Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013

Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. He...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 8; no. 12; p. 1038
Main Authors Vijay, Saurabh, Braun, Matthias
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2016
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs8121038

Cover

Loading…
Abstract Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. Here, we present a detailed study on elevation changes of glaciers in the Lahaul-Spiti region derived from TanDEM-X and SRTM C-/X-band DEMs during 2000–2012 and 2012–2013. We observe three elevation change patterns during 2000–2012 among glaciers with different extent of supraglacial debris. The first pattern (<10% debris cover, type-1) indicates maximum thinning rates at the glacier terminus and is observed for glaciers with no or very low debris cover. In the second pattern (>10% debris cover, type-2), maximum thinning is observed up-glacier instead of glacier terminus. This is interpreted as the insulating effect of a thick debris cover. A third pattern, high elevation change rates near the terminus despite high debris cover (>10% debris cover, type-3) is most likely associated with either thinner debris thickness or enhanced melting at supraglacial ponds and lakes as well as ice cliffs. We empirically determined the SRTM C- and X-band penetration differences for debris-covered ice, clean ice/firn/snow and correct for this bias in our elevation change measurements. We show that this penetration bias, if uncorrected, underestimates the region-wide elevation change and geodetic mass balance by 20%. After correction, the region-wide elevation change (1712 km 2 ) was estimated to be −0.65 ± 0.43 m yr − 1 during 2000–2012. Due to the short observation period, elevation change measurements from TanDEM-X for selected glaciers in the period 2012–2013 are subject to large uncertainties. However, similar spatial patterns were observed during 2000–2012 and 2012–2013, but at different magnitudes. This study reveals that the thinning patterns of debris-covered glaciers cannot be generalized and spatially detailed mapping of glacier elevation change is required to better understand the impact of different surface types under changing climatic conditions.
AbstractList Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. Here, we present a detailed study on elevation changes of glaciers in the Lahaul-Spiti region derived from TanDEM-X and SRTM C-/X-band DEMs during 2000-2012 and 2012-2013. We observe three elevation change patterns during 2000-2012 among glaciers with different extent of supraglacial debris. The first pattern (<10% debris cover, type-1) indicates maximum thinning rates at the glacier terminus and is observed for glaciers with no or very low debris cover. In the second pattern (>10% debris cover, type-2), maximum thinning is observed up-glacier instead of glacier terminus. This is interpreted as the insulating effect of a thick debris cover. A third pattern, high elevation change rates near the terminus despite high debris cover (>10% debris cover, type-3) is most likely associated with either thinner debris thickness or enhanced melting at supraglacial ponds and lakes as well as ice cliffs. We empirically determined the SRTM C- and X-band penetration differences for debris-covered ice, clean ice/firn/snow and correct for this bias in our elevation change measurements. We show that this penetration bias, if uncorrected, underestimates the region-wide elevation change and geodetic mass balance by 20%. After correction, the region-wide elevation change (1712 km 2 ) was estimated to be -0.65 plus or minus 0.43 m yr - 1 during 2000-2012. Due to the short observation period, elevation change measurements from TanDEM-X for selected glaciers in the period 2012-2013 are subject to large uncertainties. However, similar spatial patterns were observed during 2000-2012 and 2012-2013, but at different magnitudes. This study reveals that the thinning patterns of debris-covered glaciers cannot be generalized and spatially detailed mapping of glacier elevation change is required to better understand the impact of different surface types under changing climatic conditions.
Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. Here, we present a detailed study on elevation changes of glaciers in the Lahaul-Spiti region derived from TanDEM-X and SRTM C-/X-band DEMs during 2000-2012 and 2012-2013. We observe three elevation change patterns during 2000-2012 among glaciers with different extent of supraglacial debris. The first pattern (<10% debris cover, type-1) indicates maximum thinning rates at the glacier terminus and is observed for glaciers with no or very low debris cover. In the second pattern (>10% debris cover, type-2), maximum thinning is observed up-glacier instead of glacier terminus. This is interpreted as the insulating effect of a thick debris cover. A third pattern, high elevation change rates near the terminus despite high debris cover (>10% debris cover, type-3) is most likely associated with either thinner debris thickness or enhanced melting at supraglacial ponds and lakes as well as ice cliffs. We empirically determined the SRTM C- and X-band penetration differences for debris-covered ice, clean ice/firn/snow and correct for this bias in our elevation change measurements. We show that this penetration bias, if uncorrected, underestimates the region-wide elevation change and geodetic mass balance by 20%. After correction, the region-wide elevation change (1712 km 2 ) was estimated to be −0.65 ± 0.43 m yr −1 during 2000-2012. Due to the short observation period, elevation change measurements from TanDEM-X for selected glaciers in the period 2012-2013 are subject to large uncertainties. However, similar spatial patterns were observed during 2000-2012 and 2012-2013, but at different magnitudes. This study reveals that the thinning patterns of debris-covered glaciers cannot be generalized and spatially detailed mapping of glacier elevation change is required to better understand the impact of different surface types under changing climatic conditions.
Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. Here, we present a detailed study on elevation changes of glaciers in the Lahaul-Spiti region derived from TanDEM-X and SRTM C-/X-band DEMs during 2000–2012 and 2012–2013. We observe three elevation change patterns during 2000–2012 among glaciers with different extent of supraglacial debris. The first pattern (<10% debris cover, type-1) indicates maximum thinning rates at the glacier terminus and is observed for glaciers with no or very low debris cover. In the second pattern (>10% debris cover, type-2), maximum thinning is observed up-glacier instead of glacier terminus. This is interpreted as the insulating effect of a thick debris cover. A third pattern, high elevation change rates near the terminus despite high debris cover (>10% debris cover, type-3) is most likely associated with either thinner debris thickness or enhanced melting at supraglacial ponds and lakes as well as ice cliffs. We empirically determined the SRTM C- and X-band penetration differences for debris-covered ice, clean ice/firn/snow and correct for this bias in our elevation change measurements. We show that this penetration bias, if uncorrected, underestimates the region-wide elevation change and geodetic mass balance by 20%. After correction, the region-wide elevation change (1712 km 2 ) was estimated to be −0.65 ± 0.43 m yr − 1 during 2000–2012. Due to the short observation period, elevation change measurements from TanDEM-X for selected glaciers in the period 2012–2013 are subject to large uncertainties. However, similar spatial patterns were observed during 2000–2012 and 2012–2013, but at different magnitudes. This study reveals that the thinning patterns of debris-covered glaciers cannot be generalized and spatially detailed mapping of glacier elevation change is required to better understand the impact of different surface types under changing climatic conditions.
Author Braun, Matthias
Vijay, Saurabh
Author_xml – sequence: 1
  givenname: Saurabh
  orcidid: 0000-0002-8970-9213
  surname: Vijay
  fullname: Vijay, Saurabh
– sequence: 2
  givenname: Matthias
  orcidid: 0000-0001-5169-1567
  surname: Braun
  fullname: Braun, Matthias
BookMark eNqNkUtqHDEQhkVwIM7Ei9xAkI0N6bj06G5pGQbHHhgI5EGWTVktzWiQpYnUbfAud8gNc5LInmCCySJaSKXiq1-q-l-So5iiJeQ1g3dCaDjPRTHOQKhn5JhDzxvJNT_6K35BTkrZQV1CMA3ymJSLYG9x8inS5RbjxtJPONlCk6OXAY23uVAf6bS1dI1bnEPzee8nT0-_2TLZHOmVv8GAd_iWruLo8YyOc_ZxQ3l95NePnxwYpxhHeh8c7uIVee4wFHvy51yQrx8uviyvmvXHy9Xy_boxUsPUOMucEYyBYy3jWnMYrWJWa-PsaFqGbSulYtqA6kd53eKouOBOVgzQGS4WZHXQHRPuhn2uP813Q0I_PCRS3gyYJ2-CHRQorbta35trKYBrZpiQXe84uq6zrmqdHrT2OX2fa-_DjS_GhoDRprkMTCkALloh_wPtlIC-rfuCvHmC7tKcYx1KpVolWNdqqNTZgTI5lZKte-yFwXBv_PBofGXPn7DGTw_-Thl9-EfFbxfnrO8
CitedBy_id crossref_primary_10_1007_s10661_020_08442_8
crossref_primary_10_1017_jog_2019_94
crossref_primary_10_3390_biology12030382
crossref_primary_10_1080_10106049_2018_1516247
crossref_primary_10_1080_15481603_2021_1930730
crossref_primary_10_1016_j_accre_2021_05_001
crossref_primary_10_5194_tc_13_2537_2019
crossref_primary_10_3389_feart_2023_1219755
crossref_primary_10_1080_01431161_2020_1798552
crossref_primary_10_3389_fenvs_2022_788359
crossref_primary_10_1038_s41598_019_53733_x
crossref_primary_10_1016_j_qsa_2024_100254
crossref_primary_10_1016_j_gloplacha_2023_104260
crossref_primary_10_1007_s11629_023_8266_4
crossref_primary_10_5194_hess_27_627_2023
crossref_primary_10_1007_s12040_021_01720_0
crossref_primary_10_1080_10106049_2022_2136254
crossref_primary_10_1007_s12524_024_01918_x
crossref_primary_10_1017_jog_2019_20
crossref_primary_10_1080_01431161_2018_1506182
crossref_primary_10_1017_jog_2021_60
crossref_primary_10_3389_frwa_2022_909246
crossref_primary_10_3390_rs10020188
crossref_primary_10_3390_rs13193903
crossref_primary_10_1007_s10661_022_10577_9
crossref_primary_10_1038_s41586_019_1240_1
crossref_primary_10_1038_s41598_019_53055_y
crossref_primary_10_3389_fenvs_2018_00030
crossref_primary_10_1007_s12524_021_01368_9
crossref_primary_10_1080_10106049_2022_2105403
crossref_primary_10_3389_feart_2022_949735
crossref_primary_10_1017_jog_2022_118
crossref_primary_10_1007_s10113_023_02112_4
crossref_primary_10_1080_10106049_2018_1506506
crossref_primary_10_1007_s12040_024_02290_7
crossref_primary_10_1017_aog_2017_27
crossref_primary_10_1017_jog_2020_42
crossref_primary_10_1038_s41558_018_0375_7
crossref_primary_10_1017_jog_2022_89
crossref_primary_10_1080_10106049_2021_1939437
crossref_primary_10_1007_s11356_022_19524_0
crossref_primary_10_1016_j_gsf_2021_101290
crossref_primary_10_5194_tc_12_1347_2018
crossref_primary_10_1016_j_scitotenv_2021_149533
crossref_primary_10_1080_10106049_2019_1648563
crossref_primary_10_1109_JSTARS_2021_3070362
crossref_primary_10_1038_ngeo2999
crossref_primary_10_1007_s11356_023_31537_x
crossref_primary_10_1007_s00704_024_05003_8
crossref_primary_10_1117_1_JRS_16_024517
crossref_primary_10_1002_hyp_13354
crossref_primary_10_1016_j_geomorph_2019_05_009
crossref_primary_10_31988_SciTrends_44290
crossref_primary_10_1007_s12517_023_11201_x
crossref_primary_10_1016_j_geomorph_2023_108686
crossref_primary_10_1007_s11356_023_29714_z
crossref_primary_10_1007_s10661_021_09689_5
crossref_primary_10_1016_j_asr_2021_11_006
crossref_primary_10_1007_s12665_024_11529_x
crossref_primary_10_1017_jog_2022_50
crossref_primary_10_1017_jog_2020_54
crossref_primary_10_1016_j_gloplacha_2018_03_014
crossref_primary_10_3390_rs12101658
crossref_primary_10_1017_jog_2021_84
crossref_primary_10_1109_JSTARS_2017_2771215
crossref_primary_10_1007_s12524_021_01455_x
crossref_primary_10_1017_jog_2024_19
crossref_primary_10_5194_tc_13_2977_2019
crossref_primary_10_1017_jog_2018_70
crossref_primary_10_1016_j_coldregions_2024_104204
crossref_primary_10_1016_j_rse_2018_03_020
crossref_primary_10_1007_s41976_024_00133_z
crossref_primary_10_1016_j_scitotenv_2020_141914
crossref_primary_10_1080_10106049_2020_1844309
crossref_primary_10_1007_s10661_022_09945_2
crossref_primary_10_1038_s41586_019_1071_0
crossref_primary_10_1080_2150704X_2017_1362123
crossref_primary_10_5194_tc_11_2003_2017
crossref_primary_10_1038_s41598_018_27014_y
crossref_primary_10_1007_s12665_020_09044_w
crossref_primary_10_1126_sciadv_aav7266
crossref_primary_10_54097_ajst_v5i3_7733
crossref_primary_10_1016_j_wasec_2021_100098
crossref_primary_10_3389_frwa_2022_874240
crossref_primary_10_1016_j_scitotenv_2019_07_086
crossref_primary_10_1016_j_rsase_2024_101446
crossref_primary_10_1017_jog_2019_5
crossref_primary_10_1016_j_polar_2018_11_005
crossref_primary_10_1038_s41598_022_20033_w
crossref_primary_10_1016_j_isprsjprs_2017_05_011
Cites_doi 10.3189/2014AoG66A104
10.5194/tc-7-1263-2013
10.1109/IGARSS.2011.6049701
10.1016/j.earscirev.2012.03.008
10.1016/j.epsl.2015.06.047
10.5194/tc-9-849-2015
10.1111/j.2007.0906-7590.05171.x
10.1038/nature11324
10.3189/2013JoG12J184
10.1002/wcc.393
10.5194/tc-7-569-2013
10.1016/j.gloplacha.2014.03.012
10.3189/2013JoG12J180
10.5194/tc-9-2071-2015
10.1109/JPROC.2009.2038947
10.1080/02757258709532086
10.5194/tc-8-941-2014
10.14358/PERS.72.3.261
10.3189/2014JoG13J045
10.3189/2012JoG11J175
10.3189/002214307784409306
10.3189/2016AoG71A570
10.3189/2015JoG14J102
10.1109/TGRS.2011.2140376
10.5194/tc-8-2195-2014
10.1002/2014GL061613
10.1080/15230430.2002.12003463
10.1109/36.673674
10.1109/JSTARS.2016.2581482
10.5194/tc-7-877-2013
10.5194/tc-10-1105-2016
10.1016/j.isprsjprs.2009.02.003
10.3189/2016AoG71A024
10.5194/tc-10-1845-2016
10.3389/feart.2016.00063
10.5194/tc-10-2075-2016
10.1109/TGRS.2007.900693
10.3189/2012JoG11J061
ContentType Journal Article
Copyright Copyright MDPI AG 2016
Copyright_xml – notice: Copyright MDPI AG 2016
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs8121038
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Aerospace Database
Publicly Available Content Database
Ecology Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
EndPage 1038
ExternalDocumentID oai_doaj_org_article_8089968237cb430291c13467f2af66ef
4301341271
10_3390_rs8121038
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c490t-fe1fc3110f15129920de81e99cfedc51a5544819c087d4b5ad8232f40de0afc23
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:47 EDT 2025
Fri Jul 11 15:44:43 EDT 2025
Fri Jul 11 05:24:23 EDT 2025
Fri Jul 25 12:18:29 EDT 2025
Tue Jul 01 03:57:20 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-fe1fc3110f15129920de81e99cfedc51a5544819c087d4b5ad8232f40de0afc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8970-9213
0000-0001-5169-1567
OpenAccessLink https://doaj.org/article/8089968237cb430291c13467f2af66ef
PQID 1858316590
PQPubID 2032338
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8089968237cb430291c13467f2af66ef
proquest_miscellaneous_1880023534
proquest_miscellaneous_1868307568
proquest_journals_1858316590
crossref_primary_10_3390_rs8121038
crossref_citationtrail_10_3390_rs8121038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2016
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Azam (ref_2) 2014; 8
Rott (ref_16) 2010; 98
Hoffmann (ref_20) 2006; 72
Azam (ref_19) 2014; 55
Gardelle (ref_28) 2012; 58
Huss (ref_29) 2013; 7
Seehaus (ref_38) 2015; 427
Anderson (ref_6) 2016; 10
Sakai (ref_9) 2000; Volume 265
Gardelle (ref_14) 2013; 7
Basnett (ref_40) 2013; 59
Guo (ref_30) 2014; 118
Rankl (ref_24) 2016; 51
Sakai (ref_41) 2002; 34
Benn (ref_11) 2012; 114
(ref_35) 1987; 2
Krieger (ref_21) 2007; 45
Holzer (ref_33) 2015; 9
Hamran (ref_36) 2011; 49
Nuimura (ref_23) 2015; 9
Rott (ref_37) 2014; 41
Dehecq (ref_15) 2016; 9
Wagnon (ref_17) 2007; 53
Berthier (ref_1) 2012; 488
Schauwecker (ref_13) 2015; 61
ref_25
ref_22
Costantini (ref_26) 1998; 36
Vincent (ref_8) 2016; 10
Reid (ref_10) 2014; 60
(ref_32) 2009; 64
Vincent (ref_5) 2013; 7
Azam (ref_18) 2016; 57
ref_27
Dormann (ref_31) 2007; 30
Nuimura (ref_39) 2012; 58
Singh (ref_3) 2016; 7
Dobhal (ref_12) 2013; 59
Ragettli (ref_7) 2016; 10
Berthier (ref_34) 2016; 4
Wiltshire (ref_4) 2014; 8
References_xml – volume: 55
  start-page: 69
  year: 2014
  ident: ref_19
  article-title: Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969
  publication-title: Ann. Glaciol.
  doi: 10.3189/2014AoG66A104
– volume: 7
  start-page: 1263
  year: 2013
  ident: ref_14
  article-title: Region-wide glacier mass balances over the Pamir-Karakoram- Himalaya during 1999–2011
  publication-title: Cryosphere
  doi: 10.5194/tc-7-1263-2013
– ident: ref_27
  doi: 10.1109/IGARSS.2011.6049701
– volume: 114
  start-page: 156
  year: 2012
  ident: ref_11
  article-title: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2012.03.008
– volume: 427
  start-page: 125
  year: 2015
  ident: ref_38
  article-title: Changes in ice dynamics, elevation and mass discharge of Dinsmoor-Bombardier-Edgeworth glacier system, Antarctic Peninsula
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2015.06.047
– volume: 9
  start-page: 849
  year: 2015
  ident: ref_23
  article-title: The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers
  publication-title: Cryosphere
  doi: 10.5194/tc-9-849-2015
– volume: 30
  start-page: 609
  year: 2007
  ident: ref_31
  article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: A review
  publication-title: Ecography
  doi: 10.1111/j.2007.0906-7590.05171.x
– volume: 488
  start-page: 495
  year: 2012
  ident: ref_1
  article-title: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas
  publication-title: Nature
  doi: 10.1038/nature11324
– volume: 59
  start-page: 1035
  year: 2013
  ident: ref_40
  article-title: The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India
  publication-title: J. Glaciol.
  doi: 10.3189/2013JoG12J184
– volume: 7
  start-page: 393
  year: 2016
  ident: ref_3
  article-title: Changing climate and glacio-hydrology in Indian Himalayan Region: A review
  publication-title: Wiley Interdiscip. Rev. Clim. Chang.
  doi: 10.1002/wcc.393
– volume: 7
  start-page: 569
  year: 2013
  ident: ref_5
  article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss
  publication-title: Cryosphere
  doi: 10.5194/tc-7-569-2013
– volume: 118
  start-page: 97
  year: 2014
  ident: ref_30
  article-title: Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2014.03.012
– volume: 59
  start-page: 961
  year: 2013
  ident: ref_12
  article-title: Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India
  publication-title: J. Glaciol.
  doi: 10.3189/2013JoG12J180
– volume: 9
  start-page: 2071
  year: 2015
  ident: ref_33
  article-title: Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data
  publication-title: Cryosphere
  doi: 10.5194/tc-9-2071-2015
– volume: 98
  start-page: 752
  year: 2010
  ident: ref_16
  article-title: Cold Regions hydrology high-resolution observatory for snow and cold land processes
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2038947
– volume: 2
  start-page: 259
  year: 1987
  ident: ref_35
  article-title: Applications of the interaction of microwaves with the natural snow cover
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757258709532086
– volume: 8
  start-page: 941
  year: 2014
  ident: ref_4
  article-title: Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region
  publication-title: Cryosphere
  doi: 10.5194/tc-8-941-2014
– volume: 72
  start-page: 261
  year: 2006
  ident: ref_20
  article-title: How Complementary are SRTM-X and C-Band digital elevation models?
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.3.261
– volume: 60
  start-page: 3
  year: 2014
  ident: ref_10
  article-title: Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J045
– volume: 58
  start-page: 419
  year: 2012
  ident: ref_28
  article-title: Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J175
– volume: 53
  start-page: 603
  year: 2007
  ident: ref_17
  article-title: Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya
  publication-title: J. Glaciol.
  doi: 10.3189/002214307784409306
– volume: 57
  start-page: 328
  year: 2016
  ident: ref_18
  article-title: Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India
  publication-title: Ann. Glaciol.
  doi: 10.3189/2016AoG71A570
– ident: ref_25
– volume: Volume 265
  start-page: 119
  year: 2000
  ident: ref_9
  article-title: Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas
  publication-title: Debris-Covered Glaciers
– volume: 61
  start-page: 675
  year: 2015
  ident: ref_13
  article-title: Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya
  publication-title: J. Glaciol.
  doi: 10.3189/2015JoG14J102
– volume: 49
  start-page: 4572
  year: 2011
  ident: ref_36
  article-title: Phase center of L- band radar in polar snow and ice
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2140376
– volume: 8
  start-page: 2195
  year: 2014
  ident: ref_2
  article-title: Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements
  publication-title: Cryosphere
  doi: 10.5194/tc-8-2195-2014
– volume: 41
  start-page: 8123
  year: 2014
  ident: ref_37
  article-title: Mass changes of outlet glaciers along the Nordensjköld Coast, northern Antarctic Peninsula, based on TanDEM-X satellite measurements
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061613
– volume: 34
  start-page: 12
  year: 2002
  ident: ref_41
  article-title: Distribution characteristics and energy balance of ice cliffs on debris-covered laciers, Nepal Himalaya
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1080/15230430.2002.12003463
– volume: 36
  start-page: 813
  year: 1998
  ident: ref_26
  article-title: A novel phase unwrapping method based on network programming
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.673674
– volume: 9
  start-page: 3870
  year: 2016
  ident: ref_15
  article-title: Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: Impact of the X-band interferometric Bias
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2581482
– volume: 7
  start-page: 877
  year: 2013
  ident: ref_29
  article-title: Density assumptions for converting geodetic glacier volume change to mass change
  publication-title: Cryosphere
  doi: 10.5194/tc-7-877-2013
– volume: 10
  start-page: 1105
  year: 2016
  ident: ref_6
  article-title: Modeling debris-covered glaciers: response to steady debris deposition
  publication-title: Cryosphere
  doi: 10.5194/tc-10-1105-2016
– volume: 64
  start-page: 398
  year: 2009
  ident: ref_32
  article-title: Accuracy assessment of digital elevation models by means of robust statistical methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.02.003
– volume: 51
  start-page: 273
  year: 2016
  ident: ref_24
  article-title: Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models
  publication-title: Ann. Glaciol.
  doi: 10.3189/2016AoG71A024
– volume: 10
  start-page: 1845
  year: 2016
  ident: ref_8
  article-title: Reduced melt on debris-covered glaciers: Investigations from Changri Nup Glacier, Nepal
  publication-title: Cryosphere
  doi: 10.5194/tc-10-1845-2016
– ident: ref_22
– volume: 4
  start-page: 63
  year: 2016
  ident: ref_34
  article-title: Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2016.00063
– volume: 10
  start-page: 2075
  year: 2016
  ident: ref_7
  article-title: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal
  publication-title: Cryosphere
  doi: 10.5194/tc-10-2075-2016
– volume: 45
  start-page: 3317
  year: 2007
  ident: ref_21
  article-title: TanDEM-X: A satellite formation for high-resolution SAR interferometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.900693
– volume: 58
  start-page: 648
  year: 2012
  ident: ref_39
  article-title: Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J061
SSID ssj0000331904
Score 2.4405563
Snippet Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1038
SubjectTerms Bias
Catchment scale
Cliffs
Climate change
Climatic conditions
Debris
Detritus
Elevation
Firn
geodetic glacier mass balance
Glacial drift
glacier elevation change
Glaciers
Ice
Ice cover
InSAR processing
Lahaul-Spiti
Lakes
Mapping
Mass balance
Melting
Mountains
Penetration
Ponds
Remote sensing
SRTM
Superhigh frequencies
TanDEM-X
Thinning
X-band
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoHNoL4lV1eckgDiA1Io4dr3NCgBaWqkUVLSq3yOsHrBSSZR8H_j0ziTcgFXHLY5RInqdnPN8QcsAcOAbueWQ995GwmY00h81KdyCMA5erXN3F_-ta9m_Fj7v0LiTcJuFY5dwm1obaVgZz5MfgVxRnMs3ik9FThFOjsLoaRmh8IktgghVsvpbOete_b9osS8xBxGLRQApx2N8fjycKMbOwH-WNI6rx-v8zx7WPuVghyyE4pKcNN1fJgivXyOcwp_zheZ1UvcI1OVTatAXQG4wVaeXpZaENjrWmw5JCUEd_6gc9K6I_o-F0SA__NYAItD981IV-1t_pVQmScUSbNkVat36Dl06oLi3FC7zjG-T2ovf3vB-FkQmREVk8jbxj3nBw6b725FkSW6eYyzLjnTUp0xA9CAgCTKy6VgxSbRWEVF4AWay9SfhXslhWpftGaOJVlqC6Mm6EE0x3gZsSvo6VTWdVhxzO1y83AU8cx1oUOewrcKnzdqk7ZL8lHTUgGu8RnSETWgLEva4fVOP7PKhRrrBKKRFgxwwEj5OMGcbB1vtEeymd75DtOQvzoIyT_FV0OmSvfQ1qhLURXbpqhjRSgblLpfqIRtXwQFxsfvybLfIFeCSbUy_bZHE6nrkdiF2mg90goC_Z3Ooz
  priority: 102
  providerName: ProQuest
Title Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013
URI https://www.proquest.com/docview/1858316590
https://www.proquest.com/docview/1868307568
https://www.proquest.com/docview/1880023534
https://doaj.org/article/8089968237cb430291c13467f2af66ef
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4VOJRLVWirhkK0VD1QqRZe73qzPgJNSCtAFRSVm7XZh4hkHESSA7f-h_7D_hJmvCaK1KpcevJrZK3mPV7PNwAfuMfAIIJIXBAhka5wiRFYrPRG0noMudo3XfynZ2p4Kb9e5VdLo77on7AIDxwZt69pX0oRpIodSZFmBbdcoHWHzASlfCDvizFvqZhqfLBA1UplhBISWNfv3001YWVRH8pSAGpw-v9ww01sGbyEF21SyA7iYjbgma834Xk7n_z6_hVM-5WP305ZbAdg55Qjsklgx5WxNM6ajWuGyRw7MddmXiUXt-PZmO39iEAIbDi-MZW5N5_Ylxo14iOL7YmMWmh-__yF8TljpnaMTuK1eA2Xg_73o2HSjktIrCzSWRI8D1ZgOA9NFC-y1HnNfVHY4J3NucHMQWICYFPdc3KUG4dczYJEstQEm4k3sFpPav8WWBZ0kZGpcmGll9z0UJIK3067mt7pDuw98rC0LZY4jbSoSqwpiN3lgt0deL8gvY0AGn8jOiRBLAgI87q5gZpQtppQPqUJHdh-FGPZGuK0xHREC67yIu3A7uIxmhDti5jaT-ZEozS6ulzpf9HoBhpIyK3_sdZ3sI6SVPG_mG1Ynd3N_Q5mN7NRF1b04LgLawefT08u8HjYP_t23m3U-wH17fem
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXxFMslNYgkIpE1CR2vPYBVTy63aXbHqAVvQWvH3SlkCz7ULV_it_IjPMACdRbb3mMEsmemW_s8XxDyMvEATAwzyLrmY-4VTbSDBYr_Qk3DiBXulDFf3Iqhuf800V2sUF-tbUweKyy9YnBUdvK4B75PuCKZInIVHww-xlh1yjMrrYtNGq1OHbrK1iyLd6OPsL8vkrTweHZh2HUdBWIDFfxMvIu8YYB6vkAdiqNrZOJU8p4Z02WaABYDjhpYtm3fJJpKyHq8BzEYu0NEh2Ay7_FGVNoUXJw1O3pxAwUOuY1gRG8j_fnC4kMXVj98hfshe4A_zj_gGiDu-ROE4rSd7Xu3CMbrrxPtpqu6JfrB6Q6LFy9Y0vrIgT6GSNTWnl6VGiDTbTptKQQQtKxvtSrIvoymy6ndO9rTb9Ah9MfutBr_YaOStDD17QuiqSh0BxigpTq0lK8wDv2kJzfyFA-IptlVbrHhKZeqhSdQ8IMdzzRfdAdAV_HPKqzskf22vHLTcNejk00ihxWMTjUeTfUPfKiE53VlB3_E3qPk9AJIMt2eFDNv-eN0eYSc6IC6XzMhLM4VYlJGCCLT7UXwvke2W6nMG9Mf5H_UdQeed69BqPFTIwuXbVCGSHBuWZCXicjAxkR40-u_80u2RqenYzz8ej0-Cm5DfMl6vM222RzOV-5ZxA1LSc7QVUp-XbTtvEby14l1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB5VqQS8IMohAgUWBFKRsGp71876AVWUJiS0RFWhat_MZg8aydghh1D-Wn9dZ3yBBOpb3-J4ZFs7xzd7zDcArwOLwMAd94zjzhMmMZ7iOFnpTYS2CLnSllX8X8bx8FR8Po_ON-CyqYWhY5VNTCwDtSk0rZHvIq5IHsRR4u-6-ljE8cFgb_bLow5StNPatNOoTOTQrn_j9G3xfnSAun4ThoP-t49Dr-4w4GmR-EvP2cBpjgjoSuBLQt9YGdgk0c4aHQUKwVYgZmpf9oyYRMpIzECcQDFfOU2kBxj-N3s4K_I7sLnfHx-ftCs8Pkfz9kVFZ8Q5fvh8IYmvi2ph_gLBslfAP1BQ4tvgHtytE1P2obKkLdiw-X24XfdIv1g_gKKf2Wr9llUlCeyE8lRWOPYpU5paarNpzjChZEfqQq0y7-tsupyynbOKjIENpz9VptbqHRvlaJVvWVUiycqyc8wQQqZyw-gHXfGHcHojg_kIOnmR28fAQieTkEJFwLWwIlA9tKQYn067qtbILuw045fqmsucWmpkKc5paKjTdqi78KoVnVUEHv8T2icltALEuV3-Ucx_pLULp5J2SGMi99ETwf0wCXTAEWdcqFwcW9eF7UaFaR0IFukfs-3Cy_Y2ujDty6jcFiuSiSWG2iiW18nIkpqIiyfXv-YF3EK_SI9G48OncAfVFVeHb7ahs5yv7DNMoZaT57WtMvh-0-5xBYgIK2Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elevation+Change+Rates+of+Glaciers+in+the+Lahaul-Spiti+%28Western+Himalaya%2C+India%29+during+2000%E2%80%932012+and+2012%E2%80%932013&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Saurabh+Vijay&rft.au=Matthias+Braun&rft.date=2016-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=8&rft.issue=12&rft.spage=1038&rft_id=info:doi/10.3390%2Frs8121038&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8089968237cb430291c13467f2af66ef
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon