrave Macmillan, New York. – reference: Tubiello FN, Salvatore M, Ferrara A et al. (2013) The FAOSTAT GHG database. Environmental Research Letters, 8, doi:10.1088/1748-9326/8/1/015009. – reference: Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science, 305, 968-972. – reference: DeAngelo BJ, de la Chesnaye F, Beach RH, Sommer A, Murray BC (2006) Methane and nitrous oxide mitigation in agriculture. The Energy Journal, 27, 89-108. – reference: Richards MB, Wollenberg E, Buglion-Gluck S (2015) Agriculture's Contributions to National Emissions. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen. – reference: Reisinger A, Havlík P, Riahi K, van Vliet O, Obersteiner M, Herrero M (2013) Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677-690. – reference: Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science and Policy, 10, 85-103. – reference: Beach RH, Deangelo BJ, Rose S, Li C, Salas W, Delgrosso SJ (2008) Mitigation potential and costs for global agricultural greenhouse gas emissions. Agricultural Economics, 38, 109-115. – volume: 6 start-page: 452 year: 2016 end-page: 461 article-title: Greenhouse gas mitigation potentials in the livestock sector publication-title: Nature Climate Change – volume: 19 start-page: 988 year: 2013 end-page: 995 article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Global Change Biology – volume: 10 start-page: 571 year: 2012 end-page: 578 article-title: Climate stabilization wedges revisited: can agricultural production and greenhouse gas reduction goals be accomplished? publication-title: Frontiers in Ecology and the Environment – volume: 124 start-page: 79 year: 2014 end-page: 91 article-title: The importance of reduced meat and dairy consumption for meeting stringent climate change targets publication-title: Climatic Change – volume: 532 start-page: 49 year: 2016 end-page: 57 article-title: Climate‐smart soils publication-title: Nature – volume: 305 start-page: 968 year: 2004 end-page: 972 article-title: Stabilization wedges: solving the climate problem for the next 50 years with current technologies publication-title: Science – volume: 27 start-page: 89 year: 2006 end-page: 108 article-title: Methane and nitrous oxide mitigation in agriculture publication-title: The Energy Journal – volume: 8 year: 2013 article-title: The FAOSTAT GHG database publication-title: Environmental Research Letters – start-page: 811 year: 2014 end-page: 922 – volume: 109 start-page: 95 year: 2011 end-page: 116 article-title: RCP2.6: exploring the possibility to keep global mean temperature increase below 2 degrees C publication-title: Climatic Change – year: 2016 – volume: 62 start-page: 42 year: 2011 end-page: 55 article-title: Soil carbon sequestration to mitigate climate change: a critical re‐examination to identify the true and the false publication-title: European Journal of Soil Science – volume: 117 start-page: 677 year: 2013 end-page: 690 article-title: Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture publication-title: Climatic Change – year: 2014 – volume: 233 start-page: 155 year: 2015 end-page: 164 article-title: Suppression of soil nitrification by plants publication-title: Plant Science – volume: 363 start-page: 789 year: 2008 end-page: 813 article-title: Greenhouse gas mitigation in agriculture publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences – volume: 112 start-page: 10663 year: 2015 end-page: 10668 article-title: An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: 85 year: 2007 end-page: 103 article-title: Long‐term reduction potential of non‐CO greenhouse gases publication-title: Environmental Science and Policy – volume: 4 start-page: 924 year: 2014 end-page: 929 article-title: Importance of food‐demand management for climate mitigation publication-title: Nature Climate Change – volume: 111 start-page: 3709 year: 2014 end-page: 3714 article-title: Climate change mitigation through livestock system transitions publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 14 start-page: 122 year: 2014 end-page: 147 article-title: Regional GHG reduction targets based on effort sharing: a comparison of studies publication-title: Climate Policy – start-page: 424 year: 2013 end-page: 438 – volume: 33 start-page: 142 year: 2015 end-page: 153 article-title: Understanding the contribution of non‐carbon dioxide gases in deep mitigation scenarios publication-title: Global Environmental Change – volume: 12 start-page: 5435 year: 2015 end-page: 5475 article-title: Mitigation of agriculture emissions in the tropics: comparing forest land‐sparing options at the national level publication-title: Biogeosciences Discussions – volume: 38 start-page: 109 year: 2008 end-page: 115 article-title: Mitigation potential and costs for global agricultural greenhouse gas emissions publication-title: Agricultural Economics – volume: 20 start-page: 286 year: 2013 end-page: 289 article-title: Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits publication-title: Proceedings of the Association for the Advancement of Animal Breeding and Genetics – volume: 19 start-page: 2285 year: 2013 end-page: 2302 article-title: How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? publication-title: Global Change Biology – volume: 530 start-page: 153 year: 2016 end-page: 155 article-title: Scrutinizing CO removal methods publication-title: Nature – year: 2015 – volume: 114 start-page: 38 year: 2013 end-page: 53 article-title: Options to reduce the environmental effects of livestock production – comparison of two economic models publication-title: Agricultural Systems – volume: 5 start-page: 145003 year: 2014 article-title: Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon publication-title: Climatic Change Economics – year: 2013 – ident: e_1_2_9_10_1 doi: 10.1016/j.gloenvcha.2015.04.010 – ident: e_1_2_9_3_1 doi: 10.1111/j.1574-0862.2008.00286.x – ident: e_1_2_9_31_1 doi: 10.1007/s10584-011-0152-3 – ident: e_1_2_9_21_1 doi: 10.1111/j.1365-2389.2010.01342.x – ident: e_1_2_9_17_1 doi: 10.1016/j.envsci.2006.10.007 – ident: e_1_2_9_20_1 doi: 10.1038/nature17174 – ident: e_1_2_9_2_1 doi: 10.1038/nclimate2353 – ident: e_1_2_9_19_1 doi: 10.1126/science.1100103 – ident: e_1_2_9_22_1 doi: 10.1007/s10584-012-0593-3 – ident: e_1_2_9_6_1 doi: 10.1111/gcb.12113 – ident: e_1_2_9_32_1 doi: 10.1038/530153a – volume: 20 start-page: 286 year: 2013 ident: e_1_2_9_13_1 article-title: Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits publication-title: Proceedings of the Association for the Advancement of Animal Breeding and Genetics – ident: e_1_2_9_8_1 doi: 10.1890/120058 – ident: e_1_2_9_15_1 doi: 10.1080/14693062.2014.849452 – ident: e_1_2_9_12_1 doi: 10.1007/s10584-014-1104-5 – ident: e_1_2_9_16_1 doi: 10.1073/pnas.1504124112 – volume-title: How Countries Plan to Address Agricultural Adaptation and Mitigation: An Analysis of Intended Nationally Determined Contributions CCAFS dataset version 1.1 year: 2016 ident: e_1_2_9_24_1 – ident: e_1_2_9_30_1 doi: 10.1088/1748‐9326/8/1/015009 – ident: e_1_2_9_26_1 doi: 10.1111/gcb.12160 – volume: 27 start-page: 89 year: 2006 ident: e_1_2_9_7_1 article-title: Methane and nitrous oxide mitigation in agriculture publication-title: The Energy Journal doi: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-5 – ident: e_1_2_9_11_1 doi: 10.1073/pnas.1308044111 – start-page: 424 volume-title: Avoiding Catastrophic Climate Change: Why Technological Innovation is Necessary but not Sufficient. Ethics and Emerging Technologies year: 2013 ident: e_1_2_9_4_1 – ident: e_1_2_9_28_1 doi: 10.1016/j.agsy.2012.07.002 – ident: e_1_2_9_5_1 doi: 10.5194/bgd-12-5435-2015 – volume: 5 start-page: 145003 year: 2014 ident: e_1_2_9_33_1 article-title: Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon publication-title: Climatic Change Economics – ident: e_1_2_9_25_1 doi: 10.1098/rstb.2007.2184 – ident: e_1_2_9_14_1 doi: 10.1038/nclimate2925 – start-page: 811 volume-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_9_27_1 – volume-title: Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities year: 2013 ident: e_1_2_9_9_1 – ident: e_1_2_9_18_1 – ident: e_1_2_9_29_1 doi: 10.1016/j.plantsci.2015.01.012 – volume-title: Agriculture's Contributions to National Emissions year: 2015 ident: e_1_2_9_23_1 |
SSID | ssj0003206 |
Score | 2.6162982 |
Snippet | More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on... More than 100 countries pledged to reduce agricultural greenhouse gas ( GHG ) emissions in the 2015 Paris Agreement of the United Nations Framework Convention... |
SourceID | wageningen proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3859 |
SubjectTerms | Agricultural development Agriculture Animal Production Systems Biogeochemistry carbon Carbon - analysis Climate Change Dierlijke Productiesystemen Emissions control Farm buildings finance Gases - analysis Global warming Greenhouse Effect - legislation & jurisprudence Greenhouse Effect - prevention & control greenhouse gas emissions Greenhouse gases integrated assessment modeling International Cooperation issues and policy Laboratorium voor Geo-informatiekunde en remote sensing Laboratory of Geo-information Science and Remote Sensing Leerstoelgroep Dierlijke productiesystemen methane Methane - analysis Mitigation Paris Agreement PE&RC policy Public Policy soil Soil - chemistry target United Nations Framework Convention on Climate Change |
Title | Reducing emissions from agriculture to meet the 2 °C target |
URI | https://api.istex.fr/ark:/67375/WNG-0SP7F6Z8-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13340 https://www.ncbi.nlm.nih.gov/pubmed/27185416 https://www.proquest.com/docview/1844913253 https://www.proquest.com/docview/1826686901 https://www.proquest.com/docview/2020867921 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F528705 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qRWg_-HJajdayihS_5Gh2s0mK-KE9ei1CS6kWiwjLbrJbpGdOLjmq_hp_gr-hv6wzm1zOSgvip7xN3iYzu89kZ58BeJVbo0XqslBKgwFKpF2opUnCxAlXWE0jSRQo7h8ke8fxuxN5sgBvZnNhGn6I7ocbeYZvr8nBtan-cPLT3PQxwIopXqdcLQJER3PqKMF9Xc1IyBibmki0rEKUxdOdeaUvuk1q_X4d0FyGpXN07tLPdroKYn0vNLwHn2fP3ySfnPWntennP_-idvzPF7wPd1t0yrYac3oAC7bswfLW6aRl6LA9uNNUr_zRg5Wd-SQ5PKltJaoeBPuIxMcTL8bW2WD0BWGx33oIb4-IKxbfkVGhOfpVVzGa4sL0_CasHrOv1tYMwSnjF78ufg9Yk7H-CI6HOx8Ge2FbwiHMYwQiYWEybbM0z1IhNrM4l4UzhbPOZoVJo1gXEoPzLHZxgrYkaT-Gl0XqeFKYxMpIrMBiOS7tE2BFJqzlurBWutjxyJg05xu5TYi1LJJpAK9nH1PlLb85ldkYqVmcgwpVXqEBvOxEvzWkHtcJrXuL6CT05Iyy4FKpPh7sqo33h-kw-ZQpvPHqzGRU2wBUCgNnVIDgUgTwojuMiqXxGF3a8ZRkEB35imA3y3AqopqkmxxlHjfm2D0QR1whEVAHIOb2qUqqQVUpog1vrUydTyeqHNECr1ApSYPbEvXlre9mDajdwbZfefrvos9gCSFl0iT8rMJiPZna5wjbarMGt3h8uOa99BKBlkC3 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVoj2wE-gECiwIKi4OIp3vbZ76KGkTVPaRKi0ouKyeO11hRocFCcK5Wl4AA48Q--8EzNrx6Golbj0wMl_47_ZmdmZ3dlvAF7ERkciSENHSo0BihulTiS17_ipSBMT0UwSBYrdnt859N4cyaM5-DFdC1PgQ1QDbqQZ1l6TgtOA9B9afhzrBkZYXrNMqdw1pxMM2PL1nU1s3Zect7cOWh2nrCngxB72jE6iw8iEQRwGQqyFXiyTVCepSU2Y6MD1okRitBh6qefjz0k6j_FOEqTcT7RvpCvwuddggSqIE1L_5v4MrEpwW8nTFdJD4-aKEseI8oaqTz3X-y1QQ369yLVdgsUJmpPMrq867zbbfq99C35NOVaku5w0xiPdiL_9BSb5v7D0NtwsHXC2UWjMHZgzWQ2WNo6HJQiJqcH1okDnaQ2Wt2brAPGm0hDmNah3MdgYDC0ZW2Wt_if0_O3RXVjfJzhcZCqjWno0GpkzWsXDotlL2GjAPhszYuh_M372_exnixVJ-ffg8Ep-fxnms0FmHgBLQmEMjxJjZOql3NU6iHkzNj4Bs7kyqMOrqfSouIRwp0oifTUN5bABlW3AOjyvSL8UuCUXEa1aEawoouEJJfoFUr3vbavmu7dB2_8QKnzxylRGVWnjcuWGHjJAcCnq8Ky6jIylKacoM4Mx0aADaIueXU7DqU6sH6xxpLlfyH_1QRxdJ4kxQx3ETCFURmW2ckXI6KVYq8l4qLI-bfAJuZI0fy-RX1bcL-eA2m69tjsP_530KdzoHHT31N5Ob_cRLKIH7Rf5TSswPxqOzWP0Ukf6iTUODD5eter8BoQHoQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVqD2gGChEChgEFRcgjZ2nKSHHsq225bS1QqoqLiYOLErxJKtNrta-jbcufAMfTJmnGyWSq3Epaf8TRJnxjP-Jh7PALzMjE5FbBNfSo0OSpBaP5U68iMrbG5SmkkiR_GwF-0dhe-O5fEC_J6thanyQzQ_3EgznL0mBT_N7T9KfpLpN-hghe06ovLAnE3RXys397dRuK847-586uz5dUkBPwtxYPRznaQmibMkFmIjCTOZW51bY02S6zgI01yis5iENozw2ySdR3cnjy2Pch0ZGQh87g1YoslFih_jYb8x-4K7Qp6BkCHatkDUaYwobKhp6oXBb4nk-PMyZLsCy1O0JoVbXnURNbthr3sHbtd4lW1VHewuLJiiBStbJ6M6Z4dpwc2qnuVZC1Z35svm8KbabpQt8A4Rmw9Hjoyts87gGwJld3QPNj9Q9lhsBKPSc_TzrmS06IWl85ew8ZD9MGbMEK4yfv7r_E-HVTHs9-HoWiSwCovFsDAPgeWJMIanuTHShpYHWscZb2cmojxmgYw9eD3jtsrqjOdUeGOgZp4PCkY5wXjwoiE9rdJ8XEa07kTWUKSj7xQXF0v1uber2h_7cTf6kih88dpMpqo2CaVCVxoZILgUHjxvLiNjaYYmLcxwQjSIl1yNsKtpOJVVjeINjjQPqv7SNIgj0pAIsT0Q8w6kCqpKVSpKJF4rlppORqoY0AafUCpJ090S-eV62tUcULudt27n0f-TPoNb_e2uer_fO3gMy4g3oyoaaA0Wx6OJeYKYbqyfOl1i8PW6lfcvwSlehA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+emissions+from+agriculture+to+meet+the+2%C2%A0%C2%B0C+target&rft.jtitle=Global+change+biology&rft.au=Wollenberg%2C+Eva&rft.au=Richards%2C+Meryl&rft.au=Smith%2C+Pete&rft.au=Havl%C3%ADk%2C+Petr&rft.date=2016-12-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=22&rft.issue=12&rft.spage=3859&rft.epage=3864&rft_id=info:doi/10.1111%2Fgcb.13340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_13340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |