Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals

In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine inte...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 11; p. 280
Main Authors Zhang, Qin, Liu, Runfeng, Chen, Wenbin, Xiong, Caihua
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 30.05.2017
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions.
AbstractList In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions.
In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential application of this method in exoskeleton, prosthetics and other upper limb rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for electromechanical association learning. Four joint angles across shoulder and elbow are estimated from EMG simultaneously and continuously. With 70-s inter-cross validation and 2-min intra-cross validation, the feasibility, effectiveness and robustness of the proposed myoelectric decoding are presented.
In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions.In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions.
Author Liu, Runfeng
Chen, Wenbin
Zhang, Qin
Xiong, Caihua
AuthorAffiliation The State Key Laboratory of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology Wuhan, China
AuthorAffiliation_xml – name: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology Wuhan, China
Author_xml – sequence: 1
  givenname: Qin
  surname: Zhang
  fullname: Zhang, Qin
– sequence: 2
  givenname: Runfeng
  surname: Liu
  fullname: Liu, Runfeng
– sequence: 3
  givenname: Wenbin
  surname: Chen
  fullname: Chen, Wenbin
– sequence: 4
  givenname: Caihua
  surname: Xiong
  fullname: Xiong, Caihua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28611573$$D View this record in MEDLINE/PubMed
BookMark eNp1kslvEzEUxi1URBe4c0IjceGS4G28XJBQFEpFEYeAxM14vKSOJnaxZ0D97-uZlKqtxOl5-b1P31tOwVFM0QHwGsElIUK-9zHEssQQ8SWEWMBn4AQxhhe0JT-PHpyPwWkpOwgZFhS_AMdYMIRaTk7Ar03Yj_2go0tjaXS0zSrFIcRxuq7LEPZ6CCk2yTebqzT21uWZWvdd-tt8CdFNgCmNz2nfbMbstXHN-ut5swnbqPvyEjz3NbhXd_EM_Pi0_r76vLj8dn6x-ni5MFTCYWGYtoxjSKERhGMqpUXWUKtlCxESVGPqpGaMOoSJZb7zzENhWs11x7Hh5AxcHHRt0jt1navxfKOSDmp-SHmrdK5Oe6d051soCGW4pVQY0TnTedh5J1tEbeur1oeD1vXY7Z01Lg5Z949EH__EcKW26Y-qerwWUQXe3Qnk9Ht0ZVD7UIzr-0OfFZJQciK5EBV9-wTdpTFPnVOYwFag2ouJevPQ0b2Vf4OsADwAJqdSsvP3CIJq2hU174qadkXNu1JT2JMUE4Z52rWm0P8_8RbvC8VM
CitedBy_id crossref_primary_10_1007_s10846_021_01353_x
crossref_primary_10_1016_j_cmpb_2020_105721
crossref_primary_10_1109_TVCG_2023_3294342
crossref_primary_10_1088_1741_2552_abd461
crossref_primary_10_1109_TSMC_2021_3069084
crossref_primary_10_1016_j_autcon_2022_104497
crossref_primary_10_1007_s13198_021_01261_1
crossref_primary_10_1016_j_bspc_2021_103222
crossref_primary_10_3389_fnbot_2018_00058
crossref_primary_10_3233_JIFS_234018
crossref_primary_10_3390_sym12010130
crossref_primary_10_1109_TCDS_2021_3098350
crossref_primary_10_3390_s19235227
crossref_primary_10_1177_17543371211014108
crossref_primary_10_1007_s11517_018_1903_3
crossref_primary_10_1007_s00521_024_10813_y
crossref_primary_10_1109_ACCESS_2019_2956951
crossref_primary_10_1109_TIM_2024_3381303
crossref_primary_10_1016_j_bspc_2019_101774
crossref_primary_10_1590_1517_8692202127032021_0127
crossref_primary_10_3390_s21041316
crossref_primary_10_1016_j_bspc_2019_02_011
crossref_primary_10_1007_s00521_024_10175_5
crossref_primary_10_3389_fnins_2019_01250
crossref_primary_10_1007_s40997_023_00730_1
crossref_primary_10_1109_LRA_2021_3057794
crossref_primary_10_1109_TRO_2024_3411849
crossref_primary_10_1177_1729881420974295
crossref_primary_10_1109_ACCESS_2020_3047828
crossref_primary_10_3390_app11062845
crossref_primary_10_3390_bioengineering10091028
crossref_primary_10_1155_2021_4066415
crossref_primary_10_3233_JIFS_171893
crossref_primary_10_1109_TIE_2024_3398675
crossref_primary_10_1109_TNSRE_2022_3216528
crossref_primary_10_3390_electronics13142770
crossref_primary_10_1016_j_bspc_2022_103557
crossref_primary_10_1007_s40815_017_0396_9
crossref_primary_10_1155_2020_4065351
crossref_primary_10_1109_TMECH_2020_2999532
crossref_primary_10_3389_fnbot_2020_566172
crossref_primary_10_1063_5_0057478
crossref_primary_10_1109_JSEN_2024_3503689
crossref_primary_10_3389_fbioe_2021_771255
crossref_primary_10_34133_cbsystems_0094
crossref_primary_10_1016_j_procs_2021_05_043
crossref_primary_10_3389_fnbot_2023_1174710
crossref_primary_10_1016_j_bspc_2021_102657
crossref_primary_10_3390_s20164581
crossref_primary_10_1088_1742_6596_2071_1_012049
crossref_primary_10_3390_s22249949
crossref_primary_10_1109_TIM_2025_3546405
Cites_doi 10.1001/jama.2009.116
10.1109/TBME.2011.2170423
10.1109/TNSRE.2011.2178039
10.1310/sci1701-07
10.1016/j.jbiomech.2004.05.042
10.1186/1743-0003-9-42
10.1016/j.jelekin.2005.10.002
10.1109/TIE.2016.2522385
10.1093/brain/awm311
10.1016/j.bspc.2014.08.004
10.1109/TSMCB.2012.2185843
10.1109/MCI.2014.2307224
10.1186/1743-0003-10-44
10.1056/NEJMoa1300126
10.1002/0471221317
10.1186/1743-0003-11-122
10.1109/TSMCB.2010.2045120
10.1109/TBME.2006.889202
10.1007/978-3-642-40852-6_37
10.1016/j.jelekin.2004.01.004
10.1109/MEMB.2005.1463398
10.1016/j.robot.2007.11.007
10.1016/j.jelekin.2009.08.005
10.1016/j.gaitpost.2007.03.002
10.4172/2168-9695.1000e107
10.1109/TRO.2009.2039378
10.1109/IROS.2013.6696449
10.1109/TNSRE.2014.2305111
10.1016/j.jelekin.2011.08.011
10.1109/TMECH.2011.2160809
10.1186/1743-0003-11-3
10.1109/TIE.2014.2387337
10.1109/TMECH.2013.2240312
10.1016/j.apmr.2008.05.016
10.1016/j.brainresbull.2012.09.012
10.1016/j.gaitpost.2010.07.005
10.1038/nature11129
10.1109/86.895950
10.1109/TBME.2013.2253777
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Zhang, Liu, Chen and Xiong. 2017 Zhang, Liu, Chen and Xiong
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Zhang, Liu, Chen and Xiong. 2017 Zhang, Liu, Chen and Xiong
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2017.00280
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_abf50834625448c8becbf0bfe9514d5f
PMC5447720
28611573
10_3389_fnins_2017_00280
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  grantid: 2015CFA004
– fundername: National Natural Science Foundation of China
  grantid: 51305148; 51335004
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-c6ad672040c8372499d1dc4da9501184a24e9a664e123d6fbf6f08c5a7ab72c73
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:26:38 EDT 2025
Thu Aug 21 18:24:42 EDT 2025
Sun Aug 24 04:09:22 EDT 2025
Fri Jul 25 11:37:24 EDT 2025
Thu Jan 02 22:21:15 EST 2025
Tue Jul 01 01:01:21 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords artificial neural network (ANN)
principle component analysis (PCA)
independent component analysis (ICA)
myoelectric control
simultaneous and continuous motion estimation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-c6ad672040c8372499d1dc4da9501184a24e9a664e123d6fbf6f08c5a7ab72c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Lizhi Pan, North Carolina State University, United States; Zhong Yin, University of Shanghai for Science and Technology, China; Zhaojie Ju, University of Portsmouth, United Kingdom
This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience
Edited by: Dingguo Zhang, Shanghai Jiao Tong University, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2017.00280
PMID 28611573
PQID 2305812498
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_abf50834625448c8becbf0bfe9514d5f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5447720
proquest_miscellaneous_1909739788
proquest_journals_2305812498
pubmed_primary_28611573
crossref_primary_10_3389_fnins_2017_00280
crossref_citationtrail_10_3389_fnins_2017_00280
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-30
PublicationDateYYYYMMDD 2017-05-30
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-30
  day: 30
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Li (B23) 2014; 9
Beck (B5) 2006; 16
Zhang (B40) 2013; 60
Artemiadis (B1) 2010; 26
Jiang (B16) 2012; 9
Ju (B18) 2014; 19
Kiguchi (B21) 2008; 56
Wu (B39) 2005; 38
Artemiadis (B2) 2011; 41
Kuiken (B22) 2009; 301
Artemiadis (B3) 2012; 1
Zhang (B42) 2013
Chen (B6) 2010; 32
Farina (B10) 2014; 22
Jang (B15) 2016; 63
Nakamura (B28) 2004; 14
Garcia (B11) 2005; 24
Kandel (B19) 2012
Ngeo (B30) 2014; 11
Au (B4) 2000; 8
Hyvarinen (B14) 2001
Qi (B33) 2011; 21
Vogel (B38) 2013
Nazarpour (B29) 2013; 90
Staudenmann (B34) 2007; 54
Zhang (B41) 2011; 16
Chen (B7) 2013; 10
Staudenmann (B35) 2010; 20
Hargrove (B13) 2013; 369
van Andel (B37) 2008; 27
Johnson (B17) 2007
Pan (B31) 2014; 14
Liu (B24) 2013
Takahashi (B36) 2008; 131
Clancy (B9) 2012; 59
Han (B12) 2015; 62
Muceli (B27) 2012; 20
Prilutsky (B32) 2011; 17
Maciejasz (B25) 2014; 11
Churchland (B8) 2012; 487
Miller (B26) 2008; 89
Kiguchi (B20) 2012; 42
23634939 - J Neuroeng Rehabil. 2013 May 01;10(1):44
22000481 - J Electromyogr Kinesiol. 2011 Dec;21(6):1056-63
22742707 - J Neuroeng Rehabil. 2012 Jun 28;9:42
11204038 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):471-80
15844264 - J Biomech. 2005 May;38(5):981-992
24066744 - N Engl J Med. 2013 Sep 26;369(13):1237-42
22334026 - IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):1064-71
23529189 - IEEE Trans Biomed Eng. 2013 Aug;60(8):2299-307
22722855 - Nature. 2012 Jul 5;487(7405):51-6
16119215 - IEEE Eng Med Biol Mag. 2005 Jul-Aug;24(4):63-72
20692160 - Gait Posture. 2010 Oct;32(4):475-81
24109614 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:21-4
15165592 - J Electromyogr Kinesiol. 2004 Aug;14(4):423-32
18156154 - Brain. 2008 Feb;131(Pt 2):425-37
20403787 - IEEE Trans Syst Man Cybern B Cybern. 2011 Feb;41(1):53-63
17405383 - IEEE Trans Biomed Eng. 2007 Apr;54(4):751-4
16368246 - J Electromyogr Kinesiol. 2006 Oct;16(5):531-9
19758823 - J Electromyogr Kinesiol. 2010 Jun;20(3):375-87
22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8
24401110 - J Neuroeng Rehabil. 2014 Jan 09;11:3
17459709 - Gait Posture. 2008 Jan;27(1):120-7
24760934 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809
23047056 - Brain Res Bull. 2013 Jan;90:88-91
18996233 - Arch Phys Med Rehabil. 2008 Nov;89(11):2057-65
19211469 - JAMA. 2009 Feb 11;301(6):619-28
25123024 - J Neuroeng Rehabil. 2014 Aug 14;11:122
21968709 - IEEE Trans Biomed Eng. 2012 Jan;59(1):205-12
References_xml – volume: 301
  start-page: 619
  year: 2009
  ident: B22
  article-title: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms
  publication-title: JAMA
  doi: 10.1001/jama.2009.116
– volume: 59
  start-page: 205
  year: 2012
  ident: B9
  article-title: Identification of constant-posture EMGCtorque relationship about the elbow using nonlinear dynamic models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2170423
– volume: 20
  start-page: 371
  year: 2012
  ident: B27
  article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of freedom
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2178039
– volume: 17
  start-page: 7
  year: 2011
  ident: B32
  article-title: Motor control and motor edundancy in the upper extremity: implications for neurorehabilitation
  publication-title: Top Spinal Cord Injury Rehabil.
  doi: 10.1310/sci1701-07
– volume: 38
  start-page: 981
  year: 2005
  ident: B39
  article-title: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motionłPart II: shoulder, elbow, wrist and hand
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.042
– volume: 9
  start-page: 42
  year: 2012
  ident: B16
  article-title: EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-9-42
– start-page: 21
  volume-title: Proceedings of the 35th International Conference of the IEEE Engineering in Medcine and Biology Society (EMBC) July 3–7
  year: 2013
  ident: B42
  article-title: Human joint motion estimation for electromyography (EMG)-based dynamic motion control
– volume: 16
  start-page: 531
  year: 2006
  ident: B5
  article-title: Electromyographic instantaneous amplitude and instantaneous mean power frequency patterns across a range of motion during a concentric isokinetic muscle action of biceps brachii
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2005.10.002
– volume: 63
  start-page: 3695
  year: 2016
  ident: B15
  article-title: EMG-based continuous control scheme with simple classifier for electric-powered wheelchair
  publication-title: IEEE Trans. Indust. Electr.
  doi: 10.1109/TIE.2016.2522385
– volume: 131
  start-page: 425
  year: 2008
  ident: B36
  article-title: Robot-based hand motor therapy after stroke
  publication-title: Brain
  doi: 10.1093/brain/awm311
– volume: 14
  start-page: 265
  year: 2014
  ident: B31
  article-title: Continuous estimation of finger joint angles under different staticwrist motions from surface EMG signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.08.004
– volume: 42
  start-page: 1064
  year: 2012
  ident: B20
  article-title: An EMG-based control for an upper-limb power-assist exoskeleton robot
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2012.2185843
– volume: 9
  start-page: 38
  year: 2014
  ident: B23
  article-title: Muscle fatigue tracking with evoked EMG via recurrent neural network: toward personalized neuroprosthetics
  publication-title: IEEE Comput. Intell. Magazine
  doi: 10.1109/MCI.2014.2307224
– volume: 10
  start-page: 44
  year: 2013
  ident: B7
  article-title: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-44
– volume: 369
  start-page: 13
  year: 2013
  ident: B13
  article-title: Robotic leg ontrol with EMG decoding in amputee with nerve transfers
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa1300126
– volume-title: Independent Component Analysis
  year: 2001
  ident: B14
  doi: 10.1002/0471221317
– volume: 11
  start-page: 122
  year: 2014
  ident: B30
  article-title: Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-122
– volume: 41
  start-page: 53
  year: 2011
  ident: B2
  article-title: A switching regime model for the EMG-based control of a robot arm
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2010.2045120
– volume: 54
  start-page: 751
  year: 2007
  ident: B34
  article-title: Independent component analysis of high-density electromyography in muscle force estimation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889202
– start-page: 362
  volume-title: Proceedings of the International Conference on Intelligent Robotics and Applications, Sep 25-28
  year: 2013
  ident: B24
  article-title: A novel 10-DoF exoskeleton rehabilitation robot based on the postural synergies of upper extremity movements
  doi: 10.1007/978-3-642-40852-6_37
– volume: 14
  start-page: 423
  year: 2004
  ident: B28
  article-title: The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains: part Iłmeasuring techniques
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2004.01.004
– volume: 24
  start-page: 63
  year: 2005
  ident: B11
  article-title: A decomposition algorithm for surface electrode-array electromyogram: a noninvasive, three-step approach to analyze surface EMG signals
  publication-title: IEEE Eng. Med. Biol. Magazine
  doi: 10.1109/MEMB.2005.1463398
– volume: 56
  start-page: 678
  year: 2008
  ident: B21
  article-title: Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2007.11.007
– volume: 20
  start-page: 375
  year: 2010
  ident: B35
  article-title: Methodological aspects of SEMG recordings for force estimation-a tutorial and review
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2009.08.005
– volume: 27
  start-page: 120
  year: 2008
  ident: B37
  article-title: Complete 3D kinematics of upper extremity functional tasks
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.03.002
– volume: 1
  start-page: e107
  year: 2012
  ident: B3
  article-title: EMG-based robot control interfaces: past, present and future
  publication-title: Adv. Robot. Autom.
  doi: 10.4172/2168-9695.1000e107
– volume: 26
  start-page: 393
  year: 2010
  ident: B1
  article-title: EMG-based control of a robot arm using low-dimensional embeddings
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2009.2039378
– start-page: 845
  volume-title: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. 3-7
  year: 2013
  ident: B38
  article-title: Continuous robot control using surface electromyography of atrophic muscles
  doi: 10.1109/IROS.2013.6696449
– volume: 22
  start-page: 797
  year: 2014
  ident: B10
  article-title: The Extraction of neural information from the surface EMG for the control of upper-Limb prostheses: emerging avenues and challenges
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2305111
– volume: 21
  start-page: 1056
  year: 2011
  ident: B33
  article-title: Spectral properties of electromyographic and mechanomyographic signals during dynamic concentric and eccentric contractions of the human biceps brachii muscle
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2011.08.011
– volume: 16
  start-page: 816
  year: 2011
  ident: B41
  article-title: FES-induced torque prediction with evoked EMG sensing for muscle fatigue tracking
  publication-title: IEEE/ASME Trans. Mechatr.
  doi: 10.1109/TMECH.2011.2160809
– volume-title: Principles of Neural Science, 5th Edn.
  year: 2012
  ident: B19
– volume: 11
  start-page: 3
  year: 2014
  ident: B25
  article-title: A survey on robotic devices for upper limb rehabilitation
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-3
– volume: 62
  start-page: 4267
  year: 2015
  ident: B12
  article-title: A state-space EMG model for the estimation of continuous joint movement
  publication-title: IEEE Trans. Indust. Electr.
  doi: 10.1109/TIE.2014.2387337
– volume: 19
  start-page: 456
  year: 2014
  ident: B18
  article-title: Human hand motion analysis with multisensory information
  publication-title: IEEE/ASME Trans. Mechatr.
  doi: 10.1109/TMECH.2013.2240312
– volume: 89
  start-page: 2057
  year: 2008
  ident: B26
  article-title: Control of a six degree of freedom prosthetic Arm after targeted muscle reinnervation surgery
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2008.05.016
– volume: 90
  start-page: 88
  year: 2013
  ident: B29
  article-title: A note on the probability distribution function of the surface electromyogram
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2012.09.012
– volume-title: Applied Multivariate Statistical Analysis, 6th Edn.
  year: 2007
  ident: B17
– volume: 32
  start-page: 475
  year: 2010
  ident: B6
  article-title: Kinematic analysis and dexterity evaluation of upper extremity in activities of daily living
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.07.005
– volume: 487
  start-page: 51
  year: 2012
  ident: B8
  article-title: Neural population dynamics during reaching
  publication-title: Nature
  doi: 10.1038/nature11129
– volume: 8
  start-page: 471
  year: 2000
  ident: B4
  article-title: EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895950
– volume: 60
  start-page: 2299
  year: 2013
  ident: B40
  article-title: Evoked electromyography-based closed-loop torque control in functional electrical stimulation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2253777
– reference: 24401110 - J Neuroeng Rehabil. 2014 Jan 09;11:3
– reference: 22334026 - IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):1064-71
– reference: 15165592 - J Electromyogr Kinesiol. 2004 Aug;14(4):423-32
– reference: 21968709 - IEEE Trans Biomed Eng. 2012 Jan;59(1):205-12
– reference: 23634939 - J Neuroeng Rehabil. 2013 May 01;10(1):44
– reference: 16119215 - IEEE Eng Med Biol Mag. 2005 Jul-Aug;24(4):63-72
– reference: 24066744 - N Engl J Med. 2013 Sep 26;369(13):1237-42
– reference: 19211469 - JAMA. 2009 Feb 11;301(6):619-28
– reference: 17459709 - Gait Posture. 2008 Jan;27(1):120-7
– reference: 24760934 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809
– reference: 23047056 - Brain Res Bull. 2013 Jan;90:88-91
– reference: 17405383 - IEEE Trans Biomed Eng. 2007 Apr;54(4):751-4
– reference: 23529189 - IEEE Trans Biomed Eng. 2013 Aug;60(8):2299-307
– reference: 25123024 - J Neuroeng Rehabil. 2014 Aug 14;11:122
– reference: 24109614 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:21-4
– reference: 22722855 - Nature. 2012 Jul 5;487(7405):51-6
– reference: 19758823 - J Electromyogr Kinesiol. 2010 Jun;20(3):375-87
– reference: 18156154 - Brain. 2008 Feb;131(Pt 2):425-37
– reference: 11204038 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):471-80
– reference: 20692160 - Gait Posture. 2010 Oct;32(4):475-81
– reference: 16368246 - J Electromyogr Kinesiol. 2006 Oct;16(5):531-9
– reference: 20403787 - IEEE Trans Syst Man Cybern B Cybern. 2011 Feb;41(1):53-63
– reference: 22000481 - J Electromyogr Kinesiol. 2011 Dec;21(6):1056-63
– reference: 15844264 - J Biomech. 2005 May;38(5):981-992
– reference: 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8
– reference: 22742707 - J Neuroeng Rehabil. 2012 Jun 28;9:42
– reference: 18996233 - Arch Phys Med Rehabil. 2008 Nov;89(11):2057-65
SSID ssj0062842
Score 2.3989613
Snippet In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 280
SubjectTerms Arm
artificial neural network (ANN)
Associative learning
Brain research
Elbow
Electromyography
Exoskeleton
independent component analysis (ICA)
International conferences
Kinematics
Muscle contraction
myoelectric control
Neural networks
Neuroscience
Physiology
Principal components analysis
principle component analysis (PCA)
Prosthetics
Rehabilitation
Robots
Shoulder
simultaneous and continuous motion estimation
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTr1UpbQQulSuVFXiEK0THMc50mopatVetkjcjJ8QCbzVdleIf8-MnV2xCLUXbnk4ieMZz3yTjL8h5JN0snFV7UvTBVly0zDcakvBvQ3M6BZ2MNvilzg949_Pm_MHpb4wJyzTA-eBG2sTkLGcC-TSklbCMw3cJHiABtw1Aa0v-LxVMJVtsACjW-efkhCCdeMQ-4jc3FWbEifZhhNKXP1PAczHeZIPHM_Ja_JqQIz0OPd0m7zw8Q3ZOY4QLd_c0c805XCmj-M75GLaY4agjh4Ceqqjo8g-1ccl7k5gNueFinQW6PQKi1v7eWo1uTazW_oDEGdicP1LcdUJnS7nQVtPJz-_0Wl_iUzLb8nZyeT319NyqKFQWt6xRWmFdgIL0TALoSjEWp2rnOVOdw2uOeW65r7TAkQDLsyJYIIITNpGt9q0tW2P3pGtOIt-j1Arg5W-1mAj0K_XRmsWNEAmHSovK1uQ8WpQlR0IxrHOxbWCQAPFoJIYFIpBJTEU5HB9xZ9MrvGPtl9QTut2SIudDoCyqEFZ1P-UpSCjlZTVMFfhGWDyEOZ0siAf16dhluGvkywwBbCpawG6SWizm5Vi3ZNaCmQsOipIu6EuG13dPBP7q8TkDb2E6IbtP8e7vScvcbRSZgMbka3FfOkPADAtzIc0N-4Bd8IXYA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkECjISQuIQbZI6jnNCLUqpQFSIpVJvxs82UuuU7a6q_ntmHG_EItTbZuPVWp7XN_b4G0LeCStqW1Yu160XOdN1gZ-anDNnfKFVAw9YbXHMj07Yl9P6NG24XaeyyrVPjI7aDgb3yGcAlWsMRq34ePU7x65ReLqaWmjcJ9vgggUkX9sH3fH3H2tfzMH5xvNOjneDAJyPB5WQlrUzH_qAfN1lE4spi43AFPn7_wc6_62d_CsYHT4iDxOKpPuj2B-Tey48ITv7ATLoy1v6nsa6zrhhvkN-zXusGlTBQZJPVbAUGan6sMLHDix8vLxIB0_n59jw2i3iqO5CDzf0K6DQyOp6TfEmCp2vFl4ZR7tvn-m8P0P25afk5LD7-ekoT30VcsPaYpkbrizH5jSFgfQUlrS1pTXMqrbGe6hMVcy1ioO4IKxZ7rXnvhCmVo3STWWavWdkKwzBvSDUCG-EqxT4DYz1lVaq8ApglPKlE6XJyGy9qNIk0nHsfXEhIflAMcgoBolikFEMGfkw_eJqJNy4Y-wBymkah1TZ8YthcSaT5UmlPVLeM45kbMIIUFoNWugdYEtma5-R3bWUZbJf-I9J2zLydnoNlofHKaPAJECptgE4J2DM81EppplUgiOL0V5Gmg112Zjq5pvQn0d2b5glZDzFy7un9Yo8wHWIdQzFLtlaLlbuNcCjpX6TbOAPT-wRRQ
  priority: 102
  providerName: ProQuest
Title Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals
URI https://www.ncbi.nlm.nih.gov/pubmed/28611573
https://www.proquest.com/docview/2305812498
https://www.proquest.com/docview/1909739788
https://pubmed.ncbi.nlm.nih.gov/PMC5447720
https://doaj.org/article/abf50834625448c8becbf0bfe9514d5f
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbQ9sILYowfYaMyEkLiISzJHMd5QNOGsk2gTYhSqW_GduwtUnEha8X233PnpIGiwkvUNE5k-e5y38V33xHyStQir9PMxrp0ImY6T_BXEXNmjUu0KuAEsy0u-fmEfZjm09_l0f0C3mwM7bCf1KSdvb39cXcEBv8OI07wtwfONx6Zt9MipEVCAL8NfqlAM71gw54Chxdx2PvkWCcEQL3btNz4BKQIFhx5aA7X_FWg9d-ERf9OqfzDR50-JA96cEmPO23YIfesf0R2jz0E1t_u6Gsa0j3Dd_Rd8nXcYDKh8hZif6p8TZGoqvFLPK3A8LuaRjp3dHyNfbBtG0ZVMz3_ST8COA1krzcUC1ToeNk6ZSytLs7ouLnCxX1MJqfVl_fncd9uITasTBax4arm2LMmMRC1QlhW1mltWK3KHMtTmcqYLRUHKYK3q7nTjrtEmFwVSheZKQ6fkC0_9_YZoUY4I2ym4HWCECDTSiVOAbpSLrUiNRE5WC2qND0XObbEmEmISVAiMkhEokRkkEhE3gx3fO94OP4z9gTlNIxDBu3wx7y9kr1BSqUdMuEzjhxtwgjQZQ3K6SxATlbnLiL7KynLlVZKiNdyRESliMjL4TIYJO6ydAKTgLDKAlCegDFPO6UYZrJSqogUa-qyNtX1K765DqTfMEsIhJLn_3zmHrmPSxAyG5J9srVol_YFAKaFHpHtk-ry0-dR-OAAx7NpOgq28QuA1xbb
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjARKHaJNs4jgHhFpI2bLtCrGt1FvqOHYbqSRlH6r6p_iNzDgPsQj11ttm482OPOPxN_HMNwBvRSGiwg-0mydGuGEeefQpdnmolfFyGeMFZVtM-fg4_HYSnWzA764WhtIqO59oHXVRK3pHPkSoHNFmlIhPl79c6hpFp6tdC43GLCb6-gpDtsXH_S-o33dBsJcefR67bVcBV4WJt3QVlwWn1iyewuAMH5gUfqHCQiYRVWGGMgh1IjkKi0694CY33HhCRTKWeRyoeITPvQOb4QhDmQFs7qbT7z8638_R2dvzVU61SBgMNAejGAYmQ1OVFfGD-7FN3vTWNkLbL-B_IPffXM2_Nr-9B3C_Ra1spzGzh7Chq0ewtVNhxP7zmr1nNo_UvqDfgtNZSVmKstL1asFkVTBiwCqrFV2m6FGaYklWGzY7pwbbem5HpRd5fcUmiHoti-yCUeULm63mRirN0sOvbFaeEdvzYzi-lRl_AoOqrvQzYEoYJXQg0U8RtghyKT0jEbZJ42vhKweG3aRmqiU5p14bFxkGO6SGzKohIzVkVg0OfOh_cdkQfNwwdpf01I8jam77RT0_y9qVnsncEMV-yIn8TSiBiyRHqzcasWxYRMaB7U7LWesv8D9663bgTX8bVzod3zQKyxC6JTHCR4FjnjZG0UsSCE6sSSMH4jVzWRN1_U5Vnls2cZQSIyzv-c1ivYa746PDg-xgfzp5AfdoTmwOhbcNg-V8pV8iNFvmr9r1wOD0tpfgH1XSTYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKBAQwsYCZA4RJukieMcEGpplpaFVcVSqbfUcew2UpuUfajqX-PXMeM8xCLUW2-bjTdreR7-Jp75BuCtKERU-IF288QIN8wjjz7FLg-1Ml4uY7ygbIsJPzgOv55EJ2vwu6uFobTKzidaR13Uit6RDxEqR7QZJWJo2rSIo_3Rp6tfLnWQopPWrp1GoyJjfXON4dv84-E-yvpdEIzSn58P3LbDgKvCxFu4isuCU5sWT2Gghg9PCr9QYSGTiCoyQxmEOpEcJ44OvuAmN9x4QkUylnkcqHgHn3sP1mOMirwBrO-lk6Mf3T7A0fHbs1ZOdUkYGDSHpBgSJkNTlRVxhfuxTeT0VjZF2zvgf4D337zNvzbC0SN42CJYttuo3GNY09UT2NitMHq_vGHvmc0ptS_rN-B0WlLGoqx0vZwzWRWM2LDKakmXKXqXpnCS1YZNz6nZtp7ZUelFXl-zMSJgyyg7Z1QFw6bLmZFKs_T7FzYtz4j5-Skc38mKP4NBVVd6E5gSRgkdSPRZhDOCXErPSIRw0vha-MqBYbeomWoJz6nvxkWGgQ-JIbNiyEgMmRWDAx_6X1w1ZB-3jN0jOfXjiKbbflHPzrLW6jOZG6LbDzkRwQkl0GBytACjEdeGRWQc2O6knLW-A_-j13QH3vS30erpKKcRWIYwLokRSgoc87xRin4mgeDEoLTjQLyiLitTXb1TleeWWRxnidGW9-L2ab2G-2h62bfDyXgLHtCS2HQKbxsGi9lSv0SUtshftebA4PSuLfAPxjdRuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+and+Continuous+Estimation+of+Shoulder+and+Elbow+Kinematics+from+Surface+EMG+Signals&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zhang%2C+Qin&rft.au=Liu%2C+Runfeng&rft.au=Chen%2C+Wenbin&rft.au=Xiong%2C+Caihua&rft.date=2017-05-30&rft.issn=1662-4548&rft.volume=11&rft.spage=280&rft_id=info:doi/10.3389%2Ffnins.2017.00280&rft_id=info%3Apmid%2F28611573&rft.externalDocID=28611573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon