Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals
In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine inte...
Saved in:
Published in | Frontiers in neuroscience Vol. 11; p. 280 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
30.05.2017
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions. |
---|---|
AbstractList | In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions. In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential application of this method in exoskeleton, prosthetics and other upper limb rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for electromechanical association learning. Four joint angles across shoulder and elbow are estimated from EMG simultaneously and continuously. With 70-s inter-cross validation and 2-min intra-cross validation, the feasibility, effectiveness and robustness of the proposed myoelectric decoding are presented. In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions.In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions. |
Author | Liu, Runfeng Chen, Wenbin Zhang, Qin Xiong, Caihua |
AuthorAffiliation | The State Key Laboratory of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology Wuhan, China |
AuthorAffiliation_xml | – name: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology Wuhan, China |
Author_xml | – sequence: 1 givenname: Qin surname: Zhang fullname: Zhang, Qin – sequence: 2 givenname: Runfeng surname: Liu fullname: Liu, Runfeng – sequence: 3 givenname: Wenbin surname: Chen fullname: Chen, Wenbin – sequence: 4 givenname: Caihua surname: Xiong fullname: Xiong, Caihua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28611573$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kslvEzEUxi1URBe4c0IjceGS4G28XJBQFEpFEYeAxM14vKSOJnaxZ0D97-uZlKqtxOl5-b1P31tOwVFM0QHwGsElIUK-9zHEssQQ8SWEWMBn4AQxhhe0JT-PHpyPwWkpOwgZFhS_AMdYMIRaTk7Ar03Yj_2go0tjaXS0zSrFIcRxuq7LEPZ6CCk2yTebqzT21uWZWvdd-tt8CdFNgCmNz2nfbMbstXHN-ut5swnbqPvyEjz3NbhXd_EM_Pi0_r76vLj8dn6x-ni5MFTCYWGYtoxjSKERhGMqpUXWUKtlCxESVGPqpGaMOoSJZb7zzENhWs11x7Hh5AxcHHRt0jt1navxfKOSDmp-SHmrdK5Oe6d051soCGW4pVQY0TnTedh5J1tEbeur1oeD1vXY7Z01Lg5Z949EH__EcKW26Y-qerwWUQXe3Qnk9Ht0ZVD7UIzr-0OfFZJQciK5EBV9-wTdpTFPnVOYwFag2ouJevPQ0b2Vf4OsADwAJqdSsvP3CIJq2hU174qadkXNu1JT2JMUE4Z52rWm0P8_8RbvC8VM |
CitedBy_id | crossref_primary_10_1007_s10846_021_01353_x crossref_primary_10_1016_j_cmpb_2020_105721 crossref_primary_10_1109_TVCG_2023_3294342 crossref_primary_10_1088_1741_2552_abd461 crossref_primary_10_1109_TSMC_2021_3069084 crossref_primary_10_1016_j_autcon_2022_104497 crossref_primary_10_1007_s13198_021_01261_1 crossref_primary_10_1016_j_bspc_2021_103222 crossref_primary_10_3389_fnbot_2018_00058 crossref_primary_10_3233_JIFS_234018 crossref_primary_10_3390_sym12010130 crossref_primary_10_1109_TCDS_2021_3098350 crossref_primary_10_3390_s19235227 crossref_primary_10_1177_17543371211014108 crossref_primary_10_1007_s11517_018_1903_3 crossref_primary_10_1007_s00521_024_10813_y crossref_primary_10_1109_ACCESS_2019_2956951 crossref_primary_10_1109_TIM_2024_3381303 crossref_primary_10_1016_j_bspc_2019_101774 crossref_primary_10_1590_1517_8692202127032021_0127 crossref_primary_10_3390_s21041316 crossref_primary_10_1016_j_bspc_2019_02_011 crossref_primary_10_1007_s00521_024_10175_5 crossref_primary_10_3389_fnins_2019_01250 crossref_primary_10_1007_s40997_023_00730_1 crossref_primary_10_1109_LRA_2021_3057794 crossref_primary_10_1109_TRO_2024_3411849 crossref_primary_10_1177_1729881420974295 crossref_primary_10_1109_ACCESS_2020_3047828 crossref_primary_10_3390_app11062845 crossref_primary_10_3390_bioengineering10091028 crossref_primary_10_1155_2021_4066415 crossref_primary_10_3233_JIFS_171893 crossref_primary_10_1109_TIE_2024_3398675 crossref_primary_10_1109_TNSRE_2022_3216528 crossref_primary_10_3390_electronics13142770 crossref_primary_10_1016_j_bspc_2022_103557 crossref_primary_10_1007_s40815_017_0396_9 crossref_primary_10_1155_2020_4065351 crossref_primary_10_1109_TMECH_2020_2999532 crossref_primary_10_3389_fnbot_2020_566172 crossref_primary_10_1063_5_0057478 crossref_primary_10_1109_JSEN_2024_3503689 crossref_primary_10_3389_fbioe_2021_771255 crossref_primary_10_34133_cbsystems_0094 crossref_primary_10_1016_j_procs_2021_05_043 crossref_primary_10_3389_fnbot_2023_1174710 crossref_primary_10_1016_j_bspc_2021_102657 crossref_primary_10_3390_s20164581 crossref_primary_10_1088_1742_6596_2071_1_012049 crossref_primary_10_3390_s22249949 crossref_primary_10_1109_TIM_2025_3546405 |
Cites_doi | 10.1001/jama.2009.116 10.1109/TBME.2011.2170423 10.1109/TNSRE.2011.2178039 10.1310/sci1701-07 10.1016/j.jbiomech.2004.05.042 10.1186/1743-0003-9-42 10.1016/j.jelekin.2005.10.002 10.1109/TIE.2016.2522385 10.1093/brain/awm311 10.1016/j.bspc.2014.08.004 10.1109/TSMCB.2012.2185843 10.1109/MCI.2014.2307224 10.1186/1743-0003-10-44 10.1056/NEJMoa1300126 10.1002/0471221317 10.1186/1743-0003-11-122 10.1109/TSMCB.2010.2045120 10.1109/TBME.2006.889202 10.1007/978-3-642-40852-6_37 10.1016/j.jelekin.2004.01.004 10.1109/MEMB.2005.1463398 10.1016/j.robot.2007.11.007 10.1016/j.jelekin.2009.08.005 10.1016/j.gaitpost.2007.03.002 10.4172/2168-9695.1000e107 10.1109/TRO.2009.2039378 10.1109/IROS.2013.6696449 10.1109/TNSRE.2014.2305111 10.1016/j.jelekin.2011.08.011 10.1109/TMECH.2011.2160809 10.1186/1743-0003-11-3 10.1109/TIE.2014.2387337 10.1109/TMECH.2013.2240312 10.1016/j.apmr.2008.05.016 10.1016/j.brainresbull.2012.09.012 10.1016/j.gaitpost.2010.07.005 10.1038/nature11129 10.1109/86.895950 10.1109/TBME.2013.2253777 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017 Zhang, Liu, Chen and Xiong. 2017 Zhang, Liu, Chen and Xiong |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017 Zhang, Liu, Chen and Xiong. 2017 Zhang, Liu, Chen and Xiong |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2017.00280 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_abf50834625448c8becbf0bfe9514d5f PMC5447720 28611573 10_3389_fnins_2017_00280 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province grantid: 2015CFA004 – fundername: National Natural Science Foundation of China grantid: 51305148; 51335004 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c490t-c6ad672040c8372499d1dc4da9501184a24e9a664e123d6fbf6f08c5a7ab72c73 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:26:38 EDT 2025 Thu Aug 21 18:24:42 EDT 2025 Sun Aug 24 04:09:22 EDT 2025 Fri Jul 25 11:37:24 EDT 2025 Thu Jan 02 22:21:15 EST 2025 Tue Jul 01 01:01:21 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | artificial neural network (ANN) principle component analysis (PCA) independent component analysis (ICA) myoelectric control simultaneous and continuous motion estimation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-c6ad672040c8372499d1dc4da9501184a24e9a664e123d6fbf6f08c5a7ab72c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Lizhi Pan, North Carolina State University, United States; Zhong Yin, University of Shanghai for Science and Technology, China; Zhaojie Ju, University of Portsmouth, United Kingdom This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience Edited by: Dingguo Zhang, Shanghai Jiao Tong University, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2017.00280 |
PMID | 28611573 |
PQID | 2305812498 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_abf50834625448c8becbf0bfe9514d5f pubmedcentral_primary_oai_pubmedcentral_nih_gov_5447720 proquest_miscellaneous_1909739788 proquest_journals_2305812498 pubmed_primary_28611573 crossref_primary_10_3389_fnins_2017_00280 crossref_citationtrail_10_3389_fnins_2017_00280 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-30 |
PublicationDateYYYYMMDD | 2017-05-30 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2017 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Li (B23) 2014; 9 Beck (B5) 2006; 16 Zhang (B40) 2013; 60 Artemiadis (B1) 2010; 26 Jiang (B16) 2012; 9 Ju (B18) 2014; 19 Kiguchi (B21) 2008; 56 Wu (B39) 2005; 38 Artemiadis (B2) 2011; 41 Kuiken (B22) 2009; 301 Artemiadis (B3) 2012; 1 Zhang (B42) 2013 Chen (B6) 2010; 32 Farina (B10) 2014; 22 Jang (B15) 2016; 63 Nakamura (B28) 2004; 14 Garcia (B11) 2005; 24 Kandel (B19) 2012 Ngeo (B30) 2014; 11 Au (B4) 2000; 8 Hyvarinen (B14) 2001 Qi (B33) 2011; 21 Vogel (B38) 2013 Nazarpour (B29) 2013; 90 Staudenmann (B34) 2007; 54 Zhang (B41) 2011; 16 Chen (B7) 2013; 10 Staudenmann (B35) 2010; 20 Hargrove (B13) 2013; 369 van Andel (B37) 2008; 27 Johnson (B17) 2007 Pan (B31) 2014; 14 Liu (B24) 2013 Takahashi (B36) 2008; 131 Clancy (B9) 2012; 59 Han (B12) 2015; 62 Muceli (B27) 2012; 20 Prilutsky (B32) 2011; 17 Maciejasz (B25) 2014; 11 Churchland (B8) 2012; 487 Miller (B26) 2008; 89 Kiguchi (B20) 2012; 42 23634939 - J Neuroeng Rehabil. 2013 May 01;10(1):44 22000481 - J Electromyogr Kinesiol. 2011 Dec;21(6):1056-63 22742707 - J Neuroeng Rehabil. 2012 Jun 28;9:42 11204038 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):471-80 15844264 - J Biomech. 2005 May;38(5):981-992 24066744 - N Engl J Med. 2013 Sep 26;369(13):1237-42 22334026 - IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):1064-71 23529189 - IEEE Trans Biomed Eng. 2013 Aug;60(8):2299-307 22722855 - Nature. 2012 Jul 5;487(7405):51-6 16119215 - IEEE Eng Med Biol Mag. 2005 Jul-Aug;24(4):63-72 20692160 - Gait Posture. 2010 Oct;32(4):475-81 24109614 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:21-4 15165592 - J Electromyogr Kinesiol. 2004 Aug;14(4):423-32 18156154 - Brain. 2008 Feb;131(Pt 2):425-37 20403787 - IEEE Trans Syst Man Cybern B Cybern. 2011 Feb;41(1):53-63 17405383 - IEEE Trans Biomed Eng. 2007 Apr;54(4):751-4 16368246 - J Electromyogr Kinesiol. 2006 Oct;16(5):531-9 19758823 - J Electromyogr Kinesiol. 2010 Jun;20(3):375-87 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8 24401110 - J Neuroeng Rehabil. 2014 Jan 09;11:3 17459709 - Gait Posture. 2008 Jan;27(1):120-7 24760934 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809 23047056 - Brain Res Bull. 2013 Jan;90:88-91 18996233 - Arch Phys Med Rehabil. 2008 Nov;89(11):2057-65 19211469 - JAMA. 2009 Feb 11;301(6):619-28 25123024 - J Neuroeng Rehabil. 2014 Aug 14;11:122 21968709 - IEEE Trans Biomed Eng. 2012 Jan;59(1):205-12 |
References_xml | – volume: 301 start-page: 619 year: 2009 ident: B22 article-title: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms publication-title: JAMA doi: 10.1001/jama.2009.116 – volume: 59 start-page: 205 year: 2012 ident: B9 article-title: Identification of constant-posture EMGCtorque relationship about the elbow using nonlinear dynamic models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2170423 – volume: 20 start-page: 371 year: 2012 ident: B27 article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of freedom publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2178039 – volume: 17 start-page: 7 year: 2011 ident: B32 article-title: Motor control and motor edundancy in the upper extremity: implications for neurorehabilitation publication-title: Top Spinal Cord Injury Rehabil. doi: 10.1310/sci1701-07 – volume: 38 start-page: 981 year: 2005 ident: B39 article-title: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motionłPart II: shoulder, elbow, wrist and hand publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.05.042 – volume: 9 start-page: 42 year: 2012 ident: B16 article-title: EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-9-42 – start-page: 21 volume-title: Proceedings of the 35th International Conference of the IEEE Engineering in Medcine and Biology Society (EMBC) July 3–7 year: 2013 ident: B42 article-title: Human joint motion estimation for electromyography (EMG)-based dynamic motion control – volume: 16 start-page: 531 year: 2006 ident: B5 article-title: Electromyographic instantaneous amplitude and instantaneous mean power frequency patterns across a range of motion during a concentric isokinetic muscle action of biceps brachii publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2005.10.002 – volume: 63 start-page: 3695 year: 2016 ident: B15 article-title: EMG-based continuous control scheme with simple classifier for electric-powered wheelchair publication-title: IEEE Trans. Indust. Electr. doi: 10.1109/TIE.2016.2522385 – volume: 131 start-page: 425 year: 2008 ident: B36 article-title: Robot-based hand motor therapy after stroke publication-title: Brain doi: 10.1093/brain/awm311 – volume: 14 start-page: 265 year: 2014 ident: B31 article-title: Continuous estimation of finger joint angles under different staticwrist motions from surface EMG signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.08.004 – volume: 42 start-page: 1064 year: 2012 ident: B20 article-title: An EMG-based control for an upper-limb power-assist exoskeleton robot publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2012.2185843 – volume: 9 start-page: 38 year: 2014 ident: B23 article-title: Muscle fatigue tracking with evoked EMG via recurrent neural network: toward personalized neuroprosthetics publication-title: IEEE Comput. Intell. Magazine doi: 10.1109/MCI.2014.2307224 – volume: 10 start-page: 44 year: 2013 ident: B7 article-title: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-44 – volume: 369 start-page: 13 year: 2013 ident: B13 article-title: Robotic leg ontrol with EMG decoding in amputee with nerve transfers publication-title: New Engl. J. Med. doi: 10.1056/NEJMoa1300126 – volume-title: Independent Component Analysis year: 2001 ident: B14 doi: 10.1002/0471221317 – volume: 11 start-page: 122 year: 2014 ident: B30 article-title: Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-122 – volume: 41 start-page: 53 year: 2011 ident: B2 article-title: A switching regime model for the EMG-based control of a robot arm publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2010.2045120 – volume: 54 start-page: 751 year: 2007 ident: B34 article-title: Independent component analysis of high-density electromyography in muscle force estimation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889202 – start-page: 362 volume-title: Proceedings of the International Conference on Intelligent Robotics and Applications, Sep 25-28 year: 2013 ident: B24 article-title: A novel 10-DoF exoskeleton rehabilitation robot based on the postural synergies of upper extremity movements doi: 10.1007/978-3-642-40852-6_37 – volume: 14 start-page: 423 year: 2004 ident: B28 article-title: The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains: part Iłmeasuring techniques publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2004.01.004 – volume: 24 start-page: 63 year: 2005 ident: B11 article-title: A decomposition algorithm for surface electrode-array electromyogram: a noninvasive, three-step approach to analyze surface EMG signals publication-title: IEEE Eng. Med. Biol. Magazine doi: 10.1109/MEMB.2005.1463398 – volume: 56 start-page: 678 year: 2008 ident: B21 article-title: Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2007.11.007 – volume: 20 start-page: 375 year: 2010 ident: B35 article-title: Methodological aspects of SEMG recordings for force estimation-a tutorial and review publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2009.08.005 – volume: 27 start-page: 120 year: 2008 ident: B37 article-title: Complete 3D kinematics of upper extremity functional tasks publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.03.002 – volume: 1 start-page: e107 year: 2012 ident: B3 article-title: EMG-based robot control interfaces: past, present and future publication-title: Adv. Robot. Autom. doi: 10.4172/2168-9695.1000e107 – volume: 26 start-page: 393 year: 2010 ident: B1 article-title: EMG-based control of a robot arm using low-dimensional embeddings publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2009.2039378 – start-page: 845 volume-title: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. 3-7 year: 2013 ident: B38 article-title: Continuous robot control using surface electromyography of atrophic muscles doi: 10.1109/IROS.2013.6696449 – volume: 22 start-page: 797 year: 2014 ident: B10 article-title: The Extraction of neural information from the surface EMG for the control of upper-Limb prostheses: emerging avenues and challenges publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2305111 – volume: 21 start-page: 1056 year: 2011 ident: B33 article-title: Spectral properties of electromyographic and mechanomyographic signals during dynamic concentric and eccentric contractions of the human biceps brachii muscle publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2011.08.011 – volume: 16 start-page: 816 year: 2011 ident: B41 article-title: FES-induced torque prediction with evoked EMG sensing for muscle fatigue tracking publication-title: IEEE/ASME Trans. Mechatr. doi: 10.1109/TMECH.2011.2160809 – volume-title: Principles of Neural Science, 5th Edn. year: 2012 ident: B19 – volume: 11 start-page: 3 year: 2014 ident: B25 article-title: A survey on robotic devices for upper limb rehabilitation publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-3 – volume: 62 start-page: 4267 year: 2015 ident: B12 article-title: A state-space EMG model for the estimation of continuous joint movement publication-title: IEEE Trans. Indust. Electr. doi: 10.1109/TIE.2014.2387337 – volume: 19 start-page: 456 year: 2014 ident: B18 article-title: Human hand motion analysis with multisensory information publication-title: IEEE/ASME Trans. Mechatr. doi: 10.1109/TMECH.2013.2240312 – volume: 89 start-page: 2057 year: 2008 ident: B26 article-title: Control of a six degree of freedom prosthetic Arm after targeted muscle reinnervation surgery publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2008.05.016 – volume: 90 start-page: 88 year: 2013 ident: B29 article-title: A note on the probability distribution function of the surface electromyogram publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2012.09.012 – volume-title: Applied Multivariate Statistical Analysis, 6th Edn. year: 2007 ident: B17 – volume: 32 start-page: 475 year: 2010 ident: B6 article-title: Kinematic analysis and dexterity evaluation of upper extremity in activities of daily living publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.07.005 – volume: 487 start-page: 51 year: 2012 ident: B8 article-title: Neural population dynamics during reaching publication-title: Nature doi: 10.1038/nature11129 – volume: 8 start-page: 471 year: 2000 ident: B4 article-title: EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895950 – volume: 60 start-page: 2299 year: 2013 ident: B40 article-title: Evoked electromyography-based closed-loop torque control in functional electrical stimulation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2253777 – reference: 24401110 - J Neuroeng Rehabil. 2014 Jan 09;11:3 – reference: 22334026 - IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):1064-71 – reference: 15165592 - J Electromyogr Kinesiol. 2004 Aug;14(4):423-32 – reference: 21968709 - IEEE Trans Biomed Eng. 2012 Jan;59(1):205-12 – reference: 23634939 - J Neuroeng Rehabil. 2013 May 01;10(1):44 – reference: 16119215 - IEEE Eng Med Biol Mag. 2005 Jul-Aug;24(4):63-72 – reference: 24066744 - N Engl J Med. 2013 Sep 26;369(13):1237-42 – reference: 19211469 - JAMA. 2009 Feb 11;301(6):619-28 – reference: 17459709 - Gait Posture. 2008 Jan;27(1):120-7 – reference: 24760934 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809 – reference: 23047056 - Brain Res Bull. 2013 Jan;90:88-91 – reference: 17405383 - IEEE Trans Biomed Eng. 2007 Apr;54(4):751-4 – reference: 23529189 - IEEE Trans Biomed Eng. 2013 Aug;60(8):2299-307 – reference: 25123024 - J Neuroeng Rehabil. 2014 Aug 14;11:122 – reference: 24109614 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:21-4 – reference: 22722855 - Nature. 2012 Jul 5;487(7405):51-6 – reference: 19758823 - J Electromyogr Kinesiol. 2010 Jun;20(3):375-87 – reference: 18156154 - Brain. 2008 Feb;131(Pt 2):425-37 – reference: 11204038 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):471-80 – reference: 20692160 - Gait Posture. 2010 Oct;32(4):475-81 – reference: 16368246 - J Electromyogr Kinesiol. 2006 Oct;16(5):531-9 – reference: 20403787 - IEEE Trans Syst Man Cybern B Cybern. 2011 Feb;41(1):53-63 – reference: 22000481 - J Electromyogr Kinesiol. 2011 Dec;21(6):1056-63 – reference: 15844264 - J Biomech. 2005 May;38(5):981-992 – reference: 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8 – reference: 22742707 - J Neuroeng Rehabil. 2012 Jun 28;9:42 – reference: 18996233 - Arch Phys Med Rehabil. 2008 Nov;89(11):2057-65 |
SSID | ssj0062842 |
Score | 2.3989613 |
Snippet | In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 280 |
SubjectTerms | Arm artificial neural network (ANN) Associative learning Brain research Elbow Electromyography Exoskeleton independent component analysis (ICA) International conferences Kinematics Muscle contraction myoelectric control Neural networks Neuroscience Physiology Principal components analysis principle component analysis (PCA) Prosthetics Rehabilitation Robots Shoulder simultaneous and continuous motion estimation |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTr1UpbQQulSuVFXiEK0THMc50mopatVetkjcjJ8QCbzVdleIf8-MnV2xCLUXbnk4ieMZz3yTjL8h5JN0snFV7UvTBVly0zDcakvBvQ3M6BZ2MNvilzg949_Pm_MHpb4wJyzTA-eBG2sTkLGcC-TSklbCMw3cJHiABtw1Aa0v-LxVMJVtsACjW-efkhCCdeMQ-4jc3FWbEifZhhNKXP1PAczHeZIPHM_Ja_JqQIz0OPd0m7zw8Q3ZOY4QLd_c0c805XCmj-M75GLaY4agjh4Ceqqjo8g-1ccl7k5gNueFinQW6PQKi1v7eWo1uTazW_oDEGdicP1LcdUJnS7nQVtPJz-_0Wl_iUzLb8nZyeT319NyqKFQWt6xRWmFdgIL0TALoSjEWp2rnOVOdw2uOeW65r7TAkQDLsyJYIIITNpGt9q0tW2P3pGtOIt-j1Arg5W-1mAj0K_XRmsWNEAmHSovK1uQ8WpQlR0IxrHOxbWCQAPFoJIYFIpBJTEU5HB9xZ9MrvGPtl9QTut2SIudDoCyqEFZ1P-UpSCjlZTVMFfhGWDyEOZ0siAf16dhluGvkywwBbCpawG6SWizm5Vi3ZNaCmQsOipIu6EuG13dPBP7q8TkDb2E6IbtP8e7vScvcbRSZgMbka3FfOkPADAtzIc0N-4Bd8IXYA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkECjISQuIQbZI6jnNCLUqpQFSIpVJvxs82UuuU7a6q_ntmHG_EItTbZuPVWp7XN_b4G0LeCStqW1Yu160XOdN1gZ-anDNnfKFVAw9YbXHMj07Yl9P6NG24XaeyyrVPjI7aDgb3yGcAlWsMRq34ePU7x65ReLqaWmjcJ9vgggUkX9sH3fH3H2tfzMH5xvNOjneDAJyPB5WQlrUzH_qAfN1lE4spi43AFPn7_wc6_62d_CsYHT4iDxOKpPuj2B-Tey48ITv7ATLoy1v6nsa6zrhhvkN-zXusGlTBQZJPVbAUGan6sMLHDix8vLxIB0_n59jw2i3iqO5CDzf0K6DQyOp6TfEmCp2vFl4ZR7tvn-m8P0P25afk5LD7-ekoT30VcsPaYpkbrizH5jSFgfQUlrS1pTXMqrbGe6hMVcy1ioO4IKxZ7rXnvhCmVo3STWWavWdkKwzBvSDUCG-EqxT4DYz1lVaq8ApglPKlE6XJyGy9qNIk0nHsfXEhIflAMcgoBolikFEMGfkw_eJqJNy4Y-wBymkah1TZ8YthcSaT5UmlPVLeM45kbMIIUFoNWugdYEtma5-R3bWUZbJf-I9J2zLydnoNlofHKaPAJECptgE4J2DM81EppplUgiOL0V5Gmg112Zjq5pvQn0d2b5glZDzFy7un9Yo8wHWIdQzFLtlaLlbuNcCjpX6TbOAPT-wRRQ priority: 102 providerName: ProQuest |
Title | Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28611573 https://www.proquest.com/docview/2305812498 https://www.proquest.com/docview/1909739788 https://pubmed.ncbi.nlm.nih.gov/PMC5447720 https://doaj.org/article/abf50834625448c8becbf0bfe9514d5f |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbQ9sILYowfYaMyEkLiISzJHMd5QNOGsk2gTYhSqW_GduwtUnEha8X233PnpIGiwkvUNE5k-e5y38V33xHyStQir9PMxrp0ImY6T_BXEXNmjUu0KuAEsy0u-fmEfZjm09_l0f0C3mwM7bCf1KSdvb39cXcEBv8OI07wtwfONx6Zt9MipEVCAL8NfqlAM71gw54Chxdx2PvkWCcEQL3btNz4BKQIFhx5aA7X_FWg9d-ERf9OqfzDR50-JA96cEmPO23YIfesf0R2jz0E1t_u6Gsa0j3Dd_Rd8nXcYDKh8hZif6p8TZGoqvFLPK3A8LuaRjp3dHyNfbBtG0ZVMz3_ST8COA1krzcUC1ToeNk6ZSytLs7ouLnCxX1MJqfVl_fncd9uITasTBax4arm2LMmMRC1QlhW1mltWK3KHMtTmcqYLRUHKYK3q7nTjrtEmFwVSheZKQ6fkC0_9_YZoUY4I2ym4HWCECDTSiVOAbpSLrUiNRE5WC2qND0XObbEmEmISVAiMkhEokRkkEhE3gx3fO94OP4z9gTlNIxDBu3wx7y9kr1BSqUdMuEzjhxtwgjQZQ3K6SxATlbnLiL7KynLlVZKiNdyRESliMjL4TIYJO6ydAKTgLDKAlCegDFPO6UYZrJSqogUa-qyNtX1K765DqTfMEsIhJLn_3zmHrmPSxAyG5J9srVol_YFAKaFHpHtk-ry0-dR-OAAx7NpOgq28QuA1xbb |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjARKHaJNs4jgHhFpI2bLtCrGt1FvqOHYbqSRlH6r6p_iNzDgPsQj11ttm482OPOPxN_HMNwBvRSGiwg-0mydGuGEeefQpdnmolfFyGeMFZVtM-fg4_HYSnWzA764WhtIqO59oHXVRK3pHPkSoHNFmlIhPl79c6hpFp6tdC43GLCb6-gpDtsXH_S-o33dBsJcefR67bVcBV4WJt3QVlwWn1iyewuAMH5gUfqHCQiYRVWGGMgh1IjkKi0694CY33HhCRTKWeRyoeITPvQOb4QhDmQFs7qbT7z8638_R2dvzVU61SBgMNAejGAYmQ1OVFfGD-7FN3vTWNkLbL-B_IPffXM2_Nr-9B3C_Ra1spzGzh7Chq0ewtVNhxP7zmr1nNo_UvqDfgtNZSVmKstL1asFkVTBiwCqrFV2m6FGaYklWGzY7pwbbem5HpRd5fcUmiHoti-yCUeULm63mRirN0sOvbFaeEdvzYzi-lRl_AoOqrvQzYEoYJXQg0U8RtghyKT0jEbZJ42vhKweG3aRmqiU5p14bFxkGO6SGzKohIzVkVg0OfOh_cdkQfNwwdpf01I8jam77RT0_y9qVnsncEMV-yIn8TSiBiyRHqzcasWxYRMaB7U7LWesv8D9663bgTX8bVzod3zQKyxC6JTHCR4FjnjZG0UsSCE6sSSMH4jVzWRN1_U5Vnls2cZQSIyzv-c1ivYa746PDg-xgfzp5AfdoTmwOhbcNg-V8pV8iNFvmr9r1wOD0tpfgH1XSTYQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKBAQwsYCZA4RJukieMcEGpplpaFVcVSqbfUcew2UpuUfajqX-PXMeM8xCLUW2-bjTdreR7-Jp75BuCtKERU-IF288QIN8wjjz7FLg-1Ml4uY7ygbIsJPzgOv55EJ2vwu6uFobTKzidaR13Uit6RDxEqR7QZJWJo2rSIo_3Rp6tfLnWQopPWrp1GoyJjfXON4dv84-E-yvpdEIzSn58P3LbDgKvCxFu4isuCU5sWT2Gghg9PCr9QYSGTiCoyQxmEOpEcJ44OvuAmN9x4QkUylnkcqHgHn3sP1mOMirwBrO-lk6Mf3T7A0fHbs1ZOdUkYGDSHpBgSJkNTlRVxhfuxTeT0VjZF2zvgf4D337zNvzbC0SN42CJYttuo3GNY09UT2NitMHq_vGHvmc0ptS_rN-B0WlLGoqx0vZwzWRWM2LDKakmXKXqXpnCS1YZNz6nZtp7ZUelFXl-zMSJgyyg7Z1QFw6bLmZFKs_T7FzYtz4j5-Skc38mKP4NBVVd6E5gSRgkdSPRZhDOCXErPSIRw0vha-MqBYbeomWoJz6nvxkWGgQ-JIbNiyEgMmRWDAx_6X1w1ZB-3jN0jOfXjiKbbflHPzrLW6jOZG6LbDzkRwQkl0GBytACjEdeGRWQc2O6knLW-A_-j13QH3vS30erpKKcRWIYwLokRSgoc87xRin4mgeDEoLTjQLyiLitTXb1TleeWWRxnidGW9-L2ab2G-2h62bfDyXgLHtCS2HQKbxsGi9lSv0SUtshftebA4PSuLfAPxjdRuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+and+Continuous+Estimation+of+Shoulder+and+Elbow+Kinematics+from+Surface+EMG+Signals&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zhang%2C+Qin&rft.au=Liu%2C+Runfeng&rft.au=Chen%2C+Wenbin&rft.au=Xiong%2C+Caihua&rft.date=2017-05-30&rft.issn=1662-4548&rft.volume=11&rft.spage=280&rft_id=info:doi/10.3389%2Ffnins.2017.00280&rft_id=info%3Apmid%2F28611573&rft.externalDocID=28611573 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |