Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013
Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. He...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 8; no. 12; p. 1038 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs8121038 |
Cover
Loading…
Abstract | Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. Here, we present a detailed study on elevation changes of glaciers in the Lahaul-Spiti region derived from TanDEM-X and SRTM C-/X-band DEMs during 2000–2012 and 2012–2013. We observe three elevation change patterns during 2000–2012 among glaciers with different extent of supraglacial debris. The first pattern (<10% debris cover, type-1) indicates maximum thinning rates at the glacier terminus and is observed for glaciers with no or very low debris cover. In the second pattern (>10% debris cover, type-2), maximum thinning is observed up-glacier instead of glacier terminus. This is interpreted as the insulating effect of a thick debris cover. A third pattern, high elevation change rates near the terminus despite high debris cover (>10% debris cover, type-3) is most likely associated with either thinner debris thickness or enhanced melting at supraglacial ponds and lakes as well as ice cliffs. We empirically determined the SRTM C- and X-band penetration differences for debris-covered ice, clean ice/firn/snow and correct for this bias in our elevation change measurements. We show that this penetration bias, if uncorrected, underestimates the region-wide elevation change and geodetic mass balance by 20%. After correction, the region-wide elevation change (1712 km 2 ) was estimated to be −0.65 ± 0.43 m yr − 1 during 2000–2012. Due to the short observation period, elevation change measurements from TanDEM-X for selected glaciers in the period 2012–2013 are subject to large uncertainties. However, similar spatial patterns were observed during 2000–2012 and 2012–2013, but at different magnitudes. This study reveals that the thinning patterns of debris-covered glaciers cannot be generalized and spatially detailed mapping of glacier elevation change is required to better understand the impact of different surface types under changing climatic conditions. |
---|---|
AbstractList | Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. Here, we present a detailed study on elevation changes of glaciers in the Lahaul-Spiti region derived from TanDEM-X and SRTM C-/X-band DEMs during 2000-2012 and 2012-2013. We observe three elevation change patterns during 2000-2012 among glaciers with different extent of supraglacial debris. The first pattern (<10% debris cover, type-1) indicates maximum thinning rates at the glacier terminus and is observed for glaciers with no or very low debris cover. In the second pattern (>10% debris cover, type-2), maximum thinning is observed up-glacier instead of glacier terminus. This is interpreted as the insulating effect of a thick debris cover. A third pattern, high elevation change rates near the terminus despite high debris cover (>10% debris cover, type-3) is most likely associated with either thinner debris thickness or enhanced melting at supraglacial ponds and lakes as well as ice cliffs. We empirically determined the SRTM C- and X-band penetration differences for debris-covered ice, clean ice/firn/snow and correct for this bias in our elevation change measurements. We show that this penetration bias, if uncorrected, underestimates the region-wide elevation change and geodetic mass balance by 20%. After correction, the region-wide elevation change (1712 km 2 ) was estimated to be -0.65 plus or minus 0.43 m yr - 1 during 2000-2012. Due to the short observation period, elevation change measurements from TanDEM-X for selected glaciers in the period 2012-2013 are subject to large uncertainties. However, similar spatial patterns were observed during 2000-2012 and 2012-2013, but at different magnitudes. This study reveals that the thinning patterns of debris-covered glaciers cannot be generalized and spatially detailed mapping of glacier elevation change is required to better understand the impact of different surface types under changing climatic conditions. Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. Here, we present a detailed study on elevation changes of glaciers in the Lahaul-Spiti region derived from TanDEM-X and SRTM C-/X-band DEMs during 2000-2012 and 2012-2013. We observe three elevation change patterns during 2000-2012 among glaciers with different extent of supraglacial debris. The first pattern (<10% debris cover, type-1) indicates maximum thinning rates at the glacier terminus and is observed for glaciers with no or very low debris cover. In the second pattern (>10% debris cover, type-2), maximum thinning is observed up-glacier instead of glacier terminus. This is interpreted as the insulating effect of a thick debris cover. A third pattern, high elevation change rates near the terminus despite high debris cover (>10% debris cover, type-3) is most likely associated with either thinner debris thickness or enhanced melting at supraglacial ponds and lakes as well as ice cliffs. We empirically determined the SRTM C- and X-band penetration differences for debris-covered ice, clean ice/firn/snow and correct for this bias in our elevation change measurements. We show that this penetration bias, if uncorrected, underestimates the region-wide elevation change and geodetic mass balance by 20%. After correction, the region-wide elevation change (1712 km 2 ) was estimated to be −0.65 ± 0.43 m yr −1 during 2000-2012. Due to the short observation period, elevation change measurements from TanDEM-X for selected glaciers in the period 2012-2013 are subject to large uncertainties. However, similar spatial patterns were observed during 2000-2012 and 2012-2013, but at different magnitudes. This study reveals that the thinning patterns of debris-covered glaciers cannot be generalized and spatially detailed mapping of glacier elevation change is required to better understand the impact of different surface types under changing climatic conditions. Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an individual catchment scale can be potentially influenced by supraglacial debris, ponds, lakes and ice cliffs besides regionally driven factors. Here, we present a detailed study on elevation changes of glaciers in the Lahaul-Spiti region derived from TanDEM-X and SRTM C-/X-band DEMs during 2000–2012 and 2012–2013. We observe three elevation change patterns during 2000–2012 among glaciers with different extent of supraglacial debris. The first pattern (<10% debris cover, type-1) indicates maximum thinning rates at the glacier terminus and is observed for glaciers with no or very low debris cover. In the second pattern (>10% debris cover, type-2), maximum thinning is observed up-glacier instead of glacier terminus. This is interpreted as the insulating effect of a thick debris cover. A third pattern, high elevation change rates near the terminus despite high debris cover (>10% debris cover, type-3) is most likely associated with either thinner debris thickness or enhanced melting at supraglacial ponds and lakes as well as ice cliffs. We empirically determined the SRTM C- and X-band penetration differences for debris-covered ice, clean ice/firn/snow and correct for this bias in our elevation change measurements. We show that this penetration bias, if uncorrected, underestimates the region-wide elevation change and geodetic mass balance by 20%. After correction, the region-wide elevation change (1712 km 2 ) was estimated to be −0.65 ± 0.43 m yr − 1 during 2000–2012. Due to the short observation period, elevation change measurements from TanDEM-X for selected glaciers in the period 2012–2013 are subject to large uncertainties. However, similar spatial patterns were observed during 2000–2012 and 2012–2013, but at different magnitudes. This study reveals that the thinning patterns of debris-covered glaciers cannot be generalized and spatially detailed mapping of glacier elevation change is required to better understand the impact of different surface types under changing climatic conditions. |
Author | Braun, Matthias Vijay, Saurabh |
Author_xml | – sequence: 1 givenname: Saurabh orcidid: 0000-0002-8970-9213 surname: Vijay fullname: Vijay, Saurabh – sequence: 2 givenname: Matthias orcidid: 0000-0001-5169-1567 surname: Braun fullname: Braun, Matthias |
BookMark | eNqNkUtqHDEQhkVwIM7Ei9xAkI0N6bj06G5pGQbHHhgI5EGWTVktzWiQpYnUbfAud8gNc5LInmCCySJaSKXiq1-q-l-So5iiJeQ1g3dCaDjPRTHOQKhn5JhDzxvJNT_6K35BTkrZQV1CMA3ymJSLYG9x8inS5RbjxtJPONlCk6OXAY23uVAf6bS1dI1bnEPzee8nT0-_2TLZHOmVv8GAd_iWruLo8YyOc_ZxQ3l95NePnxwYpxhHeh8c7uIVee4wFHvy51yQrx8uviyvmvXHy9Xy_boxUsPUOMucEYyBYy3jWnMYrWJWa-PsaFqGbSulYtqA6kd53eKouOBOVgzQGS4WZHXQHRPuhn2uP813Q0I_PCRS3gyYJ2-CHRQorbta35trKYBrZpiQXe84uq6zrmqdHrT2OX2fa-_DjS_GhoDRprkMTCkALloh_wPtlIC-rfuCvHmC7tKcYx1KpVolWNdqqNTZgTI5lZKte-yFwXBv_PBofGXPn7DGTw_-Thl9-EfFbxfnrO8 |
CitedBy_id | crossref_primary_10_1007_s10661_020_08442_8 crossref_primary_10_1017_jog_2019_94 crossref_primary_10_3390_biology12030382 crossref_primary_10_1080_10106049_2018_1516247 crossref_primary_10_1080_15481603_2021_1930730 crossref_primary_10_1016_j_accre_2021_05_001 crossref_primary_10_5194_tc_13_2537_2019 crossref_primary_10_3389_feart_2023_1219755 crossref_primary_10_1080_01431161_2020_1798552 crossref_primary_10_3389_fenvs_2022_788359 crossref_primary_10_1038_s41598_019_53733_x crossref_primary_10_1016_j_qsa_2024_100254 crossref_primary_10_1016_j_gloplacha_2023_104260 crossref_primary_10_1007_s11629_023_8266_4 crossref_primary_10_5194_hess_27_627_2023 crossref_primary_10_1007_s12040_021_01720_0 crossref_primary_10_1080_10106049_2022_2136254 crossref_primary_10_1007_s12524_024_01918_x crossref_primary_10_1017_jog_2019_20 crossref_primary_10_1080_01431161_2018_1506182 crossref_primary_10_1017_jog_2021_60 crossref_primary_10_3389_frwa_2022_909246 crossref_primary_10_3390_rs10020188 crossref_primary_10_3390_rs13193903 crossref_primary_10_1007_s10661_022_10577_9 crossref_primary_10_1038_s41586_019_1240_1 crossref_primary_10_1038_s41598_019_53055_y crossref_primary_10_3389_fenvs_2018_00030 crossref_primary_10_1007_s12524_021_01368_9 crossref_primary_10_1080_10106049_2022_2105403 crossref_primary_10_3389_feart_2022_949735 crossref_primary_10_1017_jog_2022_118 crossref_primary_10_1007_s10113_023_02112_4 crossref_primary_10_1080_10106049_2018_1506506 crossref_primary_10_1007_s12040_024_02290_7 crossref_primary_10_1017_aog_2017_27 crossref_primary_10_1017_jog_2020_42 crossref_primary_10_1038_s41558_018_0375_7 crossref_primary_10_1017_jog_2022_89 crossref_primary_10_1080_10106049_2021_1939437 crossref_primary_10_1007_s11356_022_19524_0 crossref_primary_10_1016_j_gsf_2021_101290 crossref_primary_10_5194_tc_12_1347_2018 crossref_primary_10_1016_j_scitotenv_2021_149533 crossref_primary_10_1080_10106049_2019_1648563 crossref_primary_10_1109_JSTARS_2021_3070362 crossref_primary_10_1038_ngeo2999 crossref_primary_10_1007_s11356_023_31537_x crossref_primary_10_1007_s00704_024_05003_8 crossref_primary_10_1117_1_JRS_16_024517 crossref_primary_10_1002_hyp_13354 crossref_primary_10_1016_j_geomorph_2019_05_009 crossref_primary_10_31988_SciTrends_44290 crossref_primary_10_1007_s12517_023_11201_x crossref_primary_10_1016_j_geomorph_2023_108686 crossref_primary_10_1007_s11356_023_29714_z crossref_primary_10_1007_s10661_021_09689_5 crossref_primary_10_1016_j_asr_2021_11_006 crossref_primary_10_1007_s12665_024_11529_x crossref_primary_10_1017_jog_2022_50 crossref_primary_10_1017_jog_2020_54 crossref_primary_10_1016_j_gloplacha_2018_03_014 crossref_primary_10_3390_rs12101658 crossref_primary_10_1017_jog_2021_84 crossref_primary_10_1109_JSTARS_2017_2771215 crossref_primary_10_1007_s12524_021_01455_x crossref_primary_10_1017_jog_2024_19 crossref_primary_10_5194_tc_13_2977_2019 crossref_primary_10_1017_jog_2018_70 crossref_primary_10_1016_j_coldregions_2024_104204 crossref_primary_10_1016_j_rse_2018_03_020 crossref_primary_10_1007_s41976_024_00133_z crossref_primary_10_1016_j_scitotenv_2020_141914 crossref_primary_10_1080_10106049_2020_1844309 crossref_primary_10_1007_s10661_022_09945_2 crossref_primary_10_1038_s41586_019_1071_0 crossref_primary_10_1080_2150704X_2017_1362123 crossref_primary_10_5194_tc_11_2003_2017 crossref_primary_10_1038_s41598_018_27014_y crossref_primary_10_1007_s12665_020_09044_w crossref_primary_10_1126_sciadv_aav7266 crossref_primary_10_54097_ajst_v5i3_7733 crossref_primary_10_1016_j_wasec_2021_100098 crossref_primary_10_3389_frwa_2022_874240 crossref_primary_10_1016_j_scitotenv_2019_07_086 crossref_primary_10_1016_j_rsase_2024_101446 crossref_primary_10_1017_jog_2019_5 crossref_primary_10_1016_j_polar_2018_11_005 crossref_primary_10_1038_s41598_022_20033_w crossref_primary_10_1016_j_isprsjprs_2017_05_011 |
Cites_doi | 10.3189/2014AoG66A104 10.5194/tc-7-1263-2013 10.1109/IGARSS.2011.6049701 10.1016/j.earscirev.2012.03.008 10.1016/j.epsl.2015.06.047 10.5194/tc-9-849-2015 10.1111/j.2007.0906-7590.05171.x 10.1038/nature11324 10.3189/2013JoG12J184 10.1002/wcc.393 10.5194/tc-7-569-2013 10.1016/j.gloplacha.2014.03.012 10.3189/2013JoG12J180 10.5194/tc-9-2071-2015 10.1109/JPROC.2009.2038947 10.1080/02757258709532086 10.5194/tc-8-941-2014 10.14358/PERS.72.3.261 10.3189/2014JoG13J045 10.3189/2012JoG11J175 10.3189/002214307784409306 10.3189/2016AoG71A570 10.3189/2015JoG14J102 10.1109/TGRS.2011.2140376 10.5194/tc-8-2195-2014 10.1002/2014GL061613 10.1080/15230430.2002.12003463 10.1109/36.673674 10.1109/JSTARS.2016.2581482 10.5194/tc-7-877-2013 10.5194/tc-10-1105-2016 10.1016/j.isprsjprs.2009.02.003 10.3189/2016AoG71A024 10.5194/tc-10-1845-2016 10.3389/feart.2016.00063 10.5194/tc-10-2075-2016 10.1109/TGRS.2007.900693 10.3189/2012JoG11J061 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2016 |
Copyright_xml | – notice: Copyright MDPI AG 2016 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs8121038 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Aerospace Database Publicly Available Content Database Ecology Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
EndPage | 1038 |
ExternalDocumentID | oai_doaj_org_article_8089968237cb430291c13467f2af66ef 4301341271 10_3390_rs8121038 |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c490t-fe1fc3110f15129920de81e99cfedc51a5544819c087d4b5ad8232f40de0afc23 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:47 EDT 2025 Fri Jul 11 15:44:43 EDT 2025 Fri Jul 11 05:24:23 EDT 2025 Fri Jul 25 12:18:29 EDT 2025 Tue Jul 01 03:57:20 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-fe1fc3110f15129920de81e99cfedc51a5544819c087d4b5ad8232f40de0afc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8970-9213 0000-0001-5169-1567 |
OpenAccessLink | https://doaj.org/article/8089968237cb430291c13467f2af66ef |
PQID | 1858316590 |
PQPubID | 2032338 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8089968237cb430291c13467f2af66ef proquest_miscellaneous_1880023534 proquest_miscellaneous_1868307568 proquest_journals_1858316590 crossref_primary_10_3390_rs8121038 crossref_citationtrail_10_3390_rs8121038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2016 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Azam (ref_2) 2014; 8 Rott (ref_16) 2010; 98 Hoffmann (ref_20) 2006; 72 Azam (ref_19) 2014; 55 Gardelle (ref_28) 2012; 58 Huss (ref_29) 2013; 7 Seehaus (ref_38) 2015; 427 Anderson (ref_6) 2016; 10 Sakai (ref_9) 2000; Volume 265 Gardelle (ref_14) 2013; 7 Basnett (ref_40) 2013; 59 Guo (ref_30) 2014; 118 Rankl (ref_24) 2016; 51 Sakai (ref_41) 2002; 34 Benn (ref_11) 2012; 114 (ref_35) 1987; 2 Krieger (ref_21) 2007; 45 Holzer (ref_33) 2015; 9 Hamran (ref_36) 2011; 49 Nuimura (ref_23) 2015; 9 Rott (ref_37) 2014; 41 Dehecq (ref_15) 2016; 9 Wagnon (ref_17) 2007; 53 Berthier (ref_1) 2012; 488 Schauwecker (ref_13) 2015; 61 ref_25 ref_22 Costantini (ref_26) 1998; 36 Vincent (ref_8) 2016; 10 Reid (ref_10) 2014; 60 (ref_32) 2009; 64 Vincent (ref_5) 2013; 7 Azam (ref_18) 2016; 57 ref_27 Dormann (ref_31) 2007; 30 Nuimura (ref_39) 2012; 58 Singh (ref_3) 2016; 7 Dobhal (ref_12) 2013; 59 Ragettli (ref_7) 2016; 10 Berthier (ref_34) 2016; 4 Wiltshire (ref_4) 2014; 8 |
References_xml | – volume: 55 start-page: 69 year: 2014 ident: ref_19 article-title: Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969 publication-title: Ann. Glaciol. doi: 10.3189/2014AoG66A104 – volume: 7 start-page: 1263 year: 2013 ident: ref_14 article-title: Region-wide glacier mass balances over the Pamir-Karakoram- Himalaya during 1999–2011 publication-title: Cryosphere doi: 10.5194/tc-7-1263-2013 – ident: ref_27 doi: 10.1109/IGARSS.2011.6049701 – volume: 114 start-page: 156 year: 2012 ident: ref_11 article-title: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2012.03.008 – volume: 427 start-page: 125 year: 2015 ident: ref_38 article-title: Changes in ice dynamics, elevation and mass discharge of Dinsmoor-Bombardier-Edgeworth glacier system, Antarctic Peninsula publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.06.047 – volume: 9 start-page: 849 year: 2015 ident: ref_23 article-title: The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers publication-title: Cryosphere doi: 10.5194/tc-9-849-2015 – volume: 30 start-page: 609 year: 2007 ident: ref_31 article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: A review publication-title: Ecography doi: 10.1111/j.2007.0906-7590.05171.x – volume: 488 start-page: 495 year: 2012 ident: ref_1 article-title: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas publication-title: Nature doi: 10.1038/nature11324 – volume: 59 start-page: 1035 year: 2013 ident: ref_40 article-title: The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India publication-title: J. Glaciol. doi: 10.3189/2013JoG12J184 – volume: 7 start-page: 393 year: 2016 ident: ref_3 article-title: Changing climate and glacio-hydrology in Indian Himalayan Region: A review publication-title: Wiley Interdiscip. Rev. Clim. Chang. doi: 10.1002/wcc.393 – volume: 7 start-page: 569 year: 2013 ident: ref_5 article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss publication-title: Cryosphere doi: 10.5194/tc-7-569-2013 – volume: 118 start-page: 97 year: 2014 ident: ref_30 article-title: Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009 publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2014.03.012 – volume: 59 start-page: 961 year: 2013 ident: ref_12 article-title: Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India publication-title: J. Glaciol. doi: 10.3189/2013JoG12J180 – volume: 9 start-page: 2071 year: 2015 ident: ref_33 article-title: Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data publication-title: Cryosphere doi: 10.5194/tc-9-2071-2015 – volume: 98 start-page: 752 year: 2010 ident: ref_16 article-title: Cold Regions hydrology high-resolution observatory for snow and cold land processes publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2038947 – volume: 2 start-page: 259 year: 1987 ident: ref_35 article-title: Applications of the interaction of microwaves with the natural snow cover publication-title: Remote Sens. Rev. doi: 10.1080/02757258709532086 – volume: 8 start-page: 941 year: 2014 ident: ref_4 article-title: Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region publication-title: Cryosphere doi: 10.5194/tc-8-941-2014 – volume: 72 start-page: 261 year: 2006 ident: ref_20 article-title: How Complementary are SRTM-X and C-Band digital elevation models? publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.3.261 – volume: 60 start-page: 3 year: 2014 ident: ref_10 article-title: Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy publication-title: J. Glaciol. doi: 10.3189/2014JoG13J045 – volume: 58 start-page: 419 year: 2012 ident: ref_28 article-title: Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing publication-title: J. Glaciol. doi: 10.3189/2012JoG11J175 – volume: 53 start-page: 603 year: 2007 ident: ref_17 article-title: Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya publication-title: J. Glaciol. doi: 10.3189/002214307784409306 – volume: 57 start-page: 328 year: 2016 ident: ref_18 article-title: Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India publication-title: Ann. Glaciol. doi: 10.3189/2016AoG71A570 – ident: ref_25 – volume: Volume 265 start-page: 119 year: 2000 ident: ref_9 article-title: Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas publication-title: Debris-Covered Glaciers – volume: 61 start-page: 675 year: 2015 ident: ref_13 article-title: Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya publication-title: J. Glaciol. doi: 10.3189/2015JoG14J102 – volume: 49 start-page: 4572 year: 2011 ident: ref_36 article-title: Phase center of L- band radar in polar snow and ice publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2140376 – volume: 8 start-page: 2195 year: 2014 ident: ref_2 article-title: Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements publication-title: Cryosphere doi: 10.5194/tc-8-2195-2014 – volume: 41 start-page: 8123 year: 2014 ident: ref_37 article-title: Mass changes of outlet glaciers along the Nordensjköld Coast, northern Antarctic Peninsula, based on TanDEM-X satellite measurements publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL061613 – volume: 34 start-page: 12 year: 2002 ident: ref_41 article-title: Distribution characteristics and energy balance of ice cliffs on debris-covered laciers, Nepal Himalaya publication-title: Arct. Antarct. Alp. Res. doi: 10.1080/15230430.2002.12003463 – volume: 36 start-page: 813 year: 1998 ident: ref_26 article-title: A novel phase unwrapping method based on network programming publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.673674 – volume: 9 start-page: 3870 year: 2016 ident: ref_15 article-title: Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: Impact of the X-band interferometric Bias publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2581482 – volume: 7 start-page: 877 year: 2013 ident: ref_29 article-title: Density assumptions for converting geodetic glacier volume change to mass change publication-title: Cryosphere doi: 10.5194/tc-7-877-2013 – volume: 10 start-page: 1105 year: 2016 ident: ref_6 article-title: Modeling debris-covered glaciers: response to steady debris deposition publication-title: Cryosphere doi: 10.5194/tc-10-1105-2016 – volume: 64 start-page: 398 year: 2009 ident: ref_32 article-title: Accuracy assessment of digital elevation models by means of robust statistical methods publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.02.003 – volume: 51 start-page: 273 year: 2016 ident: ref_24 article-title: Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models publication-title: Ann. Glaciol. doi: 10.3189/2016AoG71A024 – volume: 10 start-page: 1845 year: 2016 ident: ref_8 article-title: Reduced melt on debris-covered glaciers: Investigations from Changri Nup Glacier, Nepal publication-title: Cryosphere doi: 10.5194/tc-10-1845-2016 – ident: ref_22 – volume: 4 start-page: 63 year: 2016 ident: ref_34 article-title: Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area publication-title: Front. Earth Sci. doi: 10.3389/feart.2016.00063 – volume: 10 start-page: 2075 year: 2016 ident: ref_7 article-title: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal publication-title: Cryosphere doi: 10.5194/tc-10-2075-2016 – volume: 45 start-page: 3317 year: 2007 ident: ref_21 article-title: TanDEM-X: A satellite formation for high-resolution SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.900693 – volume: 58 start-page: 648 year: 2012 ident: ref_39 article-title: Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008 publication-title: J. Glaciol. doi: 10.3189/2012JoG11J061 |
SSID | ssj0000331904 |
Score | 2.4405563 |
Snippet | Previous studies have shown contrasting glacier elevation and mass changes in the sub-regions of high-mountain Asia. However, the elevation changes on an... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1038 |
SubjectTerms | Bias Catchment scale Cliffs Climate change Climatic conditions Debris Detritus Elevation Firn geodetic glacier mass balance Glacial drift glacier elevation change Glaciers Ice Ice cover InSAR processing Lahaul-Spiti Lakes Mapping Mass balance Melting Mountains Penetration Ponds Remote sensing SRTM Superhigh frequencies TanDEM-X Thinning X-band |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoHNoL4lV1eckgDiA1Io4dr3NCgBaWqkUVLSq3yOsHrBSSZR8H_j0ziTcgFXHLY5RInqdnPN8QcsAcOAbueWQ995GwmY00h81KdyCMA5erXN3F_-ta9m_Fj7v0LiTcJuFY5dwm1obaVgZz5MfgVxRnMs3ik9FThFOjsLoaRmh8IktgghVsvpbOete_b9osS8xBxGLRQApx2N8fjycKMbOwH-WNI6rx-v8zx7WPuVghyyE4pKcNN1fJgivXyOcwp_zheZ1UvcI1OVTatAXQG4wVaeXpZaENjrWmw5JCUEd_6gc9K6I_o-F0SA__NYAItD981IV-1t_pVQmScUSbNkVat36Dl06oLi3FC7zjG-T2ovf3vB-FkQmREVk8jbxj3nBw6b725FkSW6eYyzLjnTUp0xA9CAgCTKy6VgxSbRWEVF4AWay9SfhXslhWpftGaOJVlqC6Mm6EE0x3gZsSvo6VTWdVhxzO1y83AU8cx1oUOewrcKnzdqk7ZL8lHTUgGu8RnSETWgLEva4fVOP7PKhRrrBKKRFgxwwEj5OMGcbB1vtEeymd75DtOQvzoIyT_FV0OmSvfQ1qhLURXbpqhjRSgblLpfqIRtXwQFxsfvybLfIFeCSbUy_bZHE6nrkdiF2mg90goC_Z3Ooz priority: 102 providerName: ProQuest |
Title | Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013 |
URI | https://www.proquest.com/docview/1858316590 https://www.proquest.com/docview/1868307568 https://www.proquest.com/docview/1880023534 https://doaj.org/article/8089968237cb430291c13467f2af66ef |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4VOJRLVWirhkK0VD1QqRZe73qzPgJNSCtAFRSVm7XZh4hkHESSA7f-h_7D_hJmvCaK1KpcevJrZK3mPV7PNwAfuMfAIIJIXBAhka5wiRFYrPRG0noMudo3XfynZ2p4Kb9e5VdLo77on7AIDxwZt69pX0oRpIodSZFmBbdcoHWHzASlfCDvizFvqZhqfLBA1UplhBISWNfv3001YWVRH8pSAGpw-v9ww01sGbyEF21SyA7iYjbgma834Xk7n_z6_hVM-5WP305ZbAdg55Qjsklgx5WxNM6ajWuGyRw7MddmXiUXt-PZmO39iEAIbDi-MZW5N5_Ylxo14iOL7YmMWmh-__yF8TljpnaMTuK1eA2Xg_73o2HSjktIrCzSWRI8D1ZgOA9NFC-y1HnNfVHY4J3NucHMQWICYFPdc3KUG4dczYJEstQEm4k3sFpPav8WWBZ0kZGpcmGll9z0UJIK3067mt7pDuw98rC0LZY4jbSoSqwpiN3lgt0deL8gvY0AGn8jOiRBLAgI87q5gZpQtppQPqUJHdh-FGPZGuK0xHREC67yIu3A7uIxmhDti5jaT-ZEozS6ulzpf9HoBhpIyK3_sdZ3sI6SVPG_mG1Ynd3N_Q5mN7NRF1b04LgLawefT08u8HjYP_t23m3U-wH17fem |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXxFMslNYgkIpE1CR2vPYBVTy63aXbHqAVvQWvH3SlkCz7ULV_it_IjPMACdRbb3mMEsmemW_s8XxDyMvEATAwzyLrmY-4VTbSDBYr_Qk3DiBXulDFf3Iqhuf800V2sUF-tbUweKyy9YnBUdvK4B75PuCKZInIVHww-xlh1yjMrrYtNGq1OHbrK1iyLd6OPsL8vkrTweHZh2HUdBWIDFfxMvIu8YYB6vkAdiqNrZOJU8p4Z02WaABYDjhpYtm3fJJpKyHq8BzEYu0NEh2Ay7_FGVNoUXJw1O3pxAwUOuY1gRG8j_fnC4kMXVj98hfshe4A_zj_gGiDu-ROE4rSd7Xu3CMbrrxPtpqu6JfrB6Q6LFy9Y0vrIgT6GSNTWnl6VGiDTbTptKQQQtKxvtSrIvoymy6ndO9rTb9Ah9MfutBr_YaOStDD17QuiqSh0BxigpTq0lK8wDv2kJzfyFA-IptlVbrHhKZeqhSdQ8IMdzzRfdAdAV_HPKqzskf22vHLTcNejk00ihxWMTjUeTfUPfKiE53VlB3_E3qPk9AJIMt2eFDNv-eN0eYSc6IC6XzMhLM4VYlJGCCLT7UXwvke2W6nMG9Mf5H_UdQeed69BqPFTIwuXbVCGSHBuWZCXicjAxkR40-u_80u2RqenYzz8ej0-Cm5DfMl6vM222RzOV-5ZxA1LSc7QVUp-XbTtvEby14l1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB5VqQS8IMohAgUWBFKRsGp71876AVWUJiS0RFWhat_MZg8aydghh1D-Wn9dZ3yBBOpb3-J4ZFs7xzd7zDcArwOLwMAd94zjzhMmMZ7iOFnpTYS2CLnSllX8X8bx8FR8Po_ON-CyqYWhY5VNTCwDtSk0rZHvIq5IHsRR4u-6-ljE8cFgb_bLow5StNPatNOoTOTQrn_j9G3xfnSAun4ThoP-t49Dr-4w4GmR-EvP2cBpjgjoSuBLQt9YGdgk0c4aHQUKwVYgZmpf9oyYRMpIzECcQDFfOU2kBxj-N3s4K_I7sLnfHx-ftCs8Pkfz9kVFZ8Q5fvh8IYmvi2ph_gLBslfAP1BQ4tvgHtytE1P2obKkLdiw-X24XfdIv1g_gKKf2Wr9llUlCeyE8lRWOPYpU5paarNpzjChZEfqQq0y7-tsupyynbOKjIENpz9VptbqHRvlaJVvWVUiycqyc8wQQqZyw-gHXfGHcHojg_kIOnmR28fAQieTkEJFwLWwIlA9tKQYn067qtbILuw045fqmsucWmpkKc5paKjTdqi78KoVnVUEHv8T2icltALEuV3-Ucx_pLULp5J2SGMi99ETwf0wCXTAEWdcqFwcW9eF7UaFaR0IFukfs-3Cy_Y2ujDty6jcFiuSiSWG2iiW18nIkpqIiyfXv-YF3EK_SI9G48OncAfVFVeHb7ahs5yv7DNMoZaT57WtMvh-0-5xBYgIK2Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elevation+Change+Rates+of+Glaciers+in+the+Lahaul-Spiti+%28Western+Himalaya%2C+India%29+during+2000%E2%80%932012+and+2012%E2%80%932013&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Saurabh+Vijay&rft.au=Matthias+Braun&rft.date=2016-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=8&rft.issue=12&rft.spage=1038&rft_id=info:doi/10.3390%2Frs8121038&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8089968237cb430291c13467f2af66ef |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |