Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis

Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, has been out of the research s...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 12; p. 70
Main Authors Soussia, Mayssa, Rekik, Islem
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 26.10.2018
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2018.00070

Cover

Loading…
Abstract Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both and levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.
AbstractList Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.
Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both and levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.
Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.
Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivity at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.
Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying degrees. While unraveling such alterations have been the focus of a large number of studies, morphological brain connectivity has been out of the research scope. In particular, shape-to-shape relationships across brain regions of interest (ROIs) were rarely investigated. As such, the use of networks based on morphological brain data in neurological disorder diagnosis, while leveraging the advent of machine learning, could complement our knowledge on brain wiring alterations in unprecedented ways. In this paper, we use conventional T1-weighted MRI to define morphological brain networks (MBNs), each quantifying shape relationship between different cortical regions for a specific cortical attribute at both low-order and high-order levels. While typical brain connectomes investigate the relationship between two ROIs, we propose high-order MBN which better captures brain complex interactions by modeling the morphological relationship between pairs of ROIs. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectional features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against both supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.
Author Rekik, Islem
Soussia, Mayssa
AuthorAffiliation 2 Department of Electrical Engineering, The National Engineering School of Tunis , Tunis , Tunisia
1 CVIP Group, BASIRA Lab, School of Science and Engineering, Computing, University of Dundee , Dundee , United Kingdom
AuthorAffiliation_xml – name: 1 CVIP Group, BASIRA Lab, School of Science and Engineering, Computing, University of Dundee , Dundee , United Kingdom
– name: 2 Department of Electrical Engineering, The National Engineering School of Tunis , Tunis , Tunisia
Author_xml – sequence: 1
  givenname: Mayssa
  surname: Soussia
  fullname: Soussia, Mayssa
– sequence: 2
  givenname: Islem
  surname: Rekik
  fullname: Rekik, Islem
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30459585$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9v2yAUx62p0_pju-80Ie2yi7MH2NhcJnXtukZKVmlqzghjcMhsyMBOtP9-dtJObaVdAMH3fd5Xj-95cuK800nyHsOM0pJ_Ns46MyOAyxkAFPAqOcOMkTTHnJ08OZ8m5zFuABhhefEmOaWQ5Twv87Nkv3Jx2Oqws1HXaCmdNb6t0ULLMLIbtIrTemubdXoXah3Q0oft2re-sUq26GuQ1qEfut_78Cuiax3sbuTcBN-he5zu0fLnHBkf0OXQ29ihaysb56ONb5PXRrZRv3vYL5LVzbf7q9t0cfd9fnW5SFXGoU_rCpeKYcA8w4UmRaYkzxTWmOTMVACyqpjhFVdQMaYwVQWlNGNKmZoXNQd6kcyP3NrLjdgG28nwR3hpxeHCh0bI0FvVamHGAZZGYjN2zGjNZQEqz0wla6OMKvjI-nJkbYeq07XSrg-yfQZ9_uLsWjR-JxihhJNsBHx6AAT_e9CxF52NSretdNoPURBMWZ6XHCbfH19IN34IbhyVIIRnwIEBGVUfnjr6Z-Xxf0cBOwpU8DEGbYSyveytnwzaVmAQU5DEIUhiCpI4BGkshBeFj-z_lvwFKFHNIA
CitedBy_id crossref_primary_10_1016_j_psychres_2019_03_001
crossref_primary_10_1007_s11682_020_00404_5
crossref_primary_10_1016_j_compmedimag_2023_102274
crossref_primary_10_1016_j_media_2020_101843
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1016_j_jneumeth_2020_109014
crossref_primary_10_3389_fnins_2020_00258
crossref_primary_10_1016_j_media_2020_101902
crossref_primary_10_1515_revneuro_2020_0043
crossref_primary_10_3389_fnins_2021_697870
crossref_primary_10_1016_j_bspc_2022_104234
crossref_primary_10_1016_j_neuroimage_2020_117546
crossref_primary_10_1016_j_nicl_2020_102195
crossref_primary_10_1016_j_media_2019_101567
crossref_primary_10_1016_j_media_2021_102090
crossref_primary_10_1016_j_neuroimage_2021_117945
crossref_primary_10_1016_j_neubiorev_2019_07_010
crossref_primary_10_1007_s11682_019_00123_6
crossref_primary_10_1016_j_metrad_2023_100046
crossref_primary_10_1109_TPAMI_2022_3209686
crossref_primary_10_3389_fninf_2022_949926
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1109_TMI_2022_3225083
crossref_primary_10_1016_j_artmed_2025_103074
crossref_primary_10_1016_j_media_2021_102059
crossref_primary_10_1080_10255842_2024_2399016
crossref_primary_10_1155_2022_5766386
crossref_primary_10_1016_j_media_2022_102649
crossref_primary_10_1038_s41598_019_46145_4
crossref_primary_10_1093_cercor_bhae069
crossref_primary_10_1016_j_jneumeth_2020_108799
crossref_primary_10_1016_j_compmedimag_2022_102140
crossref_primary_10_1016_j_jksuci_2022_11_001
crossref_primary_10_1109_TBME_2023_3294223
crossref_primary_10_1016_j_jneumeth_2022_109475
crossref_primary_10_1007_s11682_019_00111_w
crossref_primary_10_1016_j_patcog_2019_107183
crossref_primary_10_1109_ACCESS_2022_3157613
crossref_primary_10_3389_fnins_2021_651574
crossref_primary_10_1007_s11517_024_03282_x
crossref_primary_10_3389_fnhum_2021_687288
crossref_primary_10_1016_j_compmedimag_2024_102368
crossref_primary_10_1016_j_media_2023_102741
crossref_primary_10_1515_revneuro_2023_0050
crossref_primary_10_1016_j_media_2019_101596
crossref_primary_10_3390_app14020473
crossref_primary_10_1016_j_neunet_2022_03_035
Cites_doi 10.3389/fnhum.2018.00184
10.1111/1467-8624.00433
10.3389/fnhum.2014.00034
10.1002/aur.1858
10.1016/j.rasd.2010.07.007
10.1186/s13229-016-0106-8
10.1162/jocn.2010.21545
10.1016/j.compbiomed.2011.04.004
10.1007/978-3-642-15705-9_68
10.1089/brain.2011.0033
10.1093/cercor/bhx038
10.1016/j.neuroimage.2004.12.052
10.1093/brain/awr263
10.1523/JNEUROSCI.5413-09.2010
10.1503/jpn.140364
10.1007/3-540-45014-9_1
10.1016/j.nic.2005.09.008
10.1212/WNL.59.2.184
10.1101/052225
10.1007/978-3-319-67159-8_6
10.3389/fnhum.2013.00599
10.1016/j.neubiorev.2009.06.002
10.1016/j.pnpbp.2006.06.007
10.1038/nn.3423
10.1016/j.neuroimage.2012.01.021
10.1016/S0042-6989(01)00073-6
10.1016/S0896-6273(00)00115-X
10.1038/s41598-018-21568-7
10.1109/CVPR.2016.629
10.1176/ajp.2006.163.7.1290
10.3389/fninf.2018.00003
10.1007/978-3-319-66182-7_59
10.1016/j.rasd.2012.09.007
10.1212/WNL.57.2.245
10.1080/01621459.1963.10500845
10.1016/j.brainres.2010.11.076
10.1109/ICME.2015.7177432
10.3389/fnbeh.2015.00038
10.1007/978-3-319-67159-8_7
10.1016/j.nicl.2012.11.006
10.1016/j.neuroimage.2009.08.024
10.1002/hbm.23195
10.1016/j.pscychresns.2010.05.006
10.1023/B:MACH.0000015881.36452.6e
10.1109/ICDM.2010.22
10.1016/j.neuropsychologia.2009.08.013
10.1093/brain/awv118
10.1001/archpsyc.62.12.1366
10.1007/s12264-017-0100-y
10.1038/ncpneuro0731
10.3389/fnhum.2013.00733
10.1007/978-3-319-10443-0_23
10.1038/nrn2575
10.1089/brain.2018.0578
10.1093/brain/awu083
10.1146/annurev-clinpsy-040510-143934
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Soussia and Rekik. 2018 Soussia and Rekik
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Soussia and Rekik. 2018 Soussia and Rekik
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2018.00070
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_f0708fa1f8c643d9a70c54fbadfcfc79
PMC6232924
30459585
10_3389_fninf_2018_00070
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-db18c61019417e274ca94c1e1256fb00abb6f9b9c0b66c13c733346ccfd97d903
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 01:28:44 EDT 2025
Thu Aug 21 18:10:35 EDT 2025
Thu Sep 04 17:13:28 EDT 2025
Fri Jul 25 12:00:57 EDT 2025
Wed Feb 19 02:42:28 EST 2025
Thu Apr 24 23:12:43 EDT 2025
Tue Jul 01 01:13:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords high-order brain connectivity
multi-kernel learning
hierarchical ensemble classifier
morphological brain network
Autism Spectrum Disorder
diagnosis
morphological connectional biomarkers
classification
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-db18c61019417e274ca94c1e1256fb00abb6f9b9c0b66c13c733346ccfd97d903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Xi-Nian Zuo, Institute of Psychology (CAS), China
Reviewed by: Sergio E. Lew, Universidad de Buenos Aires, Argentina; Baiying Lei, Shenzhen University, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2018.00070
PMID 30459585
PQID 2294090602
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_f0708fa1f8c643d9a70c54fbadfcfc79
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232924
proquest_miscellaneous_2136558900
proquest_journals_2294090602
pubmed_primary_30459585
crossref_citationtrail_10_3389_fninf_2018_00070
crossref_primary_10_3389_fninf_2018_00070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-26
PublicationDateYYYYMMDD 2018-10-26
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-26
  day: 26
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Fischl (B16) 2012; 62
Yamada (B64) 2016; 7
Kuusikko-Gauffin (B29) 2011; 5
Uddin (B60) 2009; 33
Abdi (B1) 2010
Joe (B27) 1963; 58
Ingalhalikar (B25) 2010; 2
Brown (B3) 2016
Zhou (B67) 2018; 12
Landa (B30) 2008; 4
Soussia (B56) 2017
Chen (B8) 2015
Pillai (B47) 2018; 11
Masi (B41) 2017; 33
Nielsen (B44) 2013; 7
Mahjoub (B40) 2018; 8
Courchesne (B10) 2001; 57
Wang (B61) 2017; 70
Petrov (B46) 2017
Sato (B54) 2016; 2
He (B24) 2005
Lima (B33) 2003; 2
He (B23) 2010; 183
Wolff (B63) 2015; 138
Džeroski (B13) 2004; 54
Maaten (B39) 2008; 9
Sparks (B57) 2002; 59
Price (B49) 2014; 17
Wang (B62) 2014
Bullmore (B5) 2011; 7
Lenroot (B32) 2013; 7
M.K.Chung (B38) 2005; 25
Tsiaras (B59) 2011; 41
Girgis (B19) 2007; 31
Pollonini (B48) 2010
Caria (B7) 2015; 9
Stigler (B58) 2011; 1380
Zhao (B66) 2018; 12
Ecker (B14) 2010; 32
Furl (B17) 2011; 23
Jbabdi (B26) 2011; 1
Smith (B55) 2016; 37
Chen (B9) 2016
Zielinski (B69) 2014; 136
Quan (B51) 2016
Lanyon (B31) 2012
Rudie (B52) 2013; 2
Hazlett (B22) 2005; 62
Mueller (B42) 2005; 10
Dawson (B11) 2002; 73
Lisowska (B34) 2018
Prigge (B50) 2013; 7
Ecker (B15) 2009; 49
Liu (B36) 2015
Anderson (B2) 2011; 134
Bullmore (B6) 2009; 10
Dietterich (B12) 2000; 1857
Zhu (B68) 2016
Yang (B65) 2010
Grill-Spector (B20) 2001; 41
Gao (B18) 2015
Hardan (B21) 2006; 163
Buckner (B4) 2013; 7
Orekhova (B45) 2014; 8
Nadler (B43) 2006
Khundrakpam (B28) 2017; 27
Lisowska (B35) 2017
Sahyoun (B53) 2010; 48
Lord (B37) 2000; 28
References_xml – start-page: 433
  volume-title: Wiley Interdisc Rev.
  year: 2010
  ident: B1
  article-title: Principal Component Analysis
– volume: 12
  start-page: 184
  year: 2018
  ident: B66
  article-title: Diagnosis of Autism Spectrum Disorders using multi-level high-order functional networks derived from resting-state functional MRI
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00184
– volume: 73
  start-page: 700
  year: 2002
  ident: B11
  article-title: Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development
  publication-title: Child Develop.
  doi: 10.1111/1467-8624.00433
– volume: 8
  start-page: 34
  year: 2014
  ident: B45
  article-title: Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00034
– volume: 11
  start-page: 245
  year: 2018
  ident: B47
  article-title: Altered task-related modulation of long-range connectivity in children with autism
  publication-title: Autism Res.
  doi: 10.1002/aur.1858
– volume: 5
  start-page: 622
  year: 2011
  ident: B29
  article-title: Face memory and object recognition in children with high-functioning autism or asperger syndrome and in their parents
  publication-title: Res. Autism Spectr. Disord.
  doi: 10.1016/j.rasd.2010.07.007
– volume: 7
  start-page: 41
  year: 2016
  ident: B64
  article-title: Altered functional organization within the insular cortex in adult males with high-functioning autism spectrum disorder: evidence from connectivity-based parcellation
  publication-title: Mol. Autism
  doi: 10.1186/s13229-016-0106-8
– start-page: 1017
  volume-title: Advances in neural information processing systems
  year: 2006
  ident: B43
  article-title: Fundamental limitations of spectral clustering
– volume: 23
  start-page: 1723
  year: 2011
  ident: B17
  article-title: Fusiform gyrus face selectivity relates to individual differences in facial recognition ability
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2010.21545
– volume: 41
  start-page: 1166
  year: 2011
  ident: B59
  article-title: Extracting biomarkers of autism from meg resting-state functional connectivity networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.04.004
– volume: 2
  start-page: 558
  year: 2010
  ident: B25
  article-title: Dti based diagnostic prediction of a disease via pattern classification
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  doi: 10.1007/978-3-642-15705-9_68
– volume: 1
  start-page: 169
  year: 2011
  ident: B26
  article-title: Tractography: where do we go from here?
  publication-title: Brain Connect
  doi: 10.1089/brain.2011.0033
– volume: 27
  start-page: 1721
  year: 2017
  ident: B28
  article-title: Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: A large-scale mri study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx038
– volume: 25
  start-page: 1256
  year: 2005
  ident: B38
  article-title: Cortical thickness analysis in autism with heat kernel smoothing
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.052
– volume: 134
  start-page: 3742
  year: 2011
  ident: B2
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
  doi: 10.1093/brain/awr263
– start-page: 18
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2016
  ident: B9
  article-title: Ensemble hierarchical high-order functional connectivity networks for MCI classification
– volume: 32
  start-page: 10612
  year: 2010
  ident: B14
  article-title: Describing the brain in autism in five dimensions–magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5413-09.2010
– volume: 2
  start-page: 124
  year: 2016
  ident: B54
  article-title: Identification of segregated regions in the functional brain connectome of autistic patients by a combination of fuzzy spectral clustering and entropy analysis
  publication-title: J. Pscychiatry Neurosci.
  doi: 10.1503/jpn.140364
– volume: 1857
  start-page: 1
  year: 2000
  ident: B12
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classif. Sys.
  doi: 10.1007/3-540-45014-9_1
– year: 2016
  ident: B3
  article-title: Machine learning on human connectome data from MRI
  publication-title: arXiv:1611.08699v1
– volume: 10
  start-page: 869
  year: 2005
  ident: B42
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin N.Am.
  doi: 10.1016/j.nic.2005.09.008
– volume: 59
  start-page: 184
  year: 2002
  ident: B57
  article-title: Brain structural abnormalities in young children with autism spectrum disorder
  publication-title: Neurology
  doi: 10.1212/WNL.59.2.184
– volume: 70
  start-page: 869
  year: 2017
  ident: B61
  article-title: Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning
  publication-title: Nature
  doi: 10.1101/052225
– start-page: 42
  volume-title: International Workshop on Connectomics in Neuroimaging
  year: 2017
  ident: B35
  article-title: Pairing-based ensemble classifier learning using convolutional brain multiplexes and multi-view brain networks for early dementia diagnosis
  doi: 10.1007/978-3-319-67159-8_6
– volume: 7
  start-page: 599
  year: 2013
  ident: B44
  article-title: Multisite functional connectivity mri classification of autism: abide results
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00599
– volume: 33
  start-page: 1198
  year: 2009
  ident: B60
  article-title: The anterior insula in autism: under-connected and under-examined
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2009.06.002
– volume: 31
  start-page: 41
  year: 2007
  ident: B19
  article-title: Volumetric alterations of the orbitofrontal cortex in autism
  publication-title: Progr. Neuro Psychopharmacol. Biological Psychiatry
  doi: 10.1016/j.pnpbp.2006.06.007
– volume: 7
  start-page: 832
  year: 2013
  ident: B4
  article-title: Opportunities and limitations of intrinsic functional connectivity mri
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3423
– volume: 62
  start-page: 774
  year: 2012
  ident: B16
  article-title: Freesurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 41
  start-page: 1409
  year: 2001
  ident: B20
  article-title: The lateral occipital complex and its role in object recognition
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(01)00073-6
– volume: 28
  start-page: 355
  year: 2000
  ident: B37
  article-title: Autism spectrum disorders
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00115-X
– start-page: 194
  volume-title: Springer
  year: 2015
  ident: B8
  article-title: Longitudinal analysis of brain recovery after mild traumatic brain injury based on groupwiseconsistent brain network clusters
– volume: 8
  start-page: 4103
  year: 2018
  ident: B40
  article-title: Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states
  publication-title: Sci. Reports
  doi: 10.1038/s41598-018-21568-7
– start-page: 5839
  year: 2016
  ident: B51
  article-title: Sparse coding for classification via discrimination ensemble
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2016.629
– volume: 163
  start-page: 1290
  year: 2006
  ident: B21
  article-title: An mri study of increased cortical thickness in autism
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.2006.163.7.1290
– volume: 12
  start-page: 3
  year: 2018
  ident: B67
  article-title: Simultaneous estimation of low-and high-order functional connectivity for identifying mild cognitive impairment
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2018.00003
– start-page: 1706.06031
  year: 2017
  ident: B46
  article-title: Evaluating 35 methods to generate structural connectomes using pairwise classification
  doi: 10.1007/978-3-319-66182-7_59
– volume: 7
  start-page: 221
  year: 2013
  ident: B50
  article-title: Corpus callosum area in children and adults with autism
  publication-title: Res. Autism Spectrum Disord.
  doi: 10.1016/j.rasd.2012.09.007
– volume: 57
  start-page: 245
  year: 2001
  ident: B10
  article-title: Unusual brain growth patterns in early life in patients with autistic disorder
  publication-title: Neurology
  doi: 10.1212/WNL.57.2.245
– start-page: 507
  volume-title: Proceedings of the 18th International Conference on Neural Information Processing Systems (NIPS'05)
  year: 2005
  ident: B24
  article-title: Laplacian score for feature selection
– volume: 58
  start-page: 236
  year: 1963
  ident: B27
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. Statist. Assoc.
  doi: 10.1080/01621459.1963.10500845
– volume: 1380
  start-page: 146
  year: 2011
  ident: B58
  article-title: Structural and functional magnetic resonance imaging of autism spectrum disorders
  publication-title: Neuropsychologia
  doi: 10.1016/j.brainres.2010.11.076
– start-page: 1
  year: 2015
  ident: B36
  article-title: Discriminative multi-view feature selection and fusion
  publication-title: Multimedia and Expo (ICME), 2015 IEEE International Conference
  doi: 10.1109/ICME.2015.7177432
– start-page: 106
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2016
  ident: B68
  article-title: Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification
– volume: 9
  start-page: 38
  year: 2015
  ident: B7
  article-title: Anterior insular cortex regulation in autism spectrum disorders
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2015.00038
– start-page: 51
  volume-title: Proceedings of Connectomics in NeuroImaging: First International Workshop, CNI 2017, Held in Conjunction with MICCAI 2017, Lecture Notes in Computer Science, Vol. 10511
  year: 2017
  ident: B56
  article-title: High-order connectomic manifold learning for autistic brain state identification
  doi: 10.1007/978-3-319-67159-8_7
– start-page: 85
  year: 2014
  ident: B62
  article-title: Unsupervised learning of disease progression models
  publication-title: KDD'14 Proceedings
– volume: 2
  start-page: 79
  year: 2013
  ident: B52
  article-title: Altered functional and structural brain network organization in autism
  publication-title: Neuroimage
  doi: 10.1016/j.nicl.2012.11.006
– volume: 49
  start-page: 44
  year: 2009
  ident: B15
  article-title: Investigating the predictive value of whole-brain structural mr scans in autism: A pattern classification approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.08.024
– volume-title: Diffusion Tensor Imaging: Structural Connectivity Insights, Limitations and Future Directions
  year: 2012
  ident: B31
– volume: 37
  start-page: 2616
  year: 2016
  ident: B55
  article-title: Cortical thickness change in autism during early childhood
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23195
– volume: 183
  start-page: 126
  year: 2010
  ident: B23
  article-title: Detecting corpus callosum abnormalities in autism based on anatomical landmarks
  publication-title: Psychiatry Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2010.05.006
– volume: 54
  start-page: 255
  year: 2004
  ident: B13
  article-title: Is combining classifiers with stacking better than selecting the best one?
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000015881.36452.6e
– start-page: 169
  volume-title: Springer
  year: 2015
  ident: B18
  article-title: Identifying connectome module patterns via new balanced multi-graph normalized cut
– start-page: 599
  year: 2010
  ident: B65
  article-title: Modeling information diffusion in implicit networks
  publication-title: Data Mining (ICDM), 2010 IEEE 10th International Conference
  doi: 10.1109/ICDM.2010.22
– volume: 48
  start-page: 86
  year: 2010
  ident: B53
  article-title: Neuroimaging of the functional and structural networks underlying visuospatial vs. linguistic reasoning in high-functioning autism
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2009.08.013
– volume: 138
  start-page: 2046
  year: 2015
  ident: B63
  article-title: Altered corpus callosum morphology associated with autism over the first 2 years of life
  publication-title: Brain
  doi: 10.1093/brain/awv118
– volume: 62
  start-page: 1366
  year: 2005
  ident: B22
  article-title: Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.62.12.1366
– volume: 33
  start-page: 183
  year: 2017
  ident: B41
  article-title: An overview of autism spectrum disorder, heterogeneity and treatment options
  publication-title: Neurosci. Bullet.
  doi: 10.1007/s12264-017-0100-y
– volume: 4
  start-page: 138
  year: 2008
  ident: B30
  article-title: Diagnosis of autism spectrum disorders in the first 3 years of life
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/ncpneuro0731
– volume: 7
  start-page: 733
  year: 2013
  ident: B32
  article-title: Heterogeneity within autism spectrum disorders: What have we learned from neuroimaging studies?
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00733
– volume: 17
  start-page: 177
  year: 2014
  ident: B49
  article-title: Multiple-network classification of childhood autism using functional connectivity dynamics
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  doi: 10.1007/978-3-319-10443-0_23
– volume: 10
  start-page: 186
  year: 2009
  ident: B6
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Neurosci.
  doi: 10.1038/nrn2575
– year: 2018
  ident: B34
  article-title: Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis
  publication-title: Brain connect.
  doi: 10.1089/brain.2018.0578
– volume: 136
  start-page: 1799
  year: 2014
  ident: B69
  article-title: Longitudinal changes in cortical thickness in autism and typical development
  publication-title: Brain
  doi: 10.1093/brain/awu083
– volume: 2
  start-page: 370
  year: 2003
  ident: B33
  article-title: Ensembles of support vector machines for classification tasks with reduced training sets
  publication-title: WSEAS Trans. Sys.
– volume: 7
  start-page: 113
  year: 2011
  ident: B5
  article-title: Brain graphs:graphical models of the humain brain connectome
  publication-title: Annu. Rev. Clin. Psychol.
  doi: 10.1146/annurev-clinpsy-040510-143934
– volume: 9
  start-page: 2579
  year: 2008
  ident: B39
  article-title: Visualizing data using t-sne
  publication-title: Jo. Mach. Learn. Res.
– start-page: 1730
  volume-title: Annual International Conference of the IEEE EMBS
  year: 2010
  ident: B48
  article-title: Functional connectivity networks in the autistic and healthy brain assessed using granger causality
SSID ssj0062657
Score 2.4012809
Snippet Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivities at multiple...
Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from fMRI) and structural (from diffusion MRI) connectivity at multiple levels...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 70
SubjectTerms Autism
Autism Spectrum Disorder
Biomarkers
Brain
Brain mapping
classification
Computer engineering
Cortex
Diagnosis
Functional magnetic resonance imaging
high-order brain connectivity
Identification
International conferences
Learning algorithms
Medical imaging
morphological brain network
Morphology
multi-kernel learning
Neural networks
Neuroscience
NMR
Nuclear magnetic resonance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajT3sZ27pLtm5oUAp7MJFtWZYe03WhLaSD0UDfhHXbAo1c6mRl_37nyE5Ixthe9mrLRj4X63zW5-8Qcuy5ZNLlKjOuajJugs-kB8xTKNQJkLaqJP6cPLsS53N-eVPd7LT6Qk5YLw_cG24cICZlaPIgLSyeTjU1sxUPpnHBBlunX_eYYhsw1b-DoUqv6n5TEiCYGocI7kIeFxInGTYm3lmEklb_nwrM33mSOwvP9Cl5MlSMdNLP9Bl55ONzcjiJgJaXP-kJTRzO9HH8kDzMY7e-w_TvvKOzJi5Ce-voIKL6jSaCAEVuR_YFNTfprAU7b95_9BT7RdCrnhne0TOIzh9wn-l9u6TXefZAZ18vKFS5dALh2i3pWc_TW3QvyHz6-frTeTa0VsgsV2yVOZODPSEdFc9rD8jUNorb3EO5IwJkYmOMCMooy4wQNi9tXZYlF9YGp2qnWPmSHMQ2-teEBsEcb6SEaPDcFdKUTjrLnKyt4t4WIzLe2FrbQXcc21_casAf6B2dvKPROzp5Z0Q-bq-46zU3_jL2FN23HYdq2ekAxJAeYkj_K4ZG5GjjfD2kcKeLQgH2ZYLBE3zYnobkwx2VJvp2DWOQJFhJxWAer_pY2c4Et6AVgLERqfeiaG-q-2fi4nsS-IaStABc_OZ_PNtb8hithcttIY7Iwep-7d9BHbUy71PK_AJnKyAS
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be-GCoOVhKGiREBIHK2t7be-eUEIbFaQEVDVSb5b31UZq7BAnVPx7Zux12lRVr_bYGu88dmbn8wwhny0XTJhIhsqkZciVs6GwkPPEEvsECJ2mAn9Onkyz0xn_eZFe-AO3xsMqe5_YOmpTazwjH8SxhFSEZSz-tvwT4tQorK76ERpPyT64YAF6vj86mf4-630xROtp3hUnIRWTA1eB2BDPhQBKhgOK72xGbc_-hwLN-3jJOxvQ-AV57iNHOuxE_ZI8sdUBORxWkDUv_tEvtMVytofkh-RmVjWbJbqBxho6Kau5q68N9c1UL2kLFKCI8Qh_Ye9NOqlhvXs_SEc4N4JOO4R4Q49BS__Ce8arekHPo_CGTs5-UIh26RDUtlnQ4w6vN29ekdn45Pz7aehHLISaS7YOjYqEhggqkjzKLWSoupRcRxbCnsyBRZZKZU4qqZnKMh0lOk-ShGdaOyNzI1nymuxVdWXfEuoyZngpBGiF5SYWKjHCaGZEriW3Og7IoF_rQvv-4zgG47qAPASlU7TSKVA6RSudgHzdPrHsem88QjtC8W3psGt2e6FeXRbeCAsHhMKVkYNv5omRZc50yp0qjdNO5zIgR73wC2_KTXGreAH5tL0NRoiVlbKy9QZoECyYCsmAjzedrmw5wVK0hKQsIPmOFu2wununml-1jb4hNI0hP373OFvvyTNcB9xQ4-yI7K1XG_sBIqW1-ujN4T-hbhc6
  priority: 102
  providerName: ProQuest
Title Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/30459585
https://www.proquest.com/docview/2294090602
https://www.proquest.com/docview/2136558900
https://pubmed.ncbi.nlm.nih.gov/PMC6232924
https://doaj.org/article/f0708fa1f8c643d9a70c54fbadfcfc79
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZge-EFAeNSNiojISQewnJxHPsBoZatDKQUNK1S36LEl61Sm2xNy9i_5xwnDRRVSLxEauxGjs93cs4Xfzkm5I1hwhc6kF6h49xjhTWeMMB5Qol1AoSKY4EfJ6djfjZhX6fx9Pfn0e0E1jupHe4nNVnO3_-8ufsIDv8BGSfE22NbQjOqtFAWCRC-T_YhLnGkYinr1hQgc3d1PwPOgX4B8JpFy51X2ApSrpb_rgT0bx3lH4Fp9Ig8bDNKOmgg8JjcM-UTcjAogU0v7uhb6jSe7uX5AbmdlPX6Gh8PtdE0zcuZreaatkVWL6kTEFDUfnjfsCYnTSuww-b5SIe4nwQdN8rxmp4Aen_AdUbLakEvAu-WpudfKGTBdABwrhf0pNHxzeqnZDI6vfh05rVbL3iKSX_l6SIQCjKrQLIgMcBcVS6ZCgykQ9yCp-ZFwa0spPILzlUQqSSKIsaVslomWvrRM7JXVqV5Qajlvma5EIAWw3QoikgLrXwtEiWZUWGPHG_mOlNtXXLcHmOeAT9B62TOOhlaJ3PW6ZF33T-um5oc_-g7RPN1_bCatjtRLS-z1jkzCx2FzQML98wiLfPEVzGzRa6tsiqRPXK0MX62QWgWhhK4sc99uIPXXTM4J6645KWp1tAHRYSxkD6M43mDlW4kuEQtgaz1SLKFoq2hbreUsytXABxS1hB488v_mIdD8gB_YNQN-RHZWy3X5hWkU6uiT_aHp-Pv5333OgKOn6dB33nOL8dBIuk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvCBiXwgAjARIP0ZzESewHhFq6qmVrQVMr7S0kvoxKa1Kalmp_it_IObmUFaG97TV2Isfn4vPZn88h5K3hggntSifVQeLw1BpHGMA8nsQ8AUIFgcDLyaNxOJjyL-fB-R753dyFQVpl4xNLR61zhXvkR54nAYqwkHmfFj8drBqFp6tNCY1KLU7M1QYgW_Fx2AP5vvO8_vHk88Cpqwo4iku2cnTqCgVBA6B3NzIAylQiuXINrPShBSVM0jS0MpWKpWGoXF9Fvu_zUCmrZaQl8-G7d8g-xxutLbLfPR5_O2t8P6CDIKoOQwH6ySObgZogfwwJmwwLIl9b_MoaAf8LbP_lZ15b8PoPyP06UqWdSrUekj2TPSIHnQxQ-vyKvqcld7TclD8gm2lWrBfodgqj6SjJZja_1LRO3npBS2ICRU6J8xVzfdJRDvJt_C7tYp0KOq4Y6QXtgVX8gu_0l_mcTlxnQ0dnQwrRNe2AmRRz2qv4gbPiMZneyuQ_Ia0sz8wzQm3INE-EAC00XHsi9bXQimkRKcmN8trkqJnrWNX5zrHsxmUMuAelE5fSiVE6cSmdNvmwfWNR5fq4oW8Xxbfth1m6ywf58iKujT620FHYxLXwz9zXMomYCrhNE22VVZFsk8NG-HHtOor4r6K3yZttMxg9nuQkmcnX0AfJiYGQDMbxtNKV7Ujw6FsCCGyTaEeLdoa625LNfpSJxSEU9gCPP795WK_J3cFkdBqfDscnL8g9nBNczL3wkLRWy7V5CVHaKn1VmwYl32_bGv8AJNtT1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEDAuHQOMBEg8RHUSJ7EfEGrpqpXRMk2rtLeQ-DIqrUnXtFT7a_w6zsmlrAjtba-JEzk-18_-cg4h7wwXTGhXOqkOEoen1jjCAObxJNYJECoIBP6cPBqHRxP-9Tw43yG_m39hkFbZ-MTSUetc4R55x_MkQBEWMq9ja1rESX_weX7lYAcpPGlt2mlUKnJsrtcA34pPwz7I-r3nDQ7Pvhw5dYcBR3HJlo5OXaEggQAk70YGAJpKJFeugagfWlDIJE1DK1OpWBqGyvVV5Ps-D5WyWkZaMh_ee4_sRhAVeYvs9g7HJ6dNHACkEETVwSjAQNmxGagMcsmQvMmwOfKNQFj2C_hfkvsvV_NG8Bs8Ig_rrJV2KzV7THZM9oTsdTNA7LNr-oGWPNJyg36PrCdZsZqjCyqMpqMkm9r8UtO6kOsFLUkKFPklznes-0lHOci68cG0hz0r6Lhipxe0DxbyC94zWOQzeuY6azo6HVLItGkXTKaY0X7FFZwWT8nkThb_GWlleWZeEGpDpnkiBGik4doTqa-FVkyLSElulNcmnWatY1XXPscWHJcxYCCUTlxKJ0bpxKV02uTj5ol5VffjlrE9FN9mHFbsLi_ki4u4dgCxhYHCJq6Fb-a-lknEVMBtmmirrIpkmxw0wo9rN1LEf5W-Td5uboMDwFOdJDP5CsYgUTEQksE8nle6spkJHoNLAIRtEm1p0dZUt-9k059lkXFIiz3A5vu3T-sNuQ9WGH8bjo9fkge4JBjXvfCAtJaLlXkFCdsyfV1bBiU_7toY_wCZkFgB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Manifold+Learning+Using+High-Order+Morphological+Brain+Networks+Derived+From+T1-w+MRI+for+Autism+Diagnosis&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Soussia%2C+Mayssa&rft.au=Rekik%2C+Islem&rft.date=2018-10-26&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=12&rft_id=info:doi/10.3389%2Ffninf.2018.00070&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fninf_2018_00070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon