Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This su...
Saved in:
Published in | Nature chemistry Vol. 6; no. 6; pp. 484 - 491 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-
D
-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
Polyene motifs are found in a large number of natural products. Now, by applying a general retrosynthetic algorithm, it has been shown that the polyene motifs found in >75% of these compounds can be synthesized using just 12 bifunctional haloalkenyl MIDA boronate building blocks and one coupling reaction. |
---|---|
AbstractList | The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-
D
-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
Polyene motifs are found in a large number of natural products. Now, by applying a general retrosynthetic algorithm, it has been shown that the polyene motifs found in >75% of these compounds can be synthesized using just 12 bifunctional haloalkenyl MIDA boronate building blocks and one coupling reaction. The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory. The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory. |
Author | Roy, Jahnabi Burke, Martin D. Woerly, Eric M. |
Author_xml | – sequence: 1 givenname: Eric M. surname: Woerly fullname: Woerly, Eric M. organization: Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign – sequence: 2 givenname: Jahnabi surname: Roy fullname: Roy, Jahnabi organization: Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign – sequence: 3 givenname: Martin D. surname: Burke fullname: Burke, Martin D. email: burke@scs.uiuc.edu organization: Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24848233$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU2LFDEQhoOsuB968QdIwIuszJp0kk7nKIuuwoIH9dyk05WdjOlkzMdh_r1pZ11k9VRF1VPFy_ueo5MQAyD0kpIrStjwLpgtLFdUcfkEnVEpxIYzrk4eekZO0XnOO0J6wWj_DJ12fOBDx9gZ2n49hLKF7DKOFi8xF7yP_gABcNClJu3xPsW5mtKWxdmMa3bhDu9qI2mHp-r8vA4mH82PjHWYcVOHTax7v84TaFNcDM_RU6t9hhf39QJ9__jh2_Wnze2Xm8_X7283hitSNhYUn4UauGAzkUIRDZpJPQ3dJIXuZjXISU6dZJooDlrPVFiwBqzu2SSsYRfozfFvk_2zQi7j4rIB73WAWPNIBe-aDZLRhr5-hO5iTaGpG2kvetL3neob9eqeqtMC87hPbtHpMP7xsAGXR8CkmHMC-4BQMq4Bjb8DGteAGkwewcYVvRpUknb-_ydvjye5_Q13kP6S-S_9C1Qho98 |
CitedBy_id | crossref_primary_10_1002_anie_202303140 crossref_primary_10_1021_acs_orglett_0c03187 crossref_primary_10_1063_5_0030764 crossref_primary_10_1002_anie_202307626 crossref_primary_10_4155_fmc_2018_0333 crossref_primary_10_1055_s_0041_1737242 crossref_primary_10_1039_C4SC03117B crossref_primary_10_1039_D4SC07900K crossref_primary_10_1002_ange_201813512 crossref_primary_10_1021_acs_accounts_0c00674 crossref_primary_10_1002_ange_201710482 crossref_primary_10_1021_acs_joc_4c00122 crossref_primary_10_1039_D0CC00722F crossref_primary_10_1002_chem_201405931 crossref_primary_10_1007_s11224_024_02349_7 crossref_primary_10_1021_jacs_9b07185 crossref_primary_10_1038_s44160_024_00558_w crossref_primary_10_1002_ange_201504615 crossref_primary_10_1038_nature13711 crossref_primary_10_1021_acs_joc_1c01978 crossref_primary_10_1039_C5OB00917K crossref_primary_10_1021_acs_orglett_4c04750 crossref_primary_10_1039_C5QO00002E crossref_primary_10_1002_chem_201605048 crossref_primary_10_1021_acs_orglett_2c00546 crossref_primary_10_1021_acs_orglett_5b01101 crossref_primary_10_1002_ejoc_201700208 crossref_primary_10_1038_s41557_021_00662_w crossref_primary_10_4155_fmc_2018_0062 crossref_primary_10_1002_slct_201700682 crossref_primary_10_1021_jacs_5b11889 crossref_primary_10_1021_acs_orglett_1c03022 crossref_primary_10_1002_anie_202404233 crossref_primary_10_3390_antibiotics8010008 crossref_primary_10_1016_j_tetlet_2018_11_016 crossref_primary_10_1016_j_tetlet_2020_151799 crossref_primary_10_1038_nchem_1964 crossref_primary_10_1126_science_abb7235 crossref_primary_10_1016_j_ddtec_2017_03_003 crossref_primary_10_1002_ange_202211578 crossref_primary_10_1002_anie_201504297 crossref_primary_10_1039_C4CC09107H crossref_primary_10_1039_D2CC04893K crossref_primary_10_3390_molecules23092360 crossref_primary_10_1002_anie_201609598 crossref_primary_10_3390_molecules24050830 crossref_primary_10_3390_molecules26020249 crossref_primary_10_1002_ange_202011872 crossref_primary_10_1021_jacs_8b06933 crossref_primary_10_1039_C4NP00160E crossref_primary_10_1002_anie_201504615 crossref_primary_10_1002_chem_201803565 crossref_primary_10_1039_C6SC03236B crossref_primary_10_1016_j_tet_2016_05_006 crossref_primary_10_1021_acs_joc_5b00182 crossref_primary_10_1021_acs_orglett_8b02830 crossref_primary_10_1055_s_0040_1707906 crossref_primary_10_1016_j_tet_2016_02_040 crossref_primary_10_1002_anie_202003216 crossref_primary_10_1021_acs_joc_9b00638 crossref_primary_10_1039_D0NJ02908D crossref_primary_10_5059_yukigoseikyokaishi_80_817 crossref_primary_10_1016_j_tet_2019_04_012 crossref_primary_10_1002_cjoc_202100856 crossref_primary_10_1021_acscatal_6b03434 crossref_primary_10_1038_s41557_023_01155_8 crossref_primary_10_1002_adsc_201700733 crossref_primary_10_1021_acs_joc_2c02651 crossref_primary_10_1016_j_tet_2018_03_050 crossref_primary_10_1002_anie_202006322 crossref_primary_10_1021_acs_orglett_8b00809 crossref_primary_10_1002_anie_202011872 crossref_primary_10_1002_slct_201800946 crossref_primary_10_1039_C7CC02767B crossref_primary_10_1002_anie_201610797 crossref_primary_10_1039_D3DD00249G crossref_primary_10_1021_acs_orglett_9b01397 crossref_primary_10_1002_anie_201406714 crossref_primary_10_1055_a_2314_1877 crossref_primary_10_1002_ange_201609598 crossref_primary_10_1016_j_molcata_2015_03_022 crossref_primary_10_1021_acs_joc_2c01678 crossref_primary_10_1021_acs_accounts_5b00128 crossref_primary_10_1039_C6SC04014D crossref_primary_10_1021_acs_macromol_0c00665 crossref_primary_10_1002_anie_202416941 crossref_primary_10_1246_bcsj_20210163 crossref_primary_10_1021_jacs_6b07268 crossref_primary_10_1021_acscatal_2c03861 crossref_primary_10_1021_jacs_6b07666 crossref_primary_10_1038_ncomms14043 crossref_primary_10_1002_ange_201610797 crossref_primary_10_1002_adsc_201500302 crossref_primary_10_1021_acs_orglett_8b00439 crossref_primary_10_1002_ejoc_202400960 crossref_primary_10_1038_s41557_018_0097_5 crossref_primary_10_1021_jacs_8b05421 crossref_primary_10_1002_chem_201500970 crossref_primary_10_1021_acs_orglett_5b00042 crossref_primary_10_1002_ange_201406714 crossref_primary_10_1021_acs_orglett_5b03030 crossref_primary_10_1038_s41578_018_0005_z crossref_primary_10_1038_nchem_2048 crossref_primary_10_1016_j_tetlet_2017_05_060 crossref_primary_10_1007_s00706_016_1883_7 crossref_primary_10_1039_C5CS00338E crossref_primary_10_1134_S1070428015020013 crossref_primary_10_1002_chem_201702008 crossref_primary_10_1039_D0SC00230E crossref_primary_10_3762_bjoc_20_253 crossref_primary_10_1016_j_isci_2019_09_027 crossref_primary_10_1021_jacs_5b03893 crossref_primary_10_1073_pnas_1509715112 crossref_primary_10_1038_s41557_018_0021_z crossref_primary_10_1039_D1CC06680C crossref_primary_10_1002_chem_201900011 crossref_primary_10_1039_C7QO00614D crossref_primary_10_1002_anie_201710482 crossref_primary_10_1002_ange_202303140 crossref_primary_10_1002_adsc_201500798 crossref_primary_10_1002_pola_28682 crossref_primary_10_1021_acs_joc_0c00186 crossref_primary_10_1002_chem_201903080 crossref_primary_10_1002_anie_201813512 crossref_primary_10_1021_acs_joc_0c00341 crossref_primary_10_1039_C7QO00084G crossref_primary_10_1002_ange_202404233 crossref_primary_10_1021_acs_orglett_8b03016 crossref_primary_10_1038_s41570_018_0115 crossref_primary_10_1039_C8SC03569E crossref_primary_10_1038_nature_2015_17113 crossref_primary_10_1002_chem_202000624 crossref_primary_10_1002_ange_202003216 crossref_primary_10_1021_acscatal_0c05574 crossref_primary_10_1039_C5OB00154D crossref_primary_10_1002_ange_202006322 crossref_primary_10_1021_acs_orglett_3c00410 crossref_primary_10_1038_ncomms11065 crossref_primary_10_1039_C5CC10093C crossref_primary_10_1038_nchem_2571 crossref_primary_10_1021_jacs_4c05924 crossref_primary_10_1021_jacs_9b01537 crossref_primary_10_1002_ange_201709070 crossref_primary_10_1039_C5RA10001A crossref_primary_10_1021_acscentsci_0c00979 crossref_primary_10_1021_acs_orglett_5b01434 crossref_primary_10_1039_D1PY00425E crossref_primary_10_1021_acs_orglett_1c04223 crossref_primary_10_1038_s42004_020_0295_0 crossref_primary_10_1038_s44160_021_00010_3 crossref_primary_10_1039_D4OB00077C crossref_primary_10_1002_ajoc_201402166 crossref_primary_10_1038_nchem_1975 crossref_primary_10_1021_acs_joc_9b01768 crossref_primary_10_1002_ange_202307626 crossref_primary_10_1002_ange_202416941 crossref_primary_10_1039_C5CC00231A crossref_primary_10_1070_RCR4841 crossref_primary_10_1002_anie_202211578 crossref_primary_10_1021_ja512875g crossref_primary_10_3389_fmicb_2023_1205118 crossref_primary_10_1002_ange_201504297 crossref_primary_10_1126_science_aaa5414 crossref_primary_10_1002_anie_201709070 crossref_primary_10_1038_nchem_2439 crossref_primary_10_1002_chem_202303953 crossref_primary_10_1055_a_1924_2564 crossref_primary_10_1371_journal_pone_0229862 crossref_primary_10_1021_ja505861d crossref_primary_10_1021_acs_joc_1c01760 crossref_primary_10_1016_j_tetlet_2015_04_035 crossref_primary_10_1021_acs_joc_9b03319 crossref_primary_10_1055_s_0042_1751497 crossref_primary_10_1016_j_tetlet_2021_153574 crossref_primary_10_1021_acs_chemrev_1c00324 crossref_primary_10_1021_ol503065a crossref_primary_10_1038_s41467_017_02381_8 crossref_primary_10_1002_chem_201602124 crossref_primary_10_1073_pnas_1706266114 crossref_primary_10_1021_jacs_3c05385 |
Cites_doi | 10.1002/0471473804 10.1126/science.286.5438.255 10.1021/cr00038a011 10.1073/pnas.1117280109 10.1002/3527606548 10.1002/anie.201002416 10.1002/anie.201102688 10.1021/cr9903104 10.1039/b109741p 10.1021/cr00039a007 10.1021/ja8063759 10.1039/c2ob26147b 10.1016/S0040-4039(03)01041-4 10.1126/science.3863253 10.1021/ja102721p 10.1002/anie.200500368 10.1021/ja00398a058 10.1039/c2ra20516e 10.1021/ja901416p 10.1021/ol801115s 10.1016/j.tet.2010.04.020 10.1021/jo200357e 10.1002/anie.201203093 10.1002/anie.198507993 10.1021/ja8094075 10.1039/a809818b 10.1021/ja078129x 10.1016/0022-328X(86)80169-3 10.1002/anie.201101147 10.1021/ja0716204 10.1126/science.1057324 10.1073/pnas.0307514101 10.1021/jm100619x 10.1021/jo301226z 10.1021/np200381u 10.1021/jo201973t 10.1021/np010554v 10.1021/ja205912y 10.1126/science.1074685 10.1021/jm300515q 10.1021/ja1073799 10.1073/pnas.72.5.1649 10.1055/s-1997-6121 10.1126/science.6710156 10.1021/ol100470g |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 Copyright Nature Publishing Group Jun 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: Copyright Nature Publishing Group Jun 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/nchem.1947 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1755-4349 |
EndPage | 491 |
ExternalDocumentID | 3595745981 24848233 10_1038_nchem_1947 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Illinois |
GeographicLocations_xml | – name: United States--US – name: Illinois |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM080436 – fundername: NIGMS NIH HHS grantid: R01 GM090153 – fundername: NIGMS NIH HHS grantid: GM090153 – fundername: NIGMS NIH HHS grantid: R01 GM080436 – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- 0R~ 123 29M 39C 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJCF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACSTC ACUHS ADBBV ADNMO AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFSHS AFWHJ AGAYW AGGDT AGQPQ AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP AIYXT ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NFIDA NNMJJ O9- ODYON P2P PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c490t-fe94d598453d07590aea37ab82b75a2d987b7b273a094eaad15fefcefa63b5fc3 |
IEDL.DBID | 7X7 |
ISSN | 1755-4330 1755-4349 |
IngestDate | Fri Jul 11 10:08:15 EDT 2025 Fri Jul 25 09:04:20 EDT 2025 Mon Jul 21 05:49:13 EDT 2025 Tue Jul 01 03:02:05 EDT 2025 Thu Apr 24 22:51:04 EDT 2025 Sun Aug 31 08:58:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-fe94d598453d07590aea37ab82b75a2d987b7b273a094eaad15fefcefa63b5fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1038/nchem.1947 |
PMID | 24848233 |
PQID | 1656066296 |
PQPubID | 536302 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1542653731 proquest_journals_1656066296 pubmed_primary_24848233 crossref_primary_10_1038_nchem_1947 crossref_citationtrail_10_1038_nchem_1947 springer_journals_10_1038_nchem_1947 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nature Chem |
PublicationTitleAlternate | Nat Chem |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Sigma-Aldrich, MIDA boronates; http://www.aldrich.com/mida PlanteOJPalmacciERSeebergerPHAutomated solid-phase synthesis of oligosaccharidesScience2001291152315271:CAS:528:DC%2BD3MXhsVeru7w%3D1122285310.1126/science.1057324 SakakiHA new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1J. Nat. Prod.200265168316841:CAS:528:DC%2BD38Xms1Omtb0%3D1244470210.1021/np010554v GillisEPBurkeMDIterative cross-coupling with MIDA boronates: towards a general strategy for small molecule synthesisAldrichim. Acta20094217271:CAS:528:DC%2BD1MXpslOkurc%3D GillisEPBurkeMDA simple and modular strategy for small molecule synthesis: iterative Suzuki–Miyaura coupling of B-protected haloboronic acid building blocksJ. Am. Chem. Soc.2007129671667171:CAS:528:DC%2BD2sXltVajs7w%3D1748808410.1021/ja0716204 FujitaKMatsuiRSuzukiTKobayashiSConcise total synthesis of (−)-myxalamide AAngew. Chem. Int. Ed.201251727172741:CAS:528:DC%2BC38Xos1emurw%3D10.1002/anie.201203093 SeebergerPHHaaseW-CSolid-phase oligosaccharide synthesis and combinatorial carbohydrate librariesChem. Rev.2000100434943931:CAS:528:DC%2BD3cXns12qtLg%3D1174935110.1021/cr9903104 ImaoDGlasspooleBWLabergeVSCruddenCMCross coupling reactions of chiral secondary organoboronic esters with retention of configurationJ. Am. Chem. Soc.2009131502450251:CAS:528:DC%2BD1MXjsFemu7o%3D1930182010.1021/ja8094075 ColucciniCQuaterpyridine ligands for panchromatic Ru(II) dye sensitizersJ. Org. Chem.201277794579561:CAS:528:DC%2BC38Xht1Ghu73E2291753210.1021/jo301226z GarretRHGrishamCMBiochemistry1995 NegishiE-IHandbook of Organopalladium Chemistry for Organic Synthesis200210.1002/0471473804 AridossGZhouBHermansonDLBleekerNPXingCGStructure–activity relationship (SAR) study of ethyl 2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the potential of the lead against multidrug resistance in cancer treatmentJ. Med. Chem.201255556655811:CAS:528:DC%2BC38XmvFWrurs%3D22582991651839010.1021/jm300515q EvansDABartroliJShihTLEnantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolatesJ. Am. Chem. Soc.1981103212721291:CAS:528:DyaL3MXkt1CrurY%3D10.1021/ja00398a058 MancillaTContrerasRWrackmeyerBNew bicyclic organylboronic esters derived from iminodiacetic acidsJ. Organomet. Chem.1986307161:CAS:528:DyaL2sXkslOrt7c%3D10.1016/0022-328X(86)80169-3 Paterson, I. & Scott, J. P. Laboratory emulation of polyketide biosynthesis: an iterative, aldol-based, synthetic entry to polyketide libraries using (R)- and (S)-1-(benzyloxy)-2-methylpentan-3-one, and conformational aspects of extended polypropionates. J. Chem. Soc. Perkin Trans. 1 1003–1014 (1999). SeebergerPHGlyco-Bioinformatics: Bits ‘n’ Bytes of Sugars2009 FangZSynthesis and biological evaluation of polyenylpyrrole derivatives as anticancer agents acting through caspases-dependent apoptosisJ. Med. Chem.201053796779781:CAS:528:DC%2BC3cXhtlalurnP2096440810.1021/jm100619x MyersAGYangBHChenHKopeckyDJAsymmetric synthesis of 1,3-dialkyl-substituted carbon chains of any stereochemical configuration by an iterable processSynlett19973645745910.1055/s-1997-6121 KozhevnikovVNDahmsKBryceMRNucleophilic substitution of fluorine atoms in 2,6-difluoro-3-(pyridine-2-yl)benzonitrile leading to soluble blue-emitting cyclometalated Ir(III) complexesJ. Org. Chem.201176514351481:CAS:528:DC%2BC3MXmslGlsrs%3D2161224310.1021/jo200357e LiJBurkeMDPinene-derived iminodiacetic acid (PIDA): a powerful ligand for stereoselective synthesis and iterative cross-coupling of C(sp3) boronate building blocksJ. Am. Chem. Soc.201113313774137771:CAS:528:DC%2BC3MXhtVSrt7zI21823591316421310.1021/ja205912y Dictionary of Natural Products Version 22.1 (Taylor and Francis Group, 2013); dnp.chemnetbase.com WoerlyEMCherneyAHDavisEKBurkeMDStereoretentive Suzuki–Miyaura coupling of haloallenes enables fully stereocontrolled access to (–)-peridininJ. Am. Chem. Soc.2010132694169431:CAS:528:DC%2BC3cXlsFeqtr0%3D20441218295718110.1021/ja102721p LueckeHSchobertBRichterH-TCartaillerJ-PLanyiJKStructural changes in bacteriorhodopsin during ion transport at 2 angstrom resolutionScience19992862552601:CAS:528:DyaK1MXmvVersr0%3D1051436210.1126/science.286.5438.255 KinzelTZhangYBuchwaldSLA new palladium precatalyst allows for the fast Suzuki–Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acidsJ. Am. Chem. Soc.201013214073140751:CAS:528:DC%2BC3cXhtF2nu7vP20858009295324510.1021/ja1073799 LeeSJGrayKCPaekJSBurkeMDSimple, efficient, and modular synthesis of polyene natural products via iterative cross-couplingJ. Am. Chem. Soc.20081304664681:CAS:528:DC%2BD2sXhsVehur3I18081295310712610.1021/ja078129x GrayKCAmphotericin primarily kills yeast by simply binding ergosterolProc. Natl Acad. Sci. USA2012109223422391:CAS:528:DC%2BC38XivV2qu7k%3D22308411328933910.1073/pnas.1117280109 GustafsonJLLimDBarrettKTMillerSJSynthesis of atropisomerically defined, highly substituted biaryl scaffolds through catalytic enantioselective bromination and regioselective cross-couplingAngew. Chem. Int. Ed.201150512551291:CAS:528:DC%2BC3MXmtFymtbc%3D10.1002/anie.201101147 GrobJENunezJDechantsreiterMAHamannLGRegioselective synthesis and slow-release Suzuki–Miyaura cross-coupling of MIDA boronate-functionalized isoxazoles and triazolesJ. Org. Chem.20117610241102481:CAS:528:DC%2BC3MXhsVSks7%2FI2204708310.1021/jo201973t WangGHuangZNegishiE-IEfficient and selective syntheses of (all-E)- and (6E,10Z)-2′-O-methylmyxalamides D via Pd-catalyzed alkenylation–carbonyl olefination synergyOrg. Lett.200810322332261:CAS:528:DC%2BD1cXnvF2gu7s%3D18593171259374610.1021/ol801115s StrubleJRLeeSJBurkeMDEthynyl MIDA boronate: a readily accessible and highly versatile building block for small molecule synthesisTetrahedron201066471047181:CAS:528:DC%2BC3cXntVOmurs%3D10.1016/j.tet.2010.04.020 NicolaouKCBulgerPGSarlahDPalladium-catalyzed cross-coupling reactions in total synthesisAngew. Chem. Int. Ed.200544444244891:CAS:528:DC%2BD2MXntVSgsbw%3D10.1002/anie.200500368 MiyauraNSuzukiAPalladium-catalyzed cross-coupling reactions of organoboron compoundsChem. Rev.199595245724831:CAS:528:DyaK2MXoslGiurg%3D10.1021/cr00039a007 GillisEPBurkeMDMultistep synthesis of complex boronic acids from simple MIDA boronatesJ. Am. Chem. Soc.200813014084140851:CAS:528:DC%2BD1cXht1Smtr3I18837550724941410.1021/ja8063759 RychnovskySDOxo polyene macrolide antibioticsChem. Rev.199595202120401:CAS:528:DyaK2MXnvFegsrs%3D10.1021/cr00038a011 CerulloGPhotosynthetic light harvesting by carotenoids: detection of an intermediate excited stateScience2002298239523981:CAS:528:DC%2BD38Xps1Sju7s%3D1249391710.1126/science.1074685 BrakKEllmanJATotal synthesis of (–)-aurantioclavineOrg. Lett.201012200420071:CAS:528:DC%2BC3cXktFeltbc%3D2035606510.1021/ol100470g CaruthersMHGene synthesis machines: DNA chemistry and its usesScience19852302812851:CAS:528:DyaL2MXlslCksbg%3D386325310.1126/science.3863253 NishiyabuRKobayashiHKuboYDansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in waterRSC Adv.20122655565611:CAS:528:DC%2BC38XhtVeis7fK10.1039/c2ra20516e HallDGBoronic Acids200510.1002/3527606548 MerrifieldRBSolid phase synthesis (Nobel Lecture)Angew. Chem. Int. Ed. Engl.19852479981010.1002/anie.198507993 SklarLAHudsonBSSimoniRDConjugated polyene fatty acids as membrane probes: preliminary characterizationProc. Natl Acad. Sci. USA197572164916531:CAS:528:DyaE2MXktl2lurs%3D105776943260010.1073/pnas.72.5.1649 KnappDMGillisEPBurkeMDA general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronatesJ. Am. Chem. Soc.2009131696169631:CAS:528:DC%2BD1MXlt1Cls7s%3D19405470730969910.1021/ja901416p NegishiETanZLiangBNovakTAn efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric C–C bond formationProc. Natl Acad. Sci. USA2004101578257871:CAS:528:DC%2BD2cXjsFKgurc%3D1507332739598510.1073/pnas.0307514101 YuanWMaSCuCl–K2CO3-catalyzed highly selective borylcupration of internal alkynes – ligand effectOrg. Biomol. Chem.201210726672681:CAS:528:DC%2BC38Xht1Ggsr3O2287207310.1039/c2ob26147b MisonoYPhysarigins A–C, three new yellow pigments from a cultured Myxomycete Physarum rigidumTetrahedron Lett.200344447944811:CAS:528:DC%2BD3sXjvVCgurc%3D10.1016/S0040-4039(03)01041-4 Thirsk, C. & Whiting, A. Polyene natural products. J. Chem. Soc. Perkin Trans 1 999–1023 (2002). BurnsARMcAllisterGDShanahanSETaylerRJKTotal synthesis and structural reassignment of (+)-dictyosphaeric acid A: a tandem intramolecular Michael addition/alkene migration approachAngew. Chem. Int. Ed.201049557455771:CAS:528:DC%2BC3cXps1ChtLk%3D10.1002/anie.201002416 BurtonGWIngoldKUBeta-carotene: an unusual type of lipid antioxidantScience19842245695731:CAS:528:DyaL2cXktVantrs%3D671015610.1126/science.6710156 LiuDNigerapyrones A–H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132J. Nat. Prod.201174178717911:CAS:528:DC%2BC3MXptFKmur0%3D2177447410.1021/np200381u FujiiSChangSYBurkeMDTotal synthesis of synechoxanthin through iterative cross-couplingAngew. Chem. Int. Ed.201150786278641:CAS:528:DC%2BC3MXns1Ckurw%3D10.1002/anie.201102688 GW Burton (BFnchem1947_CR15) 1984; 224 G Cerullo (BFnchem1947_CR13) 2002; 298 C Coluccini (BFnchem1947_CR35) 2012; 77 BFnchem1947_CR8 SJ Lee (BFnchem1947_CR25) 2008; 130 KC Gray (BFnchem1947_CR43) 2012; 109 AG Myers (BFnchem1947_CR9) 1997; 36 DM Knapp (BFnchem1947_CR45) 2009; 131 OJ Plante (BFnchem1947_CR6) 2001; 291 BFnchem1947_CR24 H Sakaki (BFnchem1947_CR41) 2002; 65 PH Seeberger (BFnchem1947_CR4) 2000; 100 J Li (BFnchem1947_CR31) 2011; 133 Y Misono (BFnchem1947_CR40) 2003; 44 Z Fang (BFnchem1947_CR47) 2010; 53 W Yuan (BFnchem1947_CR46) 2012; 10 S Fujii (BFnchem1947_CR27) 2011; 50 RB Merrifield (BFnchem1947_CR2) 1985; 24 JE Grob (BFnchem1947_CR34) 2011; 76 G Wang (BFnchem1947_CR48) 2008; 10 E Negishi (BFnchem1947_CR10) 2004; 101 LA Sklar (BFnchem1947_CR14) 1975; 72 BFnchem1947_CR11 D Liu (BFnchem1947_CR39) 2011; 74 AR Burns (BFnchem1947_CR29) 2010; 49 DA Evans (BFnchem1947_CR7) 1981; 103 JR Struble (BFnchem1947_CR49) 2010; 66 SD Rychnovsky (BFnchem1947_CR12) 1995; 95 RH Garret (BFnchem1947_CR1) 1995 D Imao (BFnchem1947_CR50) 2009; 131 K Fujita (BFnchem1947_CR30) 2012; 51 G Aridoss (BFnchem1947_CR32) 2012; 55 H Luecke (BFnchem1947_CR16) 1999; 286 T Mancilla (BFnchem1947_CR20) 1986; 307 EP Gillis (BFnchem1947_CR23) 2008; 130 BFnchem1947_CR38 T Kinzel (BFnchem1947_CR44) 2010; 132 JL Gustafson (BFnchem1947_CR33) 2011; 50 DG Hall (BFnchem1947_CR42) 2005 EM Woerly (BFnchem1947_CR26) 2010; 132 N Miyaura (BFnchem1947_CR19) 1995; 95 EP Gillis (BFnchem1947_CR22) 2009; 42 E-I Negishi (BFnchem1947_CR17) 2002 VN Kozhevnikov (BFnchem1947_CR36) 2011; 76 K Brak (BFnchem1947_CR28) 2010; 12 KC Nicolaou (BFnchem1947_CR18) 2005; 44 PH Seeberger (BFnchem1947_CR5) 2009 MH Caruthers (BFnchem1947_CR3) 1985; 230 EP Gillis (BFnchem1947_CR21) 2007; 129 R Nishiyabu (BFnchem1947_CR37) 2012; 2 24848226 - Nat Chem. 2014 Jun;6(6):460-1 Nat Chem. 2014 Jun 20;6(7):650 |
References_xml | – reference: Paterson, I. & Scott, J. P. Laboratory emulation of polyketide biosynthesis: an iterative, aldol-based, synthetic entry to polyketide libraries using (R)- and (S)-1-(benzyloxy)-2-methylpentan-3-one, and conformational aspects of extended polypropionates. J. Chem. Soc. Perkin Trans. 1 1003–1014 (1999). – reference: SklarLAHudsonBSSimoniRDConjugated polyene fatty acids as membrane probes: preliminary characterizationProc. Natl Acad. Sci. USA197572164916531:CAS:528:DyaE2MXktl2lurs%3D105776943260010.1073/pnas.72.5.1649 – reference: MancillaTContrerasRWrackmeyerBNew bicyclic organylboronic esters derived from iminodiacetic acidsJ. Organomet. Chem.1986307161:CAS:528:DyaL2sXkslOrt7c%3D10.1016/0022-328X(86)80169-3 – reference: GillisEPBurkeMDA simple and modular strategy for small molecule synthesis: iterative Suzuki–Miyaura coupling of B-protected haloboronic acid building blocksJ. Am. Chem. Soc.2007129671667171:CAS:528:DC%2BD2sXltVajs7w%3D1748808410.1021/ja0716204 – reference: WoerlyEMCherneyAHDavisEKBurkeMDStereoretentive Suzuki–Miyaura coupling of haloallenes enables fully stereocontrolled access to (–)-peridininJ. Am. Chem. Soc.2010132694169431:CAS:528:DC%2BC3cXlsFeqtr0%3D20441218295718110.1021/ja102721p – reference: MisonoYPhysarigins A–C, three new yellow pigments from a cultured Myxomycete Physarum rigidumTetrahedron Lett.200344447944811:CAS:528:DC%2BD3sXjvVCgurc%3D10.1016/S0040-4039(03)01041-4 – reference: StrubleJRLeeSJBurkeMDEthynyl MIDA boronate: a readily accessible and highly versatile building block for small molecule synthesisTetrahedron201066471047181:CAS:528:DC%2BC3cXntVOmurs%3D10.1016/j.tet.2010.04.020 – reference: BrakKEllmanJATotal synthesis of (–)-aurantioclavineOrg. Lett.201012200420071:CAS:528:DC%2BC3cXktFeltbc%3D2035606510.1021/ol100470g – reference: GillisEPBurkeMDIterative cross-coupling with MIDA boronates: towards a general strategy for small molecule synthesisAldrichim. Acta20094217271:CAS:528:DC%2BD1MXpslOkurc%3D – reference: NegishiETanZLiangBNovakTAn efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric C–C bond formationProc. Natl Acad. Sci. USA2004101578257871:CAS:528:DC%2BD2cXjsFKgurc%3D1507332739598510.1073/pnas.0307514101 – reference: KnappDMGillisEPBurkeMDA general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronatesJ. Am. Chem. Soc.2009131696169631:CAS:528:DC%2BD1MXlt1Cls7s%3D19405470730969910.1021/ja901416p – reference: GrobJENunezJDechantsreiterMAHamannLGRegioselective synthesis and slow-release Suzuki–Miyaura cross-coupling of MIDA boronate-functionalized isoxazoles and triazolesJ. Org. Chem.20117610241102481:CAS:528:DC%2BC3MXhsVSks7%2FI2204708310.1021/jo201973t – reference: PlanteOJPalmacciERSeebergerPHAutomated solid-phase synthesis of oligosaccharidesScience2001291152315271:CAS:528:DC%2BD3MXhsVeru7w%3D1122285310.1126/science.1057324 – reference: BurtonGWIngoldKUBeta-carotene: an unusual type of lipid antioxidantScience19842245695731:CAS:528:DyaL2cXktVantrs%3D671015610.1126/science.6710156 – reference: FujiiSChangSYBurkeMDTotal synthesis of synechoxanthin through iterative cross-couplingAngew. Chem. Int. Ed.201150786278641:CAS:528:DC%2BC3MXns1Ckurw%3D10.1002/anie.201102688 – reference: NegishiE-IHandbook of Organopalladium Chemistry for Organic Synthesis200210.1002/0471473804 – reference: EvansDABartroliJShihTLEnantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolatesJ. Am. Chem. Soc.1981103212721291:CAS:528:DyaL3MXkt1CrurY%3D10.1021/ja00398a058 – reference: AridossGZhouBHermansonDLBleekerNPXingCGStructure–activity relationship (SAR) study of ethyl 2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the potential of the lead against multidrug resistance in cancer treatmentJ. Med. Chem.201255556655811:CAS:528:DC%2BC38XmvFWrurs%3D22582991651839010.1021/jm300515q – reference: CerulloGPhotosynthetic light harvesting by carotenoids: detection of an intermediate excited stateScience2002298239523981:CAS:528:DC%2BD38Xps1Sju7s%3D1249391710.1126/science.1074685 – reference: SeebergerPHGlyco-Bioinformatics: Bits ‘n’ Bytes of Sugars2009 – reference: MiyauraNSuzukiAPalladium-catalyzed cross-coupling reactions of organoboron compoundsChem. Rev.199595245724831:CAS:528:DyaK2MXoslGiurg%3D10.1021/cr00039a007 – reference: LueckeHSchobertBRichterH-TCartaillerJ-PLanyiJKStructural changes in bacteriorhodopsin during ion transport at 2 angstrom resolutionScience19992862552601:CAS:528:DyaK1MXmvVersr0%3D1051436210.1126/science.286.5438.255 – reference: CaruthersMHGene synthesis machines: DNA chemistry and its usesScience19852302812851:CAS:528:DyaL2MXlslCksbg%3D386325310.1126/science.3863253 – reference: NishiyabuRKobayashiHKuboYDansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in waterRSC Adv.20122655565611:CAS:528:DC%2BC38XhtVeis7fK10.1039/c2ra20516e – reference: Thirsk, C. & Whiting, A. Polyene natural products. J. Chem. Soc. Perkin Trans 1 999–1023 (2002). – reference: MyersAGYangBHChenHKopeckyDJAsymmetric synthesis of 1,3-dialkyl-substituted carbon chains of any stereochemical configuration by an iterable processSynlett19973645745910.1055/s-1997-6121 – reference: KinzelTZhangYBuchwaldSLA new palladium precatalyst allows for the fast Suzuki–Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acidsJ. Am. Chem. Soc.201013214073140751:CAS:528:DC%2BC3cXhtF2nu7vP20858009295324510.1021/ja1073799 – reference: MerrifieldRBSolid phase synthesis (Nobel Lecture)Angew. Chem. Int. Ed. Engl.19852479981010.1002/anie.198507993 – reference: FujitaKMatsuiRSuzukiTKobayashiSConcise total synthesis of (−)-myxalamide AAngew. Chem. Int. Ed.201251727172741:CAS:528:DC%2BC38Xos1emurw%3D10.1002/anie.201203093 – reference: Sigma-Aldrich, MIDA boronates; http://www.aldrich.com/mida – reference: HallDGBoronic Acids200510.1002/3527606548 – reference: RychnovskySDOxo polyene macrolide antibioticsChem. Rev.199595202120401:CAS:528:DyaK2MXnvFegsrs%3D10.1021/cr00038a011 – reference: LiJBurkeMDPinene-derived iminodiacetic acid (PIDA): a powerful ligand for stereoselective synthesis and iterative cross-coupling of C(sp3) boronate building blocksJ. Am. Chem. Soc.201113313774137771:CAS:528:DC%2BC3MXhtVSrt7zI21823591316421310.1021/ja205912y – reference: GrayKCAmphotericin primarily kills yeast by simply binding ergosterolProc. Natl Acad. Sci. USA2012109223422391:CAS:528:DC%2BC38XivV2qu7k%3D22308411328933910.1073/pnas.1117280109 – reference: SakakiHA new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1J. Nat. Prod.200265168316841:CAS:528:DC%2BD38Xms1Omtb0%3D1244470210.1021/np010554v – reference: SeebergerPHHaaseW-CSolid-phase oligosaccharide synthesis and combinatorial carbohydrate librariesChem. Rev.2000100434943931:CAS:528:DC%2BD3cXns12qtLg%3D1174935110.1021/cr9903104 – reference: WangGHuangZNegishiE-IEfficient and selective syntheses of (all-E)- and (6E,10Z)-2′-O-methylmyxalamides D via Pd-catalyzed alkenylation–carbonyl olefination synergyOrg. Lett.200810322332261:CAS:528:DC%2BD1cXnvF2gu7s%3D18593171259374610.1021/ol801115s – reference: ColucciniCQuaterpyridine ligands for panchromatic Ru(II) dye sensitizersJ. Org. Chem.201277794579561:CAS:528:DC%2BC38Xht1Ghu73E2291753210.1021/jo301226z – reference: GillisEPBurkeMDMultistep synthesis of complex boronic acids from simple MIDA boronatesJ. Am. Chem. Soc.200813014084140851:CAS:528:DC%2BD1cXht1Smtr3I18837550724941410.1021/ja8063759 – reference: Dictionary of Natural Products Version 22.1 (Taylor and Francis Group, 2013); dnp.chemnetbase.com – reference: YuanWMaSCuCl–K2CO3-catalyzed highly selective borylcupration of internal alkynes – ligand effectOrg. Biomol. Chem.201210726672681:CAS:528:DC%2BC38Xht1Ggsr3O2287207310.1039/c2ob26147b – reference: GustafsonJLLimDBarrettKTMillerSJSynthesis of atropisomerically defined, highly substituted biaryl scaffolds through catalytic enantioselective bromination and regioselective cross-couplingAngew. Chem. Int. Ed.201150512551291:CAS:528:DC%2BC3MXmtFymtbc%3D10.1002/anie.201101147 – reference: LiuDNigerapyrones A–H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132J. Nat. Prod.201174178717911:CAS:528:DC%2BC3MXptFKmur0%3D2177447410.1021/np200381u – reference: ImaoDGlasspooleBWLabergeVSCruddenCMCross coupling reactions of chiral secondary organoboronic esters with retention of configurationJ. Am. Chem. Soc.2009131502450251:CAS:528:DC%2BD1MXjsFemu7o%3D1930182010.1021/ja8094075 – reference: NicolaouKCBulgerPGSarlahDPalladium-catalyzed cross-coupling reactions in total synthesisAngew. Chem. Int. Ed.200544444244891:CAS:528:DC%2BD2MXntVSgsbw%3D10.1002/anie.200500368 – reference: BurnsARMcAllisterGDShanahanSETaylerRJKTotal synthesis and structural reassignment of (+)-dictyosphaeric acid A: a tandem intramolecular Michael addition/alkene migration approachAngew. Chem. Int. Ed.201049557455771:CAS:528:DC%2BC3cXps1ChtLk%3D10.1002/anie.201002416 – reference: FangZSynthesis and biological evaluation of polyenylpyrrole derivatives as anticancer agents acting through caspases-dependent apoptosisJ. Med. Chem.201053796779781:CAS:528:DC%2BC3cXhtlalurnP2096440810.1021/jm100619x – reference: LeeSJGrayKCPaekJSBurkeMDSimple, efficient, and modular synthesis of polyene natural products via iterative cross-couplingJ. Am. Chem. Soc.20081304664681:CAS:528:DC%2BD2sXhsVehur3I18081295310712610.1021/ja078129x – reference: KozhevnikovVNDahmsKBryceMRNucleophilic substitution of fluorine atoms in 2,6-difluoro-3-(pyridine-2-yl)benzonitrile leading to soluble blue-emitting cyclometalated Ir(III) complexesJ. Org. Chem.201176514351481:CAS:528:DC%2BC3MXmslGlsrs%3D2161224310.1021/jo200357e – reference: GarretRHGrishamCMBiochemistry1995 – volume: 42 start-page: 17 year: 2009 ident: BFnchem1947_CR22 publication-title: Aldrichim. Acta – volume-title: Handbook of Organopalladium Chemistry for Organic Synthesis year: 2002 ident: BFnchem1947_CR17 doi: 10.1002/0471473804 – volume: 286 start-page: 255 year: 1999 ident: BFnchem1947_CR16 publication-title: Science doi: 10.1126/science.286.5438.255 – volume: 95 start-page: 2021 year: 1995 ident: BFnchem1947_CR12 publication-title: Chem. Rev. doi: 10.1021/cr00038a011 – volume: 109 start-page: 2234 year: 2012 ident: BFnchem1947_CR43 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1117280109 – volume-title: Biochemistry year: 1995 ident: BFnchem1947_CR1 – volume-title: Boronic Acids year: 2005 ident: BFnchem1947_CR42 doi: 10.1002/3527606548 – volume: 49 start-page: 5574 year: 2010 ident: BFnchem1947_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201002416 – volume: 50 start-page: 7862 year: 2011 ident: BFnchem1947_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102688 – volume: 100 start-page: 4349 year: 2000 ident: BFnchem1947_CR4 publication-title: Chem. Rev. doi: 10.1021/cr9903104 – ident: BFnchem1947_CR11 doi: 10.1039/b109741p – volume: 95 start-page: 2457 year: 1995 ident: BFnchem1947_CR19 publication-title: Chem. Rev. doi: 10.1021/cr00039a007 – volume: 130 start-page: 14084 year: 2008 ident: BFnchem1947_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8063759 – volume: 10 start-page: 7266 year: 2012 ident: BFnchem1947_CR46 publication-title: Org. Biomol. Chem. doi: 10.1039/c2ob26147b – volume: 44 start-page: 4479 year: 2003 ident: BFnchem1947_CR40 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(03)01041-4 – volume: 230 start-page: 281 year: 1985 ident: BFnchem1947_CR3 publication-title: Science doi: 10.1126/science.3863253 – volume: 132 start-page: 6941 year: 2010 ident: BFnchem1947_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102721p – volume: 44 start-page: 4442 year: 2005 ident: BFnchem1947_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200500368 – volume: 103 start-page: 2127 year: 1981 ident: BFnchem1947_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00398a058 – volume: 2 start-page: 6555 year: 2012 ident: BFnchem1947_CR37 publication-title: RSC Adv. doi: 10.1039/c2ra20516e – volume: 131 start-page: 6961 year: 2009 ident: BFnchem1947_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901416p – volume: 10 start-page: 3223 year: 2008 ident: BFnchem1947_CR48 publication-title: Org. Lett. doi: 10.1021/ol801115s – volume: 66 start-page: 4710 year: 2010 ident: BFnchem1947_CR49 publication-title: Tetrahedron doi: 10.1016/j.tet.2010.04.020 – volume: 76 start-page: 5143 year: 2011 ident: BFnchem1947_CR36 publication-title: J. Org. Chem. doi: 10.1021/jo200357e – volume: 51 start-page: 7271 year: 2012 ident: BFnchem1947_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201203093 – volume: 24 start-page: 799 year: 1985 ident: BFnchem1947_CR2 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.198507993 – volume: 131 start-page: 5024 year: 2009 ident: BFnchem1947_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8094075 – ident: BFnchem1947_CR8 doi: 10.1039/a809818b – volume: 130 start-page: 466 year: 2008 ident: BFnchem1947_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja078129x – volume: 307 start-page: 1 year: 1986 ident: BFnchem1947_CR20 publication-title: J. Organomet. Chem. doi: 10.1016/0022-328X(86)80169-3 – volume: 50 start-page: 5125 year: 2011 ident: BFnchem1947_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101147 – volume: 129 start-page: 6716 year: 2007 ident: BFnchem1947_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0716204 – volume: 291 start-page: 1523 year: 2001 ident: BFnchem1947_CR6 publication-title: Science doi: 10.1126/science.1057324 – volume: 101 start-page: 5782 year: 2004 ident: BFnchem1947_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0307514101 – volume: 53 start-page: 7967 year: 2010 ident: BFnchem1947_CR47 publication-title: J. Med. Chem. doi: 10.1021/jm100619x – volume: 77 start-page: 7945 year: 2012 ident: BFnchem1947_CR35 publication-title: J. Org. Chem. doi: 10.1021/jo301226z – ident: BFnchem1947_CR38 – volume-title: Glyco-Bioinformatics: Bits ‘n’ Bytes of Sugars year: 2009 ident: BFnchem1947_CR5 – volume: 74 start-page: 1787 year: 2011 ident: BFnchem1947_CR39 publication-title: J. Nat. Prod. doi: 10.1021/np200381u – volume: 76 start-page: 10241 year: 2011 ident: BFnchem1947_CR34 publication-title: J. Org. Chem. doi: 10.1021/jo201973t – volume: 65 start-page: 1683 year: 2002 ident: BFnchem1947_CR41 publication-title: J. Nat. Prod. doi: 10.1021/np010554v – volume: 133 start-page: 13774 year: 2011 ident: BFnchem1947_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205912y – volume: 298 start-page: 2395 year: 2002 ident: BFnchem1947_CR13 publication-title: Science doi: 10.1126/science.1074685 – volume: 55 start-page: 5566 year: 2012 ident: BFnchem1947_CR32 publication-title: J. Med. Chem. doi: 10.1021/jm300515q – ident: BFnchem1947_CR24 – volume: 132 start-page: 14073 year: 2010 ident: BFnchem1947_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1073799 – volume: 72 start-page: 1649 year: 1975 ident: BFnchem1947_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.72.5.1649 – volume: 36 start-page: 457 year: 1997 ident: BFnchem1947_CR9 publication-title: Synlett doi: 10.1055/s-1997-6121 – volume: 224 start-page: 569 year: 1984 ident: BFnchem1947_CR15 publication-title: Science doi: 10.1126/science.6710156 – volume: 12 start-page: 2004 year: 2010 ident: BFnchem1947_CR28 publication-title: Org. Lett. doi: 10.1021/ol100470g – reference: 24848226 - Nat Chem. 2014 Jun;6(6):460-1 – reference: - Nat Chem. 2014 Jun 20;6(7):650 |
SSID | ssj0065316 |
Score | 2.5173597 |
Snippet | The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 484 |
SubjectTerms | 140/131 639/638/549/977 Algorithms Amino acids Analytical Chemistry Automation Biochemistry Biological Products - chemical synthesis Carotenoids - chemical synthesis Chemistry Chemistry/Food Science Glucosides - chemical synthesis Inorganic Chemistry Modularity Molecular Structure Natural products Organic Chemistry Physical Chemistry Polyenes - chemistry Polypeptides Stereoisomerism |
Title | Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction |
URI | https://link.springer.com/article/10.1038/nchem.1947 https://www.ncbi.nlm.nih.gov/pubmed/24848233 https://www.proquest.com/docview/1656066296 https://www.proquest.com/docview/1542653731 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ALorwaKJURvXAI3Y3fp6pUXSokqqoPaW-R7diF0iYL2T303zN2ki1oq15yyfihmbH92fMC2JGV8EwxnTsnfc5EMLn13uVcMx001dzaGDv8_VgcXbBvUz7tH9za3q1y2BPTRl01Lr6R76YsMUIUWuzNfuexalS0rvYlNB7DekxdFrVaTpcXLoH6laKLJOcxMmg0pCelardGltx8xhu8_P9AWkGZKxbSdPBMnsOzHjGS_U7EG_DI1y_gycFQqO0l_Di7rRHGtT9b0gRy07RzMmuub3ETIyltJzaedXldSfS8Cy2Jzu6X5GqBlOOC2L4yNrF4sP1qiakr0mBj1yxiuO4lQVyZoh9ewcXk8PzgKO8LKOSO6dE8D16zimvFOK0QGuiR8YZKY1VhJTdFpZW00iKAMXjJ88ZUYx58cD4YQS0Pjr6GtRoH3AQisTmu7XGghWMoBuWFCyNXMGWN9pRn8GngYun67OKxyMV1mazcVJWJ42XkeAYfl7SzLqfGvVRbgzDKfl215Z0WZPBh-Rv5Hc0cpvbNAmk4og5OJR1n8KYT4nIYnC9TBaUZ7AxS_afzlTm8fXgO7-Ap4ifWeY5twdr8z8K_R4wyt9tJEfGrJl-3Yf3L4fHJ6V_jdern |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKoVwQ7wYKGFEOHEI3fiU-IIQKy5Y-LrRSb8F27PJok4XsCu1P8Y2MnWSptIhbzxnbo5nxzDjzAtjOK-l4wVVqbe5SLr1OjXM2FYorr5gSxoTa4cMjOTnhH0_F6Rr8HmphQlrloBOjoq4aG_6R78QuMVJSJd9Mf6RhalSIrg4jNDqx2HeLX_hka1_vvUP-vqB0_P54d5L2UwVSy9VolnqneCVUwQWr0F6qkXaa5doU1ORC0wof4SY3aNU1vnyc1lUmvPPWeS2ZEd4y3PcaXOcMLXmoTB9_GDS_RHmO1Uy5EKESaTS0Q2XFTo0suHiVqTDG5bIBXPFqVyKy0dCNb8HN3kMlbzuRug1rrr4DG7vDYLi78OXToka3sf3aksaTi6adkWlzvkClSWKbUFw87frIkpDp51sSkuvPyLc5QmaUmH4SNzFoSL-3RNcVaXCxbeahPPiMoB8bqy3uwcmVkPY-rNd44CaQHJejLsk8o5Yj2wsnrR9ZygujlWMigZcDFUvbdzMPQzXOyxhVZ0UZKV4GiifwfAk77Xp4_BNqa2BG2d_jtvwrdQk8W35Geoewiq5dM0cYgV6OYDnLEnjQMXF5DOLLC8pYAtsDVy9tvoLDw__j8BQ2JseHB-XB3tH-I7iBvhvvsta2YH32c-4eo380M0-iUBL4fNW34A_z4ScY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSCXpBvDEUWEQ5cDCJvS_vASFoG7UUogqo1JvZXe-2QGsHnAjl1_g6Zv0IlYK49ezZh2Zm5-F5AWzJQjiWMRVbK13MhNexcc7GXDHlFVXcmFA7_GEi9o7Yu2N-vAa_-1qYkFbZy8RGUBeVDf_Ih02XGCFSJYa-S4s43Bm_nv6IwwSpEGntx2m0LHLgFr_Qfatf7e8grZ-n6Xj38_Ze3E0YiC1To1nsnWIFVxnjtEDdqUbaaSq1yVIjuU4LdMiNNKjhNXpBTusi4d5567wW1HBvKe57BdZl8IoGsP52d3L4sdcDArm7qW2SnIe6pFHfHJVmwxIJcv4yUWGoy0V1uGLjrsRnG7U3vgHXO3uVvGkZ7CasufIWXNvux8TdhtNPixKNyPprTSpPzqt6RqbV2QJFKGmahuLiadtVloS8P1-TkGp_Qr7NETJJienmchODavV7TXRZkAoX22oeioVPCFq1Te3FHTi6FOTehUGJB94HInE5SpbE09QyZILMCetHNmWZ0cpRHsGLHou57XqbhxEbZ3kTY6dZ3mA8DxiP4NkSdtp29Pgn1GZPjLx71XX-lwcjeLr8jPgOQRZdumqOMBxtHk4lTSK41xJxeQzel2UppRFs9VS9sPnKHR78_w5P4Cq-gPz9_uTgIWygIcfaFLZNGMx-zt0jNJZm5nHHlQS-XPZD-ANJIyyq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+most+polyene+natural+product+motifs+using+just+12+building+blocks+and+one+coupling+reaction&rft.jtitle=Nature+chemistry&rft.au=Woerly%2C+Eric+M&rft.au=Roy%2C+Jahnabi&rft.au=Burke%2C+Martin+D&rft.date=2014-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=6&rft.issue=6&rft.spage=484&rft_id=info:doi/10.1038%2Fnchem.1947&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3595745981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |