Reducing emissions from agriculture to meet the 2 °C target

More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identi...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 22; no. 12; pp. 3859 - 3864
Main Authors Wollenberg, Eva, Richards, Meryl, Smith, Pete, Havlík, Petr, Obersteiner, Michael, Tubiello, Francesco N., Herold, Martin, Gerber, Pierre, Carter, Sarah, Reisinger, Andrew, van Vuuren, Detlef P., Dickie, Amy, Neufeldt, Henry, Sander, Björn O., Wassmann, Reiner, Sommer, Rolf, Amonette, James E., Falcucci, Alessandra, Herrero, Mario, Opio, Carolyn, Roman-Cuesta, Rosa Maria, Stehfest, Elke, Westhoek, Henk, Ortiz-Monasterio, Ivan, Sapkota, Tek, Rufino, Mariana C., Thornton, Philip K., Verchot, Louis, West, Paul C., Soussana, Jean-François, Baedeker, Tobias, Sadler, Marc, Vermeulen, Sonja, Campbell, Bruce M.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr−1 by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
AbstractList More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr−1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr−1 by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
More than 100 countries pledged to reduce agricultural greenhouse gas ( GHG ) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 Gt CO 2 e yr −1 by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO e yr by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO₂e yr⁻¹ by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
Author Carter, Sarah
Roman-Cuesta, Rosa Maria
West, Paul C.
Dickie, Amy
Amonette, James E.
Campbell, Bruce M.
Westhoek, Henk
Wollenberg, Eva
Gerber, Pierre
Vermeulen, Sonja
Sommer, Rolf
Sadler, Marc
Smith, Pete
Neufeldt, Henry
Herrero, Mario
Herold, Martin
Soussana, Jean-François
Opio, Carolyn
Sapkota, Tek
Verchot, Louis
Stehfest, Elke
Falcucci, Alessandra
Wassmann, Reiner
Reisinger, Andrew
Richards, Meryl
Havlík, Petr
Rufino, Mariana C.
Thornton, Philip K.
Baedeker, Tobias
Tubiello, Francesco N.
Obersteiner, Michael
Ortiz-Monasterio, Ivan
Sander, Björn O.
van Vuuren, Detlef P.
Author_xml – sequence: 1
  givenname: Eva
  surname: Wollenberg
  fullname: Wollenberg, Eva
  email: lini.wollenberg@uvm.edu, lini.wollenberg@uvm.edu
  organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark
– sequence: 2
  givenname: Meryl
  surname: Richards
  fullname: Richards, Meryl
  organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark
– sequence: 3
  givenname: Pete
  surname: Smith
  fullname: Smith, Pete
  organization: Scottish Food Security Alliance-Crops, Aberdeen, UK
– sequence: 4
  givenname: Petr
  surname: Havlík
  fullname: Havlík, Petr
  organization: International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
– sequence: 5
  givenname: Michael
  surname: Obersteiner
  fullname: Obersteiner, Michael
  organization: International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
– sequence: 6
  givenname: Francesco N.
  surname: Tubiello
  fullname: Tubiello, Francesco N.
  organization: Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
– sequence: 7
  givenname: Martin
  surname: Herold
  fullname: Herold, Martin
  organization: Wageningen University and Research Centre (WUR), Wageningen, The Netherlands
– sequence: 8
  givenname: Pierre
  surname: Gerber
  fullname: Gerber, Pierre
  organization: Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
– sequence: 9
  givenname: Sarah
  surname: Carter
  fullname: Carter, Sarah
  organization: Wageningen University and Research Centre (WUR), Wageningen, The Netherlands
– sequence: 10
  givenname: Andrew
  surname: Reisinger
  fullname: Reisinger, Andrew
  organization: New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Wellington, New Zealand
– sequence: 11
  givenname: Detlef P.
  surname: van Vuuren
  fullname: van Vuuren, Detlef P.
  organization: Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands
– sequence: 12
  givenname: Amy
  surname: Dickie
  fullname: Dickie, Amy
  organization: California Environmental Associates (CEA), CA, San Francisco, USA
– sequence: 13
  givenname: Henry
  surname: Neufeldt
  fullname: Neufeldt, Henry
  organization: World Agroforestry Centre (ICRAF), Nairobi, Kenya
– sequence: 14
  givenname: Björn O.
  surname: Sander
  fullname: Sander, Björn O.
  organization: International Rice Research Institute (IRRI), Los Baños, Philippines
– sequence: 15
  givenname: Reiner
  surname: Wassmann
  fullname: Wassmann, Reiner
  organization: International Rice Research Institute (IRRI), Los Baños, Philippines
– sequence: 16
  givenname: Rolf
  surname: Sommer
  fullname: Sommer, Rolf
  organization: International Center for Tropical Agriculture (CIAT), Cali, Colombia
– sequence: 17
  givenname: James E.
  surname: Amonette
  fullname: Amonette, James E.
  organization: Pacific Northwest National Laboratory (PNNL), WA, Richland, USA
– sequence: 18
  givenname: Alessandra
  surname: Falcucci
  fullname: Falcucci, Alessandra
  organization: Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
– sequence: 19
  givenname: Mario
  surname: Herrero
  fullname: Herrero, Mario
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Qld, Brisbane, Australia
– sequence: 20
  givenname: Carolyn
  surname: Opio
  fullname: Opio, Carolyn
  organization: Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
– sequence: 21
  givenname: Rosa Maria
  surname: Roman-Cuesta
  fullname: Roman-Cuesta, Rosa Maria
  organization: Wageningen University and Research Centre (WUR), Wageningen, The Netherlands
– sequence: 22
  givenname: Elke
  surname: Stehfest
  fullname: Stehfest, Elke
  organization: Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands
– sequence: 23
  givenname: Henk
  surname: Westhoek
  fullname: Westhoek, Henk
  organization: Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands
– sequence: 24
  givenname: Ivan
  surname: Ortiz-Monasterio
  fullname: Ortiz-Monasterio, Ivan
  organization: International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico
– sequence: 25
  givenname: Tek
  surname: Sapkota
  fullname: Sapkota, Tek
  organization: International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico
– sequence: 26
  givenname: Mariana C.
  surname: Rufino
  fullname: Rufino, Mariana C.
  organization: Center for International Forestry Research (CIFOR), Nairobi, Kenya
– sequence: 27
  givenname: Philip K.
  surname: Thornton
  fullname: Thornton, Philip K.
  organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark
– sequence: 28
  givenname: Louis
  surname: Verchot
  fullname: Verchot, Louis
  organization: Center for International Forestry Research (CIFOR), Nairobi, Kenya
– sequence: 29
  givenname: Paul C.
  surname: West
  fullname: West, Paul C.
  organization: Institute on the Environment (IONE), University of Minnesota, MN, Saint Paul, USA
– sequence: 30
  givenname: Jean-François
  surname: Soussana
  fullname: Soussana, Jean-François
  organization: French National Institute for Agricultural Research (INRA), Clermont-Ferrand, France
– sequence: 31
  givenname: Tobias
  surname: Baedeker
  fullname: Baedeker, Tobias
  organization: World Bank (WB), DC, Washington, USA
– sequence: 32
  givenname: Marc
  surname: Sadler
  fullname: Sadler, Marc
  organization: World Bank (WB), DC, Washington, USA
– sequence: 33
  givenname: Sonja
  surname: Vermeulen
  fullname: Vermeulen, Sonja
  organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark
– sequence: 34
  givenname: Bruce M.
  surname: Campbell
  fullname: Campbell, Bruce M.
  organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27185416$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhiNURC-w4AVQJDZ0kdZ3O0hdwKgdkCpAXITExnKck-CScQbb0dC34RF4hj4ZDtN2UQnw5ljW9x2d43-_2PGjh6J4jNERzue4t80RppShe8UepoJXhCmxM985qzDCdLfYj_ECIUQJEg-KXSKx4gyLveLkPbSTdb4vYeVidKOPZRfGVWn64Ow0pClAmcZyBZDK9BVKcvXz6teiTCb0kB4W9zszRHh0XQ-KT2enHxevqvO3y9eLF-eVZTVGVdsoA0paJSmtFbO87Zq2gw5U20jMTMtrJBXrmGjA8vldYtnKjoi2EcAxPSieb_tuTA8-TwteexOsi3o0Tg-uCSZc6s0UtB_msp6aqDlREvEsP9vK6zB-nyAmnTe1MAzGwzhFTRBBSsia4P-iWBEhlKjRjD69g16MU_D5FzLF8tqUcJqpJ9fU1Kyg1evgVvOkNwFk4HAL2DDGGKC7RTDSc7g6h6v_hJvZ4zusdcmknFkKxg3_MjZugMu_t9bLxcsbo9oaLib4cWuY8E0LSSXXn98sNfrwTp6JL0pL-hvEHcTN
CitedBy_id crossref_primary_10_1088_1748_9326_abb10a
crossref_primary_10_3390_agronomy9090491
crossref_primary_10_1088_1748_9326_aabdc4
crossref_primary_10_3389_fsufs_2019_00014
crossref_primary_10_1021_acs_est_7b02600
crossref_primary_10_1038_s41467_023_43860_5
crossref_primary_10_1016_j_crsust_2020_100015
crossref_primary_10_1111_gcb_14529
crossref_primary_10_1371_journal_pone_0231764
crossref_primary_10_3390_jimaging4040052
crossref_primary_10_3390_land9090309
crossref_primary_10_1016_j_gfs_2019_02_003
crossref_primary_10_1016_j_scitotenv_2019_04_320
crossref_primary_10_1038_sdata_2018_45
crossref_primary_10_3390_su11051372
crossref_primary_10_1016_j_cjpre_2021_04_010
crossref_primary_10_1016_j_nbsj_2023_100071
crossref_primary_10_1371_journal_pone_0315571
crossref_primary_10_1002_ghg_2066
crossref_primary_10_1007_s10098_022_02272_7
crossref_primary_10_1016_j_landusepol_2020_104823
crossref_primary_10_3389_fenvs_2021_657608
crossref_primary_10_1007_s13593_017_0452_8
crossref_primary_10_1038_s41558_019_0591_9
crossref_primary_10_1016_j_jenvman_2023_119322
crossref_primary_10_1016_j_cosust_2018_06_005
crossref_primary_10_3389_fsufs_2022_965767
crossref_primary_10_3390_agriculture12071043
crossref_primary_10_1111_agec_12534
crossref_primary_10_1126_science_abo2364
crossref_primary_10_3390_agronomy11112102
crossref_primary_10_1016_j_agee_2021_107736
crossref_primary_10_1016_j_resconrec_2020_104912
crossref_primary_10_3390_ijerph20010189
crossref_primary_10_3390_agriengineering6030113
crossref_primary_10_1080_14693062_2023_2267021
crossref_primary_10_3390_plants9091094
crossref_primary_10_1111_gcb_14425
crossref_primary_10_1108_SRJ_05_2024_0354
crossref_primary_10_1007_s13762_019_02520_2
crossref_primary_10_1021_acs_est_2c03509
crossref_primary_10_1007_s10668_024_05871_0
crossref_primary_10_1016_j_gloenvcha_2018_02_005
crossref_primary_10_1016_j_scitotenv_2017_12_343
crossref_primary_10_1016_j_still_2017_12_002
crossref_primary_10_1002_2017EF000688
crossref_primary_10_1029_2019EF001361
crossref_primary_10_1111_gcb_15873
crossref_primary_10_1016_j_fcr_2018_05_019
crossref_primary_10_1016_j_gloenvcha_2022_102586
crossref_primary_10_3846_16486897_2017_1319375
crossref_primary_10_1016_j_heliyon_2023_e20544
crossref_primary_10_1007_s11356_022_22748_9
crossref_primary_10_1038_s43247_023_01038_3
crossref_primary_10_1371_journal_pone_0247887
crossref_primary_10_1007_s11356_021_15481_2
crossref_primary_10_2139_ssrn_3671527
crossref_primary_10_1016_j_eja_2021_126440
crossref_primary_10_1016_j_foodpol_2018_05_003
crossref_primary_10_1111_een_12777
crossref_primary_10_1177_1946756716673640
crossref_primary_10_1136_bmj_m2322
crossref_primary_10_1016_j_cosust_2020_04_006
crossref_primary_10_1016_j_agee_2018_11_002
crossref_primary_10_1111_ppl_12891
crossref_primary_10_3390_land11020208
crossref_primary_10_1007_s11027_021_09940_x
crossref_primary_10_1016_j_spc_2024_09_022
crossref_primary_10_1088_1748_9326_aa9007
crossref_primary_10_3390_en16186601
crossref_primary_10_1016_j_scitotenv_2018_09_227
crossref_primary_10_2139_ssrn_4587367
crossref_primary_10_3390_su11082349
crossref_primary_10_1088_1748_9326_aa8c83
crossref_primary_10_1093_femsec_fiz203
crossref_primary_10_1016_j_scitotenv_2020_139353
crossref_primary_10_1038_nclimate3404
crossref_primary_10_1016_j_jclepro_2017_10_269
crossref_primary_10_1016_j_cosust_2020_11_001
crossref_primary_10_1038_d41586_025_00222_z
crossref_primary_10_1007_s11027_017_9752_1
crossref_primary_10_1080_14693062_2018_1559793
crossref_primary_10_1016_j_jclepro_2018_11_118
crossref_primary_10_3354_cr01520
crossref_primary_10_1007_s11027_017_9737_0
crossref_primary_10_3390_su151310533
crossref_primary_10_1186_s13021_020_00158_z
crossref_primary_10_1073_pnas_1620229114
crossref_primary_10_1029_2023AV001052
crossref_primary_10_46830_wrirpt_20_00006
crossref_primary_10_1016_j_resconrec_2022_106576
crossref_primary_10_3390_agronomy9010031
crossref_primary_10_1016_j_scitotenv_2021_148590
crossref_primary_10_1007_s11104_024_06999_8
crossref_primary_10_1007_s12571_019_00991_2
crossref_primary_10_1016_j_still_2019_104381
crossref_primary_10_1111_gcb_14984
crossref_primary_10_1038_s41586_018_0594_0
crossref_primary_10_2139_ssrn_3156044
crossref_primary_10_1017_S2047102517000395
crossref_primary_10_3389_fmicb_2019_02207
crossref_primary_10_1016_j_jclepro_2024_141150
crossref_primary_10_1016_j_scitotenv_2020_143505
crossref_primary_10_1007_s10584_025_03902_x
crossref_primary_10_1134_S1064229321100112
crossref_primary_10_5194_bg_18_3981_2021
crossref_primary_10_1016_j_geoderma_2018_03_035
crossref_primary_10_1016_j_jclepro_2018_11_018
crossref_primary_10_5194_bg_13_4253_2016
crossref_primary_10_1016_j_agee_2023_108412
crossref_primary_10_1016_j_jclepro_2021_128406
crossref_primary_10_1016_j_scitotenv_2022_153342
crossref_primary_10_3390_agriculture13061210
crossref_primary_10_1007_s10584_023_03544_x
crossref_primary_10_1016_j_jenvman_2020_111798
crossref_primary_10_1016_S0140_6736_18_31788_4
crossref_primary_10_1016_j_resconrec_2020_105102
crossref_primary_10_1007_s41247_022_00100_6
crossref_primary_10_3390_su10082616
crossref_primary_10_1007_s11027_017_9743_2
crossref_primary_10_1007_s10640_020_00473_6
crossref_primary_10_1016_j_scitotenv_2017_12_286
crossref_primary_10_3389_fanim_2021_795200
crossref_primary_10_1186_s43591_021_00004_0
crossref_primary_10_1038_s41538_018_0021_9
crossref_primary_10_1038_s41558_023_01605_8
crossref_primary_10_1016_j_jclepro_2017_06_085
crossref_primary_10_3390_agriculture12070907
crossref_primary_10_1111_gfs_12353
crossref_primary_10_1371_journal_pone_0207700
crossref_primary_10_31073_mivg202201_318
crossref_primary_10_1016_j_cub_2018_05_087
crossref_primary_10_1016_j_scitotenv_2017_03_110
crossref_primary_10_1016_j_scitotenv_2021_147344
crossref_primary_10_1016_j_agee_2017_11_004
crossref_primary_10_3389_fpls_2022_1033953
crossref_primary_10_1080_14693062_2017_1397495
crossref_primary_10_1007_s10098_021_02153_5
crossref_primary_10_1016_j_jenvman_2021_113058
crossref_primary_10_1016_j_plaphy_2024_108408
crossref_primary_10_1016_j_agee_2017_06_001
crossref_primary_10_1007_s10584_021_03047_7
crossref_primary_10_3390_foods11213459
crossref_primary_10_1016_j_agee_2017_06_004
crossref_primary_10_1016_j_scitotenv_2022_159738
crossref_primary_10_1186_s42523_019_0016_0
crossref_primary_10_3390_agronomy12040924
crossref_primary_10_1016_j_landusepol_2021_105459
crossref_primary_10_1038_nbt_4110
crossref_primary_10_1111_gcb_13975
crossref_primary_10_5194_bg_14_1403_2017
crossref_primary_10_1016_j_earscirev_2023_104462
crossref_primary_10_3390_en15166002
crossref_primary_10_1007_s10113_021_01837_4
crossref_primary_10_1016_j_geoderma_2024_117026
crossref_primary_10_1080_14693062_2018_1430018
crossref_primary_10_1098_rsta_2020_0452
crossref_primary_10_1038_s41558_018_0358_8
crossref_primary_10_1016_j_landusepol_2022_106382
crossref_primary_10_1016_j_foodpol_2018_01_011
crossref_primary_10_1016_j_crsust_2021_100110
crossref_primary_10_3390_su17051980
crossref_primary_10_1038_s41558_018_0230_x
crossref_primary_10_1093_advances_nmz037
crossref_primary_10_1088_1748_9326_11_12_120207
crossref_primary_10_1016_j_ancene_2019_100213
crossref_primary_10_1088_1748_9326_ab542a
crossref_primary_10_1038_s41558_024_01947_x
crossref_primary_10_1016_j_cosust_2018_01_006
crossref_primary_10_1057_s41301_017_0092_y
crossref_primary_10_1038_s41477_018_0108_y
crossref_primary_10_1016_j_apsoil_2024_105759
crossref_primary_10_1177_15598276241280245
crossref_primary_10_1016_j_jenvman_2021_112503
crossref_primary_10_1080_17583004_2020_1750229
crossref_primary_10_1111_gcb_15342
crossref_primary_10_3390_su11123433
crossref_primary_10_1016_j_fcr_2021_108366
crossref_primary_10_1111_1477_8947_12304
crossref_primary_10_1088_1748_9326_abc2f7
crossref_primary_10_1080_14693062_2016_1244508
crossref_primary_10_3389_fsufs_2018_00002
crossref_primary_10_1088_1748_9326_aba5b2
crossref_primary_10_1007_s10705_023_10335_4
crossref_primary_10_1007_s11356_021_13975_7
crossref_primary_10_3389_fsufs_2020_00069
crossref_primary_10_1016_j_still_2018_10_009
crossref_primary_10_1016_j_eiar_2022_106735
crossref_primary_10_1007_s13593_017_0430_1
crossref_primary_10_1016_j_pedsph_2024_10_002
crossref_primary_10_3389_fsufs_2021_439881
crossref_primary_10_1088_1748_9326_aa9ea4
crossref_primary_10_1007_s10584_020_02673_x
crossref_primary_10_1016_j_agee_2017_10_003
crossref_primary_10_1080_14693062_2024_2447486
crossref_primary_10_1088_1748_9326_ac9b50
crossref_primary_10_1007_s11027_017_9779_3
crossref_primary_10_3389_fenvs_2021_786087
crossref_primary_10_1146_annurev_environ_102016_060946
crossref_primary_10_1016_j_agrformet_2021_108777
crossref_primary_10_1088_1748_9326_ac3605
crossref_primary_10_36543_kauiibfd_2024_026
crossref_primary_10_3389_fsufs_2021_692137
crossref_primary_10_1088_1748_9326_aab0b0
crossref_primary_10_1016_j_gfs_2021_100537
crossref_primary_10_1038_s41467_018_05340_z
crossref_primary_10_1016_j_gloenvcha_2019_101983
crossref_primary_10_1016_j_rser_2019_109338
crossref_primary_10_1038_nclimate3155
crossref_primary_10_1088_1748_9326_ab28a3
crossref_primary_10_1111_grow_12384
crossref_primary_10_17221_250_2020_AGRICECON
crossref_primary_10_1007_s11027_021_09980_3
crossref_primary_10_3389_fsufs_2020_00055
crossref_primary_10_3390_biology10080766
crossref_primary_10_1016_j_biortech_2018_07_100
crossref_primary_10_1016_j_scitotenv_2018_10_060
crossref_primary_10_3390_min11060651
crossref_primary_10_1038_s41467_018_03489_1
crossref_primary_10_3390_agriculture8110181
crossref_primary_10_1088_1748_9326_ac065f
crossref_primary_10_1007_s00394_022_02835_w
crossref_primary_10_1088_1748_9326_ad1cb6
crossref_primary_10_1007_s42773_023_00279_x
crossref_primary_10_1016_j_still_2018_04_011
crossref_primary_10_1515_pwp_2018_0034
crossref_primary_10_3389_fsufs_2019_00105
crossref_primary_10_2139_ssrn_3671605
crossref_primary_10_1002_jeq2_20041
crossref_primary_10_1016_j_jclepro_2021_129337
crossref_primary_10_2139_ssrn_2854591
crossref_primary_10_1177_0030727018815332
crossref_primary_10_24193_subbbiol_2022_1_10
crossref_primary_10_1016_j_jclepro_2021_129584
crossref_primary_10_1016_j_agsy_2023_103620
crossref_primary_10_3168_jds_2016_11954
crossref_primary_10_1038_s43016_024_01038_2
crossref_primary_10_1186_s12866_020_02037_6
crossref_primary_10_1016_j_envsci_2022_12_006
crossref_primary_10_1111_febs_16549
crossref_primary_10_12944_CWE_15_2_14
crossref_primary_10_1080_17583004_2022_2151939
crossref_primary_10_3389_fsufs_2024_1481005
crossref_primary_10_1111_gcb_16631
crossref_primary_10_1007_s10584_020_02838_8
Cites_doi 10.1016/j.gloenvcha.2015.04.010
10.1111/j.1574-0862.2008.00286.x
10.1007/s10584-011-0152-3
10.1111/j.1365-2389.2010.01342.x
10.1016/j.envsci.2006.10.007
10.1038/nature17174
10.1038/nclimate2353
10.1126/science.1100103
10.1007/s10584-012-0593-3
10.1111/gcb.12113
10.1038/530153a
10.1890/120058
10.1080/14693062.2014.849452
10.1007/s10584-014-1104-5
10.1073/pnas.1504124112
10.1088/1748‐9326/8/1/015009
10.1111/gcb.12160
10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-5
10.1073/pnas.1308044111
10.1016/j.agsy.2012.07.002
10.5194/bgd-12-5435-2015
10.1098/rstb.2007.2184
10.1038/nclimate2925
10.1016/j.plantsci.2015.01.012
ContentType Journal Article
Copyright 2016 The Authors Published by John Wiley & Sons Ltd.
2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Wageningen University & Research
Copyright_xml – notice: 2016 The Authors Published by John Wiley & Sons Ltd.
– notice: 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
– notice: Wageningen University & Research
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
QVL
DOI 10.1111/gcb.13340
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
MEDLINE
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 3864
ExternalDocumentID oai_library_wur_nl_wurpubs_528705
4266330071
27185416
10_1111_gcb_13340
GCB13340
ark_67375_WNG_0SP7F6Z8_7
Genre commentary
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union (EU)
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
24P
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
AAPBV
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
PQEST
QVL
UMP
ID FETCH-LOGICAL-c4910-db8ae87c8733984c5dfbdfefe8db714ad590784f46bec5efe8717d7f26db6e513
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Thu Oct 13 09:30:50 EDT 2022
Fri Jul 11 18:15:37 EDT 2025
Thu Jul 10 23:06:19 EDT 2025
Fri Jul 25 10:50:43 EDT 2025
Wed Feb 19 02:41:31 EST 2025
Tue Jul 01 03:52:55 EDT 2025
Thu Apr 24 23:05:52 EDT 2025
Wed Aug 20 07:27:39 EDT 2025
Wed Oct 30 09:53:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords agriculture
mitigation
United Nations Framework Convention on Climate Change
integrated assessment modeling
climate change
policy
target
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4910-db8ae87c8733984c5dfbdfefe8db714ad590784f46bec5efe8717d7f26db6e513
Notes Appendix S1. Overview of methods, including Tables S1-S4. Appendix S2. Data sources and methods, including Figure S1 and Tables S5-S10. Appendix S3. 2030 reference levels. Appendix S4. References.
ArticleID:GCB13340
European Union (EU)
ark:/67375/WNG-0SP7F6Z8-7
istex:057FFBFFAE95CC715D012E580FCCBF67D168F13F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4293-3290
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13340
PMID 27185416
PQID 1844913253
PQPubID 30327
PageCount 6
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_528705
proquest_miscellaneous_2020867921
proquest_miscellaneous_1826686901
proquest_journals_1844913253
pubmed_primary_27185416
crossref_primary_10_1111_gcb_13340
crossref_citationtrail_10_1111_gcb_13340
wiley_primary_10_1111_gcb_13340_GCB13340
istex_primary_ark_67375_WNG_0SP7F6Z8_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Havlík P, Valin H, Herrero M et al. (2014) Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 111, 3709-3714.
Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature, 532, 49-57.
Höhne N, den Elzen M, Escalante D (2014) Regional GHG reduction targets based on effort sharing: a comparison of studies. Climate Policy, 14, 122-147.
Hedenus F, Wirsenius S, Johansson DJA (2014) The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Climatic Change, 124, 79-91.
Smith P, Haberl H, Popp A et al. (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19, 2285-2302.
Carter S, Herold M, Rufino MC, Neumann K, Kooistra L, Verchot L (2015) Mitigation of agriculture emissions in the tropics: comparing forest land-sparing options at the national level. Biogeosciences Discussions, 12, 5435-5475.
Herrero M, Henderson B, Havlík P et al. (2016) Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6, 452-461.
Beach RH, Deangelo BJ, Rose S, Li C, Salas W, Delgrosso SJ (2008) Mitigation potential and costs for global agricultural greenhouse gas emissions. Agricultural Economics, 38, 109-115.
Subbarao GV, Yoshihashi T, Worthington M et al. (2015) Suppression of soil nitrification by plants. Plant Science, 233, 155-164.
Reisinger A, Havlík P, Riahi K, van Vliet O, Obersteiner M, Herrero M (2013) Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677-690.
Cotrufo MF, Wallenstein M, Boot CM, Denef K, Paul EA (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DeAngelo BJ, de la Chesnaye F, Beach RH, Sommer A, Murray BC (2006) Methane and nitrous oxide mitigation in agriculture. The Energy Journal, 27, 89-108.
Richards M, Bruun T, Campbell BM et al. (2016) How Countries Plan to Address Agricultural Adaptation and Mitigation: An Analysis of Intended Nationally Determined Contributions CCAFS dataset version 1.1. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.
Gernaat DEHJ, Calvin K, Lucas PL et al. (2015) Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environmental Change, 33, 142-153.
Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science, 305, 968-972.
Cafaro P (2013) Avoiding Catastrophic Climate Change: Why Technological Innovation is Necessary but not Sufficient. Ethics and Emerging Technologies, pp. 424-438. Palgrave Macmillan, New York.
van Vuuren DP, Stehfest E, den Elzen MGJ et al. (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 degrees C. Climatic Change, 109, 95-116.
Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science and Policy, 10, 85-103.
Hristov AN, Oh J, Giallongo F et al. (2015) An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America, 112, 10663-10668.
Del Grosso SJ, Cavigelli MJ (2012) Climate stabilization wedges revisited: can agricultural production and greenhouse gas reduction goals be accomplished? Frontiers in Ecology and the Environment, 10, 571-578.
Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nature Climate Change, 4, 924-929.
Richards MB, Wollenberg E, Buglion-Gluck S (2015) Agriculture's Contributions to National Emissions. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.
Gerber PJ, Steinfeld H, Henderson B et al. (2013) Tackling Climate Change Through Livestock - A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
Tubiello FN, Salvatore M, Ferrara A et al. (2013) The FAOSTAT GHG database. Environmental Research Letters, 8, doi:10.1088/1748-9326/8/1/015009.
Williamson P (2016) Scrutinizing CO2 removal methods. Nature, 530, 153-155.
Smith P, Martino D, Cai Z et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 789-813.
Wise M, Calvin K, Kyle P, Luckow P, Edmonds J (2014) Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon. Climatic Change Economics, 5, 145003.
Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science, 62, 42-55.
Herd RM, Bird SH, Donoghue KA, Arthur PF, Hegarty RF (2013) Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 20, 286-289.
Stehfest E, Berg MVD, Woltjer G, Msangi S, Westhoek H (2013) Options to reduce the environmental effects of livestock production - comparison of two economic models. Agricultural Systems, 114, 38-53.
2015; 12
2008; 38
2015; 33
2013; 20
2011; 62
2014; 111
2007; 10
2013; 8
2004; 305
2008; 363
2012; 10
2013; 19
2016; 6
2011; 109
2014; 5
2014; 4
2006; 27
2015; 233
2015; 112
2013; 117
2016; 530
2014; 14
2013; 114
2016
2015
2014
2013
2016; 532
2014; 124
e_1_2_9_30_1
e_1_2_9_31_1
Gerber PJ (e_1_2_9_9_1) 2013
e_1_2_9_11_1
e_1_2_9_10_1
Smith P (e_1_2_9_27_1) 2014
e_1_2_9_32_1
Wise M (e_1_2_9_33_1) 2014; 5
e_1_2_9_12_1
Cafaro P (e_1_2_9_4_1) 2013
DeAngelo BJ (e_1_2_9_7_1) 2006; 27
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Richards M (e_1_2_9_24_1) 2016
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
Herd RM (e_1_2_9_13_1) 2013; 20
e_1_2_9_3_1
e_1_2_9_2_1
Richards MB (e_1_2_9_23_1) 2015
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – reference: Höhne N, den Elzen M, Escalante D (2014) Regional GHG reduction targets based on effort sharing: a comparison of studies. Climate Policy, 14, 122-147.
– reference: Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature, 532, 49-57.
– reference: Richards M, Bruun T, Campbell BM et al. (2016) How Countries Plan to Address Agricultural Adaptation and Mitigation: An Analysis of Intended Nationally Determined Contributions CCAFS dataset version 1.1. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.
– reference: Hristov AN, Oh J, Giallongo F et al. (2015) An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America, 112, 10663-10668.
– reference: Herd RM, Bird SH, Donoghue KA, Arthur PF, Hegarty RF (2013) Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 20, 286-289.
– reference: van Vuuren DP, Stehfest E, den Elzen MGJ et al. (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 degrees C. Climatic Change, 109, 95-116.
– reference: Williamson P (2016) Scrutinizing CO2 removal methods. Nature, 530, 153-155.
– reference: Wise M, Calvin K, Kyle P, Luckow P, Edmonds J (2014) Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon. Climatic Change Economics, 5, 145003.
– reference: Del Grosso SJ, Cavigelli MJ (2012) Climate stabilization wedges revisited: can agricultural production and greenhouse gas reduction goals be accomplished? Frontiers in Ecology and the Environment, 10, 571-578.
– reference: Herrero M, Henderson B, Havlík P et al. (2016) Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6, 452-461.
– reference: Hedenus F, Wirsenius S, Johansson DJA (2014) The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Climatic Change, 124, 79-91.
– reference: Smith P, Haberl H, Popp A et al. (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19, 2285-2302.
– reference: Gernaat DEHJ, Calvin K, Lucas PL et al. (2015) Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environmental Change, 33, 142-153.
– reference: Cotrufo MF, Wallenstein M, Boot CM, Denef K, Paul EA (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
– reference: Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nature Climate Change, 4, 924-929.
– reference: Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science, 62, 42-55.
– reference: Gerber PJ, Steinfeld H, Henderson B et al. (2013) Tackling Climate Change Through Livestock - A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
– reference: Carter S, Herold M, Rufino MC, Neumann K, Kooistra L, Verchot L (2015) Mitigation of agriculture emissions in the tropics: comparing forest land-sparing options at the national level. Biogeosciences Discussions, 12, 5435-5475.
– reference: Stehfest E, Berg MVD, Woltjer G, Msangi S, Westhoek H (2013) Options to reduce the environmental effects of livestock production - comparison of two economic models. Agricultural Systems, 114, 38-53.
– reference: Smith P, Martino D, Cai Z et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 789-813.
– reference: Havlík P, Valin H, Herrero M et al. (2014) Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 111, 3709-3714.
– reference: Subbarao GV, Yoshihashi T, Worthington M et al. (2015) Suppression of soil nitrification by plants. Plant Science, 233, 155-164.
– reference: Cafaro P (2013) Avoiding Catastrophic Climate Change: Why Technological Innovation is Necessary but not Sufficient. Ethics and Emerging Technologies, pp. 424-438. Palgrave Macmillan, New York.
– reference: Tubiello FN, Salvatore M, Ferrara A et al. (2013) The FAOSTAT GHG database. Environmental Research Letters, 8, doi:10.1088/1748-9326/8/1/015009.
– reference: Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science, 305, 968-972.
– reference: DeAngelo BJ, de la Chesnaye F, Beach RH, Sommer A, Murray BC (2006) Methane and nitrous oxide mitigation in agriculture. The Energy Journal, 27, 89-108.
– reference: Richards MB, Wollenberg E, Buglion-Gluck S (2015) Agriculture's Contributions to National Emissions. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.
– reference: Reisinger A, Havlík P, Riahi K, van Vliet O, Obersteiner M, Herrero M (2013) Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677-690.
– reference: Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science and Policy, 10, 85-103.
– reference: Beach RH, Deangelo BJ, Rose S, Li C, Salas W, Delgrosso SJ (2008) Mitigation potential and costs for global agricultural greenhouse gas emissions. Agricultural Economics, 38, 109-115.
– volume: 6
  start-page: 452
  year: 2016
  end-page: 461
  article-title: Greenhouse gas mitigation potentials in the livestock sector
  publication-title: Nature Climate Change
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
– volume: 10
  start-page: 571
  year: 2012
  end-page: 578
  article-title: Climate stabilization wedges revisited: can agricultural production and greenhouse gas reduction goals be accomplished?
  publication-title: Frontiers in Ecology and the Environment
– volume: 124
  start-page: 79
  year: 2014
  end-page: 91
  article-title: The importance of reduced meat and dairy consumption for meeting stringent climate change targets
  publication-title: Climatic Change
– volume: 532
  start-page: 49
  year: 2016
  end-page: 57
  article-title: Climate‐smart soils
  publication-title: Nature
– volume: 305
  start-page: 968
  year: 2004
  end-page: 972
  article-title: Stabilization wedges: solving the climate problem for the next 50 years with current technologies
  publication-title: Science
– volume: 27
  start-page: 89
  year: 2006
  end-page: 108
  article-title: Methane and nitrous oxide mitigation in agriculture
  publication-title: The Energy Journal
– volume: 8
  year: 2013
  article-title: The FAOSTAT GHG database
  publication-title: Environmental Research Letters
– start-page: 811
  year: 2014
  end-page: 922
– volume: 109
  start-page: 95
  year: 2011
  end-page: 116
  article-title: RCP2.6: exploring the possibility to keep global mean temperature increase below 2 degrees C
  publication-title: Climatic Change
– year: 2016
– volume: 62
  start-page: 42
  year: 2011
  end-page: 55
  article-title: Soil carbon sequestration to mitigate climate change: a critical re‐examination to identify the true and the false
  publication-title: European Journal of Soil Science
– volume: 117
  start-page: 677
  year: 2013
  end-page: 690
  article-title: Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture
  publication-title: Climatic Change
– year: 2014
– volume: 233
  start-page: 155
  year: 2015
  end-page: 164
  article-title: Suppression of soil nitrification by plants
  publication-title: Plant Science
– volume: 363
  start-page: 789
  year: 2008
  end-page: 813
  article-title: Greenhouse gas mitigation in agriculture
  publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences
– volume: 112
  start-page: 10663
  year: 2015
  end-page: 10668
  article-title: An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: 85
  year: 2007
  end-page: 103
  article-title: Long‐term reduction potential of non‐CO greenhouse gases
  publication-title: Environmental Science and Policy
– volume: 4
  start-page: 924
  year: 2014
  end-page: 929
  article-title: Importance of food‐demand management for climate mitigation
  publication-title: Nature Climate Change
– volume: 111
  start-page: 3709
  year: 2014
  end-page: 3714
  article-title: Climate change mitigation through livestock system transitions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 14
  start-page: 122
  year: 2014
  end-page: 147
  article-title: Regional GHG reduction targets based on effort sharing: a comparison of studies
  publication-title: Climate Policy
– start-page: 424
  year: 2013
  end-page: 438
– volume: 33
  start-page: 142
  year: 2015
  end-page: 153
  article-title: Understanding the contribution of non‐carbon dioxide gases in deep mitigation scenarios
  publication-title: Global Environmental Change
– volume: 12
  start-page: 5435
  year: 2015
  end-page: 5475
  article-title: Mitigation of agriculture emissions in the tropics: comparing forest land‐sparing options at the national level
  publication-title: Biogeosciences Discussions
– volume: 38
  start-page: 109
  year: 2008
  end-page: 115
  article-title: Mitigation potential and costs for global agricultural greenhouse gas emissions
  publication-title: Agricultural Economics
– volume: 20
  start-page: 286
  year: 2013
  end-page: 289
  article-title: Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits
  publication-title: Proceedings of the Association for the Advancement of Animal Breeding and Genetics
– volume: 19
  start-page: 2285
  year: 2013
  end-page: 2302
  article-title: How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?
  publication-title: Global Change Biology
– volume: 530
  start-page: 153
  year: 2016
  end-page: 155
  article-title: Scrutinizing CO removal methods
  publication-title: Nature
– year: 2015
– volume: 114
  start-page: 38
  year: 2013
  end-page: 53
  article-title: Options to reduce the environmental effects of livestock production – comparison of two economic models
  publication-title: Agricultural Systems
– volume: 5
  start-page: 145003
  year: 2014
  article-title: Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon
  publication-title: Climatic Change Economics
– year: 2013
– ident: e_1_2_9_10_1
  doi: 10.1016/j.gloenvcha.2015.04.010
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1574-0862.2008.00286.x
– ident: e_1_2_9_31_1
  doi: 10.1007/s10584-011-0152-3
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1365-2389.2010.01342.x
– ident: e_1_2_9_17_1
  doi: 10.1016/j.envsci.2006.10.007
– ident: e_1_2_9_20_1
  doi: 10.1038/nature17174
– ident: e_1_2_9_2_1
  doi: 10.1038/nclimate2353
– ident: e_1_2_9_19_1
  doi: 10.1126/science.1100103
– ident: e_1_2_9_22_1
  doi: 10.1007/s10584-012-0593-3
– ident: e_1_2_9_6_1
  doi: 10.1111/gcb.12113
– ident: e_1_2_9_32_1
  doi: 10.1038/530153a
– volume: 20
  start-page: 286
  year: 2013
  ident: e_1_2_9_13_1
  article-title: Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits
  publication-title: Proceedings of the Association for the Advancement of Animal Breeding and Genetics
– ident: e_1_2_9_8_1
  doi: 10.1890/120058
– ident: e_1_2_9_15_1
  doi: 10.1080/14693062.2014.849452
– ident: e_1_2_9_12_1
  doi: 10.1007/s10584-014-1104-5
– ident: e_1_2_9_16_1
  doi: 10.1073/pnas.1504124112
– volume-title: How Countries Plan to Address Agricultural Adaptation and Mitigation: An Analysis of Intended Nationally Determined Contributions CCAFS dataset version 1.1
  year: 2016
  ident: e_1_2_9_24_1
– ident: e_1_2_9_30_1
  doi: 10.1088/1748‐9326/8/1/015009
– ident: e_1_2_9_26_1
  doi: 10.1111/gcb.12160
– volume: 27
  start-page: 89
  year: 2006
  ident: e_1_2_9_7_1
  article-title: Methane and nitrous oxide mitigation in agriculture
  publication-title: The Energy Journal
  doi: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-5
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.1308044111
– start-page: 424
  volume-title: Avoiding Catastrophic Climate Change: Why Technological Innovation is Necessary but not Sufficient. Ethics and Emerging Technologies
  year: 2013
  ident: e_1_2_9_4_1
– ident: e_1_2_9_28_1
  doi: 10.1016/j.agsy.2012.07.002
– ident: e_1_2_9_5_1
  doi: 10.5194/bgd-12-5435-2015
– volume: 5
  start-page: 145003
  year: 2014
  ident: e_1_2_9_33_1
  article-title: Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon
  publication-title: Climatic Change Economics
– ident: e_1_2_9_25_1
  doi: 10.1098/rstb.2007.2184
– ident: e_1_2_9_14_1
  doi: 10.1038/nclimate2925
– start-page: 811
  volume-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_9_27_1
– volume-title: Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities
  year: 2013
  ident: e_1_2_9_9_1
– ident: e_1_2_9_18_1
– ident: e_1_2_9_29_1
  doi: 10.1016/j.plantsci.2015.01.012
– volume-title: Agriculture's Contributions to National Emissions
  year: 2015
  ident: e_1_2_9_23_1
SSID ssj0003206
Score 2.6162982
Snippet More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on...
More than 100 countries pledged to reduce agricultural greenhouse gas ( GHG ) emissions in the 2015 Paris Agreement of the United Nations Framework Convention...
SourceID wageningen
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3859
SubjectTerms Agricultural development
Agriculture
Animal Production Systems
Biogeochemistry
carbon
Carbon - analysis
Climate Change
Dierlijke Productiesystemen
Emissions control
Farm buildings
finance
Gases - analysis
Global warming
Greenhouse Effect - legislation & jurisprudence
Greenhouse Effect - prevention & control
greenhouse gas emissions
Greenhouse gases
integrated assessment modeling
International Cooperation
issues and policy
Laboratorium voor Geo-informatiekunde en remote sensing
Laboratory of Geo-information Science and Remote Sensing
Leerstoelgroep Dierlijke productiesystemen
methane
Methane - analysis
Mitigation
Paris Agreement
PE&RC
policy
Public Policy
soil
Soil - chemistry
target
United Nations Framework Convention on Climate Change
Title Reducing emissions from agriculture to meet the 2 °C target
URI https://api.istex.fr/ark:/67375/WNG-0SP7F6Z8-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13340
https://www.ncbi.nlm.nih.gov/pubmed/27185416
https://www.proquest.com/docview/1844913253
https://www.proquest.com/docview/1826686901
https://www.proquest.com/docview/2020867921
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F528705
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qRWg_-HJajdayihS_5Gh2s0mK-KE9ei1CS6kWiwjLbrJbpGdOLjmq_hp_gr-hv6wzm1zOSgvip7xN3iYzu89kZ58BeJVbo0XqslBKgwFKpF2opUnCxAlXWE0jSRQo7h8ke8fxuxN5sgBvZnNhGn6I7ocbeYZvr8nBtan-cPLT3PQxwIopXqdcLQJER3PqKMF9Xc1IyBibmki0rEKUxdOdeaUvuk1q_X4d0FyGpXN07tLPdroKYn0vNLwHn2fP3ySfnPWntennP_-idvzPF7wPd1t0yrYac3oAC7bswfLW6aRl6LA9uNNUr_zRg5Wd-SQ5PKltJaoeBPuIxMcTL8bW2WD0BWGx33oIb4-IKxbfkVGhOfpVVzGa4sL0_CasHrOv1tYMwSnjF78ufg9Yk7H-CI6HOx8Ge2FbwiHMYwQiYWEybbM0z1IhNrM4l4UzhbPOZoVJo1gXEoPzLHZxgrYkaT-Gl0XqeFKYxMpIrMBiOS7tE2BFJqzlurBWutjxyJg05xu5TYi1LJJpAK9nH1PlLb85ldkYqVmcgwpVXqEBvOxEvzWkHtcJrXuL6CT05Iyy4FKpPh7sqo33h-kw-ZQpvPHqzGRU2wBUCgNnVIDgUgTwojuMiqXxGF3a8ZRkEB35imA3y3AqopqkmxxlHjfm2D0QR1whEVAHIOb2qUqqQVUpog1vrUydTyeqHNECr1ApSYPbEvXlre9mDajdwbZfefrvos9gCSFl0iT8rMJiPZna5wjbarMGt3h8uOa99BKBlkC3
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVoj2wE-gECiwIKi4OIp3vbZ76KGkTVPaRKi0ouKyeO11hRocFCcK5Wl4AA48Q--8EzNrx6Golbj0wMl_47_ZmdmZ3dlvAF7ERkciSENHSo0BihulTiS17_ipSBMT0UwSBYrdnt859N4cyaM5-DFdC1PgQ1QDbqQZ1l6TgtOA9B9afhzrBkZYXrNMqdw1pxMM2PL1nU1s3Zect7cOWh2nrCngxB72jE6iw8iEQRwGQqyFXiyTVCepSU2Y6MD1okRitBh6qefjz0k6j_FOEqTcT7RvpCvwuddggSqIE1L_5v4MrEpwW8nTFdJD4-aKEseI8oaqTz3X-y1QQ369yLVdgsUJmpPMrq867zbbfq99C35NOVaku5w0xiPdiL_9BSb5v7D0NtwsHXC2UWjMHZgzWQ2WNo6HJQiJqcH1okDnaQ2Wt2brAPGm0hDmNah3MdgYDC0ZW2Wt_if0_O3RXVjfJzhcZCqjWno0GpkzWsXDotlL2GjAPhszYuh_M372_exnixVJ-ffg8Ep-fxnms0FmHgBLQmEMjxJjZOql3NU6iHkzNj4Bs7kyqMOrqfSouIRwp0oifTUN5bABlW3AOjyvSL8UuCUXEa1aEawoouEJJfoFUr3vbavmu7dB2_8QKnzxylRGVWnjcuWGHjJAcCnq8Ky6jIylKacoM4Mx0aADaIueXU7DqU6sH6xxpLlfyH_1QRxdJ4kxQx3ETCFURmW2ckXI6KVYq8l4qLI-bfAJuZI0fy-RX1bcL-eA2m69tjsP_530KdzoHHT31N5Ob_cRLKIH7Rf5TSswPxqOzWP0Ukf6iTUODD5eter8BoQHoQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVqD2gGChEChgEFRcgjZ2nKSHHsq225bS1QqoqLiYOLErxJKtNrta-jbcufAMfTJmnGyWSq3Epaf8TRJnxjP-Jh7PALzMjE5FbBNfSo0OSpBaP5U68iMrbG5SmkkiR_GwF-0dhe-O5fEC_J6thanyQzQ_3EgznL0mBT_N7T9KfpLpN-hghe06ovLAnE3RXys397dRuK847-586uz5dUkBPwtxYPRznaQmibMkFmIjCTOZW51bY02S6zgI01yis5iENozw2ySdR3cnjy2Pch0ZGQh87g1YoslFih_jYb8x-4K7Qp6BkCHatkDUaYwobKhp6oXBb4nk-PMyZLsCy1O0JoVbXnURNbthr3sHbtd4lW1VHewuLJiiBStbJ6M6Z4dpwc2qnuVZC1Z35svm8KbabpQt8A4Rmw9Hjoyts87gGwJld3QPNj9Q9lhsBKPSc_TzrmS06IWl85ew8ZD9MGbMEK4yfv7r_E-HVTHs9-HoWiSwCovFsDAPgeWJMIanuTHShpYHWscZb2cmojxmgYw9eD3jtsrqjOdUeGOgZp4PCkY5wXjwoiE9rdJ8XEa07kTWUKSj7xQXF0v1uber2h_7cTf6kih88dpMpqo2CaVCVxoZILgUHjxvLiNjaYYmLcxwQjSIl1yNsKtpOJVVjeINjjQPqv7SNIgj0pAIsT0Q8w6kCqpKVSpKJF4rlppORqoY0AafUCpJ090S-eV62tUcULudt27n0f-TPoNb_e2uer_fO3gMy4g3oyoaaA0Wx6OJeYKYbqyfOl1i8PW6lfcvwSlehA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+emissions+from+agriculture+to+meet+the+2%C2%A0%C2%B0C+target&rft.jtitle=Global+change+biology&rft.au=Wollenberg%2C+Eva&rft.au=Richards%2C+Meryl&rft.au=Smith%2C+Pete&rft.au=Havl%C3%ADk%2C+Petr&rft.date=2016-12-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=22&rft.issue=12&rft.spage=3859&rft.epage=3864&rft_id=info:doi/10.1111%2Fgcb.13340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_13340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon