A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI

Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 13; p. 127
Main Authors Cao, Xuefei, Sandstede, Björn, Luo, Xi
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 27.02.2019
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks.
AbstractList Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks.
3 Functional MRI (fMRI) is a popular approach to investigate brain connections and activations 4 when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals 5 of brain activities at a lower temporal resolution, complex differential equation modeling methods 6 (e.g. Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to 7 fit the resulting fMRI signals. However, this modeling strategy is computationally expensive 8 and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical 9 challenge here is to infer, in a data-driven fashion, the underlying differential equation models 10 from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate 11 brain activations and connections simultaneously. Our method links the observed fMRI data with 12 the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the 13 basis function expansion approach in functional data analysis, we develop an optimization-based 14 criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement 15 a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the 16 numerical advantages of our approach using data from realistic simulations and two task-related 17 fMRI experiments. Compared with various effective connectivity methods, our method achieves 18 higher estimation accuracy while improving the computational speed by from tens to thousands of 19 times. Though our method is developed for task-related fMRI, we also demonstrate the potential 20 applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both 21 simulated and real data from medium-sized networks.
Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks.Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks.
Author Luo, Xi
Sandstede, Björn
Cao, Xuefei
AuthorAffiliation 1 Division of Applied Mathematics, Brown University , Providence, RI , United States
2 Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston , Houston, TX , United States
AuthorAffiliation_xml – name: 2 Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston , Houston, TX , United States
– name: 1 Division of Applied Mathematics, Brown University , Providence, RI , United States
Author_xml – sequence: 1
  givenname: Xuefei
  surname: Cao
  fullname: Cao, Xuefei
– sequence: 2
  givenname: Björn
  surname: Sandstede
  fullname: Sandstede, Björn
– sequence: 3
  givenname: Xi
  surname: Luo
  fullname: Luo, Xi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30872989$$D View this record in MEDLINE/PubMed
BookMark eNp1kt1rFDEUxYNU7Ie--yQDvvgya74mM3kRymp1oatYKvgWMpmbbbazSU0ySv97s7uttAXzknBzzo_LvecYHfjgAaHXBM8Y6-R7651PM4qJnGFMaPsMHREhaM0b9vPgwfsQHae0xljQjtMX6JDhrqWyk0fo-2l1NnmTXfB6rD7qrKsl5KswVDbEaq6ntC3fer1xpvoK-U-I19UyDDA6v6qCrS51uq4vYNQZimd5sXiJnls9Jnh1d5-gH2efLudf6vNvnxfz0_PacIlzbRreS24HTHjTSN5IaqTuCMeWE2wlDK3tBZUtYUJwioFqJqkU5WDR9ZazE7TYc4eg1-omuo2Otypop3aFEFdKx-zMCEpTQ2EgEjDHnDTQScahH4TsWNtoYgvrw551M_UbGAz4HPX4CPr4x7srtQq_leCYMiYL4N0dIIZfE6SsNi4ZGEftIUxJUSIZEQ1pWZG-fSJdhymW6RcVw6IpOEKK6s3Djv61cr-5IhB7gYkhpQhWGZf1do-lQTcqgtU2ImoXEbWNiNpFpBjxE-M9-7-Wv9XXvJ4
CitedBy_id crossref_primary_10_1162_netn_a_00230
crossref_primary_10_1093_biostatistics_kxad007
crossref_primary_10_1214_20_STS792
crossref_primary_10_1080_01621459_2021_1882466
crossref_primary_10_1080_00224065_2020_1805380
crossref_primary_10_1080_03610918_2023_2234675
Cites_doi 10.1016/S0010-9452(08)70667-1
10.1016/j.neuroimage.2013.01.067
10.1016/j.neuroimage.2008.10.065
10.1109/TMI.2010.2042064
10.1038/sdata.2016.110
10.1016/j.neuroimage.2011.01.085
10.3389/fnsys.2011.00001
10.1016/j.tcs.2008.07.005
10.1016/B978-012372560-8/50014-0
10.1080/01621459.2013.841583
10.1016/S1053-8119(03)00202-7
10.1016/j.neuroimage.2005.11.007
10.1016/j.neuroimage.2010.09.052
10.1016/j.neuroimage.2010.09.048
10.1002/mrm.27146
10.1162/NETN_a_00015
10.1016/j.neuroimage.2008.04.262
10.1016/j.neuroimage.2009.11.015
10.1016/j.neuroimage.2010.08.063
10.1371/journal.pcbi.1000709
10.1016/j.neuroimage.2004.07.041
10.1002/hbm.460020402
10.1016/j.neuroimage.2009.12.086
10.1126/science.1100301
10.1016/j.neuroimage.2013.05.033
10.1093/brain/114.4.1803
10.1142/S0219635210002548
10.1016/j.compchemeng.2005.11.008
10.1214/07-EJS132
10.1016/j.neuroimage.2012.02.015
10.1371/journal.pcbi.1002079
10.1016/j.cognition.2003.11.002
10.1093/brain/awt040
10.1214/09-AOS784
10.1002/mrm.1910390109
10.1145/1143844.1143856
10.1016/j.neuroimage.2005.12.057
10.1177/1073858407299288
10.1523/JNEUROSCI.17-01-00353.1997
10.1016/j.jneumeth.2016.03.010
10.1016/j.neuroimage.2012.04.061
10.1016/j.neuroimage.2013.09.062
10.1016/j.neuroimage.2008.01.044
10.1016/j.neuroimage.2014.11.027
10.1007/s00186-007-0161-1
10.1006/nimg.2001.0933
10.1016/j.neuroimage.2013.05.039
10.1093/cercor/bhq005
10.1016/j.mri.2003.08.026
10.1016/j.neuroimage.2014.08.005
10.1016/j.csda.2008.12.004
10.1016/j.neuroimage.2009.11.062
10.1214/15-EJS1099
10.1016/j.neuroimage.2004.11.017
10.1146/annurev-statistics-041715-033624
10.1111/j.2517-6161.1996.tb02096.x
10.1214/16-BA1017
10.1111/j.2517-6161.1995.tb02031.x
10.1093/cercor/bhr088
10.1002/mrm.26583
10.1006/nimg.1998.0369
10.1016/j.neuroimage.2010.12.039
10.1523/JNEUROSCI.5062-08.2009
10.3389/fnins.2014.00067
10.1109/TMI.2012.2225636
10.1016/j.neuroimage.2012.01.022
10.1523/JNEUROSCI.4682-05.2006
10.1016/j.neuroimage.2003.11.029
10.1002/hbm.460020104
10.1016/j.neuroimage.2017.02.045
10.1016/j.media.2013.01.003
10.1016/j.neuroimage.2010.05.021
10.1016/j.neuroimage.2016.02.067
10.1016/j.neuroimage.2013.12.009
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2007.08.019
10.1523/JNEUROSCI.3741-05.2006
10.1177/1471082X13508262
10.1016/j.neuroimage.2015.05.040
10.1214/09-AOS724
10.1080/01621459.2014.988213
10.1371/journal.pbio.0060315
10.1002/mrm.1910390602
10.1137/0903003
10.1038/nrn2497
10.1016/j.neuroimage.2018.05.058
10.1093/brain/121.6.1013
10.1016/j.neuroimage.2017.02.090
10.3150/11-BEJ362
10.1016/S0028-3932(01)00035-5
10.1152/jn.00338.2011
10.1016/j.jneumeth.2009.11.020
10.1038/npp.2015.28
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Cao, Sandstede and Luo. 2019 Cao, Sandstede and Luo
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Cao, Sandstede and Luo. 2019 Cao, Sandstede and Luo
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2019.00127
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_a2c2ed19e040415e8934ebd698375a1f
PMC6402339
30872989
10_3389_fnins_2019_00127
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-c54b94fd0145594592c9a8140f410f9ed7fb62971366420e2a39296666068bf43
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:31:56 EDT 2025
Thu Aug 21 13:50:56 EDT 2025
Fri Jul 11 06:37:41 EDT 2025
Fri Jul 25 11:35:41 EDT 2025
Thu Jan 02 23:01:14 EST 2025
Tue Jul 01 01:01:32 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords brain connectivity
ordinary differential equations
optimization
task-related fMRI
dynamic data analysis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-c54b94fd0145594592c9a8140f410f9ed7fb62971366420e2a39296666068bf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Pedro Antonio Valdes-Sosa, Clinical Hospital of Chengdu Brain Science Institute, China
Reviewed by: Roberto C. Sotero, University of Calgary, Canada; Philippe Ciuciu, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), France; Gopikrishna Deshpande, Auburn University, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2019.00127
PMID 30872989
PQID 2306533911
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_a2c2ed19e040415e8934ebd698375a1f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402339
proquest_miscellaneous_2193165173
proquest_journals_2306533911
pubmed_primary_30872989
crossref_citationtrail_10_3389_fnins_2019_00127
crossref_primary_10_3389_fnins_2019_00127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-27
PublicationDateYYYYMMDD 2019-02-27
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-27
  day: 27
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Aguirre (B1) 1998; 8
Koyama (B50) 2010; 20
Yeo (B95) 2011; 106
Smith (B80) 2011; 54
Reyt (B71) 2010; 52
Lee (B51) 2006; 30
Handwerker (B47) 2004; 21
Ryali (B74); 268
Mclntosh (B58) 1994; 2
Varah (B85) 1982; 3
Buxton (B16) 1998; 39
Dima (B26) 2010; 52
Karahanoğlu (B49) 2013; 73
Qi (B64) 2010; 38
Marrelec (B57) 2006; 32
Roebroeck (B73) 2005; 25
Aron (B3) 2006; 26
Chaari (B19) 2013; 32
David (B24) 2008; 6
Smith (B79) 2013; 80
Dronkers (B29) 2004; 92
Haggard (B45) 2008; 9
Grant (B43) 2015; 40
Glasser (B40) 2013; 80
Stephan (B83) 2010; 49
Barch (B6) 2013; 80
Chkrebtii (B20) 2016; 11
Frässle (B31) 2017; 155
Seth (B77) 2010; 186
Wise (B91) 1991; 114
Ryali (B75); 132
Wu (B93) 2013; 17
Cappelletti (B18) 2001; 39
Binder (B11) 2011; 54
Luo (B55) 2013; 136
Razi (B69) 2015; 106
Dronkers (B28) 2000
Ridderinkhof (B72) 2004; 306
Friston (B37) 2014; 94
Ryali (B76) 2011; 54
Benjamini (B8) 1995; 57
Poldrack (B62) 2016; 3
Razi (B70) 2017; 1
Cao (B17) 2009; 53
Brodersen (B12) 2011; 7
Henson (B48) 2007
Li (B52) 2011; 58
Girolami (B39) 2008; 408
Brunel (B14) 2008; 2
Vincent (B86) 2014; 8
Xue (B94) 2010; 38
Penny (B61) 2004; 23
Brunel (B13) 2014; 109
Ramsay (B65) 1996; 58
Stephan (B82) 2008; 42
Zhang (B97) 2015; 110
Zhang (B96) 2011; 22
Friston (B36) 1998; 39
Daunizeau (B23) 2012; 62
Bhaumik (B9) 2015; 9
Frässle (B32) 2015; 117
Wheelock (B90) 2014; 102
Friston (B33) 2017
Friston (B35) 1994; 2
Gugushvili (B44) 2012; 18
Mesulam (B59) 1998; 121
Deshpande (B25) 2008; 40
Lindquist (B54) 2009; 45
Poyton (B63) 2006; 30
Ramsey (B67) 2014; 84
Goebel (B41) 2003; 21
Buckner (B15) 2009; 29
Friston (B34) 2003; 19
Aron (B2) 2007; 13
Handwerker (B46) 2012; 62
Asencio (B4) 2014; 14
Crutch (B21) 2002; 38
Bard (B7) 1974
Daunizeau (B22) 2011; 58
Li (B53) 2006; 26
Frässle (B30) 2018; 179
Binder (B10) 1997; 17
Rangaprakash (B68) 2018; 80
Marreiros (B56) 2008; 39
Vincent (B87) 2010; 29
Smith (B78) 2012; 62
Penny (B60) 2010; 6
Sotero (B81) 2010; 9
Worsley (B92) 2002; 15
Gorski (B42) 2007; 66
Ramsay (B66) 2006
Domselaar (B27) 1975
Friston (B38) 2011; 56
Wang (B89) 2017; 78
Banerjee (B5) 2006
Turken (B84) 2011; 5
Wang (B88) 2016; 3
References_xml – volume: 38
  start-page: 389
  year: 2002
  ident: B21
  article-title: Preserved calculation skills in a case of semantic dementia
  publication-title: Cortex
  doi: 10.1016/S0010-9452(08)70667-1
– volume: 73
  start-page: 121
  year: 2013
  ident: B49
  article-title: Total activation: fMRI deconvolution through spatio-temporal regularization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.067
– volume: 45
  start-page: S187
  year: 2009
  ident: B54
  article-title: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.065
– volume: 29
  start-page: 1059
  year: 2010
  ident: B87
  article-title: Spatially adaptive mixture modeling for analysis of fMRI time series
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2042064
– volume: 3
  start-page: 160110
  year: 2016
  ident: B62
  article-title: A phenome-wide examination of neural and cognitive function
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.110
– volume: 58
  start-page: 442
  year: 2011
  ident: B52
  article-title: Generalised filtering and stochastic DCM for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.085
– volume: 5
  start-page: 1
  year: 2011
  ident: B84
  article-title: The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2011.00001
– volume: 408
  start-page: 4
  year: 2008
  ident: B39
  article-title: Bayesian inference for differential equations
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.07.005
– start-page: 178
  volume-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images
  year: 2007
  ident: B48
  article-title: “Convolution models for fMRI,”
  doi: 10.1016/B978-012372560-8/50014-0
– volume: 109
  start-page: 173
  year: 2014
  ident: B13
  article-title: Parametric estimation of ordinary differential equations with orthogonality conditions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2013.841583
– volume: 19
  start-page: 1273
  year: 2003
  ident: B34
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00202-7
– volume: 30
  start-page: 1243
  year: 2006
  ident: B51
  article-title: Large-scale neural models and dynamic causal modelling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.11.007
– volume: 54
  start-page: 807
  year: 2011
  ident: B76
  article-title: Multivariate dynamical systems models for estimating causal interactions in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.052
– volume: 54
  start-page: 1465
  year: 2011
  ident: B11
  article-title: Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.048
– volume: 80
  start-page: 1697
  year: 2018
  ident: B68
  article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity
  publication-title: Magn. Reson. Med
  doi: 10.1002/mrm.27146
– volume-title: Functional Data Analysis
  year: 2006
  ident: B66
– volume: 1
  start-page: 222
  year: 2017
  ident: B70
  article-title: Large-scale DCMs for resting state fMRI
  publication-title: Netw. Neurosci
  doi: 10.1162/NETN_a_00015
– volume: 42
  start-page: 649
  year: 2008
  ident: B82
  article-title: Nonlinear dynamic causal models for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.04.262
– volume: 49
  start-page: 3099
  year: 2010
  ident: B83
  article-title: Ten simple rules for dynamic causal modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.015
– volume: 54
  start-page: 875
  year: 2011
  ident: B80
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 6
  start-page: e1000709
  year: 2010
  ident: B60
  article-title: Comparing families of dynamic causal models
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000709
– volume: 23
  start-page: S264
  year: 2004
  ident: B61
  article-title: Modelling functional integration: a comparison of structural equation and dynamic causal models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.041
– volume: 2
  start-page: 189
  year: 1994
  ident: B35
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– volume: 52
  start-page: 824
  year: 2010
  ident: B26
  article-title: Impaired top-down processes in schizophrenia: a DCM study of ERPs
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.086
– volume: 306
  start-page: 443
  year: 2004
  ident: B72
  article-title: The role of the medial frontal cortex in cognitive control
  publication-title: Science
  doi: 10.1126/science.1100301
– volume: 80
  start-page: 169
  year: 2013
  ident: B6
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 114
  start-page: 1803
  year: 1991
  ident: B91
  article-title: Distribution of cortical neural networks involved in word comprehension and word retrieval
  publication-title: Brain
  doi: 10.1093/brain/114.4.1803
– volume: 9
  start-page: 355
  year: 2010
  ident: B81
  article-title: Anatomically-constrained effective connectivity among layers in a cortical column modeled and estimated from local field potentials
  publication-title: J. Integr. Neurosci.
  doi: 10.1142/S0219635210002548
– volume: 30
  start-page: 698
  year: 2006
  ident: B63
  article-title: Parameter estimation in continuous-time dynamic models using principal differential analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2005.11.008
– volume: 2
  start-page: 1242
  year: 2008
  ident: B14
  article-title: Parameter estimation of ODE's via nonparametric estimators
  publication-title: Electron. J. Stat.
  doi: 10.1214/07-EJS132
– volume: 62
  start-page: 1017
  year: 2012
  ident: B46
  article-title: The continuing challenge of understanding and modeling hemodynamic variation in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.015
– volume: 7
  start-page: e1002079
  year: 2011
  ident: B12
  article-title: Generative embedding for model-based classification of fMRI data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002079
– volume: 92
  start-page: 145
  year: 2004
  ident: B29
  article-title: Lesion analysis of the brain areas involved in language comprehension
  publication-title: Cognition
  doi: 10.1016/j.cognition.2003.11.002
– volume: 136
  start-page: 1231
  year: 2013
  ident: B55
  article-title: Error processing and gender-shared and-specific neural predictors of relapse in cocaine dependence
  publication-title: Brain
  doi: 10.1093/brain/awt040
– volume: 38
  start-page: 2351
  year: 2010
  ident: B94
  article-title: Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS784
– volume: 39
  start-page: 41
  year: 1998
  ident: B36
  article-title: Nonlinear event-related responses in fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390109
– start-page: 89
  volume-title: Proceedings of the 23rd International Conference on Machine learning
  year: 2006
  ident: B5
  article-title: “Convex optimization techniques for fitting sparse Gaussian graphical models,”
  doi: 10.1145/1143844.1143856
– volume: 32
  start-page: 228
  year: 2006
  ident: B57
  article-title: Partial correlation for functional brain interactivity investigation in functional MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.057
– volume: 13
  start-page: 214
  year: 2007
  ident: B2
  article-title: The neural basis of inhibition in cognitive control
  publication-title: Neuroscientist
  doi: 10.1177/1073858407299288
– volume: 17
  start-page: 353
  year: 1997
  ident: B10
  article-title: Human brain language areas identified by functional magnetic resonance imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-01-00353.1997
– volume: 268
  start-page: 142
  ident: B74
  article-title: Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: group-level validation using benchmark data, neurophysiological models and human connectome project data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.03.010
– volume: 62
  start-page: 464
  year: 2012
  ident: B23
  article-title: Stochastic dynamic causal modelling of fMRI data: should we care about neural noise?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.04.061
– volume: 84
  start-page: 986
  year: 2014
  ident: B67
  article-title: Non-Gaussian methods and high-pass filters in the estimation of effective connections
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.062
– volume: 40
  start-page: 1807
  year: 2008
  ident: B25
  article-title: Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.044
– start-page: 1
  year: 1975
  ident: B27
  article-title: Nonlinear parameter estimation in initial value problems
  publication-title: Stichting Mathematisch Centrum. Numerieke Wiskunde
– volume: 106
  start-page: 1
  year: 2015
  ident: B69
  article-title: Construct validation of a DCM for resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.027
– volume: 66
  start-page: 373
  year: 2007
  ident: B42
  article-title: Biconvex sets and optimization with biconvex functions: a survey and extensions
  publication-title: Math. Methods Operat. Res.
  doi: 10.1007/s00186-007-0161-1
– volume: 15
  start-page: 1
  year: 2002
  ident: B92
  article-title: A general statistical analysis for fMRI data
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0933
– volume: 80
  start-page: 144
  year: 2013
  ident: B79
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 20
  start-page: 2549
  year: 2010
  ident: B50
  article-title: Reading networks at rest
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq005
– volume: 21
  start-page: 1251
  year: 2003
  ident: B41
  article-title: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2003.08.026
– volume: 102
  start-page: 904
  year: 2014
  ident: B90
  article-title: Threat-related learning relies on distinct dorsal prefrontal cortex network connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.08.005
– volume: 53
  start-page: 2550
  year: 2009
  ident: B17
  article-title: Generalized profiling estimation for global and adaptive penalized spline smoothing
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2008.12.004
– volume: 58
  start-page: 312
  year: 2011
  ident: B22
  article-title: Dynamic causal modelling: a critical review of the biophysical and statistical foundations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.062
– volume: 9
  start-page: 3124
  year: 2015
  ident: B9
  article-title: Bayesian two-step estimation in differential equation models
  publication-title: Electron. J. Stat.
  doi: 10.1214/15-EJS1099
– volume: 25
  start-page: 230
  year: 2005
  ident: B73
  article-title: Mapping directed influence over the brain using Granger causality and fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.11.017
– volume: 3
  start-page: 257
  year: 2016
  ident: B88
  article-title: Functional data analysis
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-041715-033624
– volume: 58
  start-page: 495
  year: 1996
  ident: B65
  article-title: Principal differential analysis: data reduction by differential operators
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02096.x
– volume: 11
  start-page: 1239
  year: 2016
  ident: B20
  article-title: Bayesian solution uncertainty quantification for differential equations
  publication-title: Bayesian Anal.
  doi: 10.1214/16-BA1017
– volume: 57
  start-page: 289
  year: 1995
  ident: B8
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– start-page: 1276
  volume-title: The New Cognitive Neurosciences, 2nd Edn
  year: 2000
  ident: B28
  article-title: “The neural architecture of language disorders,”
– volume: 22
  start-page: 99
  year: 2011
  ident: B96
  article-title: Resting-state functional connectivity of the medial superior frontal cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr088
– volume: 78
  start-page: 2003
  year: 2017
  ident: B89
  article-title: Can Patel's τ accurately estimate directionality of connections in brain networks from fMRI?
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26583
– volume: 8
  start-page: 360
  year: 1998
  ident: B1
  article-title: The variability of human, BOLD hemodynamic responses
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0369
– volume: 56
  start-page: 1202
  year: 2011
  ident: B38
  article-title: Network discovery with DCM
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.12.039
– volume: 29
  start-page: 1860
  year: 2009
  ident: B15
  article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5062-08.2009
– volume: 8
  start-page: 67
  year: 2014
  ident: B86
  article-title: Flexible multivariate hemodynamics fMRI data analyses and simulations with PyHRF
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00067
– volume: 32
  start-page: 821
  year: 2013
  ident: B19
  article-title: Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2225636
– volume: 62
  start-page: 1257
  year: 2012
  ident: B78
  article-title: The future of fMRI connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.022
– volume: 26
  start-page: 2424
  year: 2006
  ident: B3
  article-title: Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4682-05.2006
– volume: 21
  start-page: 1639
  year: 2004
  ident: B47
  article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.11.029
– volume: 2
  start-page: 2
  year: 1994
  ident: B58
  article-title: Structural equation modeling and its application to network analysis in functional brain imaging
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020104
– year: 2017
  ident: B33
  article-title: Dynamic causal modelling revisited
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.045
– volume: 17
  start-page: 365
  year: 2013
  ident: B93
  article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.01.003
– volume: 52
  start-page: 1456
  year: 2010
  ident: B71
  article-title: Dynamic causal modelling and physiological confounds: a functional MRI study of vagus nerve stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.021
– volume: 132
  start-page: 398
  ident: B75
  article-title: Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.067
– volume: 94
  start-page: 396
  year: 2014
  ident: B37
  article-title: A DCM for resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.12.009
– volume: 80
  start-page: 105
  year: 2013
  ident: B40
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 39
  start-page: 269
  year: 2008
  ident: B56
  article-title: Dynamic causal modelling for fMRI: a two-state model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.019
– volume: 26
  start-page: 186
  year: 2006
  ident: B53
  article-title: Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3741-05.2006
– volume-title: Nonlinear Parameter Estimation
  year: 1974
  ident: B7
– volume: 14
  start-page: 315
  year: 2014
  ident: B4
  article-title: Functional convolution models
  publication-title: Stat. Model.
  doi: 10.1177/1471082X13508262
– volume: 117
  start-page: 56
  year: 2015
  ident: B32
  article-title: Test-retest reliability of dynamic causal modeling for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.040
– volume: 38
  start-page: 435
  year: 2010
  ident: B64
  article-title: Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS724
– volume: 110
  start-page: 93
  year: 2015
  ident: B97
  article-title: A dynamic directional model for effective brain connectivity using electrocorticographic (ECoG) time series
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2014.988213
– volume: 6
  start-page: e315
  year: 2008
  ident: B24
  article-title: Identifying neural drivers with functional MRI: an electrophysiological validation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060315
– volume: 39
  start-page: 855
  year: 1998
  ident: B16
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390602
– volume: 3
  start-page: 28
  year: 1982
  ident: B85
  article-title: A spline least squares method for numerical parameter estimation in differential equations
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0903003
– volume: 9
  start-page: 934
  year: 2008
  ident: B45
  article-title: Human volition: towards a neuroscience of will
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2497
– volume: 179
  start-page: 505
  year: 2018
  ident: B30
  article-title: A generative model of whole-brain effective connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.058
– volume: 121
  start-page: 1013
  year: 1998
  ident: B59
  article-title: From sensation to cognition
  publication-title: Brain
  doi: 10.1093/brain/121.6.1013
– volume: 155
  start-page: 406
  year: 2017
  ident: B31
  article-title: Regression DCM for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.090
– volume: 18
  start-page: 1061
  year: 2012
  ident: B44
  article-title: n -consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing
  publication-title: Bernoulli
  doi: 10.3150/11-BEJ362
– volume: 39
  start-page: 1224
  year: 2001
  ident: B18
  article-title: Spared numerical abilities in a case of semantic dementia
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(01)00035-5
– volume: 106
  start-page: 1125
  year: 2011
  ident: B95
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 186
  start-page: 262
  year: 2010
  ident: B77
  article-title: A MATLAB toolbox for Granger causal connectivity analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.11.020
– volume: 40
  start-page: 1782
  year: 2015
  ident: B43
  article-title: Influence of early life stress on intra-and extra-amygdaloid causal connectivity
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.28
SSID ssj0062842
Score 2.2617927
Snippet Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the...
3 Functional MRI (fMRI) is a popular approach to investigate brain connections and activations 4 when human subjects perform tasks. Because fMRI measures the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 127
SubjectTerms Brain
brain connectivity
Brain mapping
Computational neuroscience
Data analysis
dynamic data analysis
Functional magnetic resonance imaging
Investigations
Methods
Neural networks
Neuroscience
Noise
optimization
ordinary differential equations
Parameter estimation
task-related fMRI
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED_EJ1_Eb-sXEUTwoaxp03Z5nNOhwgaKgm8laRMUtRO3Pfjfe5d0YxPRF1_bhKaXy939ksvvAE5smwuuTRai3ZMIUAwPZSVtWMo21TXXQpV0G7k_yK4exM1j-jhX6otywjw9sBdcS8VlbCouDWobOhuD_lUYXWUSkVWquCXriz5vCqa8Dc7Q6Mb-UBIhmGzZ-rkmbm7uyCmpgsycE3Jc_T8FmN_zJOccT28NVpuIkXX8SNdhydQbsNmpES2_fbJT5nI43eb4Jtx2WA8dld_fYxdqrFjflYhmGJuyrpqM6LEvQs8GPgOcUTk0upTOhpbdq9FL6BLkDPbp311vwUPv8r57FTZFE8JSyGgclqnQUtiKjgtTKVIZl1IRrZUVPLLSVLnVWSwRm2YIPSITK4qQEMQgkmlrK5JtWK6HtdkFhqFigj9f4So1Ik91O08QnUTaVNpGSlYBtKZSLMqGUZwKW7wWiCxI7oWTe0FyL5zcAzib9Xj3bBq_tD2niZm1Ix5s9wC1o2i0o_hLOwI4mE5r0SxO_EZChLwJmvkAjmevcVnRWYmqzXCCbTCw5VnK8ySAHa8Fs5EQiSIR1weQL-jHwlAX39TPT466O0O4jl_e-49_24cVkpa7X58fwPL4Y2IOMUIa6yO3GL4AEfwMzQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7YULgpZHoFRGqpA4RJuH48QntC1dlUq7KlUr9RbZsV1WQFK6uwf-PTOON-oi1GtiK87YM57PM_4G4MhVKU-1FTHaPYkAxaaxNNLFjayorrnmqqHbyLO5OLvm5zfFTThwW4a0yo1N9IbadA2dkY99ifM8R938fPc7pqpRFF0NJTSewC6a4Koawe7x6fzicmOLBRpfH-8UdDcInfM-UImwTI5du2iJrzv1hJVUVebBxuT5-__ndP6bO_lgM5o-h2fBi2STftpfwI5t92B_0iKC_vWHfWQ-r9MfmO_Dtwmb4ubVn_mxL2ql2MyXjWbor7ITtV7S474wPZv3WeGMSqTRRXXWOXallj9inzRnsc_s8utLuJ6eXp2cxaGQQtxwmazipuBacmcohFhIXsiskYqorhxPEyetKZ0WmUS8KhCOJDZT5DUhsEF0U2nH81cwarvWvgGG7mOOP29Qcy0vC12VOSKWRFujXaKkiWC8kWLdBJZxKnbxs0a0QXKvvdxrknvt5R7Bp6HHXc-w8UjbY5qYoR1xY_sH3f1tHVStVlmTWYPjQ_uE7olFj4xbbYRELF6o1EVwsJnWOigsfmNYXhF8GF6jqlH8RLW2W2MbdHZTUaRlHsHrfhUMIyFiRSKzj6DcWh9bQ91-0y6-ezpvgRAev_z28WG9g6ckB3-bvjyA0ep-bd-jP7TSh2HR_wWSGgfF
  priority: 102
  providerName: ProQuest
Title A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI
URI https://www.ncbi.nlm.nih.gov/pubmed/30872989
https://www.proquest.com/docview/2306533911
https://www.proquest.com/docview/2193165173
https://pubmed.ncbi.nlm.nih.gov/PMC6402339
https://doaj.org/article/a2c2ed19e040415e8934ebd698375a1f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswEB20yaWXIksXZTFYoCiQgxpRpiTzUBTO4iYBbKRBDPhGkBLZBknkxAvQ_H1nKFmpC6OnXnyQSJgacjjvcXkD8NF1uODGpiHOexIJiuWhLKQLc9mhvOZG6JxuI_cH6dlQXIyS0fP16NqA05XUjvJJDSd3n389Pn1Fh_9CjBPj7aErb0pS3uZeejLOXsI6xqWM8hn0RbOnkOJEHFcblStrLQUmr9-_CnT-fXbyj2DU24DXNYpk3arbN-GFLbdgu1sig75_Yp-YP9fpF8y34XuX9TB4VWt-7ETPNOv7tNEM8So71vMpPa4S07NBdSqcUYo0uqjOxo5d6-lt6A_NWazTvzp_A8Pe6fXxWVgnUghzIaNZmCfCSOEK2kJMpEhknEtNUldO8MhJW2TOpLFEvpoiHYlsrAk1IbFBdtMxTrTfwlo5Lu17YAgf2_jxBXquFVliOlkbGUtkbGFcpGURwOHCiiqvVcYp2cWdQrZBdlfe7orsrrzdAzhoajxUChv_KHtEHdOUI21s_2A8-aFqV1M6zmNbYPtwfkJ4YhGRCWuKVCIXTzR3AewtulUtxpsiJobIF6f-AD40r9HVaP9El3Y8xzIIdnma8KwdwLtqFDQtIWFFErMPIFsaH0tNXX5T3vz0ct4pUnj8553_8W278Iqs5e_cZ3uwNpvM7T6ipplpwfrR6eDyquVXHfD324i3vIP8BiahGJo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXBJSHocAiARIHK36s19kDQukjSmgTQZVKvbm79i5EULs0iVD-FL-RmbUdNQj11qu9ttezM7Pf7LwA3tpeyENthI96T6KBYkJfFtL6uexRX3PNVU7ZyOOJGJ7yz2fJ2Rb8aXNhKKyy1YlOURdVTmfkXdfiPI5RNj9d_vKpaxR5V9sWGjVbHJnVbzTZ5h9HB7i-76JocDjdH_pNVwE_5zJY-HnCteS2IH9aInkio1wqqvtkeRhYaYrUahFJNN4EYvPARIogBKJ8hPo9bXmM770D2zwWQdSB7b3DyZeTVvcLVPbOvyooFwmNgdoximag7NpyVlJ98NAVyKQuNtc2Qtcv4H8g999YzWub3-AB3G9QK-vXbPYQtkz5CHb6JVrsFyv2nrk4UndAvwNf-2yAm2V9xsgO1EKxsWtTzRAfs321nNPlVakuZjmb1FHojFqyUWI8qyybqvkP3wXpGXxmfDJ6DKe3QuIn0Cmr0jwDhnA1xp8vUFMYnia6l8ZoIQXaFNoGShYedFsqZnlT1Zyaa_zM0LohumeO7hnRPXN09-DD-onLuqLHDWP3aGHW46gWt7tQXX3LGtHOVJRHpsD5oT5EOGQQAXKjCyHR9k9UaD3YbZc1axQEfmPNzh68Wd9G0SZ_jSpNtcQxCK5DkYRp7MHTmgvWM6FCjlQ834N0gz82prp5p5x9d-XDBUecFsvnN0_rNdwdTsfH2fFocvQC7hFNXCZ_ugudxdXSvEQsttCvGgFgcH7bMvcX9gdBmA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEFAehgKLBEgcrPixfuwBobRp1FASlaqVenN37V2I2tqlSYTy1_h1zKwfahDqrVd7ba9nZ2a_2XkBvDepz32lYxf1nkADRfuuKIRxc5FSX3PFZU7ZyJNpvH_Cv55Gpxvwp82FobDKVidaRV1UOZ2R922L8zBE2eybJizicDj6cvXLpQ5S5Glt22nULHKgV7_RfJt_Hg9xrT8EwWjveHffbToMuDkX3sLNI64ENwX51iLBIxHkQlINKMN9zwhdJEbFgUBDLkac7ulAEpxAxI-wP1WGh_jee7CZkFXUg82dvenhUbsPxKj4ra81prwkNAxqJymahKJvyllJtcJ9WyyTOtrc2BRt74D_Ad5_4zZvbISjR_CwQbBsULPcY9jQ5RPYGpRovV-u2EdmY0rtYf0WfB-wEW6c9XkjG8qFZBPbspohVma7cjmny6tSXs5yNq0j0hm1Z6MkeVYZdizn564N2NP4zORo_BRO7oTEz6BXVqV-AQyha4g_X6DW0DyJVJqEaC15ShfKeFIUDvRbKmZ5U-GcGm1cZGjpEN0zS_eM6J5ZujvwqXviqq7uccvYHVqYbhzV5bYXqusfWSPmmQzyQBc4P9SNCI00okGuVRGLNEwi6RsHtttlzRplgd_oWNuBd91tFHPy3chSV0scg0DbjyM_CR14XnNBNxMq6kiF9B1I1vhjbarrd8rZT1tKPOaI2ULx8vZpvYX7KGvZt_H04BU8IJLYpP5kG3qL66V-jbBsod40_M_g7K5F7i8ks0XN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Functional+Data+Method+for+Causal+Dynamic+Network+Modeling+of+Task-Related+fMRI&rft.jtitle=Frontiers+in+neuroscience&rft.au=Xuefei+Cao&rft.au=Bj%C3%B6rn+Sandstede&rft.au=Xi+Luo&rft.date=2019-02-27&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=13&rft_id=info:doi/10.3389%2Ffnins.2019.00127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a2c2ed19e040415e8934ebd698375a1f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon