Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models...
Saved in:
Published in | Frontiers in human neuroscience Vol. 14; p. 103 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
21.04.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models for single datasets, and the generalization ability for other datasets still needs to be further verified. In this paper, we validated deep learning models for eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategies could significantly improve the generalization ability across datasets without any additional calibration data. |
---|---|
AbstractList | Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models for single datasets, and the generalization ability for other datasets still needs to be further verified. In this paper, we validated deep learning models for eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategies could significantly improve the generalization ability across datasets without any additional calibration data. Cross-subject variability problem hinders practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community since its better generalization and feature representation abilities. However, currently most studies have only validated deep learning models on a single dataset and the generalization ability on other datasets still needs to be further verified. In this paper, we validated deep learning models on eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategy could significantly improve the generalization ability across datasets without any additional calibration data. Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models for single datasets, and the generalization ability for other datasets still needs to be further verified. In this paper, we validated deep learning models for eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategies could significantly improve the generalization ability across datasets without any additional calibration data.Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models for single datasets, and the generalization ability for other datasets still needs to be further verified. In this paper, we validated deep learning models for eight MI datasets and demonstrated that the cross-dataset variability problem weakened the generalization ability of models. To alleviate the impact of cross-dataset variability, we proposed an online pre-alignment strategy for aligning the EEG distributions of different subjects before training and inference processes. The results of this study show that deep learning models with online pre-alignment strategies could significantly improve the generalization ability across datasets without any additional calibration data. |
Author | An, Xingwei Xu, Minpeng Ming, Dong Ke, Yufeng Xu, Lichao Liu, Shuang |
AuthorAffiliation | 1 Academy of Medical Engineering and Translational Medicine, Tianjin University , Tianjin , China 2 Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University , Tianjin , China |
AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University , Tianjin , China – name: 1 Academy of Medical Engineering and Translational Medicine, Tianjin University , Tianjin , China |
Author_xml | – sequence: 1 givenname: Lichao surname: Xu fullname: Xu, Lichao – sequence: 2 givenname: Minpeng surname: Xu fullname: Xu, Minpeng – sequence: 3 givenname: Yufeng surname: Ke fullname: Ke, Yufeng – sequence: 4 givenname: Xingwei surname: An fullname: An, Xingwei – sequence: 5 givenname: Shuang surname: Liu fullname: Liu, Shuang – sequence: 6 givenname: Dong surname: Ming fullname: Ming, Dong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32372929$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktr3DAUhUVJaR7tvqti6KYbT_WyLG0KZWaaBgbaRR9LIcvXMxpsaSrLgfz7yjNJSQJdSbo69-Nw77lEZz54QOgtwQvGpPrY-d00LCimeIExwewFuiBC0LIigpw9up-jy3HcYyyoqMgrdM4oq6mi6gKtljGMY7kyyYyQil8mOtO43qW74nsMTQ9D4XyxXl8XK7ChdX5b_HZpl19wKDZgos-l1-hlZ_oR3tyfV-jnl_WP5ddy8-36Zvl5U1qucCq7rpGGMEOASQ6CgbItrTtumYJG2YYqVVXAK2izT0lqjo1kWHLGOTBiG3aFbk7cNpi9PkQ3mHing3H6WAhxq01MzvagqREtBmVoRwzHDGRFuVWAFatFbbousz6dWIepGaC14FM0_RPo0x_vdnobbnVNpGSVzIAP94AY_kwwJj240ULfGw9hGjVlSlEmhVBZ-v6ZdB-m6POoZhWt67wKmlXvHjv6Z-VhWVkgTgI77yxCp61LJrkwG3S9JljPqdDHVOg5FfqYityInzU-sP_b8hctxLla |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3293421 crossref_primary_10_1038_s41598_022_14026_y crossref_primary_10_3390_s20154186 crossref_primary_10_1371_journal_pone_0263641 crossref_primary_10_1109_TNSRE_2021_3083548 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1080_2326263X_2021_1943955 crossref_primary_10_1088_1741_2552_abca18 crossref_primary_10_1186_s12984_023_01181_0 crossref_primary_10_1016_j_nicl_2023_103482 crossref_primary_10_3390_app12031695 crossref_primary_10_1109_TNSRE_2021_3125386 crossref_primary_10_1109_TNSRE_2023_3285309 crossref_primary_10_1088_1741_2552_ad0c61 crossref_primary_10_1016_j_neunet_2022_06_008 crossref_primary_10_3389_fnagi_2022_911513 crossref_primary_10_1088_1741_2552_ad0a01 crossref_primary_10_1088_1741_2552_ac1ed2 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1186_s40708_023_00198_4 crossref_primary_10_1038_s41597_022_01509_w crossref_primary_10_1109_RBME_2023_3296938 crossref_primary_10_1109_TNSRE_2022_3201158 crossref_primary_10_3389_fnhum_2021_646915 crossref_primary_10_1080_03772063_2022_2098191 crossref_primary_10_3390_s21165436 crossref_primary_10_1007_s11517_023_02961_5 crossref_primary_10_1016_j_neunet_2024_106100 crossref_primary_10_1109_JBHI_2023_3264521 crossref_primary_10_1088_1741_2552_ac9861 crossref_primary_10_1109_TIM_2024_3351248 crossref_primary_10_1088_1361_6579_ad4e95 crossref_primary_10_1109_ACCESS_2020_3012283 crossref_primary_10_1007_s10489_022_04077_z crossref_primary_10_1016_j_brainres_2022_148001 crossref_primary_10_1007_s11571_023_10053_1 crossref_primary_10_1109_ACCESS_2023_3325283 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1088_1741_2552_ad3986 crossref_primary_10_1109_TNSRE_2022_3191869 crossref_primary_10_1109_JBHI_2022_3225089 crossref_primary_10_3389_fncom_2022_909553 crossref_primary_10_3389_fnhum_2021_645952 crossref_primary_10_1088_1741_2552_abda0b crossref_primary_10_15622_ia_2021_20_1_4 crossref_primary_10_1007_s13534_021_00190_z crossref_primary_10_1016_j_neunet_2020_12_013 crossref_primary_10_3389_fnimg_2022_981642 crossref_primary_10_1109_TNSRE_2022_3150007 crossref_primary_10_1007_s11571_021_09676_z crossref_primary_10_1109_TIM_2022_3181276 crossref_primary_10_1016_j_eng_2021_09_011 crossref_primary_10_1016_j_bspc_2024_107213 crossref_primary_10_3934_mbe_2023211 crossref_primary_10_1134_S0362119723600479 crossref_primary_10_1088_1741_2552_acfe9c crossref_primary_10_1088_1741_2552_ac4430 |
Cites_doi | 10.1109/TBME.2019.2913914 10.1109/TBME.2017.2742541 10.1109/TBME.2004.827072 10.1007/978-3-319-73600-6_8 10.1109/TBME.2017.2694818 10.1109/IEMBS.2011.6091139 10.1007/978-3-642-15995-4_78 10.1109/TBME.2011.2172210 10.1137/S0895479803436937 10.1016/S1388-2457(02)00057-3 10.1093/gigascience/gix034 10.1002/hbm.23730 10.1088/1741-2560/9/2/026013 10.1080/2326263X.2017.1297192 10.1088/1741-2552/aadea0 10.1109/TBME.2018.2889705 10.1109/TBME.2018.2799661 10.1109/TNSRE.2007.906956 10.1109/TBME.2006.889197 10.1007/s11263-005-3222-z 10.1088/1741-2552/aab2f2 10.3389/fnins.2013.00267 10.1088/1741-2552/ab405f 10.1088/1741-2552/aace8c 10.1109/86.895946 10.1371/journal.pone.0114853 10.1109/TBME.2008.921154 10.1371/journal.pone.0162657 10.1109/TBME.2009.2012869 10.1109/TBME.2010.2082539 10.3389/fnins.2012.00055 10.1109/TSP.2019.2894801 10.1109/TSP.2017.2649483 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming. 2020 Xu, Xu, Ke, An, Liu and Ming |
Copyright_xml | – notice: Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming. 2020 Xu, Xu, Ke, An, Liu and Ming |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2020.00103 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_2a6d0e9a2f1a403e8524c9e093767aff PMC7188358 32372929 10_3389_fnhum_2020_00103 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM PQGLB RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-ffb8a13a1e384e63e9cd27f4c39eb9cb29955e45ed62681740a83084344e31cb3 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 00:59:35 EDT 2025 Thu Aug 21 14:14:23 EDT 2025 Thu Jul 10 17:00:49 EDT 2025 Fri Jul 25 11:55:25 EDT 2025 Mon Jul 21 05:42:46 EDT 2025 Thu Apr 24 23:04:57 EDT 2025 Tue Jul 01 03:44:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | deep learning transfer learning cross-subject variability cross-dataset variability EEG brain-computer interface |
Language | English |
License | Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-ffb8a13a1e384e63e9cd27f4c39eb9cb29955e45ed62681740a83084344e31cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Ren Xu, Guger Technologies, Austria; Dongrui Wu, Huazhong University of Science and Technology, China; Sung Chan Jun, Gwangju Institute of Science and Technology, South Korea This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience Edited by: Junhua Li, University of Essex, United Kingdom These authors have contributed equally to this work |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2020.00103 |
PMID | 32372929 |
PQID | 2392779292 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a6d0e9a2f1a403e8524c9e093767aff pubmedcentral_primary_oai_pubmedcentral_nih_gov_7188358 proquest_miscellaneous_2399238669 proquest_journals_2392779292 pubmed_primary_32372929 crossref_citationtrail_10_3389_fnhum_2020_00103 crossref_primary_10_3389_fnhum_2020_00103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-21 |
PublicationDateYYYYMMDD | 2020-04-21 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | B22 Pennec (B23) 2006; 66 Rodrigues (B27) 2019; 66 Congedo (B7); 4 Ramoser (B24) 2000; 8 Yi (B36) 2014; 9 Schalk (B29) 2004; 51 Gramfort (B10) 2013; 7 Schirrmeister (B30) 2017; 38 Lotte (B18) 2018; 15 Tangermann (B31) 2012; 6 Ho (B13) 2013 He (B12) 2020; 67 Xu (B34) 2018; 65 Barachant (B3) 2011; 59 Congedo (B8); 65 Samek (B28) 2012; 9 Grosse-Wentrup (B11) 2008; 55 Reuderink (B25) 2011 Zanini (B37) 2018; 65 Lawhern (B15) 2018; 15 Yair (B35) 2019; 67 Zhou (B38) 2016; 11 Ang (B1) 2008 Barachant (B2) 2010 Lin (B17) 2007; 54 Wang (B32) 2018 Nakanishi (B21) 2018; 65 Rivet (B26) 2009; 56 Lotte (B19) 2011; 58 Jayaram (B14) 2018; 15 Cho (B4) 2017; 6 Leeb (B16) 2007; 15 Moakher (B20) 2005; 26 Congedo (B6) 2013 Wolpaw (B33) 2002; 113 Chollet (B5) 2017 Dai (B9) 2020; 17 |
References_xml | – start-page: 2390 volume-title: 2008 IEEE International Joint Conference on Neural Networks year: 2008 ident: B1 article-title: Filter bak common spatial pattern (FBCSP) in brain-computer interface? – volume: 67 start-page: 399 year: 2020 ident: B12 article-title: Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2019.2913914 – volume: 65 start-page: 1107 year: 2018 ident: B37 article-title: Transfer learning: a Riemannian geometry framework with applications to brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2017.2742541 – volume: 51 start-page: 1034 year: 2004 ident: B29 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2004.827072 – start-page: 82 volume-title: MultiMedia Modeling year: 2018 ident: B32 article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks doi: 10.1007/978-3-319-73600-6_8 – volume: 65 start-page: 104 year: 2018 ident: B21 article-title: Enhancing detection of ssveps for a high-speed brain speller using task-related component analysis publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2017.2694818 – start-page: 4600 volume-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2011 ident: B25 article-title: A subject-independent brain-computer interface based on smoothed, second-order baselining doi: 10.1109/IEMBS.2011.6091139 – start-page: 629 volume-title: Latent Variable Analysis and Signal Separation year: 2010 ident: B2 article-title: Riemannian geometry applied to BCI classification? doi: 10.1007/978-3-642-15995-4_78 – volume: 59 start-page: 920 year: 2011 ident: B3 article-title: Multiclass brain-computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2011.2172210 – volume: 26 start-page: 735 year: 2005 ident: B20 article-title: A differential geometric approach to the geometric mean of symmetric positive-definite matrices publication-title: SIAM J. Matrix Anal. Appl doi: 10.1137/S0895479803436937 – volume: 113 start-page: 767 year: 2002 ident: B33 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – volume: 6 start-page: 1 year: 2017 ident: B4 article-title: EEG datasets for motor imagery brain-computer interface publication-title: GigaScience doi: 10.1093/gigascience/gix034 – volume: 38 start-page: 5391 year: 2017 ident: B30 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp doi: 10.1002/hbm.23730 – volume-title: arXiv preprint arXiv:1310.8115 year: 2013 ident: B6 article-title: A new generation of brain-computer interface based on Riemannian geometry – volume: 9 start-page: 026013 year: 2012 ident: B28 article-title: Stationary common spatial patterns for brain-computer interfacing publication-title: J. Neural Eng doi: 10.1088/1741-2560/9/2/026013 – volume: 4 start-page: 155 ident: B7 article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review publication-title: Brain Comput Interfaces doi: 10.1080/2326263X.2017.1297192 – volume: 15 start-page: 066011 year: 2018 ident: B14 article-title: MOABB: trustworthy algorithm benchmarking for BCIs publication-title: J. Neural Eng doi: 10.1088/1741-2552/aadea0 – volume: 66 start-page: 2390 year: 2019 ident: B27 article-title: Riemannian procrustes analysis: Transfer learning for brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2018.2889705 – volume: 65 start-page: 1166 year: 2018 ident: B34 article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2018.2799661 – volume: 15 start-page: 473 year: 2007 ident: B16 article-title: Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2007.906956 – volume: 54 start-page: 1172 year: 2007 ident: B17 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2006.889197 – volume: 66 start-page: 41 year: 2006 ident: B23 article-title: A Riemannian framework for tensor computing publication-title: Int. J. Comput. Vis doi: 10.1007/s11263-005-3222-z – volume: 15 start-page: 031005 year: 2018 ident: B18 article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update publication-title: J. Neural Eng doi: 10.1088/1741-2552/aab2f2 – volume: 7 start-page: 267 year: 2013 ident: B10 article-title: MEG and EEG data analysis with MNE-python publication-title: Front. Neurosci doi: 10.3389/fnins.2013.00267 – volume: 17 start-page: 016025 year: 2020 ident: B9 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng doi: 10.1088/1741-2552/ab405f – volume: 15 start-page: 056013 year: 2018 ident: B15 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 8 start-page: 441 year: 2000 ident: B24 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng doi: 10.1109/86.895946 – volume: 9 start-page: e114853 year: 2014 ident: B36 article-title: Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery publication-title: PLoS ONE doi: 10.1371/journal.pone.0114853 – volume: 55 start-page: 1991 year: 2008 ident: B11 article-title: Multiclass common spatial patterns and information theoretic feature extraction publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2008.921154 – start-page: 1251 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2017 ident: B5 article-title: Xception: deep learning with depthwise separable convolutions – volume: 11 start-page: e0162657 year: 2016 ident: B38 article-title: A fully automated trial selection method for optimization of motor imagery based brain-computer interface publication-title: PLoS ONE doi: 10.1371/journal.pone.0162657 – volume: 56 start-page: 2035 year: 2009 ident: B26 article-title: xdawn algorithm to enhance evoked potentials: application to brain-computer interface publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2009.2012869 – ident: B22 – volume: 58 start-page: 355 year: 2011 ident: B19 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2010.2082539 – volume: 6 start-page: 55 year: 2012 ident: B31 article-title: Review of the BCI competition IV publication-title: Front. Neurosci doi: 10.3389/fnins.2012.00055 – start-page: 325 volume-title: Artificial Intelligence and Statistics year: 2013 ident: B13 article-title: Recursive Karcher expectation estimators and geometric law of large numbers – volume: 67 start-page: 1797 year: 2019 ident: B35 article-title: Parallel transport on the cone manifold of spd matrices for domain adaptation publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2019.2894801 – volume: 65 start-page: 2211 ident: B8 article-title: Fixed point algorithms for estimating power means of positive definite matrices publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2017.2649483 |
SSID | ssj0062651 |
Score | 2.5077975 |
Snippet | Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due... Cross-subject variability problem hinders practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 103 |
SubjectTerms | Algorithms brain-computer interface Classification cross-dataset variability cross-subject variability Datasets Deep learning EEG Eigenvalues Electroencephalography Geometry Human Neuroscience Interfaces Internet Machine learning Medical imaging Signal processing transfer learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB4LBRkJIXGINvHbx9LdUiGBOFDozbKTCbsSpBVkD_33zNjZVRchuHBM4ij2eOz5vsx4hrGXuvPKJJ0qRBemUrZ2VXSdrLrYS4hGW5GPR7__YM7O1bsLfXGj1BfFhJX0wEVwcxFNV4OPom-iqiU4LVTrAYm4NTb2Pe2-aPO2ZKrswYjSdVOckkjB_LwfVhs6di4ojqvZFsiajFDO1f8ngPl7nOQNw3N6l92ZECM_Lj29x27BcJ8dHg_Ilr9f81c8x3Dmn-OHbHFC36sWcUTjNPLPSIRLHu5r_rFUjuHrgS-Xb_kCaSeZLf5lPa7wCq74lGr16wN2frr8dHJWTXUSqlb5eqz6PrnYyNiAdAqMBN92wvaqlR6SbxNaHK1BaehQLg4pSB2drJ2SSoFs2iQfsoPhcoDHjHddrUWsRdI6qpbgA1jfIAr3zifE4TM23woutFMScapl8S0gmSBRhyzqQKIOWdQz9nr3xlVJoPGXtm9oLnbtKPV1voEKESaFCP9SiBk72s5kmNbjzyAQBlqLUFDM2IvdY1xJ5B6JA1xuchtEu84YHOWjMvG7nkhB7k0av91Tib2u7j8Z1qucrRuNP6Jc9-R_jO0pu03SIm-WaI7YwfhjA88QFI3pedb_X9ECCSE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege-EFDcZHYSAjISQerDr-SOwntK0dExLThBjsLXIcZ6000m5LH_bfc-c4hSK0x8SOYt_Zd7_zne8Iea9rq_JKVwzQRc5UwQ1zppasdo0MLteFiNejv57mJ-fqy4W-SAdutymscpCJUVDXS49n5BMBirwoQJmLT6trhlWj0LuaSmg8JDsggo0ZkZ3D2enZt0EWA1rXWe-cBFPMTpp2vsbr5wLjubKhUFZSRjFn__-A5r_xkn8poONd8jghR3rQs_oJeRDap2TvoAWr-dcd_UBjLGc8JN8j0yP8H5u6DpRUR3-AQdzn476jZ30FGbpo6Wz2mU7B_ET1RX8uujk8hRVNKVcvn5Hz49n3oxOW6iUwryzvWNNUxmXSZUEaFXIZrK9F0Sgvbaisr0DzaB2UDjXQxYApwp2R3CipVJCZr-RzMmqXbXhJaF1zLRwXldZOeYQRobAZoHFrbAV4fEwmA-FKn5KJY02LqxKMCiR1GUldIqnLSOox-bj5YtUn0rin7yHyYtMPU2DHF8ubyzLtqFK4vObBOtFkTnEZjBbK28At5qdxTTMm-wMny7Qvb8s_q2hM3m2aYUehm8S1YbmOfQD1mjyHWb7oGb8ZiRTo5sT5F1tLYmuo2y3tYh6zdgMIALRrXt0_rNfkEdIB_VUi2yej7mYd3gDs6aq3aW3_BvfwAgE priority: 102 providerName: ProQuest |
Title | Cross-Dataset Variability Problem in EEG Decoding With Deep Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32372929 https://www.proquest.com/docview/2392779292 https://www.proquest.com/docview/2399238669 https://pubmed.ncbi.nlm.nih.gov/PMC7188358 https://doaj.org/article/2a6d0e9a2f1a403e8524c9e093767aff |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejfdnL2Np9pGuDBmOwB6_Wly09lNE2acugpYxly5uQbbkJdE6XOtD8972THW8ZYU97MdiSsHQncb_TSb8j5L0qjEwylUWALpJIprGOnC5EVLhSeJeolIfr0ZdXycVIfhmr8e_r0a0A7ze6dphPajS__fTwa_kZFvwRepxgbw_LarLAS-UcT2kxpP7cBruUYj6DS9nFFAC5K9YEKje2WjNMgb9_E-j8--zkH8bo7Dl51qJIetyo_QV54qsdsntcgQf9c0k_0HCuM2yY75LBKf4vGrgaDFZNv4Nz3HBzL-l1k02GTis6HJ7TAbiiaMroj2k9gTd_R1v61ZuXZHQ2_HZ6EbW5E6JcmriOyjLTjgnHvNDSJ8KbvOBpKXNhfGbyDKyQUl4qX4BcNLglsdMi1lJI6QXLM_GKbFWzyr8htChixV3MM6WczBFS-NQwQOZGmwyweY8crgRn85ZYHPNb3FpwMFDUNojaoqhtEHWPfOxa3DWkGv-oe4K66OohHXb4MJvf2HZ1We6SIvbG8ZI5GQuvFZe58bFBrhpXlj2yv9KkXU0xywEapinAQ94j77piWF0YMnGVny1CHUDAOklglK8bxXc9ERxDnjj-dG1KrHV1vaSaTgKDNwACQL5673-M7S15itLCCBdn-2Srni_8AQClOuuT7ZPh1fXXfthogOf5mPXDmngEa9gUsQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEDA-ygYYCZB4iJr4I7EfENrWjo5t1YQ22JvnJM5aiaVlS4X6T_E3cnaSQhHa2x4T24l9Pt_9zmffAbwRueJxKtIA0UUc8CSUgZE5C3JTMGtikVB_PfpoFA9P-eczcbYGv9q7MO5YZSsTvaDOp5nbI-9RVORJgsqcfpz9CFzWKOddbVNo1GxxYBc_0WS7_rDfx_l9S-ne4GR3GDRZBYKMq7AKiiKVJmImskxyGzOrspwmBc-YsqnKUpTPQlgubI5YXyJgD41koeSMc8uiLGX43Tuwzlkc0g6s7wxGx19a2Y8tRFQ7Q9H0U72iHM_ddXfqzo9FbWKuRvn5HAH_A7b_ns_8S-HtPYD7DVIl2zVrPYQ1Wz6Cje0SrfTLBXlH_NlRvym_Af1d97-gbypUihX5igZ4Hf97QY7rjDVkUpLB4BPpo7nr1CX5NqnG-GRnpAnxevEYTm-Fkk-gU05L-wxInoeCmpCmQhieOdhiExUh-ldSpYj_u9BrCaezJni5y6HxXaMR40itPam1I7X2pO7C-2WLWR2444a6O24ulvVcyG3_Ynp1oZsVrKmJ89AqQ4vI8JBZKSjPlA2Vi4djiqILW-1M6kYOXOs_XNuF18tiXMHOLWNKO537OoiyZRzjKJ_WE7_sCaPOrerGn6ywxEpXV0vKydhHCUfQgehaPr-5W6_g7vDk6FAf7o8ONuGeo4nzldFoCzrV1dy-QMhVpS8bPidwfttL6zefmD5i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDA-CgOMBEg8RE38kdgPCG1Ly8agqhCDvRkncdZKkJYtFeq_xl_HnZMUitDe9pjESZzz2ff75c53hDyXhRZxJrMA0EUciCRUgVUFDwpbcmdjmTC_PfrDOD48Ee9O5ekW-dXthcGwym5N9At1Mc_xH_mAgSFPEjDmbFC2YRGTdPRm8SPAClLoae3KaTQqcuxWP4G-Xbw-SmGsXzA2Gn46OAzaCgNBLnRYB2WZKRtxGzmuhIu503nBklLkXLtM5xms1VI6IV0BuF8BeA-t4qESXAjHozzj8NxrZDtBVtQj2_vD8eRjZwfgDhk1jlGggXpQVtMlbn1nGEsWdUW6WkPo6wX8D-T-G6v5l_Eb3SI3W9RK9xo1u022XHWH7OxVwNi_r-hL6uNI_Q_6HZIe4PuC1NZgIGv6Gch4kwt8RSdN9Ro6q-hw-JamQH3RdNIvs3oKR25B23SvZ3fJyZVI8h7pVfPKPSC0KELJbMgyKa3IEcK4REfABLTSGXCBPhl0gjN5m8gc62l8M0BoUNTGi9qgqI0XdZ-8Wt-xaJJ4XNJ2H8di3Q7Tb_sT8_Mz085mw2xchE5bVkZWhNwpyUSuXagxN44tyz7Z7UbStGvChfmjwX3ybH0ZZjO6aGzl5kvfBhC3imP4yvvNwK97whm6WPH7kw2V2Ojq5pVqNvUZwwGAANJWDy_v1lNyHaaUeX80Pn5EbqBI0G3Gol3Sq8-X7jGgrzp70qo5JV-vemb9Bl-ZQpc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Dataset+Variability+Problem+in+EEG+Decoding+With+Deep+Learning&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Lichao+Xu&rft.au=Minpeng+Xu&rft.au=Minpeng+Xu&rft.au=Yufeng+Ke&rft.date=2020-04-21&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=14&rft_id=info:doi/10.3389%2Ffnhum.2020.00103&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a6d0e9a2f1a403e8524c9e093767aff |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |