Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis
Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, has been out of the research s...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 12; p. 70 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
26.10.2018
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5196 1662-5196 |
DOI | 10.3389/fninf.2018.00070 |
Cover
Loading…
Abstract | Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies,
has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both
and
levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres. |
---|---|
AbstractList | Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres. Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both and levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres. Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres. Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivity at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres. Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres. |
Author | Rekik, Islem Soussia, Mayssa |
AuthorAffiliation | 2 Department of Electrical Engineering, The National Engineering School of Tunis , Tunis , Tunisia 1 CVIP Group, BASIRA Lab, School of Science and Engineering, Computing, University of Dundee , Dundee , United Kingdom |
AuthorAffiliation_xml | – name: 1 CVIP Group, BASIRA Lab, School of Science and Engineering, Computing, University of Dundee , Dundee , United Kingdom – name: 2 Department of Electrical Engineering, The National Engineering School of Tunis , Tunis , Tunisia |
Author_xml | – sequence: 1 givenname: Mayssa surname: Soussia fullname: Soussia, Mayssa – sequence: 2 givenname: Islem surname: Rekik fullname: Rekik, Islem |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30459585$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9v2yAUx62p0_pju-80Ie2yi7MH2NhcJnXtukZKVmlqzghjcMhsyMBOtP9-dtJObaVdAMH3fd5Xj-95cuK800nyHsOM0pJ_Ns46MyOAyxkAFPAqOcOMkTTHnJ08OZ8m5zFuABhhefEmOaWQ5Twv87Nkv3Jx2Oqws1HXaCmdNb6t0ULLMLIbtIrTemubdXoXah3Q0oft2re-sUq26GuQ1qEfut_78Cuiax3sbuTcBN-he5zu0fLnHBkf0OXQ29ihaysb56ONb5PXRrZRv3vYL5LVzbf7q9t0cfd9fnW5SFXGoU_rCpeKYcA8w4UmRaYkzxTWmOTMVACyqpjhFVdQMaYwVQWlNGNKmZoXNQd6kcyP3NrLjdgG28nwR3hpxeHCh0bI0FvVamHGAZZGYjN2zGjNZQEqz0wla6OMKvjI-nJkbYeq07XSrg-yfQZ9_uLsWjR-JxihhJNsBHx6AAT_e9CxF52NSretdNoPURBMWZ6XHCbfH19IN34IbhyVIIRnwIEBGVUfnjr6Z-Xxf0cBOwpU8DEGbYSyveytnwzaVmAQU5DEIUhiCpI4BGkshBeFj-z_lvwFKFHNIA |
CitedBy_id | crossref_primary_10_1016_j_psychres_2019_03_001 crossref_primary_10_1007_s11682_020_00404_5 crossref_primary_10_1016_j_compmedimag_2023_102274 crossref_primary_10_1016_j_media_2020_101843 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1016_j_jneumeth_2020_109014 crossref_primary_10_3389_fnins_2020_00258 crossref_primary_10_1016_j_media_2020_101902 crossref_primary_10_1515_revneuro_2020_0043 crossref_primary_10_3389_fnins_2021_697870 crossref_primary_10_1016_j_bspc_2022_104234 crossref_primary_10_1016_j_neuroimage_2020_117546 crossref_primary_10_1016_j_nicl_2020_102195 crossref_primary_10_1016_j_media_2019_101567 crossref_primary_10_1016_j_media_2021_102090 crossref_primary_10_1016_j_neuroimage_2021_117945 crossref_primary_10_1016_j_neubiorev_2019_07_010 crossref_primary_10_1007_s11682_019_00123_6 crossref_primary_10_1016_j_metrad_2023_100046 crossref_primary_10_1109_TPAMI_2022_3209686 crossref_primary_10_3389_fninf_2022_949926 crossref_primary_10_3389_fnmol_2022_999605 crossref_primary_10_1109_TMI_2022_3225083 crossref_primary_10_1016_j_artmed_2025_103074 crossref_primary_10_1016_j_media_2021_102059 crossref_primary_10_1080_10255842_2024_2399016 crossref_primary_10_1155_2022_5766386 crossref_primary_10_1016_j_media_2022_102649 crossref_primary_10_1038_s41598_019_46145_4 crossref_primary_10_1093_cercor_bhae069 crossref_primary_10_1016_j_jneumeth_2020_108799 crossref_primary_10_1016_j_compmedimag_2022_102140 crossref_primary_10_1016_j_jksuci_2022_11_001 crossref_primary_10_1109_TBME_2023_3294223 crossref_primary_10_1016_j_jneumeth_2022_109475 crossref_primary_10_1007_s11682_019_00111_w crossref_primary_10_1016_j_patcog_2019_107183 crossref_primary_10_1109_ACCESS_2022_3157613 crossref_primary_10_3389_fnins_2021_651574 crossref_primary_10_1007_s11517_024_03282_x crossref_primary_10_3389_fnhum_2021_687288 crossref_primary_10_1016_j_compmedimag_2024_102368 crossref_primary_10_1016_j_media_2023_102741 crossref_primary_10_1515_revneuro_2023_0050 crossref_primary_10_1016_j_media_2019_101596 crossref_primary_10_3390_app14020473 crossref_primary_10_1016_j_neunet_2022_03_035 |
Cites_doi | 10.3389/fnhum.2018.00184 10.1111/1467-8624.00433 10.3389/fnhum.2014.00034 10.1002/aur.1858 10.1016/j.rasd.2010.07.007 10.1186/s13229-016-0106-8 10.1162/jocn.2010.21545 10.1016/j.compbiomed.2011.04.004 10.1007/978-3-642-15705-9_68 10.1089/brain.2011.0033 10.1093/cercor/bhx038 10.1016/j.neuroimage.2004.12.052 10.1093/brain/awr263 10.1523/JNEUROSCI.5413-09.2010 10.1503/jpn.140364 10.1007/3-540-45014-9_1 10.1016/j.nic.2005.09.008 10.1212/WNL.59.2.184 10.1101/052225 10.1007/978-3-319-67159-8_6 10.3389/fnhum.2013.00599 10.1016/j.neubiorev.2009.06.002 10.1016/j.pnpbp.2006.06.007 10.1038/nn.3423 10.1016/j.neuroimage.2012.01.021 10.1016/S0042-6989(01)00073-6 10.1016/S0896-6273(00)00115-X 10.1038/s41598-018-21568-7 10.1109/CVPR.2016.629 10.1176/ajp.2006.163.7.1290 10.3389/fninf.2018.00003 10.1007/978-3-319-66182-7_59 10.1016/j.rasd.2012.09.007 10.1212/WNL.57.2.245 10.1080/01621459.1963.10500845 10.1016/j.brainres.2010.11.076 10.1109/ICME.2015.7177432 10.3389/fnbeh.2015.00038 10.1007/978-3-319-67159-8_7 10.1016/j.nicl.2012.11.006 10.1016/j.neuroimage.2009.08.024 10.1002/hbm.23195 10.1016/j.pscychresns.2010.05.006 10.1023/B:MACH.0000015881.36452.6e 10.1109/ICDM.2010.22 10.1016/j.neuropsychologia.2009.08.013 10.1093/brain/awv118 10.1001/archpsyc.62.12.1366 10.1007/s12264-017-0100-y 10.1038/ncpneuro0731 10.3389/fnhum.2013.00733 10.1007/978-3-319-10443-0_23 10.1038/nrn2575 10.1089/brain.2018.0578 10.1093/brain/awu083 10.1146/annurev-clinpsy-040510-143934 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2018 Soussia and Rekik. 2018 Soussia and Rekik |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2018 Soussia and Rekik. 2018 Soussia and Rekik |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fninf.2018.00070 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5196 |
ExternalDocumentID | oai_doaj_org_article_f0708fa1f8c643d9a70c54fbadfcfc79 PMC6232924 30459585 10_3389_fninf_2018_00070 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c490t-db18c61019417e274ca94c1e1256fb00abb6f9b9c0b66c13c733346ccfd97d903 |
IEDL.DBID | M48 |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 01:28:44 EDT 2025 Thu Aug 21 18:10:35 EDT 2025 Thu Sep 04 17:13:28 EDT 2025 Fri Jul 25 12:00:57 EDT 2025 Wed Feb 19 02:42:28 EST 2025 Thu Apr 24 23:12:43 EDT 2025 Tue Jul 01 01:13:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | high-order brain connectivity multi-kernel learning hierarchical ensemble classifier morphological brain network Autism Spectrum Disorder diagnosis morphological connectional biomarkers classification |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-db18c61019417e274ca94c1e1256fb00abb6f9b9c0b66c13c733346ccfd97d903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Xi-Nian Zuo, Institute of Psychology (CAS), China Reviewed by: Sergio E. Lew, Universidad de Buenos Aires, Argentina; Baiying Lei, Shenzhen University, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2018.00070 |
PMID | 30459585 |
PQID | 2294090602 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f0708fa1f8c643d9a70c54fbadfcfc79 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232924 proquest_miscellaneous_2136558900 proquest_journals_2294090602 pubmed_primary_30459585 crossref_citationtrail_10_3389_fninf_2018_00070 crossref_primary_10_3389_fninf_2018_00070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-26 |
PublicationDateYYYYMMDD | 2018-10-26 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2018 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Fischl (B16) 2012; 62 Yamada (B64) 2016; 7 Kuusikko-Gauffin (B29) 2011; 5 Uddin (B60) 2009; 33 Abdi (B1) 2010 Joe (B27) 1963; 58 Ingalhalikar (B25) 2010; 2 Brown (B3) 2016 Zhou (B67) 2018; 12 Landa (B30) 2008; 4 Soussia (B56) 2017 Chen (B8) 2015 Pillai (B47) 2018; 11 Masi (B41) 2017; 33 Nielsen (B44) 2013; 7 Mahjoub (B40) 2018; 8 Courchesne (B10) 2001; 57 Wang (B61) 2017; 70 Petrov (B46) 2017 Sato (B54) 2016; 2 He (B24) 2005 Lima (B33) 2003; 2 He (B23) 2010; 183 Wolff (B63) 2015; 138 Džeroski (B13) 2004; 54 Maaten (B39) 2008; 9 Sparks (B57) 2002; 59 Price (B49) 2014; 17 Wang (B62) 2014 Bullmore (B5) 2011; 7 Lenroot (B32) 2013; 7 M.K.Chung (B38) 2005; 25 Tsiaras (B59) 2011; 41 Girgis (B19) 2007; 31 Pollonini (B48) 2010 Caria (B7) 2015; 9 Stigler (B58) 2011; 1380 Zhao (B66) 2018; 12 Ecker (B14) 2010; 32 Furl (B17) 2011; 23 Jbabdi (B26) 2011; 1 Smith (B55) 2016; 37 Chen (B9) 2016 Zielinski (B69) 2014; 136 Quan (B51) 2016 Lanyon (B31) 2012 Rudie (B52) 2013; 2 Hazlett (B22) 2005; 62 Mueller (B42) 2005; 10 Dawson (B11) 2002; 73 Lisowska (B34) 2018 Prigge (B50) 2013; 7 Ecker (B15) 2009; 49 Liu (B36) 2015 Anderson (B2) 2011; 134 Bullmore (B6) 2009; 10 Dietterich (B12) 2000; 1857 Zhu (B68) 2016 Yang (B65) 2010 Grill-Spector (B20) 2001; 41 Gao (B18) 2015 Hardan (B21) 2006; 163 Buckner (B4) 2013; 7 Orekhova (B45) 2014; 8 Nadler (B43) 2006 Khundrakpam (B28) 2017; 27 Lisowska (B35) 2017 Sahyoun (B53) 2010; 48 Lord (B37) 2000; 28 |
References_xml | – start-page: 433 volume-title: Wiley Interdisc Rev. year: 2010 ident: B1 article-title: Principal Component Analysis – volume: 12 start-page: 184 year: 2018 ident: B66 article-title: Diagnosis of Autism Spectrum Disorders using multi-level high-order functional networks derived from resting-state functional MRI publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00184 – volume: 73 start-page: 700 year: 2002 ident: B11 article-title: Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development publication-title: Child Develop. doi: 10.1111/1467-8624.00433 – volume: 8 start-page: 34 year: 2014 ident: B45 article-title: Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00034 – volume: 11 start-page: 245 year: 2018 ident: B47 article-title: Altered task-related modulation of long-range connectivity in children with autism publication-title: Autism Res. doi: 10.1002/aur.1858 – volume: 5 start-page: 622 year: 2011 ident: B29 article-title: Face memory and object recognition in children with high-functioning autism or asperger syndrome and in their parents publication-title: Res. Autism Spectr. Disord. doi: 10.1016/j.rasd.2010.07.007 – volume: 7 start-page: 41 year: 2016 ident: B64 article-title: Altered functional organization within the insular cortex in adult males with high-functioning autism spectrum disorder: evidence from connectivity-based parcellation publication-title: Mol. Autism doi: 10.1186/s13229-016-0106-8 – start-page: 1017 volume-title: Advances in neural information processing systems year: 2006 ident: B43 article-title: Fundamental limitations of spectral clustering – volume: 23 start-page: 1723 year: 2011 ident: B17 article-title: Fusiform gyrus face selectivity relates to individual differences in facial recognition ability publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2010.21545 – volume: 41 start-page: 1166 year: 2011 ident: B59 article-title: Extracting biomarkers of autism from meg resting-state functional connectivity networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.04.004 – volume: 2 start-page: 558 year: 2010 ident: B25 article-title: Dti based diagnostic prediction of a disease via pattern classification publication-title: Med. Image Comput. Comput. Assist. Interv. doi: 10.1007/978-3-642-15705-9_68 – volume: 1 start-page: 169 year: 2011 ident: B26 article-title: Tractography: where do we go from here? publication-title: Brain Connect doi: 10.1089/brain.2011.0033 – volume: 27 start-page: 1721 year: 2017 ident: B28 article-title: Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: A large-scale mri study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx038 – volume: 25 start-page: 1256 year: 2005 ident: B38 article-title: Cortical thickness analysis in autism with heat kernel smoothing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.052 – volume: 134 start-page: 3742 year: 2011 ident: B2 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain doi: 10.1093/brain/awr263 – start-page: 18 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2016 ident: B9 article-title: Ensemble hierarchical high-order functional connectivity networks for MCI classification – volume: 32 start-page: 10612 year: 2010 ident: B14 article-title: Describing the brain in autism in five dimensions–magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5413-09.2010 – volume: 2 start-page: 124 year: 2016 ident: B54 article-title: Identification of segregated regions in the functional brain connectome of autistic patients by a combination of fuzzy spectral clustering and entropy analysis publication-title: J. Pscychiatry Neurosci. doi: 10.1503/jpn.140364 – volume: 1857 start-page: 1 year: 2000 ident: B12 article-title: Ensemble methods in machine learning publication-title: Multiple Classif. Sys. doi: 10.1007/3-540-45014-9_1 – year: 2016 ident: B3 article-title: Machine learning on human connectome data from MRI publication-title: arXiv:1611.08699v1 – volume: 10 start-page: 869 year: 2005 ident: B42 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin N.Am. doi: 10.1016/j.nic.2005.09.008 – volume: 59 start-page: 184 year: 2002 ident: B57 article-title: Brain structural abnormalities in young children with autism spectrum disorder publication-title: Neurology doi: 10.1212/WNL.59.2.184 – volume: 70 start-page: 869 year: 2017 ident: B61 article-title: Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning publication-title: Nature doi: 10.1101/052225 – start-page: 42 volume-title: International Workshop on Connectomics in Neuroimaging year: 2017 ident: B35 article-title: Pairing-based ensemble classifier learning using convolutional brain multiplexes and multi-view brain networks for early dementia diagnosis doi: 10.1007/978-3-319-67159-8_6 – volume: 7 start-page: 599 year: 2013 ident: B44 article-title: Multisite functional connectivity mri classification of autism: abide results publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00599 – volume: 33 start-page: 1198 year: 2009 ident: B60 article-title: The anterior insula in autism: under-connected and under-examined publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2009.06.002 – volume: 31 start-page: 41 year: 2007 ident: B19 article-title: Volumetric alterations of the orbitofrontal cortex in autism publication-title: Progr. Neuro Psychopharmacol. Biological Psychiatry doi: 10.1016/j.pnpbp.2006.06.007 – volume: 7 start-page: 832 year: 2013 ident: B4 article-title: Opportunities and limitations of intrinsic functional connectivity mri publication-title: Nat. Neurosci. doi: 10.1038/nn.3423 – volume: 62 start-page: 774 year: 2012 ident: B16 article-title: Freesurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 41 start-page: 1409 year: 2001 ident: B20 article-title: The lateral occipital complex and its role in object recognition publication-title: Vis. Res. doi: 10.1016/S0042-6989(01)00073-6 – volume: 28 start-page: 355 year: 2000 ident: B37 article-title: Autism spectrum disorders publication-title: Neuron doi: 10.1016/S0896-6273(00)00115-X – start-page: 194 volume-title: Springer year: 2015 ident: B8 article-title: Longitudinal analysis of brain recovery after mild traumatic brain injury based on groupwiseconsistent brain network clusters – volume: 8 start-page: 4103 year: 2018 ident: B40 article-title: Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states publication-title: Sci. Reports doi: 10.1038/s41598-018-21568-7 – start-page: 5839 year: 2016 ident: B51 article-title: Sparse coding for classification via discrimination ensemble publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2016.629 – volume: 163 start-page: 1290 year: 2006 ident: B21 article-title: An mri study of increased cortical thickness in autism publication-title: Am. J. Psychiatry doi: 10.1176/ajp.2006.163.7.1290 – volume: 12 start-page: 3 year: 2018 ident: B67 article-title: Simultaneous estimation of low-and high-order functional connectivity for identifying mild cognitive impairment publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00003 – start-page: 1706.06031 year: 2017 ident: B46 article-title: Evaluating 35 methods to generate structural connectomes using pairwise classification doi: 10.1007/978-3-319-66182-7_59 – volume: 7 start-page: 221 year: 2013 ident: B50 article-title: Corpus callosum area in children and adults with autism publication-title: Res. Autism Spectrum Disord. doi: 10.1016/j.rasd.2012.09.007 – volume: 57 start-page: 245 year: 2001 ident: B10 article-title: Unusual brain growth patterns in early life in patients with autistic disorder publication-title: Neurology doi: 10.1212/WNL.57.2.245 – start-page: 507 volume-title: Proceedings of the 18th International Conference on Neural Information Processing Systems (NIPS'05) year: 2005 ident: B24 article-title: Laplacian score for feature selection – volume: 58 start-page: 236 year: 1963 ident: B27 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Am. Statist. Assoc. doi: 10.1080/01621459.1963.10500845 – volume: 1380 start-page: 146 year: 2011 ident: B58 article-title: Structural and functional magnetic resonance imaging of autism spectrum disorders publication-title: Neuropsychologia doi: 10.1016/j.brainres.2010.11.076 – start-page: 1 year: 2015 ident: B36 article-title: Discriminative multi-view feature selection and fusion publication-title: Multimedia and Expo (ICME), 2015 IEEE International Conference doi: 10.1109/ICME.2015.7177432 – start-page: 106 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2016 ident: B68 article-title: Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification – volume: 9 start-page: 38 year: 2015 ident: B7 article-title: Anterior insular cortex regulation in autism spectrum disorders publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2015.00038 – start-page: 51 volume-title: Proceedings of Connectomics in NeuroImaging: First International Workshop, CNI 2017, Held in Conjunction with MICCAI 2017, Lecture Notes in Computer Science, Vol. 10511 year: 2017 ident: B56 article-title: High-order connectomic manifold learning for autistic brain state identification doi: 10.1007/978-3-319-67159-8_7 – start-page: 85 year: 2014 ident: B62 article-title: Unsupervised learning of disease progression models publication-title: KDD'14 Proceedings – volume: 2 start-page: 79 year: 2013 ident: B52 article-title: Altered functional and structural brain network organization in autism publication-title: Neuroimage doi: 10.1016/j.nicl.2012.11.006 – volume: 49 start-page: 44 year: 2009 ident: B15 article-title: Investigating the predictive value of whole-brain structural mr scans in autism: A pattern classification approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.08.024 – volume-title: Diffusion Tensor Imaging: Structural Connectivity Insights, Limitations and Future Directions year: 2012 ident: B31 – volume: 37 start-page: 2616 year: 2016 ident: B55 article-title: Cortical thickness change in autism during early childhood publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23195 – volume: 183 start-page: 126 year: 2010 ident: B23 article-title: Detecting corpus callosum abnormalities in autism based on anatomical landmarks publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2010.05.006 – volume: 54 start-page: 255 year: 2004 ident: B13 article-title: Is combining classifiers with stacking better than selecting the best one? publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000015881.36452.6e – start-page: 169 volume-title: Springer year: 2015 ident: B18 article-title: Identifying connectome module patterns via new balanced multi-graph normalized cut – start-page: 599 year: 2010 ident: B65 article-title: Modeling information diffusion in implicit networks publication-title: Data Mining (ICDM), 2010 IEEE 10th International Conference doi: 10.1109/ICDM.2010.22 – volume: 48 start-page: 86 year: 2010 ident: B53 article-title: Neuroimaging of the functional and structural networks underlying visuospatial vs. linguistic reasoning in high-functioning autism publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2009.08.013 – volume: 138 start-page: 2046 year: 2015 ident: B63 article-title: Altered corpus callosum morphology associated with autism over the first 2 years of life publication-title: Brain doi: 10.1093/brain/awv118 – volume: 62 start-page: 1366 year: 2005 ident: B22 article-title: Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.62.12.1366 – volume: 33 start-page: 183 year: 2017 ident: B41 article-title: An overview of autism spectrum disorder, heterogeneity and treatment options publication-title: Neurosci. Bullet. doi: 10.1007/s12264-017-0100-y – volume: 4 start-page: 138 year: 2008 ident: B30 article-title: Diagnosis of autism spectrum disorders in the first 3 years of life publication-title: Nat. Rev. Neurol. doi: 10.1038/ncpneuro0731 – volume: 7 start-page: 733 year: 2013 ident: B32 article-title: Heterogeneity within autism spectrum disorders: What have we learned from neuroimaging studies? publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00733 – volume: 17 start-page: 177 year: 2014 ident: B49 article-title: Multiple-network classification of childhood autism using functional connectivity dynamics publication-title: Med. Image Comput. Comput. Assist. Interv. doi: 10.1007/978-3-319-10443-0_23 – volume: 10 start-page: 186 year: 2009 ident: B6 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Neurosci. doi: 10.1038/nrn2575 – year: 2018 ident: B34 article-title: Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis publication-title: Brain connect. doi: 10.1089/brain.2018.0578 – volume: 136 start-page: 1799 year: 2014 ident: B69 article-title: Longitudinal changes in cortical thickness in autism and typical development publication-title: Brain doi: 10.1093/brain/awu083 – volume: 2 start-page: 370 year: 2003 ident: B33 article-title: Ensembles of support vector machines for classification tasks with reduced training sets publication-title: WSEAS Trans. Sys. – volume: 7 start-page: 113 year: 2011 ident: B5 article-title: Brain graphs:graphical models of the humain brain connectome publication-title: Annu. Rev. Clin. Psychol. doi: 10.1146/annurev-clinpsy-040510-143934 – volume: 9 start-page: 2579 year: 2008 ident: B39 article-title: Visualizing data using t-sne publication-title: Jo. Mach. Learn. Res. – start-page: 1730 volume-title: Annual International Conference of the IEEE EMBS year: 2010 ident: B48 article-title: Functional connectivity networks in the autistic and healthy brain assessed using granger causality |
SSID | ssj0062657 |
Score | 2.4012809 |
Snippet | Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple... Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivity at multiple levels... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 70 |
SubjectTerms | Autism Autism Spectrum Disorder Biomarkers Brain Brain mapping classification Computer engineering Cortex Diagnosis Functional magnetic resonance imaging high-order brain connectivity Identification International conferences Learning algorithms Medical imaging morphological brain network Morphology multi-kernel learning Neural networks Neuroscience NMR Nuclear magnetic resonance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajT3sZ27pLtm5oUAp7MJFtWZYe03WhLaSD0UDfhHXbAo1c6mRl_37nyE5Ixthe9mrLRj4X63zW5-8Qcuy5ZNLlKjOuajJugs-kB8xTKNQJkLaqJP6cPLsS53N-eVPd7LT6Qk5YLw_cG24cICZlaPIgLSyeTjU1sxUPpnHBBlunX_eYYhsw1b-DoUqv6n5TEiCYGocI7kIeFxInGTYm3lmEklb_nwrM33mSOwvP9Cl5MlSMdNLP9Bl55ONzcjiJgJaXP-kJTRzO9HH8kDzMY7e-w_TvvKOzJi5Ce-voIKL6jSaCAEVuR_YFNTfprAU7b95_9BT7RdCrnhne0TOIzh9wn-l9u6TXefZAZ18vKFS5dALh2i3pWc_TW3QvyHz6-frTeTa0VsgsV2yVOZODPSEdFc9rD8jUNorb3EO5IwJkYmOMCMooy4wQNi9tXZYlF9YGp2qnWPmSHMQ2-teEBsEcb6SEaPDcFdKUTjrLnKyt4t4WIzLe2FrbQXcc21_casAf6B2dvKPROzp5Z0Q-bq-46zU3_jL2FN23HYdq2ekAxJAeYkj_K4ZG5GjjfD2kcKeLQgH2ZYLBE3zYnobkwx2VJvp2DWOQJFhJxWAer_pY2c4Et6AVgLERqfeiaG-q-2fi4nsS-IaStABc_OZ_PNtb8hithcttIY7Iwep-7d9BHbUy71PK_AJnKyAS priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be-GCoOVhKGiREBIHK2t7be-eUEIbFaQEVDVSb5b31UZq7BAnVPx7Zux12lRVr_bYGu88dmbn8wwhny0XTJhIhsqkZciVs6GwkPPEEvsECJ2mAn9Onkyz0xn_eZFe-AO3xsMqe5_YOmpTazwjH8SxhFSEZSz-tvwT4tQorK76ERpPyT64YAF6vj86mf4-630xROtp3hUnIRWTA1eB2BDPhQBKhgOK72xGbc_-hwLN-3jJOxvQ-AV57iNHOuxE_ZI8sdUBORxWkDUv_tEvtMVytofkh-RmVjWbJbqBxho6Kau5q68N9c1UL2kLFKCI8Qh_Ye9NOqlhvXs_SEc4N4JOO4R4Q49BS__Ce8arekHPo_CGTs5-UIh26RDUtlnQ4w6vN29ekdn45Pz7aehHLISaS7YOjYqEhggqkjzKLWSoupRcRxbCnsyBRZZKZU4qqZnKMh0lOk-ShGdaOyNzI1nymuxVdWXfEuoyZngpBGiF5SYWKjHCaGZEriW3Og7IoF_rQvv-4zgG47qAPASlU7TSKVA6RSudgHzdPrHsem88QjtC8W3psGt2e6FeXRbeCAsHhMKVkYNv5omRZc50yp0qjdNO5zIgR73wC2_KTXGreAH5tL0NRoiVlbKy9QZoECyYCsmAjzedrmw5wVK0hKQsIPmOFu2wununml-1jb4hNI0hP373OFvvyTNcB9xQ4-yI7K1XG_sBIqW1-ujN4T-hbhc6 priority: 102 providerName: ProQuest |
Title | Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30459585 https://www.proquest.com/docview/2294090602 https://www.proquest.com/docview/2136558900 https://pubmed.ncbi.nlm.nih.gov/PMC6232924 https://doaj.org/article/f0708fa1f8c643d9a70c54fbadfcfc79 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZge-EFAeNSNiojISQewnJxHPsBoZatDKQUNK1S36LEl61Sm2xNy9i_5xwnDRRVSLxEauxGjs93cs4Xfzkm5I1hwhc6kF6h49xjhTWeMMB5Qol1AoSKY4EfJ6djfjZhX6fx9Pfn0e0E1jupHe4nNVnO3_-8ufsIDv8BGSfE22NbQjOqtFAWCRC-T_YhLnGkYinr1hQgc3d1PwPOgX4B8JpFy51X2ApSrpb_rgT0bx3lH4Fp9Ig8bDNKOmgg8JjcM-UTcjAogU0v7uhb6jSe7uX5AbmdlPX6Gh8PtdE0zcuZreaatkVWL6kTEFDUfnjfsCYnTSuww-b5SIe4nwQdN8rxmp4Aen_AdUbLakEvAu-WpudfKGTBdABwrhf0pNHxzeqnZDI6vfh05rVbL3iKSX_l6SIQCjKrQLIgMcBcVS6ZCgykQ9yCp-ZFwa0spPILzlUQqSSKIsaVslomWvrRM7JXVqV5Qajlvma5EIAWw3QoikgLrXwtEiWZUWGPHG_mOlNtXXLcHmOeAT9B62TOOhlaJ3PW6ZF33T-um5oc_-g7RPN1_bCatjtRLS-z1jkzCx2FzQML98wiLfPEVzGzRa6tsiqRPXK0MX62QWgWhhK4sc99uIPXXTM4J6645KWp1tAHRYSxkD6M43mDlW4kuEQtgaz1SLKFoq2hbreUsytXABxS1hB488v_mIdD8gB_YNQN-RHZWy3X5hWkU6uiT_aHp-Pv5333OgKOn6dB33nOL8dBIuk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvCBiXwgAjARIP0ZzESewHhFq6qmVrQVMr7S0kvoxKa1Kalmp_it_IObmUFaG97TV2Isfn4vPZn88h5K3hggntSifVQeLw1BpHGMA8nsQ8AUIFgcDLyaNxOJjyL-fB-R753dyFQVpl4xNLR61zhXvkR54nAYqwkHmfFj8drBqFp6tNCY1KLU7M1QYgW_Fx2AP5vvO8_vHk88Cpqwo4iku2cnTqCgVBA6B3NzIAylQiuXINrPShBSVM0jS0MpWKpWGoXF9Fvu_zUCmrZaQl8-G7d8g-xxutLbLfPR5_O2t8P6CDIKoOQwH6ySObgZogfwwJmwwLIl9b_MoaAf8LbP_lZ15b8PoPyP06UqWdSrUekj2TPSIHnQxQ-vyKvqcld7TclD8gm2lWrBfodgqj6SjJZja_1LRO3npBS2ICRU6J8xVzfdJRDvJt_C7tYp0KOq4Y6QXtgVX8gu_0l_mcTlxnQ0dnQwrRNe2AmRRz2qv4gbPiMZneyuQ_Ia0sz8wzQm3INE-EAC00XHsi9bXQimkRKcmN8trkqJnrWNX5zrHsxmUMuAelE5fSiVE6cSmdNvmwfWNR5fq4oW8Xxbfth1m6ywf58iKujT620FHYxLXwz9zXMomYCrhNE22VVZFsk8NG-HHtOor4r6K3yZttMxg9nuQkmcnX0AfJiYGQDMbxtNKV7Ujw6FsCCGyTaEeLdoa625LNfpSJxSEU9gCPP795WK_J3cFkdBqfDscnL8g9nBNczL3wkLRWy7V5CVHaKn1VmwYl32_bGv8AJNtT1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEDAuHQOMBEg8RHUSJ7EfEGrpqpXRMk2rtLeQ-DIqrUnXtFT7a_w6zsmlrAjtba-JEzk-18_-cg4h7wwXTGhXOqkOEoen1jjCAObxJNYJECoIBP6cPBqHRxP-9Tw43yG_m39hkFbZ-MTSUetc4R55x_MkQBEWMq9ja1rESX_weX7lYAcpPGlt2mlUKnJsrtcA34pPwz7I-r3nDQ7Pvhw5dYcBR3HJlo5OXaEggQAk70YGAJpKJFeugagfWlDIJE1DK1OpWBqGyvVV5Ps-D5WyWkZaMh_ee4_sRhAVeYvs9g7HJ6dNHACkEETVwSjAQNmxGagMcsmQvMmwOfKNQFj2C_hfkvsvV_NG8Bs8Ig_rrJV2KzV7THZM9oTsdTNA7LNr-oGWPNJyg36PrCdZsZqjCyqMpqMkm9r8UtO6kOsFLUkKFPklznes-0lHOci68cG0hz0r6Lhipxe0DxbyC94zWOQzeuY6azo6HVLItGkXTKaY0X7FFZwWT8nkThb_GWlleWZeEGpDpnkiBGik4doTqa-FVkyLSElulNcmnWatY1XXPscWHJcxYCCUTlxKJ0bpxKV02uTj5ol5VffjlrE9FN9mHFbsLi_ki4u4dgCxhYHCJq6Fb-a-lknEVMBtmmirrIpkmxw0wo9rN1LEf5W-Td5uboMDwFOdJDP5CsYgUTEQksE8nle6spkJHoNLAIRtEm1p0dZUt-9k059lkXFIiz3A5vu3T-sNuQ9WGH8bjo9fkge4JBjXvfCAtJaLlXkFCdsyfV1bBiU_7toY_wCZkFgB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Manifold+Learning+Using+High-Order+Morphological+Brain+Networks+Derived+From+T1-w+MRI+for+Autism+Diagnosis&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Soussia%2C+Mayssa&rft.au=Rekik%2C+Islem&rft.date=2018-10-26&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=12&rft_id=info:doi/10.3389%2Ffninf.2018.00070&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fninf_2018_00070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |