Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction

The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This su...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 6; no. 6; pp. 484 - 491
Main Authors Woerly, Eric M., Roy, Jahnabi, Burke, Martin D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β- D -glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory. Polyene motifs are found in a large number of natural products. Now, by applying a general retrosynthetic algorithm, it has been shown that the polyene motifs found in >75% of these compounds can be synthesized using just 12 bifunctional haloalkenyl MIDA boronate building blocks and one coupling reaction.
AbstractList The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β- D -glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory. Polyene motifs are found in a large number of natural products. Now, by applying a general retrosynthetic algorithm, it has been shown that the polyene motifs found in >75% of these compounds can be synthesized using just 12 bifunctional haloalkenyl MIDA boronate building blocks and one coupling reaction.
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
Author Roy, Jahnabi
Burke, Martin D.
Woerly, Eric M.
Author_xml – sequence: 1
  givenname: Eric M.
  surname: Woerly
  fullname: Woerly, Eric M.
  organization: Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: Jahnabi
  surname: Roy
  fullname: Roy, Jahnabi
  organization: Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign
– sequence: 3
  givenname: Martin D.
  surname: Burke
  fullname: Burke, Martin D.
  email: burke@scs.uiuc.edu
  organization: Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24848233$$D View this record in MEDLINE/PubMed
BookMark eNptkU2LFDEQhoOsuB968QdIwIuszJp0kk7nKIuuwoIH9dyk05WdjOlkzMdh_r1pZ11k9VRF1VPFy_ueo5MQAyD0kpIrStjwLpgtLFdUcfkEnVEpxIYzrk4eekZO0XnOO0J6wWj_DJ12fOBDx9gZ2n49hLKF7DKOFi8xF7yP_gABcNClJu3xPsW5mtKWxdmMa3bhDu9qI2mHp-r8vA4mH82PjHWYcVOHTax7v84TaFNcDM_RU6t9hhf39QJ9__jh2_Wnze2Xm8_X7283hitSNhYUn4UauGAzkUIRDZpJPQ3dJIXuZjXISU6dZJooDlrPVFiwBqzu2SSsYRfozfFvk_2zQi7j4rIB73WAWPNIBe-aDZLRhr5-hO5iTaGpG2kvetL3neob9eqeqtMC87hPbtHpMP7xsAGXR8CkmHMC-4BQMq4Bjb8DGteAGkwewcYVvRpUknb-_ydvjye5_Q13kP6S-S_9C1Qho98
CitedBy_id crossref_primary_10_1002_anie_202303140
crossref_primary_10_1021_acs_orglett_0c03187
crossref_primary_10_1063_5_0030764
crossref_primary_10_1002_anie_202307626
crossref_primary_10_4155_fmc_2018_0333
crossref_primary_10_1055_s_0041_1737242
crossref_primary_10_1039_C4SC03117B
crossref_primary_10_1039_D4SC07900K
crossref_primary_10_1002_ange_201813512
crossref_primary_10_1021_acs_accounts_0c00674
crossref_primary_10_1002_ange_201710482
crossref_primary_10_1021_acs_joc_4c00122
crossref_primary_10_1039_D0CC00722F
crossref_primary_10_1002_chem_201405931
crossref_primary_10_1007_s11224_024_02349_7
crossref_primary_10_1021_jacs_9b07185
crossref_primary_10_1038_s44160_024_00558_w
crossref_primary_10_1002_ange_201504615
crossref_primary_10_1038_nature13711
crossref_primary_10_1021_acs_joc_1c01978
crossref_primary_10_1039_C5OB00917K
crossref_primary_10_1021_acs_orglett_4c04750
crossref_primary_10_1039_C5QO00002E
crossref_primary_10_1002_chem_201605048
crossref_primary_10_1021_acs_orglett_2c00546
crossref_primary_10_1021_acs_orglett_5b01101
crossref_primary_10_1002_ejoc_201700208
crossref_primary_10_1038_s41557_021_00662_w
crossref_primary_10_4155_fmc_2018_0062
crossref_primary_10_1002_slct_201700682
crossref_primary_10_1021_jacs_5b11889
crossref_primary_10_1021_acs_orglett_1c03022
crossref_primary_10_1002_anie_202404233
crossref_primary_10_3390_antibiotics8010008
crossref_primary_10_1016_j_tetlet_2018_11_016
crossref_primary_10_1016_j_tetlet_2020_151799
crossref_primary_10_1038_nchem_1964
crossref_primary_10_1126_science_abb7235
crossref_primary_10_1016_j_ddtec_2017_03_003
crossref_primary_10_1002_ange_202211578
crossref_primary_10_1002_anie_201504297
crossref_primary_10_1039_C4CC09107H
crossref_primary_10_1039_D2CC04893K
crossref_primary_10_3390_molecules23092360
crossref_primary_10_1002_anie_201609598
crossref_primary_10_3390_molecules24050830
crossref_primary_10_3390_molecules26020249
crossref_primary_10_1002_ange_202011872
crossref_primary_10_1021_jacs_8b06933
crossref_primary_10_1039_C4NP00160E
crossref_primary_10_1002_anie_201504615
crossref_primary_10_1002_chem_201803565
crossref_primary_10_1039_C6SC03236B
crossref_primary_10_1016_j_tet_2016_05_006
crossref_primary_10_1021_acs_joc_5b00182
crossref_primary_10_1021_acs_orglett_8b02830
crossref_primary_10_1055_s_0040_1707906
crossref_primary_10_1016_j_tet_2016_02_040
crossref_primary_10_1002_anie_202003216
crossref_primary_10_1021_acs_joc_9b00638
crossref_primary_10_1039_D0NJ02908D
crossref_primary_10_5059_yukigoseikyokaishi_80_817
crossref_primary_10_1016_j_tet_2019_04_012
crossref_primary_10_1002_cjoc_202100856
crossref_primary_10_1021_acscatal_6b03434
crossref_primary_10_1038_s41557_023_01155_8
crossref_primary_10_1002_adsc_201700733
crossref_primary_10_1021_acs_joc_2c02651
crossref_primary_10_1016_j_tet_2018_03_050
crossref_primary_10_1002_anie_202006322
crossref_primary_10_1021_acs_orglett_8b00809
crossref_primary_10_1002_anie_202011872
crossref_primary_10_1002_slct_201800946
crossref_primary_10_1039_C7CC02767B
crossref_primary_10_1002_anie_201610797
crossref_primary_10_1039_D3DD00249G
crossref_primary_10_1021_acs_orglett_9b01397
crossref_primary_10_1002_anie_201406714
crossref_primary_10_1055_a_2314_1877
crossref_primary_10_1002_ange_201609598
crossref_primary_10_1016_j_molcata_2015_03_022
crossref_primary_10_1021_acs_joc_2c01678
crossref_primary_10_1021_acs_accounts_5b00128
crossref_primary_10_1039_C6SC04014D
crossref_primary_10_1021_acs_macromol_0c00665
crossref_primary_10_1002_anie_202416941
crossref_primary_10_1246_bcsj_20210163
crossref_primary_10_1021_jacs_6b07268
crossref_primary_10_1021_acscatal_2c03861
crossref_primary_10_1021_jacs_6b07666
crossref_primary_10_1038_ncomms14043
crossref_primary_10_1002_ange_201610797
crossref_primary_10_1002_adsc_201500302
crossref_primary_10_1021_acs_orglett_8b00439
crossref_primary_10_1002_ejoc_202400960
crossref_primary_10_1038_s41557_018_0097_5
crossref_primary_10_1021_jacs_8b05421
crossref_primary_10_1002_chem_201500970
crossref_primary_10_1021_acs_orglett_5b00042
crossref_primary_10_1002_ange_201406714
crossref_primary_10_1021_acs_orglett_5b03030
crossref_primary_10_1038_s41578_018_0005_z
crossref_primary_10_1038_nchem_2048
crossref_primary_10_1016_j_tetlet_2017_05_060
crossref_primary_10_1007_s00706_016_1883_7
crossref_primary_10_1039_C5CS00338E
crossref_primary_10_1134_S1070428015020013
crossref_primary_10_1002_chem_201702008
crossref_primary_10_1039_D0SC00230E
crossref_primary_10_3762_bjoc_20_253
crossref_primary_10_1016_j_isci_2019_09_027
crossref_primary_10_1021_jacs_5b03893
crossref_primary_10_1073_pnas_1509715112
crossref_primary_10_1038_s41557_018_0021_z
crossref_primary_10_1039_D1CC06680C
crossref_primary_10_1002_chem_201900011
crossref_primary_10_1039_C7QO00614D
crossref_primary_10_1002_anie_201710482
crossref_primary_10_1002_ange_202303140
crossref_primary_10_1002_adsc_201500798
crossref_primary_10_1002_pola_28682
crossref_primary_10_1021_acs_joc_0c00186
crossref_primary_10_1002_chem_201903080
crossref_primary_10_1002_anie_201813512
crossref_primary_10_1021_acs_joc_0c00341
crossref_primary_10_1039_C7QO00084G
crossref_primary_10_1002_ange_202404233
crossref_primary_10_1021_acs_orglett_8b03016
crossref_primary_10_1038_s41570_018_0115
crossref_primary_10_1039_C8SC03569E
crossref_primary_10_1038_nature_2015_17113
crossref_primary_10_1002_chem_202000624
crossref_primary_10_1002_ange_202003216
crossref_primary_10_1021_acscatal_0c05574
crossref_primary_10_1039_C5OB00154D
crossref_primary_10_1002_ange_202006322
crossref_primary_10_1021_acs_orglett_3c00410
crossref_primary_10_1038_ncomms11065
crossref_primary_10_1039_C5CC10093C
crossref_primary_10_1038_nchem_2571
crossref_primary_10_1021_jacs_4c05924
crossref_primary_10_1021_jacs_9b01537
crossref_primary_10_1002_ange_201709070
crossref_primary_10_1039_C5RA10001A
crossref_primary_10_1021_acscentsci_0c00979
crossref_primary_10_1021_acs_orglett_5b01434
crossref_primary_10_1039_D1PY00425E
crossref_primary_10_1021_acs_orglett_1c04223
crossref_primary_10_1038_s42004_020_0295_0
crossref_primary_10_1038_s44160_021_00010_3
crossref_primary_10_1039_D4OB00077C
crossref_primary_10_1002_ajoc_201402166
crossref_primary_10_1038_nchem_1975
crossref_primary_10_1021_acs_joc_9b01768
crossref_primary_10_1002_ange_202307626
crossref_primary_10_1002_ange_202416941
crossref_primary_10_1039_C5CC00231A
crossref_primary_10_1070_RCR4841
crossref_primary_10_1002_anie_202211578
crossref_primary_10_1021_ja512875g
crossref_primary_10_3389_fmicb_2023_1205118
crossref_primary_10_1002_ange_201504297
crossref_primary_10_1126_science_aaa5414
crossref_primary_10_1002_anie_201709070
crossref_primary_10_1038_nchem_2439
crossref_primary_10_1002_chem_202303953
crossref_primary_10_1055_a_1924_2564
crossref_primary_10_1371_journal_pone_0229862
crossref_primary_10_1021_ja505861d
crossref_primary_10_1021_acs_joc_1c01760
crossref_primary_10_1016_j_tetlet_2015_04_035
crossref_primary_10_1021_acs_joc_9b03319
crossref_primary_10_1055_s_0042_1751497
crossref_primary_10_1016_j_tetlet_2021_153574
crossref_primary_10_1021_acs_chemrev_1c00324
crossref_primary_10_1021_ol503065a
crossref_primary_10_1038_s41467_017_02381_8
crossref_primary_10_1002_chem_201602124
crossref_primary_10_1073_pnas_1706266114
crossref_primary_10_1021_jacs_3c05385
Cites_doi 10.1002/0471473804
10.1126/science.286.5438.255
10.1021/cr00038a011
10.1073/pnas.1117280109
10.1002/3527606548
10.1002/anie.201002416
10.1002/anie.201102688
10.1021/cr9903104
10.1039/b109741p
10.1021/cr00039a007
10.1021/ja8063759
10.1039/c2ob26147b
10.1016/S0040-4039(03)01041-4
10.1126/science.3863253
10.1021/ja102721p
10.1002/anie.200500368
10.1021/ja00398a058
10.1039/c2ra20516e
10.1021/ja901416p
10.1021/ol801115s
10.1016/j.tet.2010.04.020
10.1021/jo200357e
10.1002/anie.201203093
10.1002/anie.198507993
10.1021/ja8094075
10.1039/a809818b
10.1021/ja078129x
10.1016/0022-328X(86)80169-3
10.1002/anie.201101147
10.1021/ja0716204
10.1126/science.1057324
10.1073/pnas.0307514101
10.1021/jm100619x
10.1021/jo301226z
10.1021/np200381u
10.1021/jo201973t
10.1021/np010554v
10.1021/ja205912y
10.1126/science.1074685
10.1021/jm300515q
10.1021/ja1073799
10.1073/pnas.72.5.1649
10.1055/s-1997-6121
10.1126/science.6710156
10.1021/ol100470g
ContentType Journal Article
Copyright Springer Nature Limited 2014
Copyright Nature Publishing Group Jun 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: Copyright Nature Publishing Group Jun 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/nchem.1947
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1755-4349
EndPage 491
ExternalDocumentID 3595745981
24848233
10_1038_nchem_1947
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Illinois
GeographicLocations_xml – name: United States--US
– name: Illinois
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM080436
– fundername: NIGMS NIH HHS
  grantid: R01 GM090153
– fundername: NIGMS NIH HHS
  grantid: GM090153
– fundername: NIGMS NIH HHS
  grantid: R01 GM080436
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
0R~
123
29M
39C
4.4
53G
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABFSG
ABJCF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACSTC
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFSHS
AFWHJ
AGAYW
AGGDT
AGQPQ
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
AIYXT
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NFIDA
NNMJJ
O9-
ODYON
P2P
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c490t-fe94d598453d07590aea37ab82b75a2d987b7b273a094eaad15fefcefa63b5fc3
IEDL.DBID 7X7
ISSN 1755-4330
1755-4349
IngestDate Fri Jul 11 10:08:15 EDT 2025
Fri Jul 25 09:04:20 EDT 2025
Mon Jul 21 05:49:13 EDT 2025
Tue Jul 01 03:02:05 EDT 2025
Thu Apr 24 22:51:04 EDT 2025
Sun Aug 31 08:58:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-fe94d598453d07590aea37ab82b75a2d987b7b273a094eaad15fefcefa63b5fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1038/nchem.1947
PMID 24848233
PQID 1656066296
PQPubID 536302
PageCount 8
ParticipantIDs proquest_miscellaneous_1542653731
proquest_journals_1656066296
pubmed_primary_24848233
crossref_primary_10_1038_nchem_1947
crossref_citationtrail_10_1038_nchem_1947
springer_journals_10_1038_nchem_1947
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nature Chem
PublicationTitleAlternate Nat Chem
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Sigma-Aldrich, MIDA boronates; http://www.aldrich.com/mida
PlanteOJPalmacciERSeebergerPHAutomated solid-phase synthesis of oligosaccharidesScience2001291152315271:CAS:528:DC%2BD3MXhsVeru7w%3D1122285310.1126/science.1057324
SakakiHA new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1J. Nat. Prod.200265168316841:CAS:528:DC%2BD38Xms1Omtb0%3D1244470210.1021/np010554v
GillisEPBurkeMDIterative cross-coupling with MIDA boronates: towards a general strategy for small molecule synthesisAldrichim. Acta20094217271:CAS:528:DC%2BD1MXpslOkurc%3D
GillisEPBurkeMDA simple and modular strategy for small molecule synthesis: iterative Suzuki–Miyaura coupling of B-protected haloboronic acid building blocksJ. Am. Chem. Soc.2007129671667171:CAS:528:DC%2BD2sXltVajs7w%3D1748808410.1021/ja0716204
FujitaKMatsuiRSuzukiTKobayashiSConcise total synthesis of (−)-myxalamide AAngew. Chem. Int. Ed.201251727172741:CAS:528:DC%2BC38Xos1emurw%3D10.1002/anie.201203093
SeebergerPHHaaseW-CSolid-phase oligosaccharide synthesis and combinatorial carbohydrate librariesChem. Rev.2000100434943931:CAS:528:DC%2BD3cXns12qtLg%3D1174935110.1021/cr9903104
ImaoDGlasspooleBWLabergeVSCruddenCMCross coupling reactions of chiral secondary organoboronic esters with retention of configurationJ. Am. Chem. Soc.2009131502450251:CAS:528:DC%2BD1MXjsFemu7o%3D1930182010.1021/ja8094075
ColucciniCQuaterpyridine ligands for panchromatic Ru(II) dye sensitizersJ. Org. Chem.201277794579561:CAS:528:DC%2BC38Xht1Ghu73E2291753210.1021/jo301226z
GarretRHGrishamCMBiochemistry1995
NegishiE-IHandbook of Organopalladium Chemistry for Organic Synthesis200210.1002/0471473804
AridossGZhouBHermansonDLBleekerNPXingCGStructure–activity relationship (SAR) study of ethyl 2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the potential of the lead against multidrug resistance in cancer treatmentJ. Med. Chem.201255556655811:CAS:528:DC%2BC38XmvFWrurs%3D22582991651839010.1021/jm300515q
EvansDABartroliJShihTLEnantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolatesJ. Am. Chem. Soc.1981103212721291:CAS:528:DyaL3MXkt1CrurY%3D10.1021/ja00398a058
MancillaTContrerasRWrackmeyerBNew bicyclic organylboronic esters derived from iminodiacetic acidsJ. Organomet. Chem.1986307161:CAS:528:DyaL2sXkslOrt7c%3D10.1016/0022-328X(86)80169-3
Paterson, I. & Scott, J. P. Laboratory emulation of polyketide biosynthesis: an iterative, aldol-based, synthetic entry to polyketide libraries using (R)- and (S)-1-(benzyloxy)-2-methylpentan-3-one, and conformational aspects of extended polypropionates. J. Chem. Soc. Perkin Trans. 1 1003–1014 (1999).
SeebergerPHGlyco-Bioinformatics: Bits ‘n’ Bytes of Sugars2009
FangZSynthesis and biological evaluation of polyenylpyrrole derivatives as anticancer agents acting through caspases-dependent apoptosisJ. Med. Chem.201053796779781:CAS:528:DC%2BC3cXhtlalurnP2096440810.1021/jm100619x
MyersAGYangBHChenHKopeckyDJAsymmetric synthesis of 1,3-dialkyl-substituted carbon chains of any stereochemical configuration by an iterable processSynlett19973645745910.1055/s-1997-6121
KozhevnikovVNDahmsKBryceMRNucleophilic substitution of fluorine atoms in 2,6-difluoro-3-(pyridine-2-yl)benzonitrile leading to soluble blue-emitting cyclometalated Ir(III) complexesJ. Org. Chem.201176514351481:CAS:528:DC%2BC3MXmslGlsrs%3D2161224310.1021/jo200357e
LiJBurkeMDPinene-derived iminodiacetic acid (PIDA): a powerful ligand for stereoselective synthesis and iterative cross-coupling of C(sp3) boronate building blocksJ. Am. Chem. Soc.201113313774137771:CAS:528:DC%2BC3MXhtVSrt7zI21823591316421310.1021/ja205912y
Dictionary of Natural Products Version 22.1 (Taylor and Francis Group, 2013); dnp.chemnetbase.com
WoerlyEMCherneyAHDavisEKBurkeMDStereoretentive Suzuki–Miyaura coupling of haloallenes enables fully stereocontrolled access to (–)-peridininJ. Am. Chem. Soc.2010132694169431:CAS:528:DC%2BC3cXlsFeqtr0%3D20441218295718110.1021/ja102721p
LueckeHSchobertBRichterH-TCartaillerJ-PLanyiJKStructural changes in bacteriorhodopsin during ion transport at 2 angstrom resolutionScience19992862552601:CAS:528:DyaK1MXmvVersr0%3D1051436210.1126/science.286.5438.255
KinzelTZhangYBuchwaldSLA new palladium precatalyst allows for the fast Suzuki–Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acidsJ. Am. Chem. Soc.201013214073140751:CAS:528:DC%2BC3cXhtF2nu7vP20858009295324510.1021/ja1073799
LeeSJGrayKCPaekJSBurkeMDSimple, efficient, and modular synthesis of polyene natural products via iterative cross-couplingJ. Am. Chem. Soc.20081304664681:CAS:528:DC%2BD2sXhsVehur3I18081295310712610.1021/ja078129x
GrayKCAmphotericin primarily kills yeast by simply binding ergosterolProc. Natl Acad. Sci. USA2012109223422391:CAS:528:DC%2BC38XivV2qu7k%3D22308411328933910.1073/pnas.1117280109
GustafsonJLLimDBarrettKTMillerSJSynthesis of atropisomerically defined, highly substituted biaryl scaffolds through catalytic enantioselective bromination and regioselective cross-couplingAngew. Chem. Int. Ed.201150512551291:CAS:528:DC%2BC3MXmtFymtbc%3D10.1002/anie.201101147
GrobJENunezJDechantsreiterMAHamannLGRegioselective synthesis and slow-release Suzuki–Miyaura cross-coupling of MIDA boronate-functionalized isoxazoles and triazolesJ. Org. Chem.20117610241102481:CAS:528:DC%2BC3MXhsVSks7%2FI2204708310.1021/jo201973t
WangGHuangZNegishiE-IEfficient and selective syntheses of (all-E)- and (6E,10Z)-2′-O-methylmyxalamides D via Pd-catalyzed alkenylation–carbonyl olefination synergyOrg. Lett.200810322332261:CAS:528:DC%2BD1cXnvF2gu7s%3D18593171259374610.1021/ol801115s
StrubleJRLeeSJBurkeMDEthynyl MIDA boronate: a readily accessible and highly versatile building block for small molecule synthesisTetrahedron201066471047181:CAS:528:DC%2BC3cXntVOmurs%3D10.1016/j.tet.2010.04.020
NicolaouKCBulgerPGSarlahDPalladium-catalyzed cross-coupling reactions in total synthesisAngew. Chem. Int. Ed.200544444244891:CAS:528:DC%2BD2MXntVSgsbw%3D10.1002/anie.200500368
MiyauraNSuzukiAPalladium-catalyzed cross-coupling reactions of organoboron compoundsChem. Rev.199595245724831:CAS:528:DyaK2MXoslGiurg%3D10.1021/cr00039a007
GillisEPBurkeMDMultistep synthesis of complex boronic acids from simple MIDA boronatesJ. Am. Chem. Soc.200813014084140851:CAS:528:DC%2BD1cXht1Smtr3I18837550724941410.1021/ja8063759
RychnovskySDOxo polyene macrolide antibioticsChem. Rev.199595202120401:CAS:528:DyaK2MXnvFegsrs%3D10.1021/cr00038a011
CerulloGPhotosynthetic light harvesting by carotenoids: detection of an intermediate excited stateScience2002298239523981:CAS:528:DC%2BD38Xps1Sju7s%3D1249391710.1126/science.1074685
BrakKEllmanJATotal synthesis of (–)-aurantioclavineOrg. Lett.201012200420071:CAS:528:DC%2BC3cXktFeltbc%3D2035606510.1021/ol100470g
CaruthersMHGene synthesis machines: DNA chemistry and its usesScience19852302812851:CAS:528:DyaL2MXlslCksbg%3D386325310.1126/science.3863253
NishiyabuRKobayashiHKuboYDansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in waterRSC Adv.20122655565611:CAS:528:DC%2BC38XhtVeis7fK10.1039/c2ra20516e
HallDGBoronic Acids200510.1002/3527606548
MerrifieldRBSolid phase synthesis (Nobel Lecture)Angew. Chem. Int. Ed. Engl.19852479981010.1002/anie.198507993
SklarLAHudsonBSSimoniRDConjugated polyene fatty acids as membrane probes: preliminary characterizationProc. Natl Acad. Sci. USA197572164916531:CAS:528:DyaE2MXktl2lurs%3D105776943260010.1073/pnas.72.5.1649
KnappDMGillisEPBurkeMDA general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronatesJ. Am. Chem. Soc.2009131696169631:CAS:528:DC%2BD1MXlt1Cls7s%3D19405470730969910.1021/ja901416p
NegishiETanZLiangBNovakTAn efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric C–C bond formationProc. Natl Acad. Sci. USA2004101578257871:CAS:528:DC%2BD2cXjsFKgurc%3D1507332739598510.1073/pnas.0307514101
YuanWMaSCuCl–K2CO3-catalyzed highly selective borylcupration of internal alkynes – ligand effectOrg. Biomol. Chem.201210726672681:CAS:528:DC%2BC38Xht1Ggsr3O2287207310.1039/c2ob26147b
MisonoYPhysarigins A–C, three new yellow pigments from a cultured Myxomycete Physarum rigidumTetrahedron Lett.200344447944811:CAS:528:DC%2BD3sXjvVCgurc%3D10.1016/S0040-4039(03)01041-4
Thirsk, C. & Whiting, A. Polyene natural products. J. Chem. Soc. Perkin Trans 1 999–1023 (2002).
BurnsARMcAllisterGDShanahanSETaylerRJKTotal synthesis and structural reassignment of (+)-dictyosphaeric acid A: a tandem intramolecular Michael addition/alkene migration approachAngew. Chem. Int. Ed.201049557455771:CAS:528:DC%2BC3cXps1ChtLk%3D10.1002/anie.201002416
BurtonGWIngoldKUBeta-carotene: an unusual type of lipid antioxidantScience19842245695731:CAS:528:DyaL2cXktVantrs%3D671015610.1126/science.6710156
LiuDNigerapyrones A–H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132J. Nat. Prod.201174178717911:CAS:528:DC%2BC3MXptFKmur0%3D2177447410.1021/np200381u
FujiiSChangSYBurkeMDTotal synthesis of synechoxanthin through iterative cross-couplingAngew. Chem. Int. Ed.201150786278641:CAS:528:DC%2BC3MXns1Ckurw%3D10.1002/anie.201102688
GW Burton (BFnchem1947_CR15) 1984; 224
G Cerullo (BFnchem1947_CR13) 2002; 298
C Coluccini (BFnchem1947_CR35) 2012; 77
BFnchem1947_CR8
SJ Lee (BFnchem1947_CR25) 2008; 130
KC Gray (BFnchem1947_CR43) 2012; 109
AG Myers (BFnchem1947_CR9) 1997; 36
DM Knapp (BFnchem1947_CR45) 2009; 131
OJ Plante (BFnchem1947_CR6) 2001; 291
BFnchem1947_CR24
H Sakaki (BFnchem1947_CR41) 2002; 65
PH Seeberger (BFnchem1947_CR4) 2000; 100
J Li (BFnchem1947_CR31) 2011; 133
Y Misono (BFnchem1947_CR40) 2003; 44
Z Fang (BFnchem1947_CR47) 2010; 53
W Yuan (BFnchem1947_CR46) 2012; 10
S Fujii (BFnchem1947_CR27) 2011; 50
RB Merrifield (BFnchem1947_CR2) 1985; 24
JE Grob (BFnchem1947_CR34) 2011; 76
G Wang (BFnchem1947_CR48) 2008; 10
E Negishi (BFnchem1947_CR10) 2004; 101
LA Sklar (BFnchem1947_CR14) 1975; 72
BFnchem1947_CR11
D Liu (BFnchem1947_CR39) 2011; 74
AR Burns (BFnchem1947_CR29) 2010; 49
DA Evans (BFnchem1947_CR7) 1981; 103
JR Struble (BFnchem1947_CR49) 2010; 66
SD Rychnovsky (BFnchem1947_CR12) 1995; 95
RH Garret (BFnchem1947_CR1) 1995
D Imao (BFnchem1947_CR50) 2009; 131
K Fujita (BFnchem1947_CR30) 2012; 51
G Aridoss (BFnchem1947_CR32) 2012; 55
H Luecke (BFnchem1947_CR16) 1999; 286
T Mancilla (BFnchem1947_CR20) 1986; 307
EP Gillis (BFnchem1947_CR23) 2008; 130
BFnchem1947_CR38
T Kinzel (BFnchem1947_CR44) 2010; 132
JL Gustafson (BFnchem1947_CR33) 2011; 50
DG Hall (BFnchem1947_CR42) 2005
EM Woerly (BFnchem1947_CR26) 2010; 132
N Miyaura (BFnchem1947_CR19) 1995; 95
EP Gillis (BFnchem1947_CR22) 2009; 42
E-I Negishi (BFnchem1947_CR17) 2002
VN Kozhevnikov (BFnchem1947_CR36) 2011; 76
K Brak (BFnchem1947_CR28) 2010; 12
KC Nicolaou (BFnchem1947_CR18) 2005; 44
PH Seeberger (BFnchem1947_CR5) 2009
MH Caruthers (BFnchem1947_CR3) 1985; 230
EP Gillis (BFnchem1947_CR21) 2007; 129
R Nishiyabu (BFnchem1947_CR37) 2012; 2
24848226 - Nat Chem. 2014 Jun;6(6):460-1
Nat Chem. 2014 Jun 20;6(7):650
References_xml – reference: Paterson, I. & Scott, J. P. Laboratory emulation of polyketide biosynthesis: an iterative, aldol-based, synthetic entry to polyketide libraries using (R)- and (S)-1-(benzyloxy)-2-methylpentan-3-one, and conformational aspects of extended polypropionates. J. Chem. Soc. Perkin Trans. 1 1003–1014 (1999).
– reference: SklarLAHudsonBSSimoniRDConjugated polyene fatty acids as membrane probes: preliminary characterizationProc. Natl Acad. Sci. USA197572164916531:CAS:528:DyaE2MXktl2lurs%3D105776943260010.1073/pnas.72.5.1649
– reference: MancillaTContrerasRWrackmeyerBNew bicyclic organylboronic esters derived from iminodiacetic acidsJ. Organomet. Chem.1986307161:CAS:528:DyaL2sXkslOrt7c%3D10.1016/0022-328X(86)80169-3
– reference: GillisEPBurkeMDA simple and modular strategy for small molecule synthesis: iterative Suzuki–Miyaura coupling of B-protected haloboronic acid building blocksJ. Am. Chem. Soc.2007129671667171:CAS:528:DC%2BD2sXltVajs7w%3D1748808410.1021/ja0716204
– reference: WoerlyEMCherneyAHDavisEKBurkeMDStereoretentive Suzuki–Miyaura coupling of haloallenes enables fully stereocontrolled access to (–)-peridininJ. Am. Chem. Soc.2010132694169431:CAS:528:DC%2BC3cXlsFeqtr0%3D20441218295718110.1021/ja102721p
– reference: MisonoYPhysarigins A–C, three new yellow pigments from a cultured Myxomycete Physarum rigidumTetrahedron Lett.200344447944811:CAS:528:DC%2BD3sXjvVCgurc%3D10.1016/S0040-4039(03)01041-4
– reference: StrubleJRLeeSJBurkeMDEthynyl MIDA boronate: a readily accessible and highly versatile building block for small molecule synthesisTetrahedron201066471047181:CAS:528:DC%2BC3cXntVOmurs%3D10.1016/j.tet.2010.04.020
– reference: BrakKEllmanJATotal synthesis of (–)-aurantioclavineOrg. Lett.201012200420071:CAS:528:DC%2BC3cXktFeltbc%3D2035606510.1021/ol100470g
– reference: GillisEPBurkeMDIterative cross-coupling with MIDA boronates: towards a general strategy for small molecule synthesisAldrichim. Acta20094217271:CAS:528:DC%2BD1MXpslOkurc%3D
– reference: NegishiETanZLiangBNovakTAn efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric C–C bond formationProc. Natl Acad. Sci. USA2004101578257871:CAS:528:DC%2BD2cXjsFKgurc%3D1507332739598510.1073/pnas.0307514101
– reference: KnappDMGillisEPBurkeMDA general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronatesJ. Am. Chem. Soc.2009131696169631:CAS:528:DC%2BD1MXlt1Cls7s%3D19405470730969910.1021/ja901416p
– reference: GrobJENunezJDechantsreiterMAHamannLGRegioselective synthesis and slow-release Suzuki–Miyaura cross-coupling of MIDA boronate-functionalized isoxazoles and triazolesJ. Org. Chem.20117610241102481:CAS:528:DC%2BC3MXhsVSks7%2FI2204708310.1021/jo201973t
– reference: PlanteOJPalmacciERSeebergerPHAutomated solid-phase synthesis of oligosaccharidesScience2001291152315271:CAS:528:DC%2BD3MXhsVeru7w%3D1122285310.1126/science.1057324
– reference: BurtonGWIngoldKUBeta-carotene: an unusual type of lipid antioxidantScience19842245695731:CAS:528:DyaL2cXktVantrs%3D671015610.1126/science.6710156
– reference: FujiiSChangSYBurkeMDTotal synthesis of synechoxanthin through iterative cross-couplingAngew. Chem. Int. Ed.201150786278641:CAS:528:DC%2BC3MXns1Ckurw%3D10.1002/anie.201102688
– reference: NegishiE-IHandbook of Organopalladium Chemistry for Organic Synthesis200210.1002/0471473804
– reference: EvansDABartroliJShihTLEnantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolatesJ. Am. Chem. Soc.1981103212721291:CAS:528:DyaL3MXkt1CrurY%3D10.1021/ja00398a058
– reference: AridossGZhouBHermansonDLBleekerNPXingCGStructure–activity relationship (SAR) study of ethyl 2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the potential of the lead against multidrug resistance in cancer treatmentJ. Med. Chem.201255556655811:CAS:528:DC%2BC38XmvFWrurs%3D22582991651839010.1021/jm300515q
– reference: CerulloGPhotosynthetic light harvesting by carotenoids: detection of an intermediate excited stateScience2002298239523981:CAS:528:DC%2BD38Xps1Sju7s%3D1249391710.1126/science.1074685
– reference: SeebergerPHGlyco-Bioinformatics: Bits ‘n’ Bytes of Sugars2009
– reference: MiyauraNSuzukiAPalladium-catalyzed cross-coupling reactions of organoboron compoundsChem. Rev.199595245724831:CAS:528:DyaK2MXoslGiurg%3D10.1021/cr00039a007
– reference: LueckeHSchobertBRichterH-TCartaillerJ-PLanyiJKStructural changes in bacteriorhodopsin during ion transport at 2 angstrom resolutionScience19992862552601:CAS:528:DyaK1MXmvVersr0%3D1051436210.1126/science.286.5438.255
– reference: CaruthersMHGene synthesis machines: DNA chemistry and its usesScience19852302812851:CAS:528:DyaL2MXlslCksbg%3D386325310.1126/science.3863253
– reference: NishiyabuRKobayashiHKuboYDansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in waterRSC Adv.20122655565611:CAS:528:DC%2BC38XhtVeis7fK10.1039/c2ra20516e
– reference: Thirsk, C. & Whiting, A. Polyene natural products. J. Chem. Soc. Perkin Trans 1 999–1023 (2002).
– reference: MyersAGYangBHChenHKopeckyDJAsymmetric synthesis of 1,3-dialkyl-substituted carbon chains of any stereochemical configuration by an iterable processSynlett19973645745910.1055/s-1997-6121
– reference: KinzelTZhangYBuchwaldSLA new palladium precatalyst allows for the fast Suzuki–Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acidsJ. Am. Chem. Soc.201013214073140751:CAS:528:DC%2BC3cXhtF2nu7vP20858009295324510.1021/ja1073799
– reference: MerrifieldRBSolid phase synthesis (Nobel Lecture)Angew. Chem. Int. Ed. Engl.19852479981010.1002/anie.198507993
– reference: FujitaKMatsuiRSuzukiTKobayashiSConcise total synthesis of (−)-myxalamide AAngew. Chem. Int. Ed.201251727172741:CAS:528:DC%2BC38Xos1emurw%3D10.1002/anie.201203093
– reference: Sigma-Aldrich, MIDA boronates; http://www.aldrich.com/mida
– reference: HallDGBoronic Acids200510.1002/3527606548
– reference: RychnovskySDOxo polyene macrolide antibioticsChem. Rev.199595202120401:CAS:528:DyaK2MXnvFegsrs%3D10.1021/cr00038a011
– reference: LiJBurkeMDPinene-derived iminodiacetic acid (PIDA): a powerful ligand for stereoselective synthesis and iterative cross-coupling of C(sp3) boronate building blocksJ. Am. Chem. Soc.201113313774137771:CAS:528:DC%2BC3MXhtVSrt7zI21823591316421310.1021/ja205912y
– reference: GrayKCAmphotericin primarily kills yeast by simply binding ergosterolProc. Natl Acad. Sci. USA2012109223422391:CAS:528:DC%2BC38XivV2qu7k%3D22308411328933910.1073/pnas.1117280109
– reference: SakakiHA new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1J. Nat. Prod.200265168316841:CAS:528:DC%2BD38Xms1Omtb0%3D1244470210.1021/np010554v
– reference: SeebergerPHHaaseW-CSolid-phase oligosaccharide synthesis and combinatorial carbohydrate librariesChem. Rev.2000100434943931:CAS:528:DC%2BD3cXns12qtLg%3D1174935110.1021/cr9903104
– reference: WangGHuangZNegishiE-IEfficient and selective syntheses of (all-E)- and (6E,10Z)-2′-O-methylmyxalamides D via Pd-catalyzed alkenylation–carbonyl olefination synergyOrg. Lett.200810322332261:CAS:528:DC%2BD1cXnvF2gu7s%3D18593171259374610.1021/ol801115s
– reference: ColucciniCQuaterpyridine ligands for panchromatic Ru(II) dye sensitizersJ. Org. Chem.201277794579561:CAS:528:DC%2BC38Xht1Ghu73E2291753210.1021/jo301226z
– reference: GillisEPBurkeMDMultistep synthesis of complex boronic acids from simple MIDA boronatesJ. Am. Chem. Soc.200813014084140851:CAS:528:DC%2BD1cXht1Smtr3I18837550724941410.1021/ja8063759
– reference: Dictionary of Natural Products Version 22.1 (Taylor and Francis Group, 2013); dnp.chemnetbase.com
– reference: YuanWMaSCuCl–K2CO3-catalyzed highly selective borylcupration of internal alkynes – ligand effectOrg. Biomol. Chem.201210726672681:CAS:528:DC%2BC38Xht1Ggsr3O2287207310.1039/c2ob26147b
– reference: GustafsonJLLimDBarrettKTMillerSJSynthesis of atropisomerically defined, highly substituted biaryl scaffolds through catalytic enantioselective bromination and regioselective cross-couplingAngew. Chem. Int. Ed.201150512551291:CAS:528:DC%2BC3MXmtFymtbc%3D10.1002/anie.201101147
– reference: LiuDNigerapyrones A–H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132J. Nat. Prod.201174178717911:CAS:528:DC%2BC3MXptFKmur0%3D2177447410.1021/np200381u
– reference: ImaoDGlasspooleBWLabergeVSCruddenCMCross coupling reactions of chiral secondary organoboronic esters with retention of configurationJ. Am. Chem. Soc.2009131502450251:CAS:528:DC%2BD1MXjsFemu7o%3D1930182010.1021/ja8094075
– reference: NicolaouKCBulgerPGSarlahDPalladium-catalyzed cross-coupling reactions in total synthesisAngew. Chem. Int. Ed.200544444244891:CAS:528:DC%2BD2MXntVSgsbw%3D10.1002/anie.200500368
– reference: BurnsARMcAllisterGDShanahanSETaylerRJKTotal synthesis and structural reassignment of (+)-dictyosphaeric acid A: a tandem intramolecular Michael addition/alkene migration approachAngew. Chem. Int. Ed.201049557455771:CAS:528:DC%2BC3cXps1ChtLk%3D10.1002/anie.201002416
– reference: FangZSynthesis and biological evaluation of polyenylpyrrole derivatives as anticancer agents acting through caspases-dependent apoptosisJ. Med. Chem.201053796779781:CAS:528:DC%2BC3cXhtlalurnP2096440810.1021/jm100619x
– reference: LeeSJGrayKCPaekJSBurkeMDSimple, efficient, and modular synthesis of polyene natural products via iterative cross-couplingJ. Am. Chem. Soc.20081304664681:CAS:528:DC%2BD2sXhsVehur3I18081295310712610.1021/ja078129x
– reference: KozhevnikovVNDahmsKBryceMRNucleophilic substitution of fluorine atoms in 2,6-difluoro-3-(pyridine-2-yl)benzonitrile leading to soluble blue-emitting cyclometalated Ir(III) complexesJ. Org. Chem.201176514351481:CAS:528:DC%2BC3MXmslGlsrs%3D2161224310.1021/jo200357e
– reference: GarretRHGrishamCMBiochemistry1995
– volume: 42
  start-page: 17
  year: 2009
  ident: BFnchem1947_CR22
  publication-title: Aldrichim. Acta
– volume-title: Handbook of Organopalladium Chemistry for Organic Synthesis
  year: 2002
  ident: BFnchem1947_CR17
  doi: 10.1002/0471473804
– volume: 286
  start-page: 255
  year: 1999
  ident: BFnchem1947_CR16
  publication-title: Science
  doi: 10.1126/science.286.5438.255
– volume: 95
  start-page: 2021
  year: 1995
  ident: BFnchem1947_CR12
  publication-title: Chem. Rev.
  doi: 10.1021/cr00038a011
– volume: 109
  start-page: 2234
  year: 2012
  ident: BFnchem1947_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1117280109
– volume-title: Biochemistry
  year: 1995
  ident: BFnchem1947_CR1
– volume-title: Boronic Acids
  year: 2005
  ident: BFnchem1947_CR42
  doi: 10.1002/3527606548
– volume: 49
  start-page: 5574
  year: 2010
  ident: BFnchem1947_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201002416
– volume: 50
  start-page: 7862
  year: 2011
  ident: BFnchem1947_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102688
– volume: 100
  start-page: 4349
  year: 2000
  ident: BFnchem1947_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/cr9903104
– ident: BFnchem1947_CR11
  doi: 10.1039/b109741p
– volume: 95
  start-page: 2457
  year: 1995
  ident: BFnchem1947_CR19
  publication-title: Chem. Rev.
  doi: 10.1021/cr00039a007
– volume: 130
  start-page: 14084
  year: 2008
  ident: BFnchem1947_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8063759
– volume: 10
  start-page: 7266
  year: 2012
  ident: BFnchem1947_CR46
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c2ob26147b
– volume: 44
  start-page: 4479
  year: 2003
  ident: BFnchem1947_CR40
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(03)01041-4
– volume: 230
  start-page: 281
  year: 1985
  ident: BFnchem1947_CR3
  publication-title: Science
  doi: 10.1126/science.3863253
– volume: 132
  start-page: 6941
  year: 2010
  ident: BFnchem1947_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102721p
– volume: 44
  start-page: 4442
  year: 2005
  ident: BFnchem1947_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200500368
– volume: 103
  start-page: 2127
  year: 1981
  ident: BFnchem1947_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00398a058
– volume: 2
  start-page: 6555
  year: 2012
  ident: BFnchem1947_CR37
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20516e
– volume: 131
  start-page: 6961
  year: 2009
  ident: BFnchem1947_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901416p
– volume: 10
  start-page: 3223
  year: 2008
  ident: BFnchem1947_CR48
  publication-title: Org. Lett.
  doi: 10.1021/ol801115s
– volume: 66
  start-page: 4710
  year: 2010
  ident: BFnchem1947_CR49
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2010.04.020
– volume: 76
  start-page: 5143
  year: 2011
  ident: BFnchem1947_CR36
  publication-title: J. Org. Chem.
  doi: 10.1021/jo200357e
– volume: 51
  start-page: 7271
  year: 2012
  ident: BFnchem1947_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201203093
– volume: 24
  start-page: 799
  year: 1985
  ident: BFnchem1947_CR2
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.198507993
– volume: 131
  start-page: 5024
  year: 2009
  ident: BFnchem1947_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8094075
– ident: BFnchem1947_CR8
  doi: 10.1039/a809818b
– volume: 130
  start-page: 466
  year: 2008
  ident: BFnchem1947_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja078129x
– volume: 307
  start-page: 1
  year: 1986
  ident: BFnchem1947_CR20
  publication-title: J. Organomet. Chem.
  doi: 10.1016/0022-328X(86)80169-3
– volume: 50
  start-page: 5125
  year: 2011
  ident: BFnchem1947_CR33
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101147
– volume: 129
  start-page: 6716
  year: 2007
  ident: BFnchem1947_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0716204
– volume: 291
  start-page: 1523
  year: 2001
  ident: BFnchem1947_CR6
  publication-title: Science
  doi: 10.1126/science.1057324
– volume: 101
  start-page: 5782
  year: 2004
  ident: BFnchem1947_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0307514101
– volume: 53
  start-page: 7967
  year: 2010
  ident: BFnchem1947_CR47
  publication-title: J. Med. Chem.
  doi: 10.1021/jm100619x
– volume: 77
  start-page: 7945
  year: 2012
  ident: BFnchem1947_CR35
  publication-title: J. Org. Chem.
  doi: 10.1021/jo301226z
– ident: BFnchem1947_CR38
– volume-title: Glyco-Bioinformatics: Bits ‘n’ Bytes of Sugars
  year: 2009
  ident: BFnchem1947_CR5
– volume: 74
  start-page: 1787
  year: 2011
  ident: BFnchem1947_CR39
  publication-title: J. Nat. Prod.
  doi: 10.1021/np200381u
– volume: 76
  start-page: 10241
  year: 2011
  ident: BFnchem1947_CR34
  publication-title: J. Org. Chem.
  doi: 10.1021/jo201973t
– volume: 65
  start-page: 1683
  year: 2002
  ident: BFnchem1947_CR41
  publication-title: J. Nat. Prod.
  doi: 10.1021/np010554v
– volume: 133
  start-page: 13774
  year: 2011
  ident: BFnchem1947_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205912y
– volume: 298
  start-page: 2395
  year: 2002
  ident: BFnchem1947_CR13
  publication-title: Science
  doi: 10.1126/science.1074685
– volume: 55
  start-page: 5566
  year: 2012
  ident: BFnchem1947_CR32
  publication-title: J. Med. Chem.
  doi: 10.1021/jm300515q
– ident: BFnchem1947_CR24
– volume: 132
  start-page: 14073
  year: 2010
  ident: BFnchem1947_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1073799
– volume: 72
  start-page: 1649
  year: 1975
  ident: BFnchem1947_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.72.5.1649
– volume: 36
  start-page: 457
  year: 1997
  ident: BFnchem1947_CR9
  publication-title: Synlett
  doi: 10.1055/s-1997-6121
– volume: 224
  start-page: 569
  year: 1984
  ident: BFnchem1947_CR15
  publication-title: Science
  doi: 10.1126/science.6710156
– volume: 12
  start-page: 2004
  year: 2010
  ident: BFnchem1947_CR28
  publication-title: Org. Lett.
  doi: 10.1021/ol100470g
– reference: 24848226 - Nat Chem. 2014 Jun;6(6):460-1
– reference: - Nat Chem. 2014 Jun 20;6(7):650
SSID ssj0065316
Score 2.5173597
Snippet The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 484
SubjectTerms 140/131
639/638/549/977
Algorithms
Amino acids
Analytical Chemistry
Automation
Biochemistry
Biological Products - chemical synthesis
Carotenoids - chemical synthesis
Chemistry
Chemistry/Food Science
Glucosides - chemical synthesis
Inorganic Chemistry
Modularity
Molecular Structure
Natural products
Organic Chemistry
Physical Chemistry
Polyenes - chemistry
Polypeptides
Stereoisomerism
Title Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction
URI https://link.springer.com/article/10.1038/nchem.1947
https://www.ncbi.nlm.nih.gov/pubmed/24848233
https://www.proquest.com/docview/1656066296
https://www.proquest.com/docview/1542653731
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ALorwaKJURvXAI3Y3fp6pUXSokqqoPaW-R7diF0iYL2T303zN2ki1oq15yyfihmbH92fMC2JGV8EwxnTsnfc5EMLn13uVcMx001dzaGDv8_VgcXbBvUz7tH9za3q1y2BPTRl01Lr6R76YsMUIUWuzNfuexalS0rvYlNB7DekxdFrVaTpcXLoH6laKLJOcxMmg0pCelardGltx8xhu8_P9AWkGZKxbSdPBMnsOzHjGS_U7EG_DI1y_gycFQqO0l_Di7rRHGtT9b0gRy07RzMmuub3ETIyltJzaedXldSfS8Cy2Jzu6X5GqBlOOC2L4yNrF4sP1qiakr0mBj1yxiuO4lQVyZoh9ewcXk8PzgKO8LKOSO6dE8D16zimvFOK0QGuiR8YZKY1VhJTdFpZW00iKAMXjJ88ZUYx58cD4YQS0Pjr6GtRoH3AQisTmu7XGghWMoBuWFCyNXMGWN9pRn8GngYun67OKxyMV1mazcVJWJ42XkeAYfl7SzLqfGvVRbgzDKfl215Z0WZPBh-Rv5Hc0cpvbNAmk4og5OJR1n8KYT4nIYnC9TBaUZ7AxS_afzlTm8fXgO7-Ap4ifWeY5twdr8z8K_R4wyt9tJEfGrJl-3Yf3L4fHJ6V_jdern
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKoVwQ7wYKGFEOHEI3fiU-IIQKy5Y-LrRSb8F27PJok4XsCu1P8Y2MnWSptIhbzxnbo5nxzDjzAtjOK-l4wVVqbe5SLr1OjXM2FYorr5gSxoTa4cMjOTnhH0_F6Rr8HmphQlrloBOjoq4aG_6R78QuMVJSJd9Mf6RhalSIrg4jNDqx2HeLX_hka1_vvUP-vqB0_P54d5L2UwVSy9VolnqneCVUwQWr0F6qkXaa5doU1ORC0wof4SY3aNU1vnyc1lUmvPPWeS2ZEd4y3PcaXOcMLXmoTB9_GDS_RHmO1Uy5EKESaTS0Q2XFTo0suHiVqTDG5bIBXPFqVyKy0dCNb8HN3kMlbzuRug1rrr4DG7vDYLi78OXToka3sf3aksaTi6adkWlzvkClSWKbUFw87frIkpDp51sSkuvPyLc5QmaUmH4SNzFoSL-3RNcVaXCxbeahPPiMoB8bqy3uwcmVkPY-rNd44CaQHJejLsk8o5Yj2wsnrR9ZygujlWMigZcDFUvbdzMPQzXOyxhVZ0UZKV4GiifwfAk77Xp4_BNqa2BG2d_jtvwrdQk8W35Geoewiq5dM0cYgV6OYDnLEnjQMXF5DOLLC8pYAtsDVy9tvoLDw__j8BQ2JseHB-XB3tH-I7iBvhvvsta2YH32c-4eo380M0-iUBL4fNW34A_z4ScY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSCXpBvDEUWEQ5cDCJvS_vASFoG7UUogqo1JvZXe-2QGsHnAjl1_g6Zv0IlYK49ezZh2Zm5-F5AWzJQjiWMRVbK13MhNexcc7GXDHlFVXcmFA7_GEi9o7Yu2N-vAa_-1qYkFbZy8RGUBeVDf_Ih02XGCFSJYa-S4s43Bm_nv6IwwSpEGntx2m0LHLgFr_Qfatf7e8grZ-n6Xj38_Ze3E0YiC1To1nsnWIFVxnjtEDdqUbaaSq1yVIjuU4LdMiNNKjhNXpBTusi4d5567wW1HBvKe57BdZl8IoGsP52d3L4sdcDArm7qW2SnIe6pFHfHJVmwxIJcv4yUWGoy0V1uGLjrsRnG7U3vgHXO3uVvGkZ7CasufIWXNvux8TdhtNPixKNyPprTSpPzqt6RqbV2QJFKGmahuLiadtVloS8P1-TkGp_Qr7NETJJienmchODavV7TXRZkAoX22oeioVPCFq1Te3FHTi6FOTehUGJB94HInE5SpbE09QyZILMCetHNmWZ0cpRHsGLHou57XqbhxEbZ3kTY6dZ3mA8DxiP4NkSdtp29Pgn1GZPjLx71XX-lwcjeLr8jPgOQRZdumqOMBxtHk4lTSK41xJxeQzel2UppRFs9VS9sPnKHR78_w5P4Cq-gPz9_uTgIWygIcfaFLZNGMx-zt0jNJZm5nHHlQS-XPZD-ANJIyyq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+most+polyene+natural+product+motifs+using+just+12+building+blocks+and+one+coupling+reaction&rft.jtitle=Nature+chemistry&rft.au=Woerly%2C+Eric+M&rft.au=Roy%2C+Jahnabi&rft.au=Burke%2C+Martin+D&rft.date=2014-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=6&rft.issue=6&rft.spage=484&rft_id=info:doi/10.1038%2Fnchem.1947&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3595745981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon