Alignment of Tractograms As Graph Matching
The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications...
Saved in:
Published in | Frontiers in neuroscience Vol. 10; p. 554 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
05.12.2016
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes. |
---|---|
AbstractList | The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e. a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e. its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than nonlinear registration of volumes. The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes. The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes. |
Author | Sharmin, Nusrat Olivetti, Emanuele Avesani, Paolo |
AuthorAffiliation | 2 Center for Mind and Brain Sciences, University of Trento Trento, Italy 1 NeuroInformatics Laboratory, Bruno Kessler Foundation Trento, Italy |
AuthorAffiliation_xml | – name: 1 NeuroInformatics Laboratory, Bruno Kessler Foundation Trento, Italy – name: 2 Center for Mind and Brain Sciences, University of Trento Trento, Italy |
Author_xml | – sequence: 1 givenname: Emanuele surname: Olivetti fullname: Olivetti, Emanuele – sequence: 2 givenname: Nusrat surname: Sharmin fullname: Sharmin, Nusrat – sequence: 3 givenname: Paolo surname: Avesani fullname: Avesani, Paolo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27994537$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1rFDEUxYNU7Ie--yQDvoiwa74neRGWorVQ8aWCb-FOJpnNMpOsyWzB_97sbittwbwknJz743DPOTqJKTqE3hK8ZEzpTz6GWJYUE7nEWAj-Ap0RKemCC_br5NH7FJ2XssFYUsXpK3RKW62r3p6hj6sxDHFycW6Sb24z2DkNGabSrEpzlWG7br7DbNchDq_RSw9jcW_u7wv08-uX28tvi5sfV9eXq5uF5RrPC8-E1RJw22vuNe4tlUBo63yvFNfAufPCSuiZttIqpTwB23aiV5rbDmjLLtD1kdsn2JhtDhPkPyZBMAch5cFAnoMdnQGme-I6pa1iXDOicSd4X491XrvWV9bnI2u76yZX5ThnGJ9An_7EsDZDujOCMCkkr4AP94Ccfu9cmc0UinXjCNGlXTFECULrLjGu1vfPrJu0y7GuylBW22FatrK63j1O9C_KQyXVII8Gm1Mp2XljwwxzSPuAYTQEm3335tC92XdvDt3XQfxs8IH935G_ryyyLg |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2017_11_052 crossref_primary_10_1109_TMI_2021_3139507 crossref_primary_10_1016_j_neuroimage_2017_07_015 crossref_primary_10_1038_s41597_019_0073_y crossref_primary_10_1177_1073858420916452 crossref_primary_10_1016_j_neuroimage_2019_05_003 crossref_primary_10_1016_j_neuroimage_2018_06_019 crossref_primary_10_1016_j_neuroimage_2018_12_057 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1214_22_EJS2008 crossref_primary_10_3389_fnins_2017_00754 |
Cites_doi | 10.1016/j.neuroimage.2015.05.016 10.1109/ISBI.2004.1398545 10.1007/978-3-642-40811-3_81 10.3389/fnins.2012.00175 10.1109/tmi.2016.2591080 10.1038/nmeth.3098 10.1007/s10618-015-0408-z 10.1109/TPAMI.2008.245 10.1007/s11263-009-0217-1 10.1016/j.neuroimage.2013.05.041 10.1016/j.patcog.2016.07.015 10.3389/fninf.2014.00008 10.1016/j.neuroimage.2013.04.127 10.1016/j.neuroimage.2013.05.057 10.1109/TMI.2007.906785 10.1371/journal.pcbi.0010042 10.1371/journal.pone.0133337 10.1109/TVCG.2008.52 10.1109/ICCV.2005.20 10.1016/j.neuroimage.2007.02.016 10.1109/IEMBS.2004.1404229 10.1007/978-3-642-33454-2 10.1109/34.6778 10.1016/j.neuroimage.2011.02.014 10.1016/j.neuroimage.2012.02.071 10.1006/nimg.2002.1132 10.1142/S0218001404003228 10.1016/j.neuroimage.2010.11.056 10.1007/978-3-540-75757-3_43 10.1016/S0006-3495(94)80775-1 10.1109/PRNI.2013.20 10.1007/978-3-642-22092-0_27 10.1007/978-3-319-02475-2_14 10.1007/978-3-319-28588-7_10 |
ContentType | Journal Article |
Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Olivetti, Sharmin and Avesani. 2016 Olivetti, Sharmin and Avesani |
Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Olivetti, Sharmin and Avesani. 2016 Olivetti, Sharmin and Avesani |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2016.00554 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_a39d1eb89c83493190b54ddddcef9e7f PMC5136564 27994537 10_3389_fnins_2016_00554 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: National Institutes of Health – fundername: McDonnell Center for Systems Neuroscience – fundername: NIH Blueprint for Neuroscience Research |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A IAO IEA IHR ISR M48 M~E NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-f35c96a07d94f90dc26a127efd8849a44ef5c6ad39c6c888f1ac7b5d894cba273 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Thu Aug 21 14:11:29 EDT 2025 Fri Jul 11 12:26:17 EDT 2025 Fri Jul 25 11:54:09 EDT 2025 Sat Sep 28 08:00:21 EDT 2024 Thu Apr 24 22:51:32 EDT 2025 Tue Jul 01 01:01:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | diffusion MRI combinatorial optimization tractography alignment graph matching |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-f35c96a07d94f90dc26a127efd8849a44ef5c6ad39c6c888f1ac7b5d894cba273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: Maxime Descoteaux, Université de Sherbrooke, Canada Reviewed by: Demian Wassermann, INRIA Sophia Antipolis, France; Lauren Jean O'Donnell, Harvard Medical School, USA; Stanley Durrleman, INRIA, France |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2016.00554 |
PMID | 27994537 |
PQID | 2305539676 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a39d1eb89c83493190b54ddddcef9e7f pubmedcentral_primary_oai_pubmedcentral_nih_gov_5136564 proquest_miscellaneous_1851294500 proquest_journals_2305539676 pubmed_primary_27994537 crossref_citationtrail_10_3389_fnins_2016_00554 crossref_primary_10_3389_fnins_2016_00554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-05 |
PublicationDateYYYYMMDD | 2016-12-05 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2016 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Gori (B13) 2016 Wassermann (B33) 2013; 16 Jenkinson (B15) 2002; 17 Ziyan (B40) 2007; 10 O'Donnell (B21) 2007; 26 Pestilli (B24) 2014; 11 Christiaens (B3) 2014 Sharmin (B27) 2016 Van Essen (B32) 2013; 80 Guevara (B14) 2012; 61 Basser (B1) 1994; 66 Garyfallidis (B8) 2012; 6 Sporns (B29) 2005; 1 Sotiropoulos (B28) 2013; 80 Olivetti (B23) 2013 Conte (B4) 2004; 18 Garyfallidis (B9) 2015; 117 Zass (B37) 2006 Leordeanu (B17) 2005 Golding (B12) 2011 Tournier (B30) 2007; 35 Jiao (B16) 2010 Christiaens (B2) 2012 Maddah (B19) 2005 Gerig (B10) 2004 Corouge (B5) 2004 Durrleman (B6) 2011; 55 Olivetti (B22) 2012 Umeyama (B31) 1988; 10 Wassermann (B34) 2011; 22 Zhang (B38) 2008; 14 Yoo (B35) 2015; 10 Zaslavskiy (B36) 2009; 31 Raffelt (B26) 2011; 56 Lu (B18) 2016; 60 O'Donnell (B20) 2012; 15 Ziyan (B39) 2009; 85 Porro-Muñoz (B25) 2015; 29 Garyfallidis (B7) 2014; 8 Glasser (B11) 2013; 80 26225419 - PLoS One. 2015 Jul 30;10(7):e0133337 21126594 - Neuroimage. 2011 Apr 1;55(3):1073-90 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75 16685845 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):188-95 23702418 - Neuroimage. 2013 Oct 15;80:125-43 20442792 - Int J Comput Vis. 2009;85(3):279-290 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99 23286122 - Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30 18599916 - IEEE Trans Vis Comput Graph. 2008 Sep-Oct;14(5):1044-53 21761667 - Inf Process Med Imaging. 2011;22:320-32 25987367 - Neuroimage. 2015 Aug 15;117:124-40 25194848 - Nat Methods. 2014 Oct;11(10):1058-63 23684880 - Neuroimage. 2013 Oct 15;80:62-79 12377157 - Neuroimage. 2002 Oct;17(2):825-41 23248578 - Front Neurosci. 2012 Dec 11;6:175 23668970 - Neuroimage. 2013 Oct 15;80:105-24 8130344 - Biophys J. 1994 Jan;66(1):259-67 24505722 - Med Image Comput Comput Assist Interv. 2013;16(Pt 1):647-54 18051078 - Med Image Comput Comput Assist Interv. 2007;10(Pt 1):351-8 17379540 - Neuroimage. 2007 May 1;35(4):1459-72 17271286 - Conf Proc IEEE Eng Med Biol Soc. 2004;6:4421-4 27416589 - IEEE Trans Med Imaging. 2016 Dec;35(12 ):2609-2619 19834143 - IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2227-42 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42 24600385 - Front Neuroinform. 2014 Feb 21;8:8 21316463 - Neuroimage. 2011 Jun 1;56(3):1171-80 |
References_xml | – volume: 117 start-page: 124 year: 2015 ident: B9 article-title: Robust and efficient linear registration of white-matter fascicles in the space of streamlines publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.016 – start-page: 179 volume-title: Medical Imaging and Augmented Reality, Vol. 6326, Lecture Notes in Computer Science year: 2010 ident: B16 article-title: Metrics for uncertainty analysis and visualization of diffusion tensor images – start-page: 344 volume-title: IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2004 year: 2004 ident: B5 article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI doi: 10.1109/ISBI.2004.1398545 – volume: 16 start-page: 647 issue: Pt 1 year: 2013 ident: B33 article-title: On describing human white matter anatomy: the white matter query language publication-title: Med. Image Comput. Comput. Assist. Interv. doi: 10.1007/978-3-642-40811-3_81 – volume: 6 start-page: 175 year: 2012 ident: B8 article-title: QuickBundles, a method for tractography simplification publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00175 – start-page: 1569 volume-title: Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems year: 2006 ident: B37 article-title: Doubly Stochastic normalization for spectral clustering – year: 2016 ident: B13 article-title: Parsimonious approximation of streamline trajectories in white matter fiber bundles publication-title: IEEE Trans. Med. Imaging doi: 10.1109/tmi.2016.2591080 – volume: 11 start-page: 1058 year: 2014 ident: B24 article-title: Evaluation and statistical inference for human connectomes publication-title: Nat. Meth. doi: 10.1038/nmeth.3098 – volume: 29 start-page: 1258 year: 2015 ident: B25 article-title: Tractome: a visual data mining tool for brain connectivity analysis doi: 10.1007/s10618-015-0408-z – volume: 31 start-page: 2227 year: 2009 ident: B36 article-title: A path following algorithm for the graph matching problem publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.245 – volume: 85 start-page: 279 year: 2009 ident: B39 article-title: Consistency clustering: a robust algorithm for group-wise registration, segmentation and automatic atlas construction inădiffusion MRI publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0217-1 – volume: 80 start-page: 62 year: 2013 ident: B32 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 60 start-page: 971 year: 2016 ident: B18 article-title: A fast projected fixed-point algorithm for large graph matching publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.07.015 – volume: 8 start-page: 8 year: 2014 ident: B7 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00008 – volume-title: MICCAI 2012 Workshop on Computational Diffusion MRI year: 2012 ident: B2 article-title: The effect of reorientation of the fibre orientation distribution on fibre tracking – volume: 80 start-page: 105 year: 2013 ident: B11 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 80 start-page: 125 year: 2013 ident: B28 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 26 start-page: 1562 year: 2007 ident: B21 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906785 – volume: 1 start-page: e42 year: 2005 ident: B29 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 10 start-page: e0133337 year: 2015 ident: B35 article-title: An example-based multi-atlas approach to automatic labeling of white matter tracts publication-title: PLoS ONE doi: 10.1371/journal.pone.0133337 – volume: 14 start-page: 1044 year: 2008 ident: B38 article-title: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2008.52 – volume-title: International Conference on Computer Vision year: 2005 ident: B17 article-title: A spectral technique for correspondence problems using pairwise constraints doi: 10.1109/ICCV.2005.20 – volume: 35 start-page: 1459 year: 2007 ident: B30 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – start-page: 4421 volume-title: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2004 ident: B10 article-title: Analysis of brain white matter via fiber tract modeling doi: 10.1109/IEMBS.2004.1404229 – volume: 15 start-page: 123 issue: Pt 3 year: 2012 ident: B20 article-title: Unbiased groupwise registration of white matter tractography publication-title: Med. Image Comput. Comput. Assist. Interv. doi: 10.1007/978-3-642-33454-2 – volume: 10 start-page: 695 year: 1988 ident: B31 article-title: An Eigen decomposition approach to weighted graph matching problems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.6778 – start-page: 55 volume-title: Proceedings of the Twenty-Second Annual Symposium of the Pattern Recognition Association of South Africa year: 2011 ident: B12 article-title: A comparison of methods for the registration of tractographic fibre images – start-page: 85 volume-title: IEEE Intl. Workshop on Pattern Recognition in NeuroImaging year: 2012 ident: B22 article-title: The approximation of the dissimilarity projection – volume: 56 start-page: 1171 year: 2011 ident: B26 article-title: Symmetric diffeomorphic registration of fibre orientation distributions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.014 – volume: 61 start-page: 1083 year: 2012 ident: B14 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.071 – volume: 17 start-page: 825 year: 2002 ident: B15 article-title: Improved optimization for the Robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 18 start-page: 265 year: 2004 ident: B4 article-title: Thirty years of graph matching in pattern recognition publication-title: Int. J. Patt. Recogn. Artif. Intell. doi: 10.1142/S0218001404003228 – volume: 55 start-page: 1073 year: 2011 ident: B6 article-title: Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.056 – volume: 10 start-page: 351 issue: Pt 1 year: 2007 ident: B40 article-title: Nonlinear registration of diffusion MR images based on fiber bundles publication-title: Med. Image Comput. Comput. Assist. Interv. doi: 10.1007/978-3-540-75757-3_43 – volume: 66 start-page: 259 year: 1994 ident: B1 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – start-page: 188 volume-title: Medical Image Computing and Computer-Assisted Intervention MICCAI 2005, Vol. 3749 Lecture Notes in Computer Science year: 2005 ident: B19 article-title: Automated atlas-based clustering of white matter fiber tracts from DTMRI – start-page: 42 volume-title: International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2013 year: 2013 ident: B23 article-title: Fast clustering for interactive tractography segmentation doi: 10.1109/PRNI.2013.20 – volume: 22 start-page: 320 year: 2011 ident: B34 article-title: White matter bundle registration and population analysis based on Gaussian processes publication-title: Inf. Process Med. Imaging doi: 10.1007/978-3-642-22092-0_27 – start-page: 151 volume-title: Computational Diffusion MRI and Brain Connectivity, Mathematics and Visualization year: 2014 ident: B3 article-title: Groupwise deformable registration of fiber track sets using track orientation distributions doi: 10.1007/978-3-319-02475-2_14 – start-page: 109 volume-title: Computational Diffusion MRI, Mathematics and Visualization year: 2016 ident: B27 article-title: Alignment of tractograms as linear assignment problem doi: 10.1007/978-3-319-28588-7_10 – reference: 18599916 - IEEE Trans Vis Comput Graph. 2008 Sep-Oct;14(5):1044-53 – reference: 21761667 - Inf Process Med Imaging. 2011;22:320-32 – reference: 24505722 - Med Image Comput Comput Assist Interv. 2013;16(Pt 1):647-54 – reference: 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42 – reference: 8130344 - Biophys J. 1994 Jan;66(1):259-67 – reference: 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99 – reference: 24600385 - Front Neuroinform. 2014 Feb 21;8:8 – reference: 18051078 - Med Image Comput Comput Assist Interv. 2007;10(Pt 1):351-8 – reference: 16685845 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):188-95 – reference: 17379540 - Neuroimage. 2007 May 1;35(4):1459-72 – reference: 19834143 - IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2227-42 – reference: 25987367 - Neuroimage. 2015 Aug 15;117:124-40 – reference: 21316463 - Neuroimage. 2011 Jun 1;56(3):1171-80 – reference: 21126594 - Neuroimage. 2011 Apr 1;55(3):1073-90 – reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41 – reference: 23668970 - Neuroimage. 2013 Oct 15;80:105-24 – reference: 25194848 - Nat Methods. 2014 Oct;11(10):1058-63 – reference: 23286122 - Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30 – reference: 23702418 - Neuroimage. 2013 Oct 15;80:125-43 – reference: 26225419 - PLoS One. 2015 Jul 30;10(7):e0133337 – reference: 27416589 - IEEE Trans Med Imaging. 2016 Dec;35(12 ):2609-2619 – reference: 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75 – reference: 17271286 - Conf Proc IEEE Eng Med Biol Soc. 2004;6:4421-4 – reference: 23248578 - Front Neurosci. 2012 Dec 11;6:175 – reference: 23684880 - Neuroimage. 2013 Oct 15;80:62-79 – reference: 20442792 - Int J Comput Vis. 2009;85(3):279-290 |
SSID | ssj0062842 |
Score | 2.213546 |
Snippet | The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 554 |
SubjectTerms | Algorithms Alignment combinatorial optimization diffusion MRI Graph matching Image processing Information processing Magnetic resonance imaging Neuroimaging Neuroscience NMR Nuclear magnetic resonance Registration Segmentation Substantia alba tractography |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ19EWz9WW4kggsJyuc3X5vEUaxHqUwt9C8kk0YO6V7zrg_-9M9m9oyeiL-5jkmWT3-RjJjP7G8ZeF2ejyRBaK3VqVWdTG0WMrcQy0DLKAnTfcf7FnF2qz1f66k6qL4oJG-mBR-BmQbo0z7F30EvlcMKIqFXCB3Jx2RbaffHM2xpT4x5scNPtRqckmmBuVoblQNzcc_I8aK32DqHK1f8nBfP3OMk7B8_pQ_Zg0hj5YuzpI3YvD4fsaDGgtfz9J3_DawxnvRw_Yu8W18uv1b_PV4Vf0B9QNfxqzcOafyJuan6Oey_dOj1ml6cfLz6ctVM2hBaUE5u2SA3OBGGTU8WJBJ0J887mkvpeuaBULhpMSNKBAbRryzyAjTr1TkEMqKU8YQfDasjPGBegRNLRpuiy6kIKkbIVZcjgYu6CaNhsC4-HiSqcMlZcezQZCFBfAfUEqK-ANuzt7o2bkSbjL23fE-K7dkRwXQtQ7H4Su_-X2Bt2vJWXn1YdfoPoy6Qz1jTs1a4a1ws5QcKQV7drj_oJqjhKCxzl01G8u5501mGNtA2ze4Lf6-p-zbD8Vjm5NYULGvX8f4ztBbtPaNWgGX3MDjY_bvMJqj6b-LLO8l9q6wXV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96ffFFqvVjbZUIIigst7f52jzJVVqL0CLSQt9CPutB3a2964P_vTO53OKJdB-TLJudSSbzld8Q8i5p5WT0tlZMhJq3KtSuca5m0OYFcyx59HecnsmTC_71UlwWh9uypFVuZGIW1GHw6COftghNxbRU8tPNrxqrRmF0tZTQeEh2QAR33YTsHB6dffu-kcUShG-Od0q8GwTK-TpQCWaZnqZ-0SNe9wyjEULwrYMp4_f_T-n8N3fyr8PoeJc8Llokna_Z_oQ8iP1TsjfvwYL--Zu-pzmvMzvM98jH-fXiKsf86ZDoOd6KyilZSzpf0i-IV01PQR6jJ-oZuTg-Ov98UpcKCbXnulnViQmvpW1U0DzpJvhW2lmrYgpdx7XlPCbhpQ1Me-nB1k0z65UTodPcOwuay3My6Yc-viS08bwJwqngdOStDdZhBaPoo9cutrapyHRDHuMLfDhWsbg2YEYgQU0mqEGCmkzQinwY37hZQ2fcM_YQKT6OQ9Dr3DDcXpmyh4xlOsyi67TvGNcgOxoneIDHx6SjShU52PDLlJ0I3xjXTUXejt2whzAwYvs43C0N6Cyg9nDRwF--WLN3nEmrNPQwVRG1xfitqW739IsfGadbYAqh5K_un9Y-eYR0yCky4oBMVrd38TUoOiv3pqzmP3NM_xQ priority: 102 providerName: ProQuest |
Title | Alignment of Tractograms As Graph Matching |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27994537 https://www.proquest.com/docview/2305539676 https://www.proquest.com/docview/1851294500 https://pubmed.ncbi.nlm.nih.gov/PMC5136564 https://doaj.org/article/a39d1eb89c83493190b54ddddcef9e7f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAFB5098UXUddLdC0RRFCIm2RumQeRruwFoYvIFvo2zHW3UFNtu-D-e8-ZptFKEfOQh5lJMvnmcq5zDiGvo5JWBGcKSbkvWC19YUtrCwpljlNLo0N9x-hCnI_Z5wmf_D4e3QG43CnaYT6p8WL2_ueP24-w4D-gxAn09ii20xYjb1doVwDyeJfsA12SmM9gxHqbgoCNONk-BZ4TAkZ9bbTc-YYtIpVi-e9iQP_2o_yDMJ0-IPc7jjIfrqfAQ3IntI_IwbAFafrbbf4mTz6eSXl-QN4NZ9OrZP_P5zG_xBNSyT1rmQ-X-RnGrs5HsDejVuoxGZ-eXH46L7psCYVjqlwVkXKnhCmlVyyq0rtamKqWIfqmYcowFiJ3wniqnHAg98bKOGm5bxRz1gAX84TstfM2PCN56VjpuZXeqsBq443FbEbBBadsqE2ZkaMNPNp1ocQxo8VMg0iBgOoEqEZAdQI0I2_7J76vw2j8o-0xIt63wwDYqWC-uNLdetKGKl8F2yjXUKZgHyktZx4uF6IKMmbkcDNeejOpdI3hzagSUmTkVV8N6wmNJKYN85ulBv4FWCDGS_jLp-vh7XtSSwU1VGZEbg38Vle3a9rpdYrZzdGdULDn__HdF-QegpF8Zvgh2VstbsJL4HxWdkD2j08uvnwdJM0B3M8m1SBN8l-qrAbj |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KmkB7ggoCyBAkYCJJCsOJ7Nc0AohZaUNhFCqdSbmbVEKk5pUqH-FN_Im_EiglBv9dEztsdvm7fNewAvvRSaO6NSQZhNaS5sqjOtU4L3DCOaeBP8HZMpHx_Rz8fseAN-t2dhQlplKxOjoLYLE3zkgzyUpiKSC_7-7GcaukaF6GrbQqMmiwN3-QtNtuW7_Y-I31d5vrc7-zBOm64CqaEyW6WeMCO5yoSV1MvMmpyrYS6ct0VBpaLUeWa4skQabtA-9ENlhGa2kNRohbs9vvcGbFLCs7wHmzu70y9fW9nPUdjH-CoPZ5HQGKgDo2gGyoGv5lWoDz4M0Q_G6NpGGPsF_E_J_TdX86_Nb-8O3G601mRUk9ld2HDVPdgaVWix_7hMXicxjzQ66Lfg7eh0fhJzDJKFT2bhFFZMAVsmo2XyKdTHTiYo_4Pn6z4cXQvsHkCvWlTuESSZoZllWlgtHc2VVTp0THLGGaldrrI-DFrwlKYpVx66ZpyWaLYEgJYRoGUAaBkB2oc33RNndamOK-buBIh380KR7XhjcX5SNjxbKiLt0OlCmoJQibIq04xavIzz0gnfh-0WX2XD-fiNjk778KIbRp4NgRhVucXFskQdCdUsyjL8y4c1eruV5ELiCBF9EGuIX1vq-kg1_x7rgrOQssjp46uX9RxujmeTw_Jwf3rwBG4FmMT0HLYNvdX5hXuKStZKP2soO4Fv181MfwBfoz0q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcKhXEF9ErR-xVSOooBAul-zH7YPI1fZsrT2KtNC3dD_rQZurvSvSv-avc2YvOTyRvjWP2U2ymZmd750BeBOUNMJbncmSu4wV0mUmNyYr8Z7lpSmDJX_H_kjsHLGvx_x4BX63Z2EorbLliZFRu4klH3m3oNJUpRJSdEOTFnGwNfx08TOjDlIUaW3bacxJZM9f_0Lzbfpxdwtx_bYohtuHn3eypsNAZpnKZ1kouVVC59IpFlTubCF0r5A-uH6fKc2YD9wK7UplhUVbMfS0lYa7vmLWaJT8-N47sCrJKurA6ub26OB7KwcEMv4YaxV0LgkNg3mQFE1C1Q31uKZa4T2KhHDOloRi7B3wP4X337zNvwTh8AHcbzTYdDAnuYew4utHsDao0Xo_v07fpTGnNDrr1-DD4Gx8GvMN0klID-lEVkwHm6aDafqFamWn-ygLyAv2GI5uBXZPoFNPav8M0tyy3HEjnVGeFdppQ92TvPVWGV_oPIFuC57KNqXLqYPGWYUmDAG0igCtCKBVBGgC7xdPXMzLdtwwd5MgvphHBbfjjcnladXs30qXyvW86SvbL5lCvpUbzhxe1gflZUhgo8VX1XAB_MaCZhN4vRjG_UtBGV37ydW0Qn0JVS7Gc_zLp3P0LlZSSIUjpUxALiF-aanLI_X4R6wRzil9UbDnNy_rFdzFTVR92x3trcM9AknM1OEb0JldXvkXqG_NzMuGsFM4ue299AfwQEFf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alignment+of+Tractograms+As+Graph+Matching&rft.jtitle=Frontiers+in+neuroscience&rft.au=Olivetti%2C+Emanuele&rft.au=Sharmin%2C+Nusrat&rft.au=Avesani%2C+Paolo&rft.date=2016-12-05&rft.issn=1662-4548&rft.volume=10&rft.spage=554&rft_id=info:doi/10.3389%2Ffnins.2016.00554&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |