Alignment of Tractograms As Graph Matching

The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 10; p. 554
Main Authors Olivetti, Emanuele, Sharmin, Nusrat, Avesani, Paolo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 05.12.2016
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.
AbstractList The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e. a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e. its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than nonlinear registration of volumes.
The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.
The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.
Author Sharmin, Nusrat
Olivetti, Emanuele
Avesani, Paolo
AuthorAffiliation 2 Center for Mind and Brain Sciences, University of Trento Trento, Italy
1 NeuroInformatics Laboratory, Bruno Kessler Foundation Trento, Italy
AuthorAffiliation_xml – name: 1 NeuroInformatics Laboratory, Bruno Kessler Foundation Trento, Italy
– name: 2 Center for Mind and Brain Sciences, University of Trento Trento, Italy
Author_xml – sequence: 1
  givenname: Emanuele
  surname: Olivetti
  fullname: Olivetti, Emanuele
– sequence: 2
  givenname: Nusrat
  surname: Sharmin
  fullname: Sharmin, Nusrat
– sequence: 3
  givenname: Paolo
  surname: Avesani
  fullname: Avesani, Paolo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27994537$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1rFDEUxYNU7Ie--yQDvoiwa74neRGWorVQ8aWCb-FOJpnNMpOsyWzB_97sbittwbwknJz743DPOTqJKTqE3hK8ZEzpTz6GWJYUE7nEWAj-Ap0RKemCC_br5NH7FJ2XssFYUsXpK3RKW62r3p6hj6sxDHFycW6Sb24z2DkNGabSrEpzlWG7br7DbNchDq_RSw9jcW_u7wv08-uX28tvi5sfV9eXq5uF5RrPC8-E1RJw22vuNe4tlUBo63yvFNfAufPCSuiZttIqpTwB23aiV5rbDmjLLtD1kdsn2JhtDhPkPyZBMAch5cFAnoMdnQGme-I6pa1iXDOicSd4X491XrvWV9bnI2u76yZX5ThnGJ9An_7EsDZDujOCMCkkr4AP94Ccfu9cmc0UinXjCNGlXTFECULrLjGu1vfPrJu0y7GuylBW22FatrK63j1O9C_KQyXVII8Gm1Mp2XljwwxzSPuAYTQEm3335tC92XdvDt3XQfxs8IH935G_ryyyLg
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_11_052
crossref_primary_10_1109_TMI_2021_3139507
crossref_primary_10_1016_j_neuroimage_2017_07_015
crossref_primary_10_1038_s41597_019_0073_y
crossref_primary_10_1177_1073858420916452
crossref_primary_10_1016_j_neuroimage_2019_05_003
crossref_primary_10_1016_j_neuroimage_2018_06_019
crossref_primary_10_1016_j_neuroimage_2018_12_057
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1214_22_EJS2008
crossref_primary_10_3389_fnins_2017_00754
Cites_doi 10.1016/j.neuroimage.2015.05.016
10.1109/ISBI.2004.1398545
10.1007/978-3-642-40811-3_81
10.3389/fnins.2012.00175
10.1109/tmi.2016.2591080
10.1038/nmeth.3098
10.1007/s10618-015-0408-z
10.1109/TPAMI.2008.245
10.1007/s11263-009-0217-1
10.1016/j.neuroimage.2013.05.041
10.1016/j.patcog.2016.07.015
10.3389/fninf.2014.00008
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2013.05.057
10.1109/TMI.2007.906785
10.1371/journal.pcbi.0010042
10.1371/journal.pone.0133337
10.1109/TVCG.2008.52
10.1109/ICCV.2005.20
10.1016/j.neuroimage.2007.02.016
10.1109/IEMBS.2004.1404229
10.1007/978-3-642-33454-2
10.1109/34.6778
10.1016/j.neuroimage.2011.02.014
10.1016/j.neuroimage.2012.02.071
10.1006/nimg.2002.1132
10.1142/S0218001404003228
10.1016/j.neuroimage.2010.11.056
10.1007/978-3-540-75757-3_43
10.1016/S0006-3495(94)80775-1
10.1109/PRNI.2013.20
10.1007/978-3-642-22092-0_27
10.1007/978-3-319-02475-2_14
10.1007/978-3-319-28588-7_10
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Olivetti, Sharmin and Avesani. 2016 Olivetti, Sharmin and Avesani
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Olivetti, Sharmin and Avesani. 2016 Olivetti, Sharmin and Avesani
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2016.00554
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_a39d1eb89c83493190b54ddddcef9e7f
PMC5136564
27994537
10_3389_fnins_2016_00554
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: National Institutes of Health
– fundername: McDonnell Center for Systems Neuroscience
– fundername: NIH Blueprint for Neuroscience Research
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
IAO
IEA
IHR
ISR
M48
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-f35c96a07d94f90dc26a127efd8849a44ef5c6ad39c6c888f1ac7b5d894cba273
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:31:49 EDT 2025
Thu Aug 21 14:11:29 EDT 2025
Fri Jul 11 12:26:17 EDT 2025
Fri Jul 25 11:54:09 EDT 2025
Sat Sep 28 08:00:21 EDT 2024
Thu Apr 24 22:51:32 EDT 2025
Tue Jul 01 01:01:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords diffusion MRI
combinatorial optimization
tractography
alignment
graph matching
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-f35c96a07d94f90dc26a127efd8849a44ef5c6ad39c6c888f1ac7b5d894cba273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Maxime Descoteaux, Université de Sherbrooke, Canada
Reviewed by: Demian Wassermann, INRIA Sophia Antipolis, France; Lauren Jean O'Donnell, Harvard Medical School, USA; Stanley Durrleman, INRIA, France
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2016.00554
PMID 27994537
PQID 2305539676
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_a39d1eb89c83493190b54ddddcef9e7f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5136564
proquest_miscellaneous_1851294500
proquest_journals_2305539676
pubmed_primary_27994537
crossref_citationtrail_10_3389_fnins_2016_00554
crossref_primary_10_3389_fnins_2016_00554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-05
PublicationDateYYYYMMDD 2016-12-05
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-05
  day: 05
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Gori (B13) 2016
Wassermann (B33) 2013; 16
Jenkinson (B15) 2002; 17
Ziyan (B40) 2007; 10
O'Donnell (B21) 2007; 26
Pestilli (B24) 2014; 11
Christiaens (B3) 2014
Sharmin (B27) 2016
Van Essen (B32) 2013; 80
Guevara (B14) 2012; 61
Basser (B1) 1994; 66
Garyfallidis (B8) 2012; 6
Sporns (B29) 2005; 1
Sotiropoulos (B28) 2013; 80
Olivetti (B23) 2013
Conte (B4) 2004; 18
Garyfallidis (B9) 2015; 117
Zass (B37) 2006
Leordeanu (B17) 2005
Golding (B12) 2011
Tournier (B30) 2007; 35
Jiao (B16) 2010
Christiaens (B2) 2012
Maddah (B19) 2005
Gerig (B10) 2004
Corouge (B5) 2004
Durrleman (B6) 2011; 55
Olivetti (B22) 2012
Umeyama (B31) 1988; 10
Wassermann (B34) 2011; 22
Zhang (B38) 2008; 14
Yoo (B35) 2015; 10
Zaslavskiy (B36) 2009; 31
Raffelt (B26) 2011; 56
Lu (B18) 2016; 60
O'Donnell (B20) 2012; 15
Ziyan (B39) 2009; 85
Porro-Muñoz (B25) 2015; 29
Garyfallidis (B7) 2014; 8
Glasser (B11) 2013; 80
26225419 - PLoS One. 2015 Jul 30;10(7):e0133337
21126594 - Neuroimage. 2011 Apr 1;55(3):1073-90
18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
16685845 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):188-95
23702418 - Neuroimage. 2013 Oct 15;80:125-43
20442792 - Int J Comput Vis. 2009;85(3):279-290
22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99
23286122 - Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30
18599916 - IEEE Trans Vis Comput Graph. 2008 Sep-Oct;14(5):1044-53
21761667 - Inf Process Med Imaging. 2011;22:320-32
25987367 - Neuroimage. 2015 Aug 15;117:124-40
25194848 - Nat Methods. 2014 Oct;11(10):1058-63
23684880 - Neuroimage. 2013 Oct 15;80:62-79
12377157 - Neuroimage. 2002 Oct;17(2):825-41
23248578 - Front Neurosci. 2012 Dec 11;6:175
23668970 - Neuroimage. 2013 Oct 15;80:105-24
8130344 - Biophys J. 1994 Jan;66(1):259-67
24505722 - Med Image Comput Comput Assist Interv. 2013;16(Pt 1):647-54
18051078 - Med Image Comput Comput Assist Interv. 2007;10(Pt 1):351-8
17379540 - Neuroimage. 2007 May 1;35(4):1459-72
17271286 - Conf Proc IEEE Eng Med Biol Soc. 2004;6:4421-4
27416589 - IEEE Trans Med Imaging. 2016 Dec;35(12 ):2609-2619
19834143 - IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2227-42
16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42
24600385 - Front Neuroinform. 2014 Feb 21;8:8
21316463 - Neuroimage. 2011 Jun 1;56(3):1171-80
References_xml – volume: 117
  start-page: 124
  year: 2015
  ident: B9
  article-title: Robust and efficient linear registration of white-matter fascicles in the space of streamlines
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.016
– start-page: 179
  volume-title: Medical Imaging and Augmented Reality, Vol. 6326, Lecture Notes in Computer Science
  year: 2010
  ident: B16
  article-title: Metrics for uncertainty analysis and visualization of diffusion tensor images
– start-page: 344
  volume-title: IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2004
  year: 2004
  ident: B5
  article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI
  doi: 10.1109/ISBI.2004.1398545
– volume: 16
  start-page: 647
  issue: Pt 1
  year: 2013
  ident: B33
  article-title: On describing human white matter anatomy: the white matter query language
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  doi: 10.1007/978-3-642-40811-3_81
– volume: 6
  start-page: 175
  year: 2012
  ident: B8
  article-title: QuickBundles, a method for tractography simplification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00175
– start-page: 1569
  volume-title: Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems
  year: 2006
  ident: B37
  article-title: Doubly Stochastic normalization for spectral clustering
– year: 2016
  ident: B13
  article-title: Parsimonious approximation of streamline trajectories in white matter fiber bundles
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2016.2591080
– volume: 11
  start-page: 1058
  year: 2014
  ident: B24
  article-title: Evaluation and statistical inference for human connectomes
  publication-title: Nat. Meth.
  doi: 10.1038/nmeth.3098
– volume: 29
  start-page: 1258
  year: 2015
  ident: B25
  article-title: Tractome: a visual data mining tool for brain connectivity analysis
  doi: 10.1007/s10618-015-0408-z
– volume: 31
  start-page: 2227
  year: 2009
  ident: B36
  article-title: A path following algorithm for the graph matching problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.245
– volume: 85
  start-page: 279
  year: 2009
  ident: B39
  article-title: Consistency clustering: a robust algorithm for group-wise registration, segmentation and automatic atlas construction inădiffusion MRI
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0217-1
– volume: 80
  start-page: 62
  year: 2013
  ident: B32
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 60
  start-page: 971
  year: 2016
  ident: B18
  article-title: A fast projected fixed-point algorithm for large graph matching
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.07.015
– volume: 8
  start-page: 8
  year: 2014
  ident: B7
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00008
– volume-title: MICCAI 2012 Workshop on Computational Diffusion MRI
  year: 2012
  ident: B2
  article-title: The effect of reorientation of the fibre orientation distribution on fibre tracking
– volume: 80
  start-page: 105
  year: 2013
  ident: B11
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 80
  start-page: 125
  year: 2013
  ident: B28
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 26
  start-page: 1562
  year: 2007
  ident: B21
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906785
– volume: 1
  start-page: e42
  year: 2005
  ident: B29
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 10
  start-page: e0133337
  year: 2015
  ident: B35
  article-title: An example-based multi-atlas approach to automatic labeling of white matter tracts
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0133337
– volume: 14
  start-page: 1044
  year: 2008
  ident: B38
  article-title: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2008.52
– volume-title: International Conference on Computer Vision
  year: 2005
  ident: B17
  article-title: A spectral technique for correspondence problems using pairwise constraints
  doi: 10.1109/ICCV.2005.20
– volume: 35
  start-page: 1459
  year: 2007
  ident: B30
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– start-page: 4421
  volume-title: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2004
  ident: B10
  article-title: Analysis of brain white matter via fiber tract modeling
  doi: 10.1109/IEMBS.2004.1404229
– volume: 15
  start-page: 123
  issue: Pt 3
  year: 2012
  ident: B20
  article-title: Unbiased groupwise registration of white matter tractography
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  doi: 10.1007/978-3-642-33454-2
– volume: 10
  start-page: 695
  year: 1988
  ident: B31
  article-title: An Eigen decomposition approach to weighted graph matching problems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.6778
– start-page: 55
  volume-title: Proceedings of the Twenty-Second Annual Symposium of the Pattern Recognition Association of South Africa
  year: 2011
  ident: B12
  article-title: A comparison of methods for the registration of tractographic fibre images
– start-page: 85
  volume-title: IEEE Intl. Workshop on Pattern Recognition in NeuroImaging
  year: 2012
  ident: B22
  article-title: The approximation of the dissimilarity projection
– volume: 56
  start-page: 1171
  year: 2011
  ident: B26
  article-title: Symmetric diffeomorphic registration of fibre orientation distributions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.014
– volume: 61
  start-page: 1083
  year: 2012
  ident: B14
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.071
– volume: 17
  start-page: 825
  year: 2002
  ident: B15
  article-title: Improved optimization for the Robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 18
  start-page: 265
  year: 2004
  ident: B4
  article-title: Thirty years of graph matching in pattern recognition
  publication-title: Int. J. Patt. Recogn. Artif. Intell.
  doi: 10.1142/S0218001404003228
– volume: 55
  start-page: 1073
  year: 2011
  ident: B6
  article-title: Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.056
– volume: 10
  start-page: 351
  issue: Pt 1
  year: 2007
  ident: B40
  article-title: Nonlinear registration of diffusion MR images based on fiber bundles
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  doi: 10.1007/978-3-540-75757-3_43
– volume: 66
  start-page: 259
  year: 1994
  ident: B1
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– start-page: 188
  volume-title: Medical Image Computing and Computer-Assisted Intervention MICCAI 2005, Vol. 3749 Lecture Notes in Computer Science
  year: 2005
  ident: B19
  article-title: Automated atlas-based clustering of white matter fiber tracts from DTMRI
– start-page: 42
  volume-title: International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2013
  year: 2013
  ident: B23
  article-title: Fast clustering for interactive tractography segmentation
  doi: 10.1109/PRNI.2013.20
– volume: 22
  start-page: 320
  year: 2011
  ident: B34
  article-title: White matter bundle registration and population analysis based on Gaussian processes
  publication-title: Inf. Process Med. Imaging
  doi: 10.1007/978-3-642-22092-0_27
– start-page: 151
  volume-title: Computational Diffusion MRI and Brain Connectivity, Mathematics and Visualization
  year: 2014
  ident: B3
  article-title: Groupwise deformable registration of fiber track sets using track orientation distributions
  doi: 10.1007/978-3-319-02475-2_14
– start-page: 109
  volume-title: Computational Diffusion MRI, Mathematics and Visualization
  year: 2016
  ident: B27
  article-title: Alignment of tractograms as linear assignment problem
  doi: 10.1007/978-3-319-28588-7_10
– reference: 18599916 - IEEE Trans Vis Comput Graph. 2008 Sep-Oct;14(5):1044-53
– reference: 21761667 - Inf Process Med Imaging. 2011;22:320-32
– reference: 24505722 - Med Image Comput Comput Assist Interv. 2013;16(Pt 1):647-54
– reference: 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42
– reference: 8130344 - Biophys J. 1994 Jan;66(1):259-67
– reference: 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99
– reference: 24600385 - Front Neuroinform. 2014 Feb 21;8:8
– reference: 18051078 - Med Image Comput Comput Assist Interv. 2007;10(Pt 1):351-8
– reference: 16685845 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):188-95
– reference: 17379540 - Neuroimage. 2007 May 1;35(4):1459-72
– reference: 19834143 - IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2227-42
– reference: 25987367 - Neuroimage. 2015 Aug 15;117:124-40
– reference: 21316463 - Neuroimage. 2011 Jun 1;56(3):1171-80
– reference: 21126594 - Neuroimage. 2011 Apr 1;55(3):1073-90
– reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41
– reference: 23668970 - Neuroimage. 2013 Oct 15;80:105-24
– reference: 25194848 - Nat Methods. 2014 Oct;11(10):1058-63
– reference: 23286122 - Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30
– reference: 23702418 - Neuroimage. 2013 Oct 15;80:125-43
– reference: 26225419 - PLoS One. 2015 Jul 30;10(7):e0133337
– reference: 27416589 - IEEE Trans Med Imaging. 2016 Dec;35(12 ):2609-2619
– reference: 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
– reference: 17271286 - Conf Proc IEEE Eng Med Biol Soc. 2004;6:4421-4
– reference: 23248578 - Front Neurosci. 2012 Dec 11;6:175
– reference: 23684880 - Neuroimage. 2013 Oct 15;80:62-79
– reference: 20442792 - Int J Comput Vis. 2009;85(3):279-290
SSID ssj0062842
Score 2.213546
Snippet The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 554
SubjectTerms Algorithms
Alignment
combinatorial optimization
diffusion MRI
Graph matching
Image processing
Information processing
Magnetic resonance imaging
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Registration
Segmentation
Substantia alba
tractography
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ19EWz9WW4kggsJyuc3X5vEUaxHqUwt9C8kk0YO6V7zrg_-9M9m9oyeiL-5jkmWT3-RjJjP7G8ZeF2ejyRBaK3VqVWdTG0WMrcQy0DLKAnTfcf7FnF2qz1f66k6qL4oJG-mBR-BmQbo0z7F30EvlcMKIqFXCB3Jx2RbaffHM2xpT4x5scNPtRqckmmBuVoblQNzcc_I8aK32DqHK1f8nBfP3OMk7B8_pQ_Zg0hj5YuzpI3YvD4fsaDGgtfz9J3_DawxnvRw_Yu8W18uv1b_PV4Vf0B9QNfxqzcOafyJuan6Oey_dOj1ml6cfLz6ctVM2hBaUE5u2SA3OBGGTU8WJBJ0J887mkvpeuaBULhpMSNKBAbRryzyAjTr1TkEMqKU8YQfDasjPGBegRNLRpuiy6kIKkbIVZcjgYu6CaNhsC4-HiSqcMlZcezQZCFBfAfUEqK-ANuzt7o2bkSbjL23fE-K7dkRwXQtQ7H4Su_-X2Bt2vJWXn1YdfoPoy6Qz1jTs1a4a1ws5QcKQV7drj_oJqjhKCxzl01G8u5501mGNtA2ze4Lf6-p-zbD8Vjm5NYULGvX8f4ztBbtPaNWgGX3MDjY_bvMJqj6b-LLO8l9q6wXV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96ffFFqvVjbZUIIigst7f52jzJVVqL0CLSQt9CPutB3a2964P_vTO53OKJdB-TLJudSSbzld8Q8i5p5WT0tlZMhJq3KtSuca5m0OYFcyx59HecnsmTC_71UlwWh9uypFVuZGIW1GHw6COftghNxbRU8tPNrxqrRmF0tZTQeEh2QAR33YTsHB6dffu-kcUShG-Od0q8GwTK-TpQCWaZnqZ-0SNe9wyjEULwrYMp4_f_T-n8N3fyr8PoeJc8Llokna_Z_oQ8iP1TsjfvwYL--Zu-pzmvMzvM98jH-fXiKsf86ZDoOd6KyilZSzpf0i-IV01PQR6jJ-oZuTg-Ov98UpcKCbXnulnViQmvpW1U0DzpJvhW2lmrYgpdx7XlPCbhpQ1Me-nB1k0z65UTodPcOwuay3My6Yc-viS08bwJwqngdOStDdZhBaPoo9cutrapyHRDHuMLfDhWsbg2YEYgQU0mqEGCmkzQinwY37hZQ2fcM_YQKT6OQ9Dr3DDcXpmyh4xlOsyi67TvGNcgOxoneIDHx6SjShU52PDLlJ0I3xjXTUXejt2whzAwYvs43C0N6Cyg9nDRwF--WLN3nEmrNPQwVRG1xfitqW739IsfGadbYAqh5K_un9Y-eYR0yCky4oBMVrd38TUoOiv3pqzmP3NM_xQ
  priority: 102
  providerName: ProQuest
Title Alignment of Tractograms As Graph Matching
URI https://www.ncbi.nlm.nih.gov/pubmed/27994537
https://www.proquest.com/docview/2305539676
https://www.proquest.com/docview/1851294500
https://pubmed.ncbi.nlm.nih.gov/PMC5136564
https://doaj.org/article/a39d1eb89c83493190b54ddddcef9e7f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAFB5098UXUddLdC0RRFCIm2RumQeRruwFoYvIFvo2zHW3UFNtu-D-e8-ZptFKEfOQh5lJMvnmcq5zDiGvo5JWBGcKSbkvWC19YUtrCwpljlNLo0N9x-hCnI_Z5wmf_D4e3QG43CnaYT6p8WL2_ueP24-w4D-gxAn09ii20xYjb1doVwDyeJfsA12SmM9gxHqbgoCNONk-BZ4TAkZ9bbTc-YYtIpVi-e9iQP_2o_yDMJ0-IPc7jjIfrqfAQ3IntI_IwbAFafrbbf4mTz6eSXl-QN4NZ9OrZP_P5zG_xBNSyT1rmQ-X-RnGrs5HsDejVuoxGZ-eXH46L7psCYVjqlwVkXKnhCmlVyyq0rtamKqWIfqmYcowFiJ3wniqnHAg98bKOGm5bxRz1gAX84TstfM2PCN56VjpuZXeqsBq443FbEbBBadsqE2ZkaMNPNp1ocQxo8VMg0iBgOoEqEZAdQI0I2_7J76vw2j8o-0xIt63wwDYqWC-uNLdetKGKl8F2yjXUKZgHyktZx4uF6IKMmbkcDNeejOpdI3hzagSUmTkVV8N6wmNJKYN85ulBv4FWCDGS_jLp-vh7XtSSwU1VGZEbg38Vle3a9rpdYrZzdGdULDn__HdF-QegpF8Zvgh2VstbsJL4HxWdkD2j08uvnwdJM0B3M8m1SBN8l-qrAbj
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KmkB7ggoCyBAkYCJJCsOJ7Nc0AohZaUNhFCqdSbmbVEKk5pUqH-FN_Im_EiglBv9dEztsdvm7fNewAvvRSaO6NSQZhNaS5sqjOtU4L3DCOaeBP8HZMpHx_Rz8fseAN-t2dhQlplKxOjoLYLE3zkgzyUpiKSC_7-7GcaukaF6GrbQqMmiwN3-QtNtuW7_Y-I31d5vrc7-zBOm64CqaEyW6WeMCO5yoSV1MvMmpyrYS6ct0VBpaLUeWa4skQabtA-9ENlhGa2kNRohbs9vvcGbFLCs7wHmzu70y9fW9nPUdjH-CoPZ5HQGKgDo2gGyoGv5lWoDz4M0Q_G6NpGGPsF_E_J_TdX86_Nb-8O3G601mRUk9ld2HDVPdgaVWix_7hMXicxjzQ66Lfg7eh0fhJzDJKFT2bhFFZMAVsmo2XyKdTHTiYo_4Pn6z4cXQvsHkCvWlTuESSZoZllWlgtHc2VVTp0THLGGaldrrI-DFrwlKYpVx66ZpyWaLYEgJYRoGUAaBkB2oc33RNndamOK-buBIh380KR7XhjcX5SNjxbKiLt0OlCmoJQibIq04xavIzz0gnfh-0WX2XD-fiNjk778KIbRp4NgRhVucXFskQdCdUsyjL8y4c1eruV5ELiCBF9EGuIX1vq-kg1_x7rgrOQssjp46uX9RxujmeTw_Jwf3rwBG4FmMT0HLYNvdX5hXuKStZKP2soO4Fv181MfwBfoz0q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcKhXEF9ErR-xVSOooBAul-zH7YPI1fZsrT2KtNC3dD_rQZurvSvSv-avc2YvOTyRvjWP2U2ymZmd750BeBOUNMJbncmSu4wV0mUmNyYr8Z7lpSmDJX_H_kjsHLGvx_x4BX63Z2EorbLliZFRu4klH3m3oNJUpRJSdEOTFnGwNfx08TOjDlIUaW3bacxJZM9f_0Lzbfpxdwtx_bYohtuHn3eypsNAZpnKZ1kouVVC59IpFlTubCF0r5A-uH6fKc2YD9wK7UplhUVbMfS0lYa7vmLWaJT8-N47sCrJKurA6ub26OB7KwcEMv4YaxV0LgkNg3mQFE1C1Q31uKZa4T2KhHDOloRi7B3wP4X337zNvwTh8AHcbzTYdDAnuYew4utHsDao0Xo_v07fpTGnNDrr1-DD4Gx8GvMN0klID-lEVkwHm6aDafqFamWn-ygLyAv2GI5uBXZPoFNPav8M0tyy3HEjnVGeFdppQ92TvPVWGV_oPIFuC57KNqXLqYPGWYUmDAG0igCtCKBVBGgC7xdPXMzLdtwwd5MgvphHBbfjjcnladXs30qXyvW86SvbL5lCvpUbzhxe1gflZUhgo8VX1XAB_MaCZhN4vRjG_UtBGV37ydW0Qn0JVS7Gc_zLp3P0LlZSSIUjpUxALiF-aanLI_X4R6wRzil9UbDnNy_rFdzFTVR92x3trcM9AknM1OEb0JldXvkXqG_NzMuGsFM4ue299AfwQEFf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alignment+of+Tractograms+As+Graph+Matching&rft.jtitle=Frontiers+in+neuroscience&rft.au=Olivetti%2C+Emanuele&rft.au=Sharmin%2C+Nusrat&rft.au=Avesani%2C+Paolo&rft.date=2016-12-05&rft.issn=1662-4548&rft.volume=10&rft.spage=554&rft_id=info:doi/10.3389%2Ffnins.2016.00554&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon