A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI
Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic...
Saved in:
Published in | Frontiers in neuroscience Vol. 13; p. 127 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
27.02.2019
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks. |
---|---|
AbstractList | Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks. 3 Functional MRI (fMRI) is a popular approach to investigate brain connections and activations 4 when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals 5 of brain activities at a lower temporal resolution, complex differential equation modeling methods 6 (e.g. Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to 7 fit the resulting fMRI signals. However, this modeling strategy is computationally expensive 8 and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical 9 challenge here is to infer, in a data-driven fashion, the underlying differential equation models 10 from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate 11 brain activations and connections simultaneously. Our method links the observed fMRI data with 12 the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the 13 basis function expansion approach in functional data analysis, we develop an optimization-based 14 criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement 15 a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the 16 numerical advantages of our approach using data from realistic simulations and two task-related 17 fMRI experiments. Compared with various effective connectivity methods, our method achieves 18 higher estimation accuracy while improving the computational speed by from tens to thousands of 19 times. Though our method is developed for task-related fMRI, we also demonstrate the potential 20 applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both 21 simulated and real data from medium-sized networks. Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks.Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks. |
Author | Luo, Xi Sandstede, Björn Cao, Xuefei |
AuthorAffiliation | 1 Division of Applied Mathematics, Brown University , Providence, RI , United States 2 Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston , Houston, TX , United States |
AuthorAffiliation_xml | – name: 2 Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston , Houston, TX , United States – name: 1 Division of Applied Mathematics, Brown University , Providence, RI , United States |
Author_xml | – sequence: 1 givenname: Xuefei surname: Cao fullname: Cao, Xuefei – sequence: 2 givenname: Björn surname: Sandstede fullname: Sandstede, Björn – sequence: 3 givenname: Xi surname: Luo fullname: Luo, Xi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30872989$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kt1rFDEUxYNU7Ie--yQDvvgya74mM3kRymp1oatYKvgWMpmbbbazSU0ySv97s7uttAXzknBzzo_LvecYHfjgAaHXBM8Y6-R7651PM4qJnGFMaPsMHREhaM0b9vPgwfsQHae0xljQjtMX6JDhrqWyk0fo-2l1NnmTXfB6rD7qrKsl5KswVDbEaq6ntC3fer1xpvoK-U-I19UyDDA6v6qCrS51uq4vYNQZimd5sXiJnls9Jnh1d5-gH2efLudf6vNvnxfz0_PacIlzbRreS24HTHjTSN5IaqTuCMeWE2wlDK3tBZUtYUJwioFqJqkU5WDR9ZazE7TYc4eg1-omuo2Otypop3aFEFdKx-zMCEpTQ2EgEjDHnDTQScahH4TsWNtoYgvrw551M_UbGAz4HPX4CPr4x7srtQq_leCYMiYL4N0dIIZfE6SsNi4ZGEftIUxJUSIZEQ1pWZG-fSJdhymW6RcVw6IpOEKK6s3Djv61cr-5IhB7gYkhpQhWGZf1do-lQTcqgtU2ImoXEbWNiNpFpBjxE-M9-7-Wv9XXvJ4 |
CitedBy_id | crossref_primary_10_1162_netn_a_00230 crossref_primary_10_1093_biostatistics_kxad007 crossref_primary_10_1214_20_STS792 crossref_primary_10_1080_01621459_2021_1882466 crossref_primary_10_1080_00224065_2020_1805380 crossref_primary_10_1080_03610918_2023_2234675 |
Cites_doi | 10.1016/S0010-9452(08)70667-1 10.1016/j.neuroimage.2013.01.067 10.1016/j.neuroimage.2008.10.065 10.1109/TMI.2010.2042064 10.1038/sdata.2016.110 10.1016/j.neuroimage.2011.01.085 10.3389/fnsys.2011.00001 10.1016/j.tcs.2008.07.005 10.1016/B978-012372560-8/50014-0 10.1080/01621459.2013.841583 10.1016/S1053-8119(03)00202-7 10.1016/j.neuroimage.2005.11.007 10.1016/j.neuroimage.2010.09.052 10.1016/j.neuroimage.2010.09.048 10.1002/mrm.27146 10.1162/NETN_a_00015 10.1016/j.neuroimage.2008.04.262 10.1016/j.neuroimage.2009.11.015 10.1016/j.neuroimage.2010.08.063 10.1371/journal.pcbi.1000709 10.1016/j.neuroimage.2004.07.041 10.1002/hbm.460020402 10.1016/j.neuroimage.2009.12.086 10.1126/science.1100301 10.1016/j.neuroimage.2013.05.033 10.1093/brain/114.4.1803 10.1142/S0219635210002548 10.1016/j.compchemeng.2005.11.008 10.1214/07-EJS132 10.1016/j.neuroimage.2012.02.015 10.1371/journal.pcbi.1002079 10.1016/j.cognition.2003.11.002 10.1093/brain/awt040 10.1214/09-AOS784 10.1002/mrm.1910390109 10.1145/1143844.1143856 10.1016/j.neuroimage.2005.12.057 10.1177/1073858407299288 10.1523/JNEUROSCI.17-01-00353.1997 10.1016/j.jneumeth.2016.03.010 10.1016/j.neuroimage.2012.04.061 10.1016/j.neuroimage.2013.09.062 10.1016/j.neuroimage.2008.01.044 10.1016/j.neuroimage.2014.11.027 10.1007/s00186-007-0161-1 10.1006/nimg.2001.0933 10.1016/j.neuroimage.2013.05.039 10.1093/cercor/bhq005 10.1016/j.mri.2003.08.026 10.1016/j.neuroimage.2014.08.005 10.1016/j.csda.2008.12.004 10.1016/j.neuroimage.2009.11.062 10.1214/15-EJS1099 10.1016/j.neuroimage.2004.11.017 10.1146/annurev-statistics-041715-033624 10.1111/j.2517-6161.1996.tb02096.x 10.1214/16-BA1017 10.1111/j.2517-6161.1995.tb02031.x 10.1093/cercor/bhr088 10.1002/mrm.26583 10.1006/nimg.1998.0369 10.1016/j.neuroimage.2010.12.039 10.1523/JNEUROSCI.5062-08.2009 10.3389/fnins.2014.00067 10.1109/TMI.2012.2225636 10.1016/j.neuroimage.2012.01.022 10.1523/JNEUROSCI.4682-05.2006 10.1016/j.neuroimage.2003.11.029 10.1002/hbm.460020104 10.1016/j.neuroimage.2017.02.045 10.1016/j.media.2013.01.003 10.1016/j.neuroimage.2010.05.021 10.1016/j.neuroimage.2016.02.067 10.1016/j.neuroimage.2013.12.009 10.1016/j.neuroimage.2013.04.127 10.1016/j.neuroimage.2007.08.019 10.1523/JNEUROSCI.3741-05.2006 10.1177/1471082X13508262 10.1016/j.neuroimage.2015.05.040 10.1214/09-AOS724 10.1080/01621459.2014.988213 10.1371/journal.pbio.0060315 10.1002/mrm.1910390602 10.1137/0903003 10.1038/nrn2497 10.1016/j.neuroimage.2018.05.058 10.1093/brain/121.6.1013 10.1016/j.neuroimage.2017.02.090 10.3150/11-BEJ362 10.1016/S0028-3932(01)00035-5 10.1152/jn.00338.2011 10.1016/j.jneumeth.2009.11.020 10.1038/npp.2015.28 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2019 Cao, Sandstede and Luo. 2019 Cao, Sandstede and Luo |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2019 Cao, Sandstede and Luo. 2019 Cao, Sandstede and Luo |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2019.00127 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_a2c2ed19e040415e8934ebd698375a1f PMC6402339 30872989 10_3389_fnins_2019_00127 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-c54b94fd0145594592c9a8140f410f9ed7fb62971366420e2a39296666068bf43 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Thu Aug 21 13:50:56 EDT 2025 Fri Jul 11 06:37:41 EDT 2025 Fri Jul 25 11:35:41 EDT 2025 Thu Jan 02 23:01:14 EST 2025 Tue Jul 01 01:01:32 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | brain connectivity ordinary differential equations optimization task-related fMRI dynamic data analysis |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-c54b94fd0145594592c9a8140f410f9ed7fb62971366420e2a39296666068bf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: Pedro Antonio Valdes-Sosa, Clinical Hospital of Chengdu Brain Science Institute, China Reviewed by: Roberto C. Sotero, University of Calgary, Canada; Philippe Ciuciu, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), France; Gopikrishna Deshpande, Auburn University, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2019.00127 |
PMID | 30872989 |
PQID | 2306533911 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a2c2ed19e040415e8934ebd698375a1f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402339 proquest_miscellaneous_2193165173 proquest_journals_2306533911 pubmed_primary_30872989 crossref_citationtrail_10_3389_fnins_2019_00127 crossref_primary_10_3389_fnins_2019_00127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-27 |
PublicationDateYYYYMMDD | 2019-02-27 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2019 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Aguirre (B1) 1998; 8 Koyama (B50) 2010; 20 Yeo (B95) 2011; 106 Smith (B80) 2011; 54 Reyt (B71) 2010; 52 Lee (B51) 2006; 30 Handwerker (B47) 2004; 21 Ryali (B74); 268 Mclntosh (B58) 1994; 2 Varah (B85) 1982; 3 Buxton (B16) 1998; 39 Dima (B26) 2010; 52 Karahanoğlu (B49) 2013; 73 Qi (B64) 2010; 38 Marrelec (B57) 2006; 32 Roebroeck (B73) 2005; 25 Aron (B3) 2006; 26 Chaari (B19) 2013; 32 David (B24) 2008; 6 Smith (B79) 2013; 80 Dronkers (B29) 2004; 92 Haggard (B45) 2008; 9 Grant (B43) 2015; 40 Glasser (B40) 2013; 80 Stephan (B83) 2010; 49 Barch (B6) 2013; 80 Chkrebtii (B20) 2016; 11 Frässle (B31) 2017; 155 Seth (B77) 2010; 186 Wise (B91) 1991; 114 Ryali (B75); 132 Wu (B93) 2013; 17 Cappelletti (B18) 2001; 39 Binder (B11) 2011; 54 Luo (B55) 2013; 136 Razi (B69) 2015; 106 Dronkers (B28) 2000 Ridderinkhof (B72) 2004; 306 Friston (B37) 2014; 94 Ryali (B76) 2011; 54 Benjamini (B8) 1995; 57 Poldrack (B62) 2016; 3 Razi (B70) 2017; 1 Cao (B17) 2009; 53 Brodersen (B12) 2011; 7 Henson (B48) 2007 Li (B52) 2011; 58 Girolami (B39) 2008; 408 Brunel (B14) 2008; 2 Vincent (B86) 2014; 8 Xue (B94) 2010; 38 Penny (B61) 2004; 23 Brunel (B13) 2014; 109 Ramsay (B65) 1996; 58 Stephan (B82) 2008; 42 Zhang (B97) 2015; 110 Zhang (B96) 2011; 22 Friston (B36) 1998; 39 Daunizeau (B23) 2012; 62 Bhaumik (B9) 2015; 9 Frässle (B32) 2015; 117 Wheelock (B90) 2014; 102 Friston (B33) 2017 Friston (B35) 1994; 2 Gugushvili (B44) 2012; 18 Mesulam (B59) 1998; 121 Deshpande (B25) 2008; 40 Lindquist (B54) 2009; 45 Poyton (B63) 2006; 30 Ramsey (B67) 2014; 84 Goebel (B41) 2003; 21 Buckner (B15) 2009; 29 Friston (B34) 2003; 19 Aron (B2) 2007; 13 Handwerker (B46) 2012; 62 Asencio (B4) 2014; 14 Crutch (B21) 2002; 38 Bard (B7) 1974 Daunizeau (B22) 2011; 58 Li (B53) 2006; 26 Frässle (B30) 2018; 179 Binder (B10) 1997; 17 Rangaprakash (B68) 2018; 80 Marreiros (B56) 2008; 39 Vincent (B87) 2010; 29 Smith (B78) 2012; 62 Penny (B60) 2010; 6 Sotero (B81) 2010; 9 Worsley (B92) 2002; 15 Gorski (B42) 2007; 66 Ramsay (B66) 2006 Domselaar (B27) 1975 Friston (B38) 2011; 56 Wang (B89) 2017; 78 Banerjee (B5) 2006 Turken (B84) 2011; 5 Wang (B88) 2016; 3 |
References_xml | – volume: 38 start-page: 389 year: 2002 ident: B21 article-title: Preserved calculation skills in a case of semantic dementia publication-title: Cortex doi: 10.1016/S0010-9452(08)70667-1 – volume: 73 start-page: 121 year: 2013 ident: B49 article-title: Total activation: fMRI deconvolution through spatio-temporal regularization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.067 – volume: 45 start-page: S187 year: 2009 ident: B54 article-title: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.065 – volume: 29 start-page: 1059 year: 2010 ident: B87 article-title: Spatially adaptive mixture modeling for analysis of fMRI time series publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2042064 – volume: 3 start-page: 160110 year: 2016 ident: B62 article-title: A phenome-wide examination of neural and cognitive function publication-title: Sci. Data doi: 10.1038/sdata.2016.110 – volume: 58 start-page: 442 year: 2011 ident: B52 article-title: Generalised filtering and stochastic DCM for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.085 – volume: 5 start-page: 1 year: 2011 ident: B84 article-title: The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00001 – volume: 408 start-page: 4 year: 2008 ident: B39 article-title: Bayesian inference for differential equations publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2008.07.005 – start-page: 178 volume-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images year: 2007 ident: B48 article-title: “Convolution models for fMRI,” doi: 10.1016/B978-012372560-8/50014-0 – volume: 109 start-page: 173 year: 2014 ident: B13 article-title: Parametric estimation of ordinary differential equations with orthogonality conditions publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.841583 – volume: 19 start-page: 1273 year: 2003 ident: B34 article-title: Dynamic causal modelling publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – volume: 30 start-page: 1243 year: 2006 ident: B51 article-title: Large-scale neural models and dynamic causal modelling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.007 – volume: 54 start-page: 807 year: 2011 ident: B76 article-title: Multivariate dynamical systems models for estimating causal interactions in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.052 – volume: 54 start-page: 1465 year: 2011 ident: B11 article-title: Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.048 – volume: 80 start-page: 1697 year: 2018 ident: B68 article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity publication-title: Magn. Reson. Med doi: 10.1002/mrm.27146 – volume-title: Functional Data Analysis year: 2006 ident: B66 – volume: 1 start-page: 222 year: 2017 ident: B70 article-title: Large-scale DCMs for resting state fMRI publication-title: Netw. Neurosci doi: 10.1162/NETN_a_00015 – volume: 42 start-page: 649 year: 2008 ident: B82 article-title: Nonlinear dynamic causal models for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.04.262 – volume: 49 start-page: 3099 year: 2010 ident: B83 article-title: Ten simple rules for dynamic causal modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.015 – volume: 54 start-page: 875 year: 2011 ident: B80 article-title: Network modelling methods for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 6 start-page: e1000709 year: 2010 ident: B60 article-title: Comparing families of dynamic causal models publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000709 – volume: 23 start-page: S264 year: 2004 ident: B61 article-title: Modelling functional integration: a comparison of structural equation and dynamic causal models publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.041 – volume: 2 start-page: 189 year: 1994 ident: B35 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – volume: 52 start-page: 824 year: 2010 ident: B26 article-title: Impaired top-down processes in schizophrenia: a DCM study of ERPs publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.086 – volume: 306 start-page: 443 year: 2004 ident: B72 article-title: The role of the medial frontal cortex in cognitive control publication-title: Science doi: 10.1126/science.1100301 – volume: 80 start-page: 169 year: 2013 ident: B6 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.033 – volume: 114 start-page: 1803 year: 1991 ident: B91 article-title: Distribution of cortical neural networks involved in word comprehension and word retrieval publication-title: Brain doi: 10.1093/brain/114.4.1803 – volume: 9 start-page: 355 year: 2010 ident: B81 article-title: Anatomically-constrained effective connectivity among layers in a cortical column modeled and estimated from local field potentials publication-title: J. Integr. Neurosci. doi: 10.1142/S0219635210002548 – volume: 30 start-page: 698 year: 2006 ident: B63 article-title: Parameter estimation in continuous-time dynamic models using principal differential analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2005.11.008 – volume: 2 start-page: 1242 year: 2008 ident: B14 article-title: Parameter estimation of ODE's via nonparametric estimators publication-title: Electron. J. Stat. doi: 10.1214/07-EJS132 – volume: 62 start-page: 1017 year: 2012 ident: B46 article-title: The continuing challenge of understanding and modeling hemodynamic variation in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.015 – volume: 7 start-page: e1002079 year: 2011 ident: B12 article-title: Generative embedding for model-based classification of fMRI data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002079 – volume: 92 start-page: 145 year: 2004 ident: B29 article-title: Lesion analysis of the brain areas involved in language comprehension publication-title: Cognition doi: 10.1016/j.cognition.2003.11.002 – volume: 136 start-page: 1231 year: 2013 ident: B55 article-title: Error processing and gender-shared and-specific neural predictors of relapse in cocaine dependence publication-title: Brain doi: 10.1093/brain/awt040 – volume: 38 start-page: 2351 year: 2010 ident: B94 article-title: Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error publication-title: Ann. Stat. doi: 10.1214/09-AOS784 – volume: 39 start-page: 41 year: 1998 ident: B36 article-title: Nonlinear event-related responses in fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390109 – start-page: 89 volume-title: Proceedings of the 23rd International Conference on Machine learning year: 2006 ident: B5 article-title: “Convex optimization techniques for fitting sparse Gaussian graphical models,” doi: 10.1145/1143844.1143856 – volume: 32 start-page: 228 year: 2006 ident: B57 article-title: Partial correlation for functional brain interactivity investigation in functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.057 – volume: 13 start-page: 214 year: 2007 ident: B2 article-title: The neural basis of inhibition in cognitive control publication-title: Neuroscientist doi: 10.1177/1073858407299288 – volume: 17 start-page: 353 year: 1997 ident: B10 article-title: Human brain language areas identified by functional magnetic resonance imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-01-00353.1997 – volume: 268 start-page: 142 ident: B74 article-title: Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: group-level validation using benchmark data, neurophysiological models and human connectome project data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.03.010 – volume: 62 start-page: 464 year: 2012 ident: B23 article-title: Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.04.061 – volume: 84 start-page: 986 year: 2014 ident: B67 article-title: Non-Gaussian methods and high-pass filters in the estimation of effective connections publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.062 – volume: 40 start-page: 1807 year: 2008 ident: B25 article-title: Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.044 – start-page: 1 year: 1975 ident: B27 article-title: Nonlinear parameter estimation in initial value problems publication-title: Stichting Mathematisch Centrum. Numerieke Wiskunde – volume: 106 start-page: 1 year: 2015 ident: B69 article-title: Construct validation of a DCM for resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.027 – volume: 66 start-page: 373 year: 2007 ident: B42 article-title: Biconvex sets and optimization with biconvex functions: a survey and extensions publication-title: Math. Methods Operat. Res. doi: 10.1007/s00186-007-0161-1 – volume: 15 start-page: 1 year: 2002 ident: B92 article-title: A general statistical analysis for fMRI data publication-title: Neuroimage doi: 10.1006/nimg.2001.0933 – volume: 80 start-page: 144 year: 2013 ident: B79 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 20 start-page: 2549 year: 2010 ident: B50 article-title: Reading networks at rest publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq005 – volume: 21 start-page: 1251 year: 2003 ident: B41 article-title: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2003.08.026 – volume: 102 start-page: 904 year: 2014 ident: B90 article-title: Threat-related learning relies on distinct dorsal prefrontal cortex network connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.08.005 – volume: 53 start-page: 2550 year: 2009 ident: B17 article-title: Generalized profiling estimation for global and adaptive penalized spline smoothing publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2008.12.004 – volume: 58 start-page: 312 year: 2011 ident: B22 article-title: Dynamic causal modelling: a critical review of the biophysical and statistical foundations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.062 – volume: 9 start-page: 3124 year: 2015 ident: B9 article-title: Bayesian two-step estimation in differential equation models publication-title: Electron. J. Stat. doi: 10.1214/15-EJS1099 – volume: 25 start-page: 230 year: 2005 ident: B73 article-title: Mapping directed influence over the brain using Granger causality and fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.11.017 – volume: 3 start-page: 257 year: 2016 ident: B88 article-title: Functional data analysis publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-041715-033624 – volume: 58 start-page: 495 year: 1996 ident: B65 article-title: Principal differential analysis: data reduction by differential operators publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02096.x – volume: 11 start-page: 1239 year: 2016 ident: B20 article-title: Bayesian solution uncertainty quantification for differential equations publication-title: Bayesian Anal. doi: 10.1214/16-BA1017 – volume: 57 start-page: 289 year: 1995 ident: B8 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1995.tb02031.x – start-page: 1276 volume-title: The New Cognitive Neurosciences, 2nd Edn year: 2000 ident: B28 article-title: “The neural architecture of language disorders,” – volume: 22 start-page: 99 year: 2011 ident: B96 article-title: Resting-state functional connectivity of the medial superior frontal cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr088 – volume: 78 start-page: 2003 year: 2017 ident: B89 article-title: Can Patel's τ accurately estimate directionality of connections in brain networks from fMRI? publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26583 – volume: 8 start-page: 360 year: 1998 ident: B1 article-title: The variability of human, BOLD hemodynamic responses publication-title: Neuroimage doi: 10.1006/nimg.1998.0369 – volume: 56 start-page: 1202 year: 2011 ident: B38 article-title: Network discovery with DCM publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.12.039 – volume: 29 start-page: 1860 year: 2009 ident: B15 article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5062-08.2009 – volume: 8 start-page: 67 year: 2014 ident: B86 article-title: Flexible multivariate hemodynamics fMRI data analyses and simulations with PyHRF publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00067 – volume: 32 start-page: 821 year: 2013 ident: B19 article-title: Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2225636 – volume: 62 start-page: 1257 year: 2012 ident: B78 article-title: The future of fMRI connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.022 – volume: 26 start-page: 2424 year: 2006 ident: B3 article-title: Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4682-05.2006 – volume: 21 start-page: 1639 year: 2004 ident: B47 article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.11.029 – volume: 2 start-page: 2 year: 1994 ident: B58 article-title: Structural equation modeling and its application to network analysis in functional brain imaging publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020104 – year: 2017 ident: B33 article-title: Dynamic causal modelling revisited publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.045 – volume: 17 start-page: 365 year: 2013 ident: B93 article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.01.003 – volume: 52 start-page: 1456 year: 2010 ident: B71 article-title: Dynamic causal modelling and physiological confounds: a functional MRI study of vagus nerve stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.021 – volume: 132 start-page: 398 ident: B75 article-title: Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.067 – volume: 94 start-page: 396 year: 2014 ident: B37 article-title: A DCM for resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.12.009 – volume: 80 start-page: 105 year: 2013 ident: B40 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 39 start-page: 269 year: 2008 ident: B56 article-title: Dynamic causal modelling for fMRI: a two-state model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.08.019 – volume: 26 start-page: 186 year: 2006 ident: B53 article-title: Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3741-05.2006 – volume-title: Nonlinear Parameter Estimation year: 1974 ident: B7 – volume: 14 start-page: 315 year: 2014 ident: B4 article-title: Functional convolution models publication-title: Stat. Model. doi: 10.1177/1471082X13508262 – volume: 117 start-page: 56 year: 2015 ident: B32 article-title: Test-retest reliability of dynamic causal modeling for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.040 – volume: 38 start-page: 435 year: 2010 ident: B64 article-title: Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations publication-title: Ann. Stat. doi: 10.1214/09-AOS724 – volume: 110 start-page: 93 year: 2015 ident: B97 article-title: A dynamic directional model for effective brain connectivity using electrocorticographic (ECoG) time series publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2014.988213 – volume: 6 start-page: e315 year: 2008 ident: B24 article-title: Identifying neural drivers with functional MRI: an electrophysiological validation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060315 – volume: 39 start-page: 855 year: 1998 ident: B16 article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390602 – volume: 3 start-page: 28 year: 1982 ident: B85 article-title: A spline least squares method for numerical parameter estimation in differential equations publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0903003 – volume: 9 start-page: 934 year: 2008 ident: B45 article-title: Human volition: towards a neuroscience of will publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2497 – volume: 179 start-page: 505 year: 2018 ident: B30 article-title: A generative model of whole-brain effective connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.058 – volume: 121 start-page: 1013 year: 1998 ident: B59 article-title: From sensation to cognition publication-title: Brain doi: 10.1093/brain/121.6.1013 – volume: 155 start-page: 406 year: 2017 ident: B31 article-title: Regression DCM for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.090 – volume: 18 start-page: 1061 year: 2012 ident: B44 article-title: n -consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing publication-title: Bernoulli doi: 10.3150/11-BEJ362 – volume: 39 start-page: 1224 year: 2001 ident: B18 article-title: Spared numerical abilities in a case of semantic dementia publication-title: Neuropsychologia doi: 10.1016/S0028-3932(01)00035-5 – volume: 106 start-page: 1125 year: 2011 ident: B95 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 186 start-page: 262 year: 2010 ident: B77 article-title: A MATLAB toolbox for Granger causal connectivity analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.11.020 – volume: 40 start-page: 1782 year: 2015 ident: B43 article-title: Influence of early life stress on intra-and extra-amygdaloid causal connectivity publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.28 |
SSID | ssj0062842 |
Score | 2.2617927 |
Snippet | Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the... 3 Functional MRI (fMRI) is a popular approach to investigate brain connections and activations 4 when human subjects perform tasks. Because fMRI measures the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 127 |
SubjectTerms | Brain brain connectivity Brain mapping Computational neuroscience Data analysis dynamic data analysis Functional magnetic resonance imaging Investigations Methods Neural networks Neuroscience Noise optimization ordinary differential equations Parameter estimation task-related fMRI Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED_EJ1_Eb-sXEUTwoaxp03Z5nNOhwgaKgm8laRMUtRO3Pfjfe5d0YxPRF1_bhKaXy939ksvvAE5smwuuTRai3ZMIUAwPZSVtWMo21TXXQpV0G7k_yK4exM1j-jhX6otywjw9sBdcS8VlbCouDWobOhuD_lUYXWUSkVWquCXriz5vCqa8Dc7Q6Mb-UBIhmGzZ-rkmbm7uyCmpgsycE3Jc_T8FmN_zJOccT28NVpuIkXX8SNdhydQbsNmpES2_fbJT5nI43eb4Jtx2WA8dld_fYxdqrFjflYhmGJuyrpqM6LEvQs8GPgOcUTk0upTOhpbdq9FL6BLkDPbp311vwUPv8r57FTZFE8JSyGgclqnQUtiKjgtTKVIZl1IRrZUVPLLSVLnVWSwRm2YIPSITK4qQEMQgkmlrK5JtWK6HtdkFhqFigj9f4So1Ik91O08QnUTaVNpGSlYBtKZSLMqGUZwKW7wWiCxI7oWTe0FyL5zcAzib9Xj3bBq_tD2niZm1Ix5s9wC1o2i0o_hLOwI4mE5r0SxO_EZChLwJmvkAjmevcVnRWYmqzXCCbTCw5VnK8ySAHa8Fs5EQiSIR1weQL-jHwlAX39TPT466O0O4jl_e-49_24cVkpa7X58fwPL4Y2IOMUIa6yO3GL4AEfwMzQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7YULgpZHoFRGqpA4RJuH48QntC1dlUq7KlUr9RbZsV1WQFK6uwf-PTOON-oi1GtiK87YM57PM_4G4MhVKU-1FTHaPYkAxaaxNNLFjayorrnmqqHbyLO5OLvm5zfFTThwW4a0yo1N9IbadA2dkY99ifM8R938fPc7pqpRFF0NJTSewC6a4Koawe7x6fzicmOLBRpfH-8UdDcInfM-UImwTI5du2iJrzv1hJVUVebBxuT5-__ndP6bO_lgM5o-h2fBi2STftpfwI5t92B_0iKC_vWHfWQ-r9MfmO_Dtwmb4ubVn_mxL2ql2MyXjWbor7ITtV7S474wPZv3WeGMSqTRRXXWOXallj9inzRnsc_s8utLuJ6eXp2cxaGQQtxwmazipuBacmcohFhIXsiskYqorhxPEyetKZ0WmUS8KhCOJDZT5DUhsEF0U2nH81cwarvWvgGG7mOOP29Qcy0vC12VOSKWRFujXaKkiWC8kWLdBJZxKnbxs0a0QXKvvdxrknvt5R7Bp6HHXc-w8UjbY5qYoR1xY_sH3f1tHVStVlmTWYPjQ_uE7olFj4xbbYRELF6o1EVwsJnWOigsfmNYXhF8GF6jqlH8RLW2W2MbdHZTUaRlHsHrfhUMIyFiRSKzj6DcWh9bQ91-0y6-ezpvgRAev_z28WG9g6ckB3-bvjyA0ep-bd-jP7TSh2HR_wWSGgfF priority: 102 providerName: ProQuest |
Title | A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30872989 https://www.proquest.com/docview/2306533911 https://www.proquest.com/docview/2193165173 https://pubmed.ncbi.nlm.nih.gov/PMC6402339 https://doaj.org/article/a2c2ed19e040415e8934ebd698375a1f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswEB20yaWXIksXZTFYoCiQgxpRpiTzUBTO4iYBbKRBDPhGkBLZBknkxAvQ_H1nKFmpC6OnXnyQSJgacjjvcXkD8NF1uODGpiHOexIJiuWhLKQLc9mhvOZG6JxuI_cH6dlQXIyS0fP16NqA05XUjvJJDSd3n389Pn1Fh_9CjBPj7aErb0pS3uZeejLOXsI6xqWM8hn0RbOnkOJEHFcblStrLQUmr9-_CnT-fXbyj2DU24DXNYpk3arbN-GFLbdgu1sig75_Yp-YP9fpF8y34XuX9TB4VWt-7ETPNOv7tNEM8So71vMpPa4S07NBdSqcUYo0uqjOxo5d6-lt6A_NWazTvzp_A8Pe6fXxWVgnUghzIaNZmCfCSOEK2kJMpEhknEtNUldO8MhJW2TOpLFEvpoiHYlsrAk1IbFBdtMxTrTfwlo5Lu17YAgf2_jxBXquFVliOlkbGUtkbGFcpGURwOHCiiqvVcYp2cWdQrZBdlfe7orsrrzdAzhoajxUChv_KHtEHdOUI21s_2A8-aFqV1M6zmNbYPtwfkJ4YhGRCWuKVCIXTzR3AewtulUtxpsiJobIF6f-AD40r9HVaP9El3Y8xzIIdnma8KwdwLtqFDQtIWFFErMPIFsaH0tNXX5T3vz0ct4pUnj8553_8W278Iqs5e_cZ3uwNpvM7T6ipplpwfrR6eDyquVXHfD324i3vIP8BiahGJo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXBJSHocAiARIHK36s19kDQukjSmgTQZVKvbm79i5EULs0iVD-FL-RmbUdNQj11qu9ttezM7Pf7LwA3tpeyENthI96T6KBYkJfFtL6uexRX3PNVU7ZyOOJGJ7yz2fJ2Rb8aXNhKKyy1YlOURdVTmfkXdfiPI5RNj9d_vKpaxR5V9sWGjVbHJnVbzTZ5h9HB7i-76JocDjdH_pNVwE_5zJY-HnCteS2IH9aInkio1wqqvtkeRhYaYrUahFJNN4EYvPARIogBKJ8hPo9bXmM770D2zwWQdSB7b3DyZeTVvcLVPbOvyooFwmNgdoximag7NpyVlJ98NAVyKQuNtc2Qtcv4H8g999YzWub3-AB3G9QK-vXbPYQtkz5CHb6JVrsFyv2nrk4UndAvwNf-2yAm2V9xsgO1EKxsWtTzRAfs321nNPlVakuZjmb1FHojFqyUWI8qyybqvkP3wXpGXxmfDJ6DKe3QuIn0Cmr0jwDhnA1xp8vUFMYnia6l8ZoIQXaFNoGShYedFsqZnlT1Zyaa_zM0LohumeO7hnRPXN09-DD-onLuqLHDWP3aGHW46gWt7tQXX3LGtHOVJRHpsD5oT5EOGQQAXKjCyHR9k9UaD3YbZc1axQEfmPNzh68Wd9G0SZ_jSpNtcQxCK5DkYRp7MHTmgvWM6FCjlQ834N0gz82prp5p5x9d-XDBUecFsvnN0_rNdwdTsfH2fFocvQC7hFNXCZ_ugudxdXSvEQsttCvGgFgcH7bMvcX9gdBmA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEFAehgKLBEgcrPixfuwBobRp1FASlaqVenN37V2I2tqlSYTy1_h1zKwfahDqrVd7ba9nZ2a_2XkBvDepz32lYxf1nkADRfuuKIRxc5FSX3PFZU7ZyJNpvH_Cv55Gpxvwp82FobDKVidaRV1UOZ2R922L8zBE2eybJizicDj6cvXLpQ5S5Glt22nULHKgV7_RfJt_Hg9xrT8EwWjveHffbToMuDkX3sLNI64ENwX51iLBIxHkQlINKMN9zwhdJEbFgUBDLkac7ulAEpxAxI-wP1WGh_jee7CZkFXUg82dvenhUbsPxKj4ra81prwkNAxqJymahKJvyllJtcJ9WyyTOtrc2BRt74D_Ad5_4zZvbISjR_CwQbBsULPcY9jQ5RPYGpRovV-u2EdmY0rtYf0WfB-wEW6c9XkjG8qFZBPbspohVma7cjmny6tSXs5yNq0j0hm1Z6MkeVYZdizn564N2NP4zORo_BRO7oTEz6BXVqV-AQyha4g_X6DW0DyJVJqEaC15ShfKeFIUDvRbKmZ5U-GcGm1cZGjpEN0zS_eM6J5ZujvwqXviqq7uccvYHVqYbhzV5bYXqusfWSPmmQzyQBc4P9SNCI00okGuVRGLNEwi6RsHtttlzRplgd_oWNuBd91tFHPy3chSV0scg0DbjyM_CR14XnNBNxMq6kiF9B1I1vhjbarrd8rZT1tKPOaI2ULx8vZpvYX7KGvZt_H04BU8IJLYpP5kG3qL66V-jbBsod40_M_g7K5F7i8ks0XN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Functional+Data+Method+for+Causal+Dynamic+Network+Modeling+of+Task-Related+fMRI&rft.jtitle=Frontiers+in+neuroscience&rft.au=Xuefei+Cao&rft.au=Bj%C3%B6rn+Sandstede&rft.au=Xi+Luo&rft.date=2019-02-27&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=13&rft_id=info:doi/10.3389%2Ffnins.2019.00127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a2c2ed19e040415e8934ebd698375a1f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |