Cross-Dataset Variability Problem in EEG Decoding With Deep Learning

Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 14; p. 103
Main Authors Xu, Lichao, Xu, Minpeng, Ke, Yufeng, An, Xingwei, Liu, Shuang, Ming, Dong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 21.04.2020
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models for single datasets, and the generalization ability for other datasets still needs to be further verified. In this paper, we validated deep learning models for eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategies could significantly improve the generalization ability across datasets without any additional calibration data.
AbstractList Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models for single datasets, and the generalization ability for other datasets still needs to be further verified. In this paper, we validated deep learning models for eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategies could significantly improve the generalization ability across datasets without any additional calibration data.
Cross-subject variability problem hinders practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community since its better generalization and feature representation abilities. However, currently most studies have only validated deep learning models on a single dataset and the generalization ability on other datasets still needs to be further verified. In this paper, we validated deep learning models on eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategy could significantly improve the generalization ability across datasets without any additional calibration data.
Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models for single datasets, and the generalization ability for other datasets still needs to be further verified. In this paper, we validated deep learning models for eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategies could significantly improve the generalization ability across datasets without any additional calibration data.Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models for single datasets, and the generalization ability for other datasets still needs to be further verified. In this paper, we validated deep learning models for eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategies could significantly improve the generalization ability across datasets without any additional calibration data.
Author An, Xingwei
Xu, Minpeng
Ming, Dong
Ke, Yufeng
Xu, Lichao
Liu, Shuang
AuthorAffiliation 1 Academy of Medical Engineering and Translational Medicine, Tianjin University , Tianjin , China
2 Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University , Tianjin , China
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University , Tianjin , China
– name: 1 Academy of Medical Engineering and Translational Medicine, Tianjin University , Tianjin , China
Author_xml – sequence: 1
  givenname: Lichao
  surname: Xu
  fullname: Xu, Lichao
– sequence: 2
  givenname: Minpeng
  surname: Xu
  fullname: Xu, Minpeng
– sequence: 3
  givenname: Yufeng
  surname: Ke
  fullname: Ke, Yufeng
– sequence: 4
  givenname: Xingwei
  surname: An
  fullname: An, Xingwei
– sequence: 5
  givenname: Shuang
  surname: Liu
  fullname: Liu, Shuang
– sequence: 6
  givenname: Dong
  surname: Ming
  fullname: Ming, Dong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32372929$$D View this record in MEDLINE/PubMed
BookMark eNp1kktr3DAUhUVJaR7tvqti6KYbT_WyLG0KZWaaBgbaRR9LIcvXMxpsaSrLgfz7yjNJSQJdSbo69-Nw77lEZz54QOgtwQvGpPrY-d00LCimeIExwewFuiBC0LIigpw9up-jy3HcYyyoqMgrdM4oq6mi6gKtljGMY7kyyYyQil8mOtO43qW74nsMTQ9D4XyxXl8XK7ChdX5b_HZpl19wKDZgos-l1-hlZ_oR3tyfV-jnl_WP5ddy8-36Zvl5U1qucCq7rpGGMEOASQ6CgbItrTtumYJG2YYqVVXAK2izT0lqjo1kWHLGOTBiG3aFbk7cNpi9PkQ3mHing3H6WAhxq01MzvagqREtBmVoRwzHDGRFuVWAFatFbbousz6dWIepGaC14FM0_RPo0x_vdnobbnVNpGSVzIAP94AY_kwwJj240ULfGw9hGjVlSlEmhVBZ-v6ZdB-m6POoZhWt67wKmlXvHjv6Z-VhWVkgTgI77yxCp61LJrkwG3S9JljPqdDHVOg5FfqYityInzU-sP_b8hctxLla
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3293421
crossref_primary_10_1038_s41598_022_14026_y
crossref_primary_10_3390_s20154186
crossref_primary_10_1371_journal_pone_0263641
crossref_primary_10_1109_TNSRE_2021_3083548
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1080_2326263X_2021_1943955
crossref_primary_10_1088_1741_2552_abca18
crossref_primary_10_1186_s12984_023_01181_0
crossref_primary_10_1016_j_nicl_2023_103482
crossref_primary_10_3390_app12031695
crossref_primary_10_1109_TNSRE_2021_3125386
crossref_primary_10_1109_TNSRE_2023_3285309
crossref_primary_10_1088_1741_2552_ad0c61
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_3389_fnagi_2022_911513
crossref_primary_10_1088_1741_2552_ad0a01
crossref_primary_10_1088_1741_2552_ac1ed2
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1186_s40708_023_00198_4
crossref_primary_10_1038_s41597_022_01509_w
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_1109_TNSRE_2022_3201158
crossref_primary_10_3389_fnhum_2021_646915
crossref_primary_10_1080_03772063_2022_2098191
crossref_primary_10_3390_s21165436
crossref_primary_10_1007_s11517_023_02961_5
crossref_primary_10_1016_j_neunet_2024_106100
crossref_primary_10_1109_JBHI_2023_3264521
crossref_primary_10_1088_1741_2552_ac9861
crossref_primary_10_1109_TIM_2024_3351248
crossref_primary_10_1088_1361_6579_ad4e95
crossref_primary_10_1109_ACCESS_2020_3012283
crossref_primary_10_1007_s10489_022_04077_z
crossref_primary_10_1016_j_brainres_2022_148001
crossref_primary_10_1007_s11571_023_10053_1
crossref_primary_10_1109_ACCESS_2023_3325283
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1088_1741_2552_ad3986
crossref_primary_10_1109_TNSRE_2022_3191869
crossref_primary_10_1109_JBHI_2022_3225089
crossref_primary_10_3389_fncom_2022_909553
crossref_primary_10_3389_fnhum_2021_645952
crossref_primary_10_1088_1741_2552_abda0b
crossref_primary_10_15622_ia_2021_20_1_4
crossref_primary_10_1007_s13534_021_00190_z
crossref_primary_10_1016_j_neunet_2020_12_013
crossref_primary_10_3389_fnimg_2022_981642
crossref_primary_10_1109_TNSRE_2022_3150007
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1109_TIM_2022_3181276
crossref_primary_10_1016_j_eng_2021_09_011
crossref_primary_10_1016_j_bspc_2024_107213
crossref_primary_10_3934_mbe_2023211
crossref_primary_10_1134_S0362119723600479
crossref_primary_10_1088_1741_2552_acfe9c
crossref_primary_10_1088_1741_2552_ac4430
Cites_doi 10.1109/TBME.2019.2913914
10.1109/TBME.2017.2742541
10.1109/TBME.2004.827072
10.1007/978-3-319-73600-6_8
10.1109/TBME.2017.2694818
10.1109/IEMBS.2011.6091139
10.1007/978-3-642-15995-4_78
10.1109/TBME.2011.2172210
10.1137/S0895479803436937
10.1016/S1388-2457(02)00057-3
10.1093/gigascience/gix034
10.1002/hbm.23730
10.1088/1741-2560/9/2/026013
10.1080/2326263X.2017.1297192
10.1088/1741-2552/aadea0
10.1109/TBME.2018.2889705
10.1109/TBME.2018.2799661
10.1109/TNSRE.2007.906956
10.1109/TBME.2006.889197
10.1007/s11263-005-3222-z
10.1088/1741-2552/aab2f2
10.3389/fnins.2013.00267
10.1088/1741-2552/ab405f
10.1088/1741-2552/aace8c
10.1109/86.895946
10.1371/journal.pone.0114853
10.1109/TBME.2008.921154
10.1371/journal.pone.0162657
10.1109/TBME.2009.2012869
10.1109/TBME.2010.2082539
10.3389/fnins.2012.00055
10.1109/TSP.2019.2894801
10.1109/TSP.2017.2649483
ContentType Journal Article
Copyright Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming. 2020 Xu, Xu, Ke, An, Liu and Ming
Copyright_xml – notice: Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming. 2020 Xu, Xu, Ke, An, Liu and Ming
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2020.00103
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_2a6d0e9a2f1a403e8524c9e093767aff
PMC7188358
32372929
10_3389_fnhum_2020_00103
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
PQGLB
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-ffb8a13a1e384e63e9cd27f4c39eb9cb29955e45ed62681740a83084344e31cb3
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 00:59:35 EDT 2025
Thu Aug 21 14:14:23 EDT 2025
Thu Jul 10 17:00:49 EDT 2025
Fri Jul 25 11:55:25 EDT 2025
Mon Jul 21 05:42:46 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
Tue Jul 01 03:44:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
transfer learning
cross-subject variability
cross-dataset variability
EEG
brain-computer interface
Language English
License Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-ffb8a13a1e384e63e9cd27f4c39eb9cb29955e45ed62681740a83084344e31cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Ren Xu, Guger Technologies, Austria; Dongrui Wu, Huazhong University of Science and Technology, China; Sung Chan Jun, Gwangju Institute of Science and Technology, South Korea
This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience
Edited by: Junhua Li, University of Essex, United Kingdom
These authors have contributed equally to this work
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2020.00103
PMID 32372929
PQID 2392779292
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_2a6d0e9a2f1a403e8524c9e093767aff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7188358
proquest_miscellaneous_2399238669
proquest_journals_2392779292
pubmed_primary_32372929
crossref_citationtrail_10_3389_fnhum_2020_00103
crossref_primary_10_3389_fnhum_2020_00103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-21
PublicationDateYYYYMMDD 2020-04-21
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-21
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References B22
Pennec (B23) 2006; 66
Rodrigues (B27) 2019; 66
Congedo (B7); 4
Ramoser (B24) 2000; 8
Yi (B36) 2014; 9
Schalk (B29) 2004; 51
Gramfort (B10) 2013; 7
Schirrmeister (B30) 2017; 38
Lotte (B18) 2018; 15
Tangermann (B31) 2012; 6
Ho (B13) 2013
He (B12) 2020; 67
Xu (B34) 2018; 65
Barachant (B3) 2011; 59
Congedo (B8); 65
Samek (B28) 2012; 9
Grosse-Wentrup (B11) 2008; 55
Reuderink (B25) 2011
Zanini (B37) 2018; 65
Lawhern (B15) 2018; 15
Yair (B35) 2019; 67
Zhou (B38) 2016; 11
Ang (B1) 2008
Barachant (B2) 2010
Lin (B17) 2007; 54
Wang (B32) 2018
Nakanishi (B21) 2018; 65
Rivet (B26) 2009; 56
Lotte (B19) 2011; 58
Jayaram (B14) 2018; 15
Cho (B4) 2017; 6
Leeb (B16) 2007; 15
Moakher (B20) 2005; 26
Congedo (B6) 2013
Wolpaw (B33) 2002; 113
Chollet (B5) 2017
Dai (B9) 2020; 17
References_xml – start-page: 2390
  volume-title: 2008 IEEE International Joint Conference on Neural Networks
  year: 2008
  ident: B1
  article-title: Filter bak common spatial pattern (FBCSP) in brain-computer interface?
– volume: 67
  start-page: 399
  year: 2020
  ident: B12
  article-title: Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2019.2913914
– volume: 65
  start-page: 1107
  year: 2018
  ident: B37
  article-title: Transfer learning: a Riemannian geometry framework with applications to brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2017.2742541
– volume: 51
  start-page: 1034
  year: 2004
  ident: B29
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2004.827072
– start-page: 82
  volume-title: MultiMedia Modeling
  year: 2018
  ident: B32
  article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks
  doi: 10.1007/978-3-319-73600-6_8
– volume: 65
  start-page: 104
  year: 2018
  ident: B21
  article-title: Enhancing detection of ssveps for a high-speed brain speller using task-related component analysis
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2017.2694818
– start-page: 4600
  volume-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2011
  ident: B25
  article-title: A subject-independent brain-computer interface based on smoothed, second-order baselining
  doi: 10.1109/IEMBS.2011.6091139
– start-page: 629
  volume-title: Latent Variable Analysis and Signal Separation
  year: 2010
  ident: B2
  article-title: Riemannian geometry applied to BCI classification?
  doi: 10.1007/978-3-642-15995-4_78
– volume: 59
  start-page: 920
  year: 2011
  ident: B3
  article-title: Multiclass brain-computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2011.2172210
– volume: 26
  start-page: 735
  year: 2005
  ident: B20
  article-title: A differential geometric approach to the geometric mean of symmetric positive-definite matrices
  publication-title: SIAM J. Matrix Anal. Appl
  doi: 10.1137/S0895479803436937
– volume: 113
  start-page: 767
  year: 2002
  ident: B33
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 6
  start-page: 1
  year: 2017
  ident: B4
  article-title: EEG datasets for motor imagery brain-computer interface
  publication-title: GigaScience
  doi: 10.1093/gigascience/gix034
– volume: 38
  start-page: 5391
  year: 2017
  ident: B30
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.23730
– volume-title: arXiv preprint arXiv:1310.8115
  year: 2013
  ident: B6
  article-title: A new generation of brain-computer interface based on Riemannian geometry
– volume: 9
  start-page: 026013
  year: 2012
  ident: B28
  article-title: Stationary common spatial patterns for brain-computer interfacing
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/9/2/026013
– volume: 4
  start-page: 155
  ident: B7
  article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review
  publication-title: Brain Comput Interfaces
  doi: 10.1080/2326263X.2017.1297192
– volume: 15
  start-page: 066011
  year: 2018
  ident: B14
  article-title: MOABB: trustworthy algorithm benchmarking for BCIs
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aadea0
– volume: 66
  start-page: 2390
  year: 2019
  ident: B27
  article-title: Riemannian procrustes analysis: Transfer learning for brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2018.2889705
– volume: 65
  start-page: 1166
  year: 2018
  ident: B34
  article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2018.2799661
– volume: 15
  start-page: 473
  year: 2007
  ident: B16
  article-title: Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2007.906956
– volume: 54
  start-page: 1172
  year: 2007
  ident: B17
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2006.889197
– volume: 66
  start-page: 41
  year: 2006
  ident: B23
  article-title: A Riemannian framework for tensor computing
  publication-title: Int. J. Comput. Vis
  doi: 10.1007/s11263-005-3222-z
– volume: 15
  start-page: 031005
  year: 2018
  ident: B18
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aab2f2
– volume: 7
  start-page: 267
  year: 2013
  ident: B10
  article-title: MEG and EEG data analysis with MNE-python
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2013.00267
– volume: 17
  start-page: 016025
  year: 2020
  ident: B9
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/ab405f
– volume: 15
  start-page: 056013
  year: 2018
  ident: B15
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 8
  start-page: 441
  year: 2000
  ident: B24
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng
  doi: 10.1109/86.895946
– volume: 9
  start-page: e114853
  year: 2014
  ident: B36
  article-title: Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0114853
– volume: 55
  start-page: 1991
  year: 2008
  ident: B11
  article-title: Multiclass common spatial patterns and information theoretic feature extraction
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2008.921154
– start-page: 1251
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: B5
  article-title: Xception: deep learning with depthwise separable convolutions
– volume: 11
  start-page: e0162657
  year: 2016
  ident: B38
  article-title: A fully automated trial selection method for optimization of motor imagery based brain-computer interface
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0162657
– volume: 56
  start-page: 2035
  year: 2009
  ident: B26
  article-title: xdawn algorithm to enhance evoked potentials: application to brain-computer interface
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2009.2012869
– ident: B22
– volume: 58
  start-page: 355
  year: 2011
  ident: B19
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2010.2082539
– volume: 6
  start-page: 55
  year: 2012
  ident: B31
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2012.00055
– start-page: 325
  volume-title: Artificial Intelligence and Statistics
  year: 2013
  ident: B13
  article-title: Recursive Karcher expectation estimators and geometric law of large numbers
– volume: 67
  start-page: 1797
  year: 2019
  ident: B35
  article-title: Parallel transport on the cone manifold of spd matrices for domain adaptation
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2019.2894801
– volume: 65
  start-page: 2211
  ident: B8
  article-title: Fixed point algorithms for estimating power means of positive definite matrices
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2017.2649483
SSID ssj0062651
Score 2.5077975
Snippet Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due...
Cross-subject variability problem hinders practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 103
SubjectTerms Algorithms
brain-computer interface
Classification
cross-dataset variability
cross-subject variability
Datasets
Deep learning
EEG
Eigenvalues
Electroencephalography
Geometry
Human Neuroscience
Interfaces
Internet
Machine learning
Medical imaging
Signal processing
transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB4LBRkJIXGINvHbx9LdUiGBOFDozbKTCbsSpBVkD_33zNjZVRchuHBM4ij2eOz5vsx4hrGXuvPKJJ0qRBemUrZ2VXSdrLrYS4hGW5GPR7__YM7O1bsLfXGj1BfFhJX0wEVwcxFNV4OPom-iqiU4LVTrAYm4NTb2Pe2-aPO2ZKrswYjSdVOckkjB_LwfVhs6di4ojqvZFsiajFDO1f8ngPl7nOQNw3N6l92ZECM_Lj29x27BcJ8dHg_Ilr9f81c8x3Dmn-OHbHFC36sWcUTjNPLPSIRLHu5r_rFUjuHrgS-Xb_kCaSeZLf5lPa7wCq74lGr16wN2frr8dHJWTXUSqlb5eqz6PrnYyNiAdAqMBN92wvaqlR6SbxNaHK1BaehQLg4pSB2drJ2SSoFs2iQfsoPhcoDHjHddrUWsRdI6qpbgA1jfIAr3zifE4TM23woutFMScapl8S0gmSBRhyzqQKIOWdQz9nr3xlVJoPGXtm9oLnbtKPV1voEKESaFCP9SiBk72s5kmNbjzyAQBlqLUFDM2IvdY1xJ5B6JA1xuchtEu84YHOWjMvG7nkhB7k0av91Tib2u7j8Z1qucrRuNP6Jc9-R_jO0pu03SIm-WaI7YwfhjA88QFI3pedb_X9ECCSE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege-EFDcZHYSAjISQerDr-SOwntK0dExLThBjsLXIcZ6000m5LH_bfc-c4hSK0x8SOYt_Zd7_zne8Iea9rq_JKVwzQRc5UwQ1zppasdo0MLteFiNejv57mJ-fqy4W-SAdutymscpCJUVDXS49n5BMBirwoQJmLT6trhlWj0LuaSmg8JDsggo0ZkZ3D2enZt0EWA1rXWe-cBFPMTpp2vsbr5wLjubKhUFZSRjFn__-A5r_xkn8poONd8jghR3rQs_oJeRDap2TvoAWr-dcd_UBjLGc8JN8j0yP8H5u6DpRUR3-AQdzn476jZ30FGbpo6Wz2mU7B_ET1RX8uujk8hRVNKVcvn5Hz49n3oxOW6iUwryzvWNNUxmXSZUEaFXIZrK9F0Sgvbaisr0DzaB2UDjXQxYApwp2R3CipVJCZr-RzMmqXbXhJaF1zLRwXldZOeYQRobAZoHFrbAV4fEwmA-FKn5KJY02LqxKMCiR1GUldIqnLSOox-bj5YtUn0rin7yHyYtMPU2DHF8ubyzLtqFK4vObBOtFkTnEZjBbK28At5qdxTTMm-wMny7Qvb8s_q2hM3m2aYUehm8S1YbmOfQD1mjyHWb7oGb8ZiRTo5sT5F1tLYmuo2y3tYh6zdgMIALRrXt0_rNfkEdIB_VUi2yej7mYd3gDs6aq3aW3_BvfwAgE
  priority: 102
  providerName: ProQuest
Title Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/32372929
https://www.proquest.com/docview/2392779292
https://www.proquest.com/docview/2399238669
https://pubmed.ncbi.nlm.nih.gov/PMC7188358
https://doaj.org/article/2a6d0e9a2f1a403e8524c9e093767aff
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejfdnL2Np9pGuDBmOwB6_Wly09lNE2acugpYxly5uQbbkJdE6XOtD8972THW8ZYU97MdiSsHQncb_TSb8j5L0qjEwylUWALpJIprGOnC5EVLhSeJeolIfr0ZdXycVIfhmr8e_r0a0A7ze6dphPajS__fTwa_kZFvwRepxgbw_LarLAS-UcT2kxpP7cBruUYj6DS9nFFAC5K9YEKje2WjNMgb9_E-j8--zkH8bo7Dl51qJIetyo_QV54qsdsntcgQf9c0k_0HCuM2yY75LBKf4vGrgaDFZNv4Nz3HBzL-l1k02GTis6HJ7TAbiiaMroj2k9gTd_R1v61ZuXZHQ2_HZ6EbW5E6JcmriOyjLTjgnHvNDSJ8KbvOBpKXNhfGbyDKyQUl4qX4BcNLglsdMi1lJI6QXLM_GKbFWzyr8htChixV3MM6WczBFS-NQwQOZGmwyweY8crgRn85ZYHPNb3FpwMFDUNojaoqhtEHWPfOxa3DWkGv-oe4K66OohHXb4MJvf2HZ1We6SIvbG8ZI5GQuvFZe58bFBrhpXlj2yv9KkXU0xywEapinAQ94j77piWF0YMnGVny1CHUDAOklglK8bxXc9ERxDnjj-dG1KrHV1vaSaTgKDNwACQL5673-M7S15itLCCBdn-2Srni_8AQClOuuT7ZPh1fXXfthogOf5mPXDmngEa9gUsQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEDA-ygYYCZB4iJr4I7EfENrWjo5t1YQ22JvnJM5aiaVlS4X6T_E3cnaSQhHa2x4T24l9Pt_9zmffAbwRueJxKtIA0UUc8CSUgZE5C3JTMGtikVB_PfpoFA9P-eczcbYGv9q7MO5YZSsTvaDOp5nbI-9RVORJgsqcfpz9CFzWKOddbVNo1GxxYBc_0WS7_rDfx_l9S-ne4GR3GDRZBYKMq7AKiiKVJmImskxyGzOrspwmBc-YsqnKUpTPQlgubI5YXyJgD41koeSMc8uiLGX43Tuwzlkc0g6s7wxGx19a2Y8tRFQ7Q9H0U72iHM_ddXfqzo9FbWKuRvn5HAH_A7b_ns_8S-HtPYD7DVIl2zVrPYQ1Wz6Cje0SrfTLBXlH_NlRvym_Af1d97-gbypUihX5igZ4Hf97QY7rjDVkUpLB4BPpo7nr1CX5NqnG-GRnpAnxevEYTm-Fkk-gU05L-wxInoeCmpCmQhieOdhiExUh-ldSpYj_u9BrCaezJni5y6HxXaMR40itPam1I7X2pO7C-2WLWR2444a6O24ulvVcyG3_Ynp1oZsVrKmJ89AqQ4vI8JBZKSjPlA2Vi4djiqILW-1M6kYOXOs_XNuF18tiXMHOLWNKO537OoiyZRzjKJ_WE7_sCaPOrerGn6ywxEpXV0vKydhHCUfQgehaPr-5W6_g7vDk6FAf7o8ONuGeo4nzldFoCzrV1dy-QMhVpS8bPidwfttL6zefmD5i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDA-CgOMBEg8RE38kdgPCG1Ly8agqhCDvRkncdZKkJYtFeq_xl_HnZMUitDe9pjESZzz2ff75c53hDyXhRZxJrMA0EUciCRUgVUFDwpbcmdjmTC_PfrDOD48Ee9O5ekW-dXthcGwym5N9At1Mc_xH_mAgSFPEjDmbFC2YRGTdPRm8SPAClLoae3KaTQqcuxWP4G-Xbw-SmGsXzA2Gn46OAzaCgNBLnRYB2WZKRtxGzmuhIu503nBklLkXLtM5xms1VI6IV0BuF8BeA-t4qESXAjHozzj8NxrZDtBVtQj2_vD8eRjZwfgDhk1jlGggXpQVtMlbn1nGEsWdUW6WkPo6wX8D-T-G6v5l_Eb3SI3W9RK9xo1u022XHWH7OxVwNi_r-hL6uNI_Q_6HZIe4PuC1NZgIGv6Gch4kwt8RSdN9Ro6q-hw-JamQH3RdNIvs3oKR25B23SvZ3fJyZVI8h7pVfPKPSC0KELJbMgyKa3IEcK4REfABLTSGXCBPhl0gjN5m8gc62l8M0BoUNTGi9qgqI0XdZ-8Wt-xaJJ4XNJ2H8di3Q7Tb_sT8_Mz085mw2xchE5bVkZWhNwpyUSuXagxN44tyz7Z7UbStGvChfmjwX3ybH0ZZjO6aGzl5kvfBhC3imP4yvvNwK97whm6WPH7kw2V2Ojq5pVqNvUZwwGAANJWDy_v1lNyHaaUeX80Pn5EbqBI0G3Gol3Sq8-X7jGgrzp70qo5JV-vemb9Bl-ZQpc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Dataset+Variability+Problem+in+EEG+Decoding+With+Deep+Learning&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Lichao+Xu&rft.au=Minpeng+Xu&rft.au=Minpeng+Xu&rft.au=Yufeng+Ke&rft.date=2020-04-21&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=14&rft_id=info:doi/10.3389%2Ffnhum.2020.00103&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a6d0e9a2f1a403e8524c9e093767aff
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon