Concomitant knockdown resistance allele, L982W + F1534C, in Aedes aegypti has the potential to impose fitness costs without selection pressure

The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control mosquitoes. The voltage-gated sodium channel (Vgsc) is the target of pyrethroids, and amino acid substitutions in this channel attenuate the effects...

Full description

Saved in:
Bibliographic Details
Published inPesticide Biochemistry and Physiology Vol. 193; p. 105422
Main Authors Uemura, Nozomi, Furutani, Shogo, Tomita, Takashi, Itokawa, Kentaro, Komagata, Osamu, Kasai, Shinji
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2023
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control mosquitoes. The voltage-gated sodium channel (Vgsc) is the target of pyrethroids, and amino acid substitutions in this channel attenuate the effects of pyrethroids. This is known as knockdown resistance (kdr). Recently, we found that Ae. aegypti with concomitant Vgsc mutations L982W + F1534C exhibit extremely high levels of pyrethroid resistance. L982 is located in a highly conserved region of Vgsc in vertebrates and invertebrates. This study aimed to evaluate the viability of Ae. aegypti, with concomitant L982W + F1534C mutations in Vgsc. We crossed a resistant strain (FTWC) with a susceptible strain (SMK) and reared it up to 15 generations. We developed a rapid and convenient genotyping method using a fluorescent probe (Eprobe) to easily and accurately distinguish between three genotypes: wild-type and mutant homozygotes, and heterozygotes. As generations progressed, the proportion of wild-type homozygotes increased, and only 2.9% of mutant homozygotes were present at the 15th generation; the allele frequencies of L982W + F1534C showed a decreasing trend over generations. These observations show that these concomitant mutations have some fitness costs, suggesting that mosquitoes can potentially recover pyrethroid susceptibility over time without pyrethroid selection pressure in the field. [Display omitted] •Eprobe genotyped mosquito genome samples in a short time and at low cost.•The allele frequency of L982W + F1534C gradually decreased over generations.•In the absence of insecticides, there may be fitness costs in the FTWC strains.
AbstractList The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control mosquitoes. The voltage-gated sodium channel (Vgsc) is the target of pyrethroids, and amino acid substitutions in this channel attenuate the effects of pyrethroids. This is known as knockdown resistance (kdr). Recently, we found that Ae. aegypti with concomitant Vgsc mutations L982W + F1534C exhibit extremely high levels of pyrethroid resistance. L982 is located in a highly conserved region of Vgsc in vertebrates and invertebrates. This study aimed to evaluate the viability of Ae. aegypti, with concomitant L982W + F1534C mutations in Vgsc. We crossed a resistant strain (FTWC) with a susceptible strain (SMK) and reared it up to 15 generations. We developed a rapid and convenient genotyping method using a fluorescent probe (Eprobe) to easily and accurately distinguish between three genotypes: wild-type and mutant homozygotes, and heterozygotes. As generations progressed, the proportion of wild-type homozygotes increased, and only 2.9% of mutant homozygotes were present at the 15th generation; the allele frequencies of L982W + F1534C showed a decreasing trend over generations. These observations show that these concomitant mutations have some fitness costs, suggesting that mosquitoes can potentially recover pyrethroid susceptibility over time without pyrethroid selection pressure in the field.
The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control mosquitoes. The voltage-gated sodium channel (Vgsc) is the target of pyrethroids, and amino acid substitutions in this channel attenuate the effects of pyrethroids. This is known as knockdown resistance (kdr). Recently, we found that Ae. aegypti with concomitant Vgsc mutations L982W + F1534C exhibit extremely high levels of pyrethroid resistance. L982 is located in a highly conserved region of Vgsc in vertebrates and invertebrates. This study aimed to evaluate the viability of Ae. aegypti, with concomitant L982W + F1534C mutations in Vgsc. We crossed a resistant strain (FTWC) with a susceptible strain (SMK) and reared it up to 15 generations. We developed a rapid and convenient genotyping method using a fluorescent probe (Eprobe) to easily and accurately distinguish between three genotypes: wild-type and mutant homozygotes, and heterozygotes. As generations progressed, the proportion of wild-type homozygotes increased, and only 2.9% of mutant homozygotes were present at the 15th generation; the allele frequencies of L982W + F1534C showed a decreasing trend over generations. These observations show that these concomitant mutations have some fitness costs, suggesting that mosquitoes can potentially recover pyrethroid susceptibility over time without pyrethroid selection pressure in the field.
The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control mosquitoes. The voltage-gated sodium channel (Vgsc) is the target of pyrethroids, and amino acid substitutions in this channel attenuate the effects of pyrethroids. This is known as knockdown resistance (kdr). Recently, we found that Ae. aegypti with concomitant Vgsc mutations L982W + F1534C exhibit extremely high levels of pyrethroid resistance. L982 is located in a highly conserved region of Vgsc in vertebrates and invertebrates. This study aimed to evaluate the viability of Ae. aegypti, with concomitant L982W + F1534C mutations in Vgsc. We crossed a resistant strain (FTWC) with a susceptible strain (SMK) and reared it up to 15 generations. We developed a rapid and convenient genotyping method using a fluorescent probe (Eprobe) to easily and accurately distinguish between three genotypes: wild-type and mutant homozygotes, and heterozygotes. As generations progressed, the proportion of wild-type homozygotes increased, and only 2.9% of mutant homozygotes were present at the 15th generation; the allele frequencies of L982W + F1534C showed a decreasing trend over generations. These observations show that these concomitant mutations have some fitness costs, suggesting that mosquitoes can potentially recover pyrethroid susceptibility over time without pyrethroid selection pressure in the field. [Display omitted] •Eprobe genotyped mosquito genome samples in a short time and at low cost.•The allele frequency of L982W + F1534C gradually decreased over generations.•In the absence of insecticides, there may be fitness costs in the FTWC strains.
The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control mosquitoes. The voltage-gated sodium channel (Vgsc) is the target of pyrethroids, and amino acid substitutions in this channel attenuate the effects of pyrethroids. This is known as knockdown resistance (kdr). Recently, we found that Ae. aegypti with concomitant Vgsc mutations L982W + F1534C exhibit extremely high levels of pyrethroid resistance. L982 is located in a highly conserved region of Vgsc in vertebrates and invertebrates. This study aimed to evaluate the viability of Ae. aegypti, with concomitant L982W + F1534C mutations in Vgsc. We crossed a resistant strain (FTWC) with a susceptible strain (SMK) and reared it up to 15 generations. We developed a rapid and convenient genotyping method using a fluorescent probe (Eprobe) to easily and accurately distinguish between three genotypes: wild-type and mutant homozygotes, and heterozygotes. As generations progressed, the proportion of wild-type homozygotes increased, and only 2.9% of mutant homozygotes were present at the 15th generation; the allele frequencies of L982W + F1534C showed a decreasing trend over generations. These observations show that these concomitant mutations have some fitness costs, suggesting that mosquitoes can potentially recover pyrethroid susceptibility over time without pyrethroid selection pressure in the field.The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control mosquitoes. The voltage-gated sodium channel (Vgsc) is the target of pyrethroids, and amino acid substitutions in this channel attenuate the effects of pyrethroids. This is known as knockdown resistance (kdr). Recently, we found that Ae. aegypti with concomitant Vgsc mutations L982W + F1534C exhibit extremely high levels of pyrethroid resistance. L982 is located in a highly conserved region of Vgsc in vertebrates and invertebrates. This study aimed to evaluate the viability of Ae. aegypti, with concomitant L982W + F1534C mutations in Vgsc. We crossed a resistant strain (FTWC) with a susceptible strain (SMK) and reared it up to 15 generations. We developed a rapid and convenient genotyping method using a fluorescent probe (Eprobe) to easily and accurately distinguish between three genotypes: wild-type and mutant homozygotes, and heterozygotes. As generations progressed, the proportion of wild-type homozygotes increased, and only 2.9% of mutant homozygotes were present at the 15th generation; the allele frequencies of L982W + F1534C showed a decreasing trend over generations. These observations show that these concomitant mutations have some fitness costs, suggesting that mosquitoes can potentially recover pyrethroid susceptibility over time without pyrethroid selection pressure in the field.
ArticleNumber 105422
Author Itokawa, Kentaro
Furutani, Shogo
Tomita, Takashi
Uemura, Nozomi
Komagata, Osamu
Kasai, Shinji
Author_xml – sequence: 1
  givenname: Nozomi
  surname: Uemura
  fullname: Uemura, Nozomi
– sequence: 2
  givenname: Shogo
  surname: Furutani
  fullname: Furutani, Shogo
– sequence: 3
  givenname: Takashi
  surname: Tomita
  fullname: Tomita, Takashi
– sequence: 4
  givenname: Kentaro
  surname: Itokawa
  fullname: Itokawa, Kentaro
– sequence: 5
  givenname: Osamu
  surname: Komagata
  fullname: Komagata, Osamu
– sequence: 6
  givenname: Shinji
  surname: Kasai
  fullname: Kasai, Shinji
  email: kasacin@niid.go.jp
BackLink https://cir.nii.ac.jp/crid/1871991017376949376$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/37247997$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxi1URLeFN0DIBw5INIv_JjEHpGrVAtJKXEAcLceZsN4mdogdqr4Fj9Bn6ZPVq7QXDsBlLI1-38zo-3yCjnzwgNBLStaU0PLdfj1CTM24ZoTx3JKCsSdoRYmShVJcHaEVIaIuuKzkMTqJcU8IUYKoZ-iYV0xUSlUr9HsTvA2DS8YnfOWDvWrDtccTRBdzzwI2fQ89nOGtqtn3u9u3d7eXVHKxOcPO43NoIWIDP27G5PDORJx2gMeQwCdnepwCdsMYIuDOJQ8xYhtiivjapV2YE455tE0ueDzmlXGe4Dl62pk-wouH9xR9u7z4uvlUbL98_Lw53xZWKJKKTlghhW3rmsq2EpaUjJZNaxsCQCS3RNmaK8lly0VnTNmo0hJumrZprJUC-Cl6s8wdp_Bzzk7qwUULfW88hDlqVnPBKipL9R8oI6qiipUZffWAzs0ArR4nN5jpRj8anoH3C2CnEOMEnbbZ-4MDaTKu15ToQ7p6r5d09SFdvaSbxeIP8eP8f8heLzLvXF53qLTO96osqXhVKqFyzdiHBYNs-y8Hk47WQf4CrZtySLoN7u977gH7A80T
CitedBy_id crossref_primary_10_1371_journal_pntd_0012768
crossref_primary_10_1007_s13355_024_00880_x
crossref_primary_10_1016_j_chemosphere_2024_142910
crossref_primary_10_1016_j_cois_2024_101178
crossref_primary_10_1186_s13071_023_06066_8
crossref_primary_10_24072_pcjournal_497
Cites_doi 10.3390/insects7040060
10.7554/eLife.15272
10.1126/science.aaf8160
10.1584/jpestics.10.141
10.1371/journal.pntd.0002948
10.2144/98254bm09
10.1016/j.pestbp.2013.01.006
10.1371/journal.pntd.0006933
10.1038/hdy.2015.33
10.1007/s00436-016-4952-2
10.1371/journal.pone.0202429
10.7883/yoken.64.217
10.1371/journal.pntd.0007615
10.1371/journal.pone.0243319
10.1186/s13071-020-04238-4
10.1016/j.ibmb.2007.02.013
10.3892/or.2015.3883
10.1111/j.1365-3156.2009.02378.x
10.1093/jme/tjy037
10.1126/sciadv.abq7345
10.4269/ajtmh.2009.81.108
10.1186/s13071-016-1713-0
10.1016/j.pestbp.2016.03.005
10.1111/vox.13251
10.1007/s11356-018-2394-3
10.1371/journal.pone.0150577
10.1371/journal.pone.0060878
10.1371/journal.pntd.0009271
10.1111/eva.12643
10.1016/j.pestbp.2019.07.011
10.1146/annurev-ento-011118-112420
10.1002/ps.4609
10.1371/journal.pone.0070942
10.1038/sj.hdy.6800285
10.1186/1756-3305-4-5
10.1371/journal.pone.0171225
10.2807/1560-7917.ES.2016.21.20.30234
10.3390/insects10090265
10.1186/1471-2148-8-104
10.1186/1471-2148-9-42
10.1038/nature12060
10.4269/ajtmh.2010.09-0623
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.pestbp.2023.105422
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1095-9939
ExternalDocumentID 37247997
10_1016_j_pestbp_2023_105422
S0048357523000871
Genre Journal Article
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYJJ
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
KOM
LG5
LW8
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSH
SSU
SSZ
T5K
UHS
UNMZH
WH7
WUQ
XOL
XPP
ZMT
ZU3
~G-
~KM
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
RYH
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c490t-f4c454cd8815d74c06216bdcb0ee053c09c839535d34faa6b96c03abdbbcc54e3
IEDL.DBID .~1
ISSN 0048-3575
1095-9939
IngestDate Wed Jul 02 04:54:40 EDT 2025
Fri Jul 11 02:53:35 EDT 2025
Mon Jul 21 05:43:14 EDT 2025
Tue Jul 01 00:49:35 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Fri Jun 27 00:37:54 EDT 2025
Sun Apr 06 06:54:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Kdr
Aedes aegypti
Allele frequency
Fitness cost
Eprobe
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-f4c454cd8815d74c06216bdcb0ee053c09c839535d34faa6b96c03abdbbcc54e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37247997
PQID 2820971926
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834271569
proquest_miscellaneous_2820971926
pubmed_primary_37247997
crossref_citationtrail_10_1016_j_pestbp_2023_105422
crossref_primary_10_1016_j_pestbp_2023_105422
nii_cinii_1871991017376949376
elsevier_sciencedirect_doi_10_1016_j_pestbp_2023_105422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Pesticide Biochemistry and Physiology
PublicationTitleAlternate Pestic Biochem Physiol
PublicationYear 2023
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Chan, Lok (bb0045) 1985
Smith, Sears, Sun, Mertz, Kasai, Scott (bb0200) 2019; 160
Nsoesie, Kraemer, Golding, Pigott, Brady, Moyes, Johansson, Gething, Velayudhan, Khan, Hay, Brownstein (bb0130) 2016; 21
Tsuchiya, Tabe, Ai, Ohkawa, Usui, Yuri, Misawa, Morishita, Takaku, Kakimoto, Yang, Matsushita, Hanami, Yamanaka, Okuzawa, Horii, Hayashizaki, Ohsaka (bb0225) 2018; 13
Kasai, Itokawa, Uemura, Takaoka, Furutani, Maekawa, Kobayashi, Imanishi-Kobayashi, Amoa-Bosompem, Murota, Higa, Kawada, Minakawa, Cuong, Yen, Phong, Keo, Kang, Miura, Ng, Teng, Dadzie, Subekti, Mulyatno, Sawabe, Tomita, Komagata (bb0095) 2022; 8
Bhatt, Gething, Brady, Messina, Farlow, Moyes, Drake, Brownstein, Hoen, Sankoh, Myers, George, Jaenisch, Wint, Simmons, Scott, Farrar, Hay (bb0030) 2013; 496
Lima, Paiva, de Araújo, da Silva, da Silva, de Oliveira, Santana, Barbosa, de Paiva Neto, Goulart, Wilding, Ayres, de Melo Santos (bb0105) 2011; 4
Hanami, Tanabe, Hanashi, Yamaguchi, Nakata, Mitani, Kimura, Soma, Usui, Isobe, Ogawa, Itoh, Hayashizaki, Kondo (bb0070) 2020; 15
Hardstone, Lazzaro, Scott (bb0075) 2009; 9
Smith, Kasai, Scott (bb0190) 2016; 133
Plernsub, Saingamsook, Yanola, Lumjuan, Tippawangkosol, Sukontason, Walton, Somboon (bb0145) 2016; 9
Rinkevich, Hamm, Geden, Scott (bb0155) 2007; 37
Atsumi, Hanami, Enokida, Ogawa, Delobel, Mitani, Kimura, Soma, Tagami, Takase, Ichihara, Takeyoshi, Usui, Hayashizaki, Shimizu (bb0015) 2015; 33
Martins, Lima, Peixoto, Valle (bb0110) 2009; 14
Miyazaki, Ohyama, Dunlap, Matsumura (bb0125) 1996; 252
Platt, Kwiatkowska, Irving, Diabaté, Dabire, Wondji (bb0135) 2015; 115
Hanami, Delobel, Kanamori, Tanaka, Kimura, Nakasone, Soma, Hayashizaki, Usui, Harbers (bb0065) 2013; 8
Son-Un, Choovattanapakorn, Saingamsook, Yanola, Lumjuan, Walton, Somboon (bb0215) 2018; 55
Saingamsook, Yanola, Lumjuan, Walton, Somboon (bb0170) 2019; 10
Plernsub, Stenhouse, Tippawangkosol, Lumjuan, Yanola, Choochote, Somboon (bb0140) 2013; 30
Soejima, Koda (bb0210) 2022; 117
Shono (bb0185) 1985; 10
Alvarez-Gonzalez, Briceño, Ponce-Garcia, Villanueva-Segura, Davila-Barboza, Lopez-Monroy, Gutierrez-Rodriguez, Contreras-Perera, Rodriguez-Sanchez, Flores (bb0010) 2017; 73
Rigby, Rašić, Peatey, Hugo, Beebe, Devine (bb0150) 2020; 13
Harris, Rajatileka, Ranson (bb0080) 2010; 83
Takase, Usui, Shimizu, Kimura, Ichihara, Ohkawa, Atsumi, Enokida, Nakazawa, Obayashi, Ohtaki, Nagashima, Mitani, Takeyoshi (bb0220) 2017; 12
Brito, Linss, Lima-Camara, Belinato, Peixoto, Lima, Valle, Martins (bb0040) 2013; 8
Dusfour, Vontas, David, Weetman, Fonseca, Corbel, Raghavendra, Coulibaly, Martins, Kasai, Chandre (bb0055) 2019; 13
Messina, Kraemer, Brady, Pigott, Shearer, Weiss, Golding, Ruktanonchai, Gething, Cohn, Brownstein, Khan, Tatem, Jaenisch, Murray, Marinho, Scott, Hay (bb0120) 2016; 5
Rinkevich, Leichter, Lazo, Hardstone, Scott (bb0160) 2013; 105
Berticat, Bonnet, Duchon, Agnew, Weill, Corbel (bb0025) 2008; 8
Rudbeck, Dissing (bb0165) 1998; 25
Du, Nomura, Zhorov, Dong (bb0050) 2016; 7
Lessler, Chaisson, Kucirka, Bi, Grantz, Salje, Carcelen, Ott, Sheffield, Ferguson, Cummings, Metcalf, Rodriguez-Barraquer (bb0100) 2016; 353
Foster, Young, Williamson, Duce, Denholm, Devine (bb0060) 2003; 91
Kasai, Ng, Lam-Phua, Tang, Itokawa, Komagata, Kobayashi, Tomita (bb0085) 2011; 64
Martins, Lins, Linss, Peixoto, Valle (bb0115) 2009; 81
Kasai, Komagata, Itokawa, Shono, Ng, Kobayashi, Tomita (bb0090) 2014; 8
Smith, Tyagi, Kasai, Scott (bb0195) 2018; 12
Abbas, Shah, Shad, Iqbal, Razaq (bb0005) 2016; 115
Sayono, Hidayati, Fahri, Sumanto, Dharmana, Hadisaputro, Asih, Syafruddin (bb0175) 2016; 11
Bajda, Riga, Wybouw, Papadaki, Ouranou, Fotoukkiaii, Vontas, Van Leeuwen (bb0020) 2018; 11
Smith, Silva, Chen, Harrington, Scott (bb0205) 2021; 15
Scott (bb0180) 2019; 64
Bilal, Freed, Ashraf, Zaka, Khan (bb0035) 2018; 25
Hanami (10.1016/j.pestbp.2023.105422_bb0070) 2020; 15
Dusfour (10.1016/j.pestbp.2023.105422_bb0055) 2019; 13
Miyazaki (10.1016/j.pestbp.2023.105422_bb0125) 1996; 252
Berticat (10.1016/j.pestbp.2023.105422_bb0025) 2008; 8
Bilal (10.1016/j.pestbp.2023.105422_bb0035) 2018; 25
Smith (10.1016/j.pestbp.2023.105422_bb0205) 2021; 15
Sayono (10.1016/j.pestbp.2023.105422_bb0175) 2016; 11
Scott (10.1016/j.pestbp.2023.105422_bb0180) 2019; 64
Kasai (10.1016/j.pestbp.2023.105422_bb0085) 2011; 64
Takase (10.1016/j.pestbp.2023.105422_bb0220) 2017; 12
Abbas (10.1016/j.pestbp.2023.105422_bb0005) 2016; 115
Bajda (10.1016/j.pestbp.2023.105422_bb0020) 2018; 11
Rudbeck (10.1016/j.pestbp.2023.105422_bb0165) 1998; 25
Smith (10.1016/j.pestbp.2023.105422_bb0190) 2016; 133
Martins (10.1016/j.pestbp.2023.105422_bb0115) 2009; 81
Rinkevich (10.1016/j.pestbp.2023.105422_bb0160) 2013; 105
Brito (10.1016/j.pestbp.2023.105422_bb0040) 2013; 8
Kasai (10.1016/j.pestbp.2023.105422_bb0095) 2022; 8
Nsoesie (10.1016/j.pestbp.2023.105422_bb0130) 2016; 21
Soejima (10.1016/j.pestbp.2023.105422_bb0210) 2022; 117
Martins (10.1016/j.pestbp.2023.105422_bb0110) 2009; 14
Plernsub (10.1016/j.pestbp.2023.105422_bb0145) 2016; 9
Saingamsook (10.1016/j.pestbp.2023.105422_bb0170) 2019; 10
Lessler (10.1016/j.pestbp.2023.105422_bb0100) 2016; 353
Son-Un (10.1016/j.pestbp.2023.105422_bb0215) 2018; 55
Alvarez-Gonzalez (10.1016/j.pestbp.2023.105422_bb0010) 2017; 73
Hanami (10.1016/j.pestbp.2023.105422_bb0065) 2013; 8
Chan (10.1016/j.pestbp.2023.105422_bb0045) 1985
Du (10.1016/j.pestbp.2023.105422_bb0050) 2016; 7
Smith (10.1016/j.pestbp.2023.105422_bb0195) 2018; 12
Lima (10.1016/j.pestbp.2023.105422_bb0105) 2011; 4
Harris (10.1016/j.pestbp.2023.105422_bb0080) 2010; 83
Rigby (10.1016/j.pestbp.2023.105422_bb0150) 2020; 13
Platt (10.1016/j.pestbp.2023.105422_bb0135) 2015; 115
Shono (10.1016/j.pestbp.2023.105422_bb0185) 1985; 10
Bhatt (10.1016/j.pestbp.2023.105422_bb0030) 2013; 496
Smith (10.1016/j.pestbp.2023.105422_bb0200) 2019; 160
Hardstone (10.1016/j.pestbp.2023.105422_bb0075) 2009; 9
Messina (10.1016/j.pestbp.2023.105422_bb0120) 2016; 5
Rinkevich (10.1016/j.pestbp.2023.105422_bb0155) 2007; 37
Tsuchiya (10.1016/j.pestbp.2023.105422_bb0225) 2018; 13
Atsumi (10.1016/j.pestbp.2023.105422_bb0015) 2015; 33
Kasai (10.1016/j.pestbp.2023.105422_bb0090) 2014; 8
Foster (10.1016/j.pestbp.2023.105422_bb0060) 2003; 91
Plernsub (10.1016/j.pestbp.2023.105422_bb0140) 2013; 30
References_xml – volume: 9
  start-page: 42
  year: 2009
  ident: bb0075
  article-title: The effect of three environmental conditions on the fitness of cytochrome P450 monooxygenase-mediated permethrin resistance in
  publication-title: BMC Evol. Biol.
– volume: 7
  year: 2016
  ident: bb0050
  article-title: Sodium Channel Mutations and Pyrethroid Resistance in
  publication-title: Insects
– volume: 115
  year: 2016
  ident: bb0005
  article-title: Biological trait analysis and stability of lambda-cyhalothrin resistance in the house fly,
  publication-title: Parasitol. Res.
– volume: 13
  year: 2019
  ident: bb0055
  article-title: Management of insecticide resistance in the major
  publication-title: PLoS Negl. Trop. Dis.
– volume: 55
  start-page: 975
  year: 2018
  end-page: 981
  ident: bb0215
  article-title: Effect of relaxation of deltamethrin pressure on metabolic resistance in a pyrethroid-resistant
  publication-title: J. Med. Entomol.
– volume: 15
  year: 2020
  ident: bb0070
  article-title: Scanning single-molecule counting system for Eprobe with highly simple and effective approach
  publication-title: PLoS One
– volume: 10
  start-page: 265
  year: 2019
  ident: bb0170
  article-title: Investigation of relative development and reproductivity fitness cost in three insecticide-resistant strains of A
  publication-title: Insects
– volume: 11
  start-page: 1540
  year: 2018
  end-page: 1553
  ident: bb0020
  article-title: Fitness costs of key point mutations that underlie acaricide target-site resistance in the two-spotted spider mite
  publication-title: Evol. Appl.
– volume: 91
  start-page: 98
  year: 2003
  end-page: 106
  ident: bb0060
  article-title: Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies
  publication-title: Heredity (Edinb)
– volume: 30
  start-page: 621
  year: 2013
  end-page: 630
  ident: bb0140
  article-title: Relative developmental and reproductive fitness associated with F1534C homozygous knockdown resistant gene in
  publication-title: Trop. Biomed.
– volume: 11
  year: 2016
  ident: bb0175
  article-title: Distribution of voltage-gated sodium channel (Nav) Alleles among the
  publication-title: PLoS One
– volume: 117
  start-page: 741
  year: 2022
  end-page: 745
  ident: bb0210
  article-title: Rapid genotyping of 508G>A (rs3745635) and 1067T>A (rs3894326) of FUT3 by a duplex Eprobe-mediated melting curve analysis
  publication-title: Vox Sang.
– volume: 14
  start-page: 1351
  year: 2009
  end-page: 1355
  ident: bb0110
  article-title: Frequency of Val1016Ile mutation in the voltage-gated sodium channel gene of
  publication-title: Tropical Med. Int. Health
– volume: 133
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0190
  article-title: Pyrethroid resistance in
  publication-title: Pestic. Biochem. Physiol.
– volume: 5
  year: 2016
  ident: bb0120
  article-title: Mapping global environmental suitability for Zika virus
  publication-title: Elife
– volume: 12
  year: 2017
  ident: bb0220
  article-title: Highly sensitive detection of a HER2 12-base pair duplicated insertion mutation in lung cancer using the Eprobe-PCR method
  publication-title: PLoS One
– volume: 252
  start-page: 61
  year: 1996
  end-page: 68
  ident: bb0125
  article-title: Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (
  publication-title: Mol. Gen. Genet.
– volume: 83
  start-page: 277
  year: 2010
  end-page: 284
  ident: bb0080
  article-title: Pyrethroid resistance in
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 81
  start-page: 108
  year: 2009
  end-page: 115
  ident: bb0115
  article-title: Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 33
  start-page: 2719
  year: 2015
  end-page: 2727
  ident: bb0015
  article-title: Eprobe-mediated screening system for somatic mutations in the KRAS locus
  publication-title: Oncol. Rep.
– volume: 13
  year: 2018
  ident: bb0225
  article-title: Eprobe mediated RT-qPCR for the detection of leukemia-associated fusion genes
  publication-title: PLoS One
– volume: 64
  start-page: 217
  year: 2011
  end-page: 221
  ident: bb0085
  article-title: First detection of a putative knockdown resistance gene in major mosquito vector,
  publication-title: Jpn. J. Infect. Dis.
– volume: 15
  year: 2021
  ident: bb0205
  article-title: Fitness costs of individual and combined pyrethroid resistance mechanisms, kdr and CYP-mediated detoxification, in
  publication-title: PLoS Negl. Trop. Dis.
– volume: 8
  year: 2013
  ident: bb0065
  article-title: Eprobe mediated real-time PCR monitoring and melting curve analysis
  publication-title: PLoS One
– volume: 8
  year: 2014
  ident: bb0090
  article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector,
  publication-title: PLoS Negl. Trop. Dis.
– volume: 13
  start-page: 358
  year: 2020
  ident: bb0150
  article-title: Identifying the fitness costs of a pyrethroid-resistant genotype in the major arboviral vector
  publication-title: Parasit. Vectors
– volume: 160
  start-page: 119
  year: 2019
  end-page: 126
  ident: bb0200
  article-title: CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in
  publication-title: Pestic. Biochem. Physiol.
– volume: 4
  start-page: 5
  year: 2011
  ident: bb0105
  article-title: Insecticide resistance in
  publication-title: Parasit. Vectors
– volume: 8
  start-page: 104
  year: 2008
  ident: bb0025
  article-title: Costs and benefits of multiple resistance to insecticides for
  publication-title: BMC Evol. Biol.
– volume: 37
  start-page: 550
  year: 2007
  end-page: 558
  ident: bb0155
  article-title: Dynamics of insecticide resistance alleles in house fly populations from New York and Florida
  publication-title: Insect Biochem. Mol. Biol.
– volume: 496
  start-page: 504
  year: 2013
  end-page: 507
  ident: bb0030
  article-title: The global distribution and burden of dengue
  publication-title: Nature
– volume: 8
  year: 2022
  ident: bb0095
  article-title: Discovery of super-insecticide-resistant dengue mosquitoes in Asia: Threats of concomitant knockdown resistance mutations
  publication-title: Sci. Adv.
– volume: 12
  year: 2018
  ident: bb0195
  article-title: CYP-mediated permethrin resistance in
  publication-title: PLoS Negl. Trop. Dis.
– volume: 9
  start-page: 417
  year: 2016
  ident: bb0145
  article-title: Additive effect of knockdown resistance mutations, S989P, V1016G and F1534C, in a heterozygous genotype conferring pyrethroid resistance in
  publication-title: Parasit. Vectors
– volume: 25
  year: 1998
  ident: bb0165
  article-title: Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR
  publication-title: Biotechniques
– volume: 353
  year: 2016
  ident: bb0100
  article-title: Assessing the global threat from Zika virus
  publication-title: Science
– volume: 21
  start-page: 20
  year: 2016
  ident: bb0130
  article-title: Global distribution and environmental suitability for chikungunya virus, 1952 to 2015
  publication-title: Euro. Surveill.
– volume: 10
  start-page: 141
  year: 1985
  end-page: 146
  ident: bb0185
  article-title: Pyrethroid resistance: importance of the kdr-type mechanism
  publication-title: J. Pestic. Sci.
– volume: 73
  year: 2017
  ident: bb0010
  article-title: Assessing the effect of selection with deltamethrin on biological parameters and detoxifying enzymes in
  publication-title: Pest Manag. Sci.
– volume: 8
  year: 2013
  ident: bb0040
  article-title: Assessing the effects of
  publication-title: PLoS One
– volume: 115
  start-page: 243
  year: 2015
  end-page: 252
  ident: bb0135
  article-title: Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae
  publication-title: Heredity (Edinb.)
– volume: 64
  start-page: 243
  year: 2019
  end-page: 257
  ident: bb0180
  article-title: Life and death at the voltage-sensitive sodium channel: evolution in response to insecticide use
  publication-title: Annu. Rev. Entomol.
– start-page: 114
  year: 1985
  ident: bb0045
  article-title: Singapore’s Dengue Haemorrhagic Fever Control Programme: A Case Study on the Successful Control of Aedes aegypti and Aedes albopictus Using Mainly Environmental Measures as a Part of Integrated Vector Control
– volume: 25
  start-page: 22903
  year: 2018
  end-page: 22910
  ident: bb0035
  article-title: Activity of acetylcholinesterase and acid and alkaline phosphatases in different insecticide-treated
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 105
  start-page: 161
  year: 2013
  end-page: 168
  ident: bb0160
  article-title: Variable fitness costs for pyrethroid resistance alleles in the house fly, Musca domestica, in the absence of insecticide pressure
  publication-title: Pestic. Biochem. Physiol.
– volume: 7
  year: 2016
  ident: 10.1016/j.pestbp.2023.105422_bb0050
  article-title: Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti
  publication-title: Insects
  doi: 10.3390/insects7040060
– volume: 5
  year: 2016
  ident: 10.1016/j.pestbp.2023.105422_bb0120
  article-title: Mapping global environmental suitability for Zika virus
  publication-title: Elife
  doi: 10.7554/eLife.15272
– volume: 353
  year: 2016
  ident: 10.1016/j.pestbp.2023.105422_bb0100
  article-title: Assessing the global threat from Zika virus
  publication-title: Science
  doi: 10.1126/science.aaf8160
– volume: 10
  start-page: 141
  year: 1985
  ident: 10.1016/j.pestbp.2023.105422_bb0185
  article-title: Pyrethroid resistance: importance of the kdr-type mechanism
  publication-title: J. Pestic. Sci.
  doi: 10.1584/jpestics.10.141
– volume: 8
  year: 2014
  ident: 10.1016/j.pestbp.2023.105422_bb0090
  article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0002948
– volume: 25
  year: 1998
  ident: 10.1016/j.pestbp.2023.105422_bb0165
  article-title: Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR
  publication-title: Biotechniques
  doi: 10.2144/98254bm09
– volume: 105
  start-page: 161
  year: 2013
  ident: 10.1016/j.pestbp.2023.105422_bb0160
  article-title: Variable fitness costs for pyrethroid resistance alleles in the house fly, Musca domestica, in the absence of insecticide pressure
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2013.01.006
– volume: 12
  year: 2018
  ident: 10.1016/j.pestbp.2023.105422_bb0195
  article-title: CYP-mediated permethrin resistance in Aedes aegypti and evidence for trans-regulation
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0006933
– volume: 115
  start-page: 243
  year: 2015
  ident: 10.1016/j.pestbp.2023.105422_bb0135
  article-title: Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae
  publication-title: Heredity (Edinb.)
  doi: 10.1038/hdy.2015.33
– volume: 115
  year: 2016
  ident: 10.1016/j.pestbp.2023.105422_bb0005
  article-title: Biological trait analysis and stability of lambda-cyhalothrin resistance in the house fly, Musca domestica L. (Diptera: Muscidae)
  publication-title: Parasitol. Res.
  doi: 10.1007/s00436-016-4952-2
– volume: 13
  year: 2018
  ident: 10.1016/j.pestbp.2023.105422_bb0225
  article-title: Eprobe mediated RT-qPCR for the detection of leukemia-associated fusion genes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0202429
– volume: 64
  start-page: 217
  year: 2011
  ident: 10.1016/j.pestbp.2023.105422_bb0085
  article-title: First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus
  publication-title: Jpn. J. Infect. Dis.
  doi: 10.7883/yoken.64.217
– volume: 13
  year: 2019
  ident: 10.1016/j.pestbp.2023.105422_bb0055
  article-title: Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0007615
– volume: 15
  year: 2020
  ident: 10.1016/j.pestbp.2023.105422_bb0070
  article-title: Scanning single-molecule counting system for Eprobe with highly simple and effective approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0243319
– volume: 13
  start-page: 358
  year: 2020
  ident: 10.1016/j.pestbp.2023.105422_bb0150
  article-title: Identifying the fitness costs of a pyrethroid-resistant genotype in the major arboviral vector Aedes aegypti
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-020-04238-4
– volume: 37
  start-page: 550
  year: 2007
  ident: 10.1016/j.pestbp.2023.105422_bb0155
  article-title: Dynamics of insecticide resistance alleles in house fly populations from New York and Florida
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2007.02.013
– volume: 30
  start-page: 621
  year: 2013
  ident: 10.1016/j.pestbp.2023.105422_bb0140
  article-title: Relative developmental and reproductive fitness associated with F1534C homozygous knockdown resistant gene in Aedes aegypti from Thailand
  publication-title: Trop. Biomed.
– volume: 33
  start-page: 2719
  year: 2015
  ident: 10.1016/j.pestbp.2023.105422_bb0015
  article-title: Eprobe-mediated screening system for somatic mutations in the KRAS locus
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2015.3883
– volume: 14
  start-page: 1351
  year: 2009
  ident: 10.1016/j.pestbp.2023.105422_bb0110
  article-title: Frequency of Val1016Ile mutation in the voltage-gated sodium channel gene of Aedes aegypti Brazilian populations
  publication-title: Tropical Med. Int. Health
  doi: 10.1111/j.1365-3156.2009.02378.x
– volume: 55
  start-page: 975
  year: 2018
  ident: 10.1016/j.pestbp.2023.105422_bb0215
  article-title: Effect of relaxation of deltamethrin pressure on metabolic resistance in a pyrethroid-resistant Aedes aegypti (Diptera: Culicidae) strain harboring fixed P989P and G1016G kdr Alleles
  publication-title: J. Med. Entomol.
  doi: 10.1093/jme/tjy037
– volume: 8
  year: 2022
  ident: 10.1016/j.pestbp.2023.105422_bb0095
  article-title: Discovery of super-insecticide-resistant dengue mosquitoes in Asia: Threats of concomitant knockdown resistance mutations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abq7345
– volume: 81
  start-page: 108
  year: 2009
  ident: 10.1016/j.pestbp.2023.105422_bb0115
  article-title: Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2009.81.108
– volume: 9
  start-page: 417
  year: 2016
  ident: 10.1016/j.pestbp.2023.105422_bb0145
  article-title: Additive effect of knockdown resistance mutations, S989P, V1016G and F1534C, in a heterozygous genotype conferring pyrethroid resistance in Aedes aegypti in Thailand
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-016-1713-0
– volume: 133
  start-page: 1
  year: 2016
  ident: 10.1016/j.pestbp.2023.105422_bb0190
  article-title: Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2016.03.005
– volume: 117
  start-page: 741
  year: 2022
  ident: 10.1016/j.pestbp.2023.105422_bb0210
  article-title: Rapid genotyping of 508G>A (rs3745635) and 1067T>A (rs3894326) of FUT3 by a duplex Eprobe-mediated melting curve analysis
  publication-title: Vox Sang.
  doi: 10.1111/vox.13251
– volume: 25
  start-page: 22903
  year: 2018
  ident: 10.1016/j.pestbp.2023.105422_bb0035
  article-title: Activity of acetylcholinesterase and acid and alkaline phosphatases in different insecticide-treated Helicoverpa armigera (Hübner)
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-018-2394-3
– volume: 11
  year: 2016
  ident: 10.1016/j.pestbp.2023.105422_bb0175
  article-title: Distribution of voltage-gated sodium channel (Nav) Alleles among the Aedes aegypti populations in central java province and its association with resistance to pyrethroid insecticides
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150577
– volume: 8
  year: 2013
  ident: 10.1016/j.pestbp.2023.105422_bb0040
  article-title: Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060878
– volume: 252
  start-page: 61
  year: 1996
  ident: 10.1016/j.pestbp.2023.105422_bb0125
  article-title: Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica)
  publication-title: Mol. Gen. Genet.
– volume: 15
  year: 2021
  ident: 10.1016/j.pestbp.2023.105422_bb0205
  article-title: Fitness costs of individual and combined pyrethroid resistance mechanisms, kdr and CYP-mediated detoxification, in Aedes aegypti
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0009271
– volume: 11
  start-page: 1540
  year: 2018
  ident: 10.1016/j.pestbp.2023.105422_bb0020
  article-title: Fitness costs of key point mutations that underlie acaricide target-site resistance in the two-spotted spider mite Tetranychus urticae
  publication-title: Evol. Appl.
  doi: 10.1111/eva.12643
– volume: 160
  start-page: 119
  year: 2019
  ident: 10.1016/j.pestbp.2023.105422_bb0200
  article-title: CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2019.07.011
– volume: 64
  start-page: 243
  year: 2019
  ident: 10.1016/j.pestbp.2023.105422_bb0180
  article-title: Life and death at the voltage-sensitive sodium channel: evolution in response to insecticide use
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev-ento-011118-112420
– volume: 73
  year: 2017
  ident: 10.1016/j.pestbp.2023.105422_bb0010
  article-title: Assessing the effect of selection with deltamethrin on biological parameters and detoxifying enzymes in Aedes aegypti (L.)
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4609
– volume: 8
  year: 2013
  ident: 10.1016/j.pestbp.2023.105422_bb0065
  article-title: Eprobe mediated real-time PCR monitoring and melting curve analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070942
– volume: 91
  start-page: 98
  year: 2003
  ident: 10.1016/j.pestbp.2023.105422_bb0060
  article-title: Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies
  publication-title: Heredity (Edinb)
  doi: 10.1038/sj.hdy.6800285
– volume: 4
  start-page: 5
  year: 2011
  ident: 10.1016/j.pestbp.2023.105422_bb0105
  article-title: Insecticide resistance in Aedes aegypti populations from Ceará, Brazil
  publication-title: Parasit. Vectors
  doi: 10.1186/1756-3305-4-5
– volume: 12
  year: 2017
  ident: 10.1016/j.pestbp.2023.105422_bb0220
  article-title: Highly sensitive detection of a HER2 12-base pair duplicated insertion mutation in lung cancer using the Eprobe-PCR method
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171225
– start-page: 114
  year: 1985
  ident: 10.1016/j.pestbp.2023.105422_bb0045
– volume: 21
  start-page: 20
  year: 2016
  ident: 10.1016/j.pestbp.2023.105422_bb0130
  article-title: Global distribution and environmental suitability for chikungunya virus, 1952 to 2015
  publication-title: Euro. Surveill.
  doi: 10.2807/1560-7917.ES.2016.21.20.30234
– volume: 10
  start-page: 265
  year: 2019
  ident: 10.1016/j.pestbp.2023.105422_bb0170
  article-title: Investigation of relative development and reproductivity fitness cost in three insecticide-resistant strains of Aedes aegypti from Thailand
  publication-title: Insects
  doi: 10.3390/insects10090265
– volume: 8
  start-page: 104
  year: 2008
  ident: 10.1016/j.pestbp.2023.105422_bb0025
  article-title: Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-8-104
– volume: 9
  start-page: 42
  year: 2009
  ident: 10.1016/j.pestbp.2023.105422_bb0075
  article-title: The effect of three environmental conditions on the fitness of cytochrome P450 monooxygenase-mediated permethrin resistance in Culex pipiens quinquefasciatus
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-9-42
– volume: 496
  start-page: 504
  year: 2013
  ident: 10.1016/j.pestbp.2023.105422_bb0030
  article-title: The global distribution and burden of dengue
  publication-title: Nature
  doi: 10.1038/nature12060
– volume: 83
  start-page: 277
  year: 2010
  ident: 10.1016/j.pestbp.2023.105422_bb0080
  article-title: Pyrethroid resistance in Aedes aegypti from Grand Cayman
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2010.09-0623
SSID ssj0009409
ssib006540654
Score 2.382205
Snippet The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105422
SubjectTerms Aedes
Aedes - genetics
Aedes aegypti
Allele frequency
Alleles
amino acids
Animals
arboviruses
dengue
Eprobe
Fitness cost
fluorescent dyes
genotyping
heterozygosity
homozygosity
Insecticide Resistance
Insecticide Resistance - genetics
Insecticides
Insecticides - pharmacology
Kdr
Mosquito Vectors
Mosquito Vectors - genetics
mutants
Mutation
pesticide resistance
pesticides
physiology
Pyrethrins
Pyrethrins - pharmacology
selection pressure
sodium channels
viability
Voltage-Gated Sodium Channels
Voltage-Gated Sodium Channels - genetics
yellow fever
Zika Virus
Zika Virus Infection
Zika Virus Infection - genetics
Title Concomitant knockdown resistance allele, L982W + F1534C, in Aedes aegypti has the potential to impose fitness costs without selection pressure
URI https://dx.doi.org/10.1016/j.pestbp.2023.105422
https://cir.nii.ac.jp/crid/1871991017376949376
https://www.ncbi.nlm.nih.gov/pubmed/37247997
https://www.proquest.com/docview/2820971926
https://www.proquest.com/docview/2834271569
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcgAOCMorQKtF4kZNnd3xY4-RRRQI9ICo2pu1LxdDsa3aufIb-An9Lf1lzPhRxKFU4pIo0VqazUy-_caemY-x1_RkZ14IF6QmSgIoLARapSbQGhwSZlMoTf3Onw7j1RF8OIlOtlg29cJQWeWI_QOm92g9fnMw_poHTVlSjy8gfUjotiYNVus72CGhKH_780-Zh4KxzAPSgFZP7XN9jVeDyGtoaqWQJHgLQlx3PN2qyvJ6EtofRssH7P7IIvliMPQh2_LVDru3OD0fJ2n4HXYnm6TcHrFfWV3hBktSDObfK4RAh8k3x0yb2CNumZOiypnf5x9VKo4vL95cXiwRpCDb52XFF975lutesazkX3XLkTXypu6o0gjN6Gpe_mjq1vOi7Ag6ua3bruV0j7fedLzttXYwAHhfdYvmPWZHy3dfslUwSjEEFlTYBQVYiMC6NJ1HLgEbxmIeG2dN6ElbwobKItOKZOQkFFrHRsU2lNo4Y6yNwMsnbLuqK_-McSs0UhZnicqAwzXIQYu4wFwZYpNqOWNy8kBuxznlJJdxlk8Fad_ywW85-S0f_DZjwdVVzTCn44b1yeTc_K94y_EoueHKXYwFNI1e5xh3yLAR1hCoFSDXi2fs1RQlObqZnr_oytebNsfsliZ2KfHPNRJEgkm1mrGnQ4hd7UcmAhKlkuf_bfsLdpc-DaVuL9l2d77xu0iqOrPX_2v22O3F-_XqkN7Xn4_XvwFcAiJk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEG2FcAgcEIRtgEAjcSMmnnZ56ePIYjTAJKdE5NbqzWAIthV7rnwDn5BvyZdR5SWIQ4jExQe7LVW7yq9f2dX1GHtDf3bmhXBBZuI0gMJCoGVmAq3BIWE2hdS03_nwKFmdwMfT-HSL5dNeGCqrHLF_wPQercczB-PTPGjKkvb4AtKHlD5rUmM1TIFuA76-JGPw7uefOg8JY50HZAENn_bP9UVeDUKvobaVIiLFWxDiuvXpVlWW17PQfjVa3mf3RhrJF4OlD9iWr3bZ3cWX87GVht9lO_mk5faQ_crrCmdYkmQw_14hBjrMvjmm2kQfcc6cJFXO_D5fy0x8vrx4e3mxRJSCfJ-XFV9451uue8mykn_VLUfayJu6o1IjNKOrefmjqVvPi7Ij7OS2bruW00feetPxthfbwQjgfdktmveInSzfH-erYNRiCCzIsAsKsBCDdVk2j10KNkzEPDHOmtCTuIQNpUWqFUexi6DQOjEysWGkjTPG2hh89JhtV3XlnzJuhUbO4ixxGXA4BklokRSYLENiMh3NWDR5QNmxUTnpZZypqSLtmxr8pshvavDbjAVXdzVDo44bxqeTc9VfAadwLbnhzj2MBTSNjnMMPKTYiGuI1BKQ7CUz9nqKEoVuph8wuvL1plWY3lLLLin-OSYCkWJWLWfsyRBiV_OJUgGplOmz_7b9FdtZHR-u1frD0afn7A5dGereXrDt7nzj95BhdeZl_wb9BrGoIk8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concomitant+knockdown+resistance+allele%2C+L982W%E2%80%AF%2B%E2%80%AFF1534C%2C+in+Aedes+aegypti+has+the+potential+to+impose+fitness+costs+without+selection+pressure&rft.jtitle=Pesticide+biochemistry+and+physiology&rft.au=Uemura%2C+Nozomi&rft.au=Furutani%2C+Shogo&rft.au=Tomita%2C+Takashi&rft.au=Itokawa%2C+Kentaro&rft.date=2023-06-01&rft.issn=0048-3575&rft_id=info:doi/10.1016%2Fj.pestbp.2023.105422&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-3575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-3575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-3575&client=summon