Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation
Purpose Increasing acquisition efficiency is always a challenge in high‐resolution diffusion tensor imaging (DTI), which has low signal‐to‐noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, whic...
Saved in:
Published in | Magnetic resonance in medicine Vol. 73; no. 5; pp. 1775 - 1785 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.05.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Increasing acquisition efficiency is always a challenge in high‐resolution diffusion tensor imaging (DTI), which has low signal‐to‐noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter‐image correlation tailored for high‐resolution DTI.
Theory and Methods
The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion‐induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter‐image correlation of diffusion‐weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method.
Results
The proposed reconstruction method was compared with CG‐SENSE, CS‐based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods.
Conclusion
The proposed method can accelerate high‐resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Magn Reson Med 73:1775–1785, 2015. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI.
The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method.
The proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods.
The proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Purpose Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI. Theory and Methods The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. Results The proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. Conclusion The proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Magn Reson Med 73:1775-1785, 2015. copyright 2014 Wiley Periodicals, Inc. Purpose Increasing acquisition efficiency is always a challenge in high‐resolution diffusion tensor imaging (DTI), which has low signal‐to‐noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter‐image correlation tailored for high‐resolution DTI. Theory and Methods The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion‐induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter‐image correlation of diffusion‐weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. Results The proposed reconstruction method was compared with CG‐SENSE, CS‐based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. Conclusion The proposed method can accelerate high‐resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Magn Reson Med 73:1775–1785, 2015. © 2014 Wiley Periodicals, Inc. Purpose Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI. Theory and Methods The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. Results The proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. Conclusion The proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Magn Reson Med 73:1775-1785, 2015. © 2014 Wiley Periodicals, Inc. PURPOSEIncreasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI.THEORY AND METHODSThe proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method.RESULTSThe proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods.CONCLUSIONThe proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. |
Author | Shi, Xinwei Wu, Wenchuan Ma, Xiaodong Huang, Feng Yuan, Chun Guo, Hua |
Author_xml | – sequence: 1 givenname: Xinwei surname: Shi fullname: Shi, Xinwei organization: Department of Electrical Engineering, Stanford University, Stanford, California, USA – sequence: 2 givenname: Xiaodong surname: Ma fullname: Ma, Xiaodong organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Wenchuan surname: Wu fullname: Wu, Wenchuan organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Feng surname: Huang fullname: Huang, Feng organization: Philips Healthcare, Florida, Gainesville, USA – sequence: 5 givenname: Chun surname: Yuan fullname: Yuan, Chun organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China – sequence: 6 givenname: Hua surname: Guo fullname: Guo, Hua email: huaguo@tsinghua.edu.cn organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24824404$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1O3DAUha2Kqgy0i75AFakbNgH_3MTjZTUqUAmmVdWK7iyPfTMYEmdqJwJegyfGmQEWXXXlq-PvHOv6HJC90Ack5COjx4xSftLF7phXXNE3ZMYqzkteKdgjMyqBloIp2CcHKd1QSpWS8I7sc5hzAAoz8vjDRNO22Ba-M2sf1oUJrrB9t4mYEroiYUiTnKWVD1loounwro-3RdPHwliLLUYzTMy1X1-X2de34-D7UDjfNGOapiGnZPrljXEb6cOAsZw0zPExYmsm23vytjFtwg_P5yH5ffr11-K8vPh-9m3x5aK0oBgtK2WxqSU4RS0gMwYEraFylTRKupW0wtA5rlxtwTWWza20wIXjqLgUrAZxSI52uZvY_x0xDbrzKW_TmoD9mDSr5xSqmgn5H6gEVVPBeEY__4Pe9GMMeZEtxSqQTGXq0zM1rjp0ehPzN8QH_VJMBk52wJ1v8eH1nlE9Na5z43rbuL78ebkdsqPcOXwa8P7VYeKtrqWQlb5anmn-ZwnLK7XQTDwBcAew7g |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1016_j_media_2018_05_002 crossref_primary_10_1016_j_mri_2024_04_015 crossref_primary_10_1002_mrm_26163 crossref_primary_10_1002_mrm_28025 crossref_primary_10_1002_mrm_25594 crossref_primary_10_1109_TMI_2021_3104291 crossref_primary_10_26599_BSA_2019_9050001 crossref_primary_10_3389_fnins_2020_00734 crossref_primary_10_1002_mp_15788 crossref_primary_10_1016_j_media_2019_02_014 crossref_primary_10_1002_mrm_26567 crossref_primary_10_1016_j_mri_2019_05_019 crossref_primary_10_1016_j_neuroimage_2019_04_002 crossref_primary_10_1016_j_neuroimage_2020_117327 crossref_primary_10_1002_mrm_26861 crossref_primary_10_1002_mp_12054 crossref_primary_10_1002_mrm_27699 crossref_primary_10_1038_s41598_023_39533_4 crossref_primary_10_1007_s00723_018_1036_8 crossref_primary_10_1002_jmri_25664 crossref_primary_10_1002_jmri_26871 crossref_primary_10_1002_nbm_4247 crossref_primary_10_1002_mp_12639 crossref_primary_10_1002_mrm_26197 crossref_primary_10_1002_mrm_28674 crossref_primary_10_1002_mrm_28751 crossref_primary_10_1002_mrm_26199 crossref_primary_10_1177_2096595819896176 crossref_primary_10_1002_mrm_28756 crossref_primary_10_1016_j_neuroimage_2020_117017 crossref_primary_10_1016_j_nicl_2022_103213 crossref_primary_10_1016_j_neuroimage_2020_116584 crossref_primary_10_1016_j_compbiomed_2022_105212 crossref_primary_10_1002_mrm_29721 crossref_primary_10_1007_s12194_021_00607_5 crossref_primary_10_1002_mrm_28937 crossref_primary_10_3390_life13071472 crossref_primary_10_1007_s10334_019_00747_1 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25290 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database Biochemistry Abstracts 1 MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1785 |
ExternalDocumentID | 3659069261 24824404 MRM25290 ark_67375_WNG_2XN4NW9C_1 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Technology R&D Program in the 12th Five‐year Plan – fundername: National Natural Science Foundation of China funderid: 61271132 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT G8K CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c4910-59cef674d90c4e1aa430645d57a97db7c3a08ebd6c4dfc18c7c423d2e92731643 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Fri Aug 16 23:49:45 EDT 2024 Fri Aug 16 10:16:43 EDT 2024 Thu Oct 10 22:54:14 EDT 2024 Sat Sep 28 07:54:00 EDT 2024 Sat Aug 24 01:01:57 EDT 2024 Wed Oct 30 09:53:18 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | anisotropic sparsity parallel imaging diffusion tensor imaging variable density spiral compressed sensing |
Language | English |
License | 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4910-59cef674d90c4e1aa430645d57a97db7c3a08ebd6c4dfc18c7c423d2e92731643 |
Notes | National Natural Science Foundation of China - No. 61271132 ark:/67375/WNG-2XN4NW9C-1 National Key Technology R&D Program in the 12th Five-year Plan istex:42446E1AA8808024927BC5DE32CDB7D104294DD3 ArticleID:MRM25290 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25290 |
PMID | 24824404 |
PQID | 1674154719 |
PQPubID | 1016391 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1680456137 proquest_miscellaneous_1674960312 proquest_journals_1674154719 pubmed_primary_24824404 wiley_primary_10_1002_mrm_25290_MRM25290 istex_primary_ark_67375_WNG_2XN4NW9C_1 |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Gao H, Li L, Zhang K, Zhou W, Hu X. PCLR: phase-constrained low-rank model for compressive diffusion-weighted MRI. Magn Reson Med 2014;72:1330-1341. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534-546. Welsh CL, DiBella EV, Adluru G, Hsu EW. Model-based reconstruction of undersampled diffusion tensor k-space data. Magn Reson Med 2013;70:429-440. Lam F, Babacan SD, Haldar JP, Weiner MW, Schuff N, Liang ZP. Denoising diffusion-weighted magnitude MR images using rank and edge constraints. Magn Reson Med 2014;71:1272-1284. Duarte MF, Sarvotham S, Baron D, Wakin MB, Baraniuk RG. Distributed compressed sensing of jointly sparse signals. Conf Rec Asilomar Conf Signals Syst Comput 2005:1537-1541. Bammer R, Auer M, Keeling SL, Augustin M, Stables LA, Prokesch RW, Stollberger R, Moseley ME, Fazekas F. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002;48:128-136. Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 2010;64:457-471. Haldar JP, Wedeen VJ, Nezamzadeh M, Dai G, Weiner MW, Schuff N, Liang ZP. Improved diffusion imaging through SNR-enhancing joint reconstruction. Magn Reson Med 2013;69:277-289. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210. Heidemann RM, Griswold MA, Seiberlich N, Kruger G, Kannengiesser SA, Kiefer B, Wiggins G, Wald LL, Jakob PM. Direct parallel image reconstructions for spiral trajectories using GRAPPA. Magn Reson Med 2006;56:317-326. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962. Michailovich O, Rathi Y, Dolui S. Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Trans Med Imaging 2011;30:1100-1115. Liu C, Moseley ME, Bammer R. Simultaneous phase correction and SENSE reconstruction for navigated multi-shot DWI with non-Cartesian k-space sampling. Magn Reson Med 2005;54:1412-1422. Skare S, Newbould RD, Clayton DB, Albers GW, Nagle S, Bammer R. Clinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise. Magn Reson Med 2007;57:881-890. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Topics in Magn Reson Imaging 2004;15:223-236. Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651. Adluru G, Hsu E, Di Bella EV. Constrained reconstruction of sparse cardiac MR DTI data. Functional imaging and modeling of the heart. Berlin: Springer; 2007. p 91-99. Mani M, Jacob M, Guidon A, Magnotta V, Zhong J. Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data. Magn Reson Med 2015;73:126-138. Holdsworth SJ, Skare S, Newbould RD, Guzmann R, Blevins NH, Bammer R. Readout-segmented EPI for rapid high resolution diffusion imaging at 3T. Eur J Radiol 2008;65:36-46. Bilgic B, Setsompop K, Cohen-Adad J, Yendiki A, Wald LL, Adalsteinsson E. Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magn Reson Med 2012;68:1747-1754. Reeder SB, Wintersperger BJ, Dietrich O, Lanz T, Greiser A, Reiser MF, Glazer GM, Schoenberg SO. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 2005;54:748-754. Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 2003;51:560-574. Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42-52. Liu C, Bammer R, Kim Dh, Moseley ME. Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn Reson Med 2004;52:1388-1396. Holdsworth SJ, Skare S, Newbould RD, Bammer R. Robust GRAPPA-accelerated diffusion-weighted readout-segmented (RS)-EPI. Magn Reson Med 2009;62:1629-1640. Wu Y, Zhu YJ, Tang QY, Zou C, Liu W, Dai RB, Liu X, Wu EX, Ying L, Liang D. Accelerated MR diffusion tensor imaging using distributed compressed sensing. Magn Reson Med 2014;71:763-772. Bammer R, Keeling SL, Augustin M, Pruessmann KP, Wolf R, Stollberger R, Hartung HP, Fazekas F. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med 2001;46:548-554. Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. Signal Processing Magazine, IEEE 2008;25:72-82. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195. Jiang H, van Zijl P, Kim J, Pearlson GD, Mori S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 2006;81:106-116. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385. Huang J, Chen C, Axel L. Fast multi-contrast MRI reconstruction. Medical Image Computing and Computer-Assisted Intervention MICCAI 2012. Volume 7510, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2012. p 281-288. 2009; 62 2013; 69 2006; 56 2012 2011 2015; 73 2009 2011; 30 2007 2013; 70 1999; 42 2005 2004 2001; 46 2003; 51 2007; 57 2007; 58 2006; 81 2002; 47 2004; 52 2002; 48 2010; 64 2004; 15 2008; 25 2005; 54 2008; 65 2012; 68 2001; 13 2014; 72 2014; 71 2007; 26 |
References_xml | – volume: 52 start-page: 1388 year: 2004 end-page: 1396 article-title: Self‐navigated interleaved spiral (SNAILS): application to high‐resolution diffusion tensor imaging publication-title: Magn Reson Med – volume: 46 start-page: 638 year: 2001 end-page: 651 article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories publication-title: Magn Reson Med – year: 2009 – volume: 69 start-page: 277 year: 2013 end-page: 289 article-title: Improved diffusion imaging through SNR‐enhancing joint reconstruction publication-title: Magn Reson Med – volume: 65 start-page: 36 year: 2008 end-page: 46 article-title: Readout‐segmented EPI for rapid high resolution diffusion imaging at 3T publication-title: Eur J Radiol – volume: 73 start-page: 126 year: 2015 end-page: 138 article-title: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data publication-title: Magn Reson Med – volume: 15 start-page: 223 year: 2004 end-page: 236 article-title: SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method publication-title: Topics in Magn Reson Imaging – volume: 71 start-page: 1272 year: 2014 end-page: 1284 article-title: Denoising diffusion‐weighted magnitude MR images using rank and edge constraints publication-title: Magn Reson Med – volume: 68 start-page: 1747 year: 2012 end-page: 1754 article-title: Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries publication-title: Magn Reson Med – volume: 64 start-page: 457 year: 2010 end-page: 471 article-title: SPIRiT: iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space publication-title: Magn Reson Med – volume: 56 start-page: 317 year: 2006 end-page: 326 article-title: Direct parallel image reconstructions for spiral trajectories using GRAPPA publication-title: Magn Reson Med – start-page: 1039 year: 2011 end-page: 1043 – volume: 47 start-page: 42 year: 2002 end-page: 52 article-title: Multishot diffusion‐weighted FSE using PROPELLER MRI publication-title: Magn Reson Med – volume: 51 start-page: 560 year: 2003 end-page: 574 article-title: Nonuniform fast Fourier transforms using min‐max interpolation publication-title: IEEE Trans Signal Process – volume: 70 start-page: 429 year: 2013 end-page: 440 article-title: Model‐based reconstruction of undersampled diffusion tensor k‐space data publication-title: Magn Reson Med – start-page: 91 year: 2007 end-page: 99 – volume: 47 start-page: 1202 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 54 start-page: 1412 year: 2005 end-page: 1422 article-title: Simultaneous phase correction and SENSE reconstruction for navigated multi‐shot DWI with non‐Cartesian k‐space sampling publication-title: Magn Reson Med – start-page: 254 year: 2011 end-page: 257 – volume: 48 start-page: 128 year: 2002 end-page: 136 article-title: Diffusion tensor imaging using single‐shot SENSE‐EPI publication-title: Magn Reson Med – volume: 30 start-page: 1100 year: 2011 end-page: 1115 article-title: Spatially regularized compressed sensing for high angular resolution diffusion imaging publication-title: IEEE Trans Med Imaging – volume: 46 start-page: 548 year: 2001 end-page: 554 article-title: Improved diffusion‐weighted single‐shot echo‐planar imaging (EPI) in stroke using sensitivity encoding (SENSE) publication-title: Magn Reson Med – volume: 58 start-page: 1182 year: 2007 end-page: 1195 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – start-page: 1537 year: 2005 end-page: 1541 article-title: Distributed compressed sensing of jointly sparse signals publication-title: Conf Rec Asilomar Conf Signals Syst Comput – volume: 54 start-page: 748 year: 2005 end-page: 754 article-title: Practical approaches to the evaluation of signal‐to‐noise ratio performance with parallel imaging: application with cardiac imaging and a 32‐channel cardiac coil publication-title: Magn Reson Med – volume: 26 start-page: 375 year: 2007 end-page: 385 article-title: Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters publication-title: J Magn Reson Imaging – volume: 13 start-page: 534 year: 2001 end-page: 546 article-title: Diffusion tensor imaging: concepts and applications publication-title: J Magn Reson Imaging – volume: 81 start-page: 106 year: 2006 end-page: 116 article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking publication-title: Comput Methods Programs Biomed – year: 2004 – start-page: 281 year: 2012 end-page: 288 – volume: 57 start-page: 881 year: 2007 end-page: 890 article-title: Clinical multishot DW‐EPI through parallel imaging with considerations of susceptibility, motion, and noise publication-title: Magn Reson Med – volume: 62 start-page: 1629 year: 2009 end-page: 1640 article-title: Robust GRAPPA‐accelerated diffusion‐weighted readout‐segmented (RS)‐EPI publication-title: Magn Reson Med – volume: 72 start-page: 1330 year: 2014 end-page: 1341 article-title: PCLR: phase‐constrained low‐rank model for compressive diffusion‐weighted MRI publication-title: Magn Reson Med – volume: 25 start-page: 72 year: 2008 end-page: 82 article-title: Compressed sensing MRI publication-title: Signal Processing Magazine, IEEE – volume: 71 start-page: 763 year: 2014 end-page: 772 article-title: Accelerated MR diffusion tensor imaging using distributed compressed sensing publication-title: Magn Reson Med |
SSID | ssj0009974 |
Score | 2.422421 |
Snippet | Purpose
Increasing acquisition efficiency is always a challenge in high‐resolution diffusion tensor imaging (DTI), which has low signal‐to‐noise ratio and is... Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive... Purpose Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is... PURPOSEIncreasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is... |
SourceID | proquest pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1775 |
SubjectTerms | anisotropic sparsity Brain - pathology compressed sensing Diffusion Magnetic Resonance Imaging - methods diffusion tensor imaging Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods parallel imaging Statistics as Topic variable density spiral |
Title | Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation |
URI | https://api.istex.fr/ark:/67375/WNG-2XN4NW9C-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25290 https://www.ncbi.nlm.nih.gov/pubmed/24824404 https://www.proquest.com/docview/1674154719 https://search.proquest.com/docview/1674960312 https://search.proquest.com/docview/1680456137 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL2UguKLH_UrtcoIIr5ku5nM7GTwSaq1CLtIsXQfhGEymUCpm0p2A8Unf4JP_kB_iffOJCmKiPgWJnfyeW5yJjlzLsCzAiltZsUsLbQrUiGtTXVJIkfkIkiQcQBS0ATn-WJ2dCLeLeVyC14Oc2GiP8T4wY0yIzyvKcFtud6_Mg1dtasJl1zTeD3LFcm5Xh9fWUdpHR2YlaDnjBaDq9CU7489kZDStbz8E7v8layGt83hLfg4HGcUmZxPuk05cV9-s3D8zxO5DTd7FspeRdjcgS3f7MD1ef-ffQeuBWGoW9-F7-9tS-VWPrGzVShoxGxTMRKiB9fxiq1JAY_N2ISDbGyoB7kXQz7MrHP4YiOYYQx5I__4-g179oBnVJ-low92jJT0GD_spQsbJTOLFntQq8ddtG2v3bsHJ4dvPhwcpX0th9QJZCSp1M7XMyUqPXXCZ9YKGvrISiqrVVUql9tp4ctq5kRVu6xwyiHRq7jXnGprifw-bDcXjX8ITGWV8irPS1nUorYSN6CctrbUNU3snSbwPNxV8zn6dRjbnpN8TUlzunhr-HIhFqf6wGQJ7A233fSZuzY0KwNRqjKdwNNxNeYc_Uixjb_oYoym8tz8bzEFsWVEZgIPIqTGA-Ki4OTLmMCLAIxxRfSQ5gYhYQIkzPx4HhZ2_z30EdxAViejKnMPtjdt5x8jc9qUT0KK_ASKuxgQ |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuPMorUMBICHHJduM461jiggplgSZCVavupbIcx5FQ2RRlNxLixE_gxA_klzDjPCoQQohb5IwdJ5lxPjufvwF4kiKkjYyYhamyaSgSY0JVEMkRsQgCZJyApLTBOctn8yPxdpEsNuD5sBem04cYF9woMvx4TQFOC9I756qhy2Y54QlXOGG_gOEeU_6Clwfn4lFKdRrMUtBIo8SgKzTlO2NVhKT0ND__CV_-Clf992bvGpwMPe1oJqeTdl1M7JffRBz_91auw9UeiLIXnefcgA1Xb8GlrP_VvgUXPTfUrm7C9_emoYwrH9mHpc9pxExdMuKie-Hxkq2IBI_FWITzbCyoBsYXQ0jMjLX4bSNPQxuSR_7x9RvW7H2eUYqWltbsGJHp0X64SusbJT2LBmtQqcNLNE1P37sFR3uvDnfnYZ_OIbQCQUmYKOuqmRSlmlrhImMEzX6SMpFGybKQNjbT1BXlzIqyslFqpUWsV3KnOKXXEvFt2KzPancXmIxK6WQcF0laicok2IC0yphCVbS3dxrAU_9a9adOskOb5pQYbDLRx_lrzRe5yI_Vro4C2B7eu-6Dd6VpYwY6qoxUAI_H0xh29C_F1O6s7WwUZejmf7NJCTBHsQzgTudTY4e4SDlJMwbwzHvGeKKTkeYaXUJ7l9DZQeYP7v276SO4PD_M9vX-m_zdfbiCIC_pSJrbsLluWvcAgdS6eOjj5Sfifxwq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqIio2PMorUMBICLHJNHHsOBYr1DKUx4yqiqqzQLIc25FQmbTKTCTEik9gxQfyJdzrPCoQQohd5FzHTnJvfOwcn0vIkwIgbWp4HhfKFjEXxsSqRJIjYBEAyDABKXCD82yeHxzzNwux2CDPh70wnT7EuOCGkRG-1xjg567avRANXTbLCRNMwXz9Es-zBPlc-0cX2lFKdRLMkuOHRvFBVihhu2NVQKT4MD__CV7-ilbDcDO9Rj4MHe1YJqeTdl1O7JffNBz_806uk6s9DKUvOr-5QTZ8vU22Zv2P9m1yOTBD7eom-X5oGsy38ol-XIaMRtTUjiITPciOO7pCCjwUQxHMsqGgGvheFAAxNdbCyIZ-BjYojvzj6zeo2Xs8xQQtLa7YUaTSg_3QShsuimoWDdTAUg9NNE1P3rtFjqcv3-8dxH0yh9hygCSxUNZXueROJZb71BiOcx_hhDRKulLazCSFL11uuatsWlhpAek55hXD5Fo8u00267Pa3yVUpk56mWWlKCpeGQEXkFYZU6oKd_YmEXka3qo-7wQ7tGlOkb8mhT6Zv9JsMefzE7Wn04jsDK9d96G70rgtA9xUpioij8fTEHT4J8XU_qztbBTm52Z_sykQLqeZjMidzqXGDjFeMBRmjMiz4BjjiU5EmmlwCR1cQs-OZuHg3r-bPiJbh_tT_e71_O19cgUQnugYmjtkc920_gGgqHX5METLT4ggGtk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+imaging+and+compressed+sensing+combined+framework+for+accelerating+high-resolution+diffusion+tensor+imaging+using+inter-image+correlation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Shi%2C+Xinwei&rft.au=Ma%2C+Xiaodong&rft.au=Wu%2C+Wenchuan&rft.au=Huang%2C+Feng&rft.date=2015-05-01&rft.eissn=1522-2594&rft.volume=73&rft.issue=5&rft.spage=1775&rft.epage=1785&rft_id=info:doi/10.1002%2Fmrm.25290&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |