Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation

Purpose Increasing acquisition efficiency is always a challenge in high‐resolution diffusion tensor imaging (DTI), which has low signal‐to‐noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, whic...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 73; no. 5; pp. 1775 - 1785
Main Authors Shi, Xinwei, Ma, Xiaodong, Wu, Wenchuan, Huang, Feng, Yuan, Chun, Guo, Hua
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.05.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Increasing acquisition efficiency is always a challenge in high‐resolution diffusion tensor imaging (DTI), which has low signal‐to‐noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter‐image correlation tailored for high‐resolution DTI. Theory and Methods The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion‐induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter‐image correlation of diffusion‐weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. Results The proposed reconstruction method was compared with CG‐SENSE, CS‐based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. Conclusion The proposed method can accelerate high‐resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Magn Reson Med 73:1775–1785, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI. The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. The proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. The proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions.
Purpose Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI. Theory and Methods The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. Results The proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. Conclusion The proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Magn Reson Med 73:1775-1785, 2015. copyright 2014 Wiley Periodicals, Inc.
Purpose Increasing acquisition efficiency is always a challenge in high‐resolution diffusion tensor imaging (DTI), which has low signal‐to‐noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter‐image correlation tailored for high‐resolution DTI. Theory and Methods The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion‐induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter‐image correlation of diffusion‐weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. Results The proposed reconstruction method was compared with CG‐SENSE, CS‐based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. Conclusion The proposed method can accelerate high‐resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Magn Reson Med 73:1775–1785, 2015. © 2014 Wiley Periodicals, Inc.
Purpose Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI. Theory and Methods The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. Results The proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. Conclusion The proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions. Magn Reson Med 73:1775-1785, 2015. © 2014 Wiley Periodicals, Inc.
PURPOSEIncreasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI.THEORY AND METHODSThe proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method.RESULTSThe proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods.CONCLUSIONThe proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions.
Author Shi, Xinwei
Wu, Wenchuan
Ma, Xiaodong
Huang, Feng
Yuan, Chun
Guo, Hua
Author_xml – sequence: 1
  givenname: Xinwei
  surname: Shi
  fullname: Shi, Xinwei
  organization: Department of Electrical Engineering, Stanford University, Stanford, California, USA
– sequence: 2
  givenname: Xiaodong
  surname: Ma
  fullname: Ma, Xiaodong
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Wenchuan
  surname: Wu
  fullname: Wu, Wenchuan
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Feng
  surname: Huang
  fullname: Huang, Feng
  organization: Philips Healthcare, Florida, Gainesville, USA
– sequence: 5
  givenname: Chun
  surname: Yuan
  fullname: Yuan, Chun
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Hua
  surname: Guo
  fullname: Guo, Hua
  email: huaguo@tsinghua.edu.cn
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24824404$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1O3DAUha2Kqgy0i75AFakbNgH_3MTjZTUqUAmmVdWK7iyPfTMYEmdqJwJegyfGmQEWXXXlq-PvHOv6HJC90Ack5COjx4xSftLF7phXXNE3ZMYqzkteKdgjMyqBloIp2CcHKd1QSpWS8I7sc5hzAAoz8vjDRNO22Ba-M2sf1oUJrrB9t4mYEroiYUiTnKWVD1loounwro-3RdPHwliLLUYzTMy1X1-X2de34-D7UDjfNGOapiGnZPrljXEb6cOAsZw0zPExYmsm23vytjFtwg_P5yH5ffr11-K8vPh-9m3x5aK0oBgtK2WxqSU4RS0gMwYEraFylTRKupW0wtA5rlxtwTWWza20wIXjqLgUrAZxSI52uZvY_x0xDbrzKW_TmoD9mDSr5xSqmgn5H6gEVVPBeEY__4Pe9GMMeZEtxSqQTGXq0zM1rjp0ehPzN8QH_VJMBk52wJ1v8eH1nlE9Na5z43rbuL78ebkdsqPcOXwa8P7VYeKtrqWQlb5anmn-ZwnLK7XQTDwBcAew7g
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_media_2018_05_002
crossref_primary_10_1016_j_mri_2024_04_015
crossref_primary_10_1002_mrm_26163
crossref_primary_10_1002_mrm_28025
crossref_primary_10_1002_mrm_25594
crossref_primary_10_1109_TMI_2021_3104291
crossref_primary_10_26599_BSA_2019_9050001
crossref_primary_10_3389_fnins_2020_00734
crossref_primary_10_1002_mp_15788
crossref_primary_10_1016_j_media_2019_02_014
crossref_primary_10_1002_mrm_26567
crossref_primary_10_1016_j_mri_2019_05_019
crossref_primary_10_1016_j_neuroimage_2019_04_002
crossref_primary_10_1016_j_neuroimage_2020_117327
crossref_primary_10_1002_mrm_26861
crossref_primary_10_1002_mp_12054
crossref_primary_10_1002_mrm_27699
crossref_primary_10_1038_s41598_023_39533_4
crossref_primary_10_1007_s00723_018_1036_8
crossref_primary_10_1002_jmri_25664
crossref_primary_10_1002_jmri_26871
crossref_primary_10_1002_nbm_4247
crossref_primary_10_1002_mp_12639
crossref_primary_10_1002_mrm_26197
crossref_primary_10_1002_mrm_28674
crossref_primary_10_1002_mrm_28751
crossref_primary_10_1002_mrm_26199
crossref_primary_10_1177_2096595819896176
crossref_primary_10_1002_mrm_28756
crossref_primary_10_1016_j_neuroimage_2020_117017
crossref_primary_10_1016_j_nicl_2022_103213
crossref_primary_10_1016_j_neuroimage_2020_116584
crossref_primary_10_1016_j_compbiomed_2022_105212
crossref_primary_10_1002_mrm_29721
crossref_primary_10_1007_s12194_021_00607_5
crossref_primary_10_1002_mrm_28937
crossref_primary_10_3390_life13071472
crossref_primary_10_1007_s10334_019_00747_1
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25290
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database

Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1785
ExternalDocumentID 3659069261
24824404
MRM25290
ark_67375_WNG_2XN4NW9C_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Technology R&D Program in the 12th Five‐year Plan
– fundername: National Natural Science Foundation of China
  funderid: 61271132
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
G8K
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c4910-59cef674d90c4e1aa430645d57a97db7c3a08ebd6c4dfc18c7c423d2e92731643
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Fri Aug 16 23:49:45 EDT 2024
Fri Aug 16 10:16:43 EDT 2024
Thu Oct 10 22:54:14 EDT 2024
Sat Sep 28 07:54:00 EDT 2024
Sat Aug 24 01:01:57 EDT 2024
Wed Oct 30 09:53:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords anisotropic sparsity
parallel imaging
diffusion tensor imaging
variable density spiral
compressed sensing
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4910-59cef674d90c4e1aa430645d57a97db7c3a08ebd6c4dfc18c7c423d2e92731643
Notes National Natural Science Foundation of China - No. 61271132
ark:/67375/WNG-2XN4NW9C-1
National Key Technology R&D Program in the 12th Five-year Plan
istex:42446E1AA8808024927BC5DE32CDB7D104294DD3
ArticleID:MRM25290
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25290
PMID 24824404
PQID 1674154719
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_1680456137
proquest_miscellaneous_1674960312
proquest_journals_1674154719
pubmed_primary_24824404
wiley_primary_10_1002_mrm_25290_MRM25290
istex_primary_ark_67375_WNG_2XN4NW9C_1
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Gao H, Li L, Zhang K, Zhou W, Hu X. PCLR: phase-constrained low-rank model for compressive diffusion-weighted MRI. Magn Reson Med 2014;72:1330-1341.
Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534-546.
Welsh CL, DiBella EV, Adluru G, Hsu EW. Model-based reconstruction of undersampled diffusion tensor k-space data. Magn Reson Med 2013;70:429-440.
Lam F, Babacan SD, Haldar JP, Weiner MW, Schuff N, Liang ZP. Denoising diffusion-weighted magnitude MR images using rank and edge constraints. Magn Reson Med 2014;71:1272-1284.
Duarte MF, Sarvotham S, Baron D, Wakin MB, Baraniuk RG. Distributed compressed sensing of jointly sparse signals. Conf Rec Asilomar Conf Signals Syst Comput 2005:1537-1541.
Bammer R, Auer M, Keeling SL, Augustin M, Stables LA, Prokesch RW, Stollberger R, Moseley ME, Fazekas F. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002;48:128-136.
Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 2010;64:457-471.
Haldar JP, Wedeen VJ, Nezamzadeh M, Dai G, Weiner MW, Schuff N, Liang ZP. Improved diffusion imaging through SNR-enhancing joint reconstruction. Magn Reson Med 2013;69:277-289.
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210.
Heidemann RM, Griswold MA, Seiberlich N, Kruger G, Kannengiesser SA, Kiefer B, Wiggins G, Wald LL, Jakob PM. Direct parallel image reconstructions for spiral trajectories using GRAPPA. Magn Reson Med 2006;56:317-326.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
Michailovich O, Rathi Y, Dolui S. Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Trans Med Imaging 2011;30:1100-1115.
Liu C, Moseley ME, Bammer R. Simultaneous phase correction and SENSE reconstruction for navigated multi-shot DWI with non-Cartesian k-space sampling. Magn Reson Med 2005;54:1412-1422.
Skare S, Newbould RD, Clayton DB, Albers GW, Nagle S, Bammer R. Clinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise. Magn Reson Med 2007;57:881-890.
Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Topics in Magn Reson Imaging 2004;15:223-236.
Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
Adluru G, Hsu E, Di Bella EV. Constrained reconstruction of sparse cardiac MR DTI data. Functional imaging and modeling of the heart. Berlin: Springer; 2007. p 91-99.
Mani M, Jacob M, Guidon A, Magnotta V, Zhong J. Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data. Magn Reson Med 2015;73:126-138.
Holdsworth SJ, Skare S, Newbould RD, Guzmann R, Blevins NH, Bammer R. Readout-segmented EPI for rapid high resolution diffusion imaging at 3T. Eur J Radiol 2008;65:36-46.
Bilgic B, Setsompop K, Cohen-Adad J, Yendiki A, Wald LL, Adalsteinsson E. Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magn Reson Med 2012;68:1747-1754.
Reeder SB, Wintersperger BJ, Dietrich O, Lanz T, Greiser A, Reiser MF, Glazer GM, Schoenberg SO. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 2005;54:748-754.
Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 2003;51:560-574.
Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42-52.
Liu C, Bammer R, Kim Dh, Moseley ME. Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn Reson Med 2004;52:1388-1396.
Holdsworth SJ, Skare S, Newbould RD, Bammer R. Robust GRAPPA-accelerated diffusion-weighted readout-segmented (RS)-EPI. Magn Reson Med 2009;62:1629-1640.
Wu Y, Zhu YJ, Tang QY, Zou C, Liu W, Dai RB, Liu X, Wu EX, Ying L, Liang D. Accelerated MR diffusion tensor imaging using distributed compressed sensing. Magn Reson Med 2014;71:763-772.
Bammer R, Keeling SL, Augustin M, Pruessmann KP, Wolf R, Stollberger R, Hartung HP, Fazekas F. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med 2001;46:548-554.
Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. Signal Processing Magazine, IEEE 2008;25:72-82.
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195.
Jiang H, van Zijl P, Kim J, Pearlson GD, Mori S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 2006;81:106-116.
Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385.
Huang J, Chen C, Axel L. Fast multi-contrast MRI reconstruction. Medical Image Computing and Computer-Assisted Intervention MICCAI 2012. Volume 7510, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2012. p 281-288.
2009; 62
2013; 69
2006; 56
2012
2011
2015; 73
2009
2011; 30
2007
2013; 70
1999; 42
2005
2004
2001; 46
2003; 51
2007; 57
2007; 58
2006; 81
2002; 47
2004; 52
2002; 48
2010; 64
2004; 15
2008; 25
2005; 54
2008; 65
2012; 68
2001; 13
2014; 72
2014; 71
2007; 26
References_xml – volume: 52
  start-page: 1388
  year: 2004
  end-page: 1396
  article-title: Self‐navigated interleaved spiral (SNAILS): application to high‐resolution diffusion tensor imaging
  publication-title: Magn Reson Med
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– year: 2009
– volume: 69
  start-page: 277
  year: 2013
  end-page: 289
  article-title: Improved diffusion imaging through SNR‐enhancing joint reconstruction
  publication-title: Magn Reson Med
– volume: 65
  start-page: 36
  year: 2008
  end-page: 46
  article-title: Readout‐segmented EPI for rapid high resolution diffusion imaging at 3T
  publication-title: Eur J Radiol
– volume: 73
  start-page: 126
  year: 2015
  end-page: 138
  article-title: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data
  publication-title: Magn Reson Med
– volume: 15
  start-page: 223
  year: 2004
  end-page: 236
  article-title: SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method
  publication-title: Topics in Magn Reson Imaging
– volume: 71
  start-page: 1272
  year: 2014
  end-page: 1284
  article-title: Denoising diffusion‐weighted magnitude MR images using rank and edge constraints
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1747
  year: 2012
  end-page: 1754
  article-title: Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries
  publication-title: Magn Reson Med
– volume: 64
  start-page: 457
  year: 2010
  end-page: 471
  article-title: SPIRiT: iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space
  publication-title: Magn Reson Med
– volume: 56
  start-page: 317
  year: 2006
  end-page: 326
  article-title: Direct parallel image reconstructions for spiral trajectories using GRAPPA
  publication-title: Magn Reson Med
– start-page: 1039
  year: 2011
  end-page: 1043
– volume: 47
  start-page: 42
  year: 2002
  end-page: 52
  article-title: Multishot diffusion‐weighted FSE using PROPELLER MRI
  publication-title: Magn Reson Med
– volume: 51
  start-page: 560
  year: 2003
  end-page: 574
  article-title: Nonuniform fast Fourier transforms using min‐max interpolation
  publication-title: IEEE Trans Signal Process
– volume: 70
  start-page: 429
  year: 2013
  end-page: 440
  article-title: Model‐based reconstruction of undersampled diffusion tensor k‐space data
  publication-title: Magn Reson Med
– start-page: 91
  year: 2007
  end-page: 99
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1412
  year: 2005
  end-page: 1422
  article-title: Simultaneous phase correction and SENSE reconstruction for navigated multi‐shot DWI with non‐Cartesian k‐space sampling
  publication-title: Magn Reson Med
– start-page: 254
  year: 2011
  end-page: 257
– volume: 48
  start-page: 128
  year: 2002
  end-page: 136
  article-title: Diffusion tensor imaging using single‐shot SENSE‐EPI
  publication-title: Magn Reson Med
– volume: 30
  start-page: 1100
  year: 2011
  end-page: 1115
  article-title: Spatially regularized compressed sensing for high angular resolution diffusion imaging
  publication-title: IEEE Trans Med Imaging
– volume: 46
  start-page: 548
  year: 2001
  end-page: 554
  article-title: Improved diffusion‐weighted single‐shot echo‐planar imaging (EPI) in stroke using sensitivity encoding (SENSE)
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– start-page: 1537
  year: 2005
  end-page: 1541
  article-title: Distributed compressed sensing of jointly sparse signals
  publication-title: Conf Rec Asilomar Conf Signals Syst Comput
– volume: 54
  start-page: 748
  year: 2005
  end-page: 754
  article-title: Practical approaches to the evaluation of signal‐to‐noise ratio performance with parallel imaging: application with cardiac imaging and a 32‐channel cardiac coil
  publication-title: Magn Reson Med
– volume: 26
  start-page: 375
  year: 2007
  end-page: 385
  article-title: Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters
  publication-title: J Magn Reson Imaging
– volume: 13
  start-page: 534
  year: 2001
  end-page: 546
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J Magn Reson Imaging
– volume: 81
  start-page: 106
  year: 2006
  end-page: 116
  article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking
  publication-title: Comput Methods Programs Biomed
– year: 2004
– start-page: 281
  year: 2012
  end-page: 288
– volume: 57
  start-page: 881
  year: 2007
  end-page: 890
  article-title: Clinical multishot DW‐EPI through parallel imaging with considerations of susceptibility, motion, and noise
  publication-title: Magn Reson Med
– volume: 62
  start-page: 1629
  year: 2009
  end-page: 1640
  article-title: Robust GRAPPA‐accelerated diffusion‐weighted readout‐segmented (RS)‐EPI
  publication-title: Magn Reson Med
– volume: 72
  start-page: 1330
  year: 2014
  end-page: 1341
  article-title: PCLR: phase‐constrained low‐rank model for compressive diffusion‐weighted MRI
  publication-title: Magn Reson Med
– volume: 25
  start-page: 72
  year: 2008
  end-page: 82
  article-title: Compressed sensing MRI
  publication-title: Signal Processing Magazine, IEEE
– volume: 71
  start-page: 763
  year: 2014
  end-page: 772
  article-title: Accelerated MR diffusion tensor imaging using distributed compressed sensing
  publication-title: Magn Reson Med
SSID ssj0009974
Score 2.422421
Snippet Purpose Increasing acquisition efficiency is always a challenge in high‐resolution diffusion tensor imaging (DTI), which has low signal‐to‐noise ratio and is...
Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive...
Purpose Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is...
PURPOSEIncreasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1775
SubjectTerms anisotropic sparsity
Brain - pathology
compressed sensing
Diffusion Magnetic Resonance Imaging - methods
diffusion tensor imaging
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
parallel imaging
Statistics as Topic
variable density spiral
Title Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation
URI https://api.istex.fr/ark:/67375/WNG-2XN4NW9C-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25290
https://www.ncbi.nlm.nih.gov/pubmed/24824404
https://www.proquest.com/docview/1674154719
https://search.proquest.com/docview/1674960312
https://search.proquest.com/docview/1680456137
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL2UguKLH_UrtcoIIr5ku5nM7GTwSaq1CLtIsXQfhGEymUCpm0p2A8Unf4JP_kB_iffOJCmKiPgWJnfyeW5yJjlzLsCzAiltZsUsLbQrUiGtTXVJIkfkIkiQcQBS0ATn-WJ2dCLeLeVyC14Oc2GiP8T4wY0yIzyvKcFtud6_Mg1dtasJl1zTeD3LFcm5Xh9fWUdpHR2YlaDnjBaDq9CU7489kZDStbz8E7v8layGt83hLfg4HGcUmZxPuk05cV9-s3D8zxO5DTd7FspeRdjcgS3f7MD1ef-ffQeuBWGoW9-F7-9tS-VWPrGzVShoxGxTMRKiB9fxiq1JAY_N2ISDbGyoB7kXQz7MrHP4YiOYYQx5I__4-g179oBnVJ-low92jJT0GD_spQsbJTOLFntQq8ddtG2v3bsHJ4dvPhwcpX0th9QJZCSp1M7XMyUqPXXCZ9YKGvrISiqrVVUql9tp4ctq5kRVu6xwyiHRq7jXnGprifw-bDcXjX8ITGWV8irPS1nUorYSN6CctrbUNU3snSbwPNxV8zn6dRjbnpN8TUlzunhr-HIhFqf6wGQJ7A233fSZuzY0KwNRqjKdwNNxNeYc_Uixjb_oYoym8tz8bzEFsWVEZgIPIqTGA-Ki4OTLmMCLAIxxRfSQ5gYhYQIkzPx4HhZ2_z30EdxAViejKnMPtjdt5x8jc9qUT0KK_ASKuxgQ
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuPMorUMBICHHJduM461jiggplgSZCVavupbIcx5FQ2RRlNxLixE_gxA_klzDjPCoQQohb5IwdJ5lxPjufvwF4kiKkjYyYhamyaSgSY0JVEMkRsQgCZJyApLTBOctn8yPxdpEsNuD5sBem04cYF9woMvx4TQFOC9I756qhy2Y54QlXOGG_gOEeU_6Clwfn4lFKdRrMUtBIo8SgKzTlO2NVhKT0ND__CV_-Clf992bvGpwMPe1oJqeTdl1M7JffRBz_91auw9UeiLIXnefcgA1Xb8GlrP_VvgUXPTfUrm7C9_emoYwrH9mHpc9pxExdMuKie-Hxkq2IBI_FWITzbCyoBsYXQ0jMjLX4bSNPQxuSR_7x9RvW7H2eUYqWltbsGJHp0X64SusbJT2LBmtQqcNLNE1P37sFR3uvDnfnYZ_OIbQCQUmYKOuqmRSlmlrhImMEzX6SMpFGybKQNjbT1BXlzIqyslFqpUWsV3KnOKXXEvFt2KzPancXmIxK6WQcF0laicok2IC0yphCVbS3dxrAU_9a9adOskOb5pQYbDLRx_lrzRe5yI_Vro4C2B7eu-6Dd6VpYwY6qoxUAI_H0xh29C_F1O6s7WwUZejmf7NJCTBHsQzgTudTY4e4SDlJMwbwzHvGeKKTkeYaXUJ7l9DZQeYP7v276SO4PD_M9vX-m_zdfbiCIC_pSJrbsLluWvcAgdS6eOjj5Sfifxwq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqIio2PMorUMBICLHJNHHsOBYr1DKUx4yqiqqzQLIc25FQmbTKTCTEik9gxQfyJdzrPCoQQohd5FzHTnJvfOwcn0vIkwIgbWp4HhfKFjEXxsSqRJIjYBEAyDABKXCD82yeHxzzNwux2CDPh70wnT7EuOCGkRG-1xjg567avRANXTbLCRNMwXz9Es-zBPlc-0cX2lFKdRLMkuOHRvFBVihhu2NVQKT4MD__CV7-ilbDcDO9Rj4MHe1YJqeTdl1O7JffNBz_806uk6s9DKUvOr-5QTZ8vU22Zv2P9m1yOTBD7eom-X5oGsy38ol-XIaMRtTUjiITPciOO7pCCjwUQxHMsqGgGvheFAAxNdbCyIZ-BjYojvzj6zeo2Xs8xQQtLa7YUaTSg_3QShsuimoWDdTAUg9NNE1P3rtFjqcv3-8dxH0yh9hygCSxUNZXueROJZb71BiOcx_hhDRKulLazCSFL11uuatsWlhpAek55hXD5Fo8u00267Pa3yVUpk56mWWlKCpeGQEXkFYZU6oKd_YmEXka3qo-7wQ7tGlOkb8mhT6Zv9JsMefzE7Wn04jsDK9d96G70rgtA9xUpioij8fTEHT4J8XU_qztbBTm52Z_sykQLqeZjMidzqXGDjFeMBRmjMiz4BjjiU5EmmlwCR1cQs-OZuHg3r-bPiJbh_tT_e71_O19cgUQnugYmjtkc920_gGgqHX5METLT4ggGtk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+imaging+and+compressed+sensing+combined+framework+for+accelerating+high-resolution+diffusion+tensor+imaging+using+inter-image+correlation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Shi%2C+Xinwei&rft.au=Ma%2C+Xiaodong&rft.au=Wu%2C+Wenchuan&rft.au=Huang%2C+Feng&rft.date=2015-05-01&rft.eissn=1522-2594&rft.volume=73&rft.issue=5&rft.spage=1775&rft.epage=1785&rft_id=info:doi/10.1002%2Fmrm.25290&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon