Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis

Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. This study investigated the...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Cardiology Vol. 67; no. 17; pp. 2018 - 2028
Main Authors Meyer, Kathleen, Hodwin, Bettina, Ramanujam, Deepak, Engelhardt, Stefan, Sarikas, Antonio
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.05.2016
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. This study investigated the role of premature senescence in myocardial fibrosis. Murine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis. Senescence markers p21CIP1/WAF1, senescence-associated ß-galactosidase (SA-ß-gal), and p16INK4a were increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16INK4a (Trp53-/-Cdkn2a-/- mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ∼50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function. Our data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis.
AbstractList Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. This study investigated the role of premature senescence in myocardial fibrosis. Murine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis. Senescence markers p21CIP1/WAF1, senescence-associated ß-galactosidase (SA-ß-gal), and p16INK4a were increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16INK4a (Trp53-/-Cdkn2a-/- mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ∼50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function. Our data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis.
Background Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. Objectives This study investigated the role of premature senescence in myocardial fibrosis. Methods Murine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis. Results Senescence markers p21CIP1/WAF1, senescence-associated ß-galactosidase (SA-ß-gal), and p16INK4awere increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16INK4a(Trp53-/-Cdkn2a-/-mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ~50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function. Conclusions Our data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis.
AbstractBackgroundFibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. ObjectivesThis study investigated the role of premature senescence in myocardial fibrosis. MethodsMurine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis. ResultsSenescence markers p21 CIP1/WAF1, senescence-associated ß-galactosidase (SA-ß-gal), and p16 INK4a were increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16 INK4a ( Trp53-/-Cdkn2a-/- mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ∼50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function. ConclusionsOur data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis.
Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. This study investigated the role of premature senescence in myocardial fibrosis. Murine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis. Senescence markers p21(CIP1/WAF1), senescence-associated ß-galactosidase (SA-ß-gal), and p16(INK4a) were increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16(INK4a) (Trp53(-/-)Cdkn2a(-/-) mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ∼50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function. Our data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis.
Author Engelhardt, Stefan
Hodwin, Bettina
Ramanujam, Deepak
Meyer, Kathleen
Sarikas, Antonio
Author_xml – sequence: 1
  givenname: Kathleen
  surname: Meyer
  fullname: Meyer, Kathleen
  organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
– sequence: 2
  givenname: Bettina
  surname: Hodwin
  fullname: Hodwin, Bettina
  organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
– sequence: 3
  givenname: Deepak
  surname: Ramanujam
  fullname: Ramanujam, Deepak
  organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
– sequence: 4
  givenname: Stefan
  surname: Engelhardt
  fullname: Engelhardt, Stefan
  organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
– sequence: 5
  givenname: Antonio
  surname: Sarikas
  fullname: Sarikas, Antonio
  email: antonio.sarikas@tum.de
  organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27126529$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rHCEUhqWkNJu0f6AXZaDXM1Fn_SqlUEK-IKWhaa_FcY7gdHZM1S3sv4-yCYVA0itF3-ccfThH6GAJCyD0nuCOYMJPpm4y1na07DtMO7wWr9CKMCbbnilxgFZY9KwlWIlDdJTShDHmkqg36JAKQjmjaoVuzlKCJXszNz_CDI0LsbmJsDF5G6G5hQWShcVCE1zzbRecH2IYZpNyavxST6yJY6XP603y6S167cyc4N3Deox-nZ_9PL1sr79fXJ1-vW7tWuHcDs72bD30fS_KX3rJJWOjtExJylTviCDMWIkdJ5gLqxi1o3MDxzAOtq_cMfq4r3sXw58tpKynsI1LaamJkJxTLjEvqQ8Pqe2wgVHfRb8xcacfBZSA3AdseX2K4LT12WQflhyNnzXBurrWk66udXWtMdXFdUHpE_Sx-ovQ5z0Exc1fD1En66vg0UewWY_Bv4x_eYLb2S_emvk37CD9U6BTAfRtnYA6AIRjrAir2j49X-B_3e8BKp2-sQ
CitedBy_id crossref_primary_10_1161_CIRCRESAHA_120_317791
crossref_primary_10_14336_AD_2021_0927
crossref_primary_10_1002_jcp_29313
crossref_primary_10_1161_CIRCRESAHA_121_320324
crossref_primary_10_1111_jcmm_17539
crossref_primary_10_1016_j_intimp_2024_112882
crossref_primary_10_1007_s00395_018_0669_y
crossref_primary_10_1016_j_bbadis_2022_166525
crossref_primary_10_1016_j_bbadis_2023_166642
crossref_primary_10_1016_j_tma_2019_01_003
crossref_primary_10_1016_j_mad_2020_111411
crossref_primary_10_1016_j_mad_2020_111410
crossref_primary_10_3389_fcell_2019_00032
crossref_primary_10_2147_JIR_S374951
crossref_primary_10_1038_s43587_024_00597_0
crossref_primary_10_1172_JCI95146
crossref_primary_10_1016_j_arr_2023_102096
crossref_primary_10_1152_ajpheart_00247_2020
crossref_primary_10_1161_CIRCRESAHA_123_323209
crossref_primary_10_1161_CIRCRESAHA_119_315889
crossref_primary_10_30607_kvj_437999
crossref_primary_10_1016_j_gde_2020_06_002
crossref_primary_10_1093_cvr_cvy059
crossref_primary_10_1007_s00018_020_03694_6
crossref_primary_10_1002_jcp_31504
crossref_primary_10_1002_rmb2_12221
crossref_primary_10_3390_ijms25052658
crossref_primary_10_1152_ajpheart_00532_2023
crossref_primary_10_1042_CS20171556
crossref_primary_10_3390_biom12111574
crossref_primary_10_1016_j_bbamcr_2024_119825
crossref_primary_10_1016_j_mad_2021_111540
crossref_primary_10_1038_s43587_021_00121_8
crossref_primary_10_1007_s00345_017_2060_2
crossref_primary_10_7554_eLife_84088
crossref_primary_10_18632_aging_205036
crossref_primary_10_12677_hjbm_2024_142015
crossref_primary_10_1021_acsmaterialsau_3c00009
crossref_primary_10_3390_biology11121768
crossref_primary_10_1038_s41419_020_2243_4
crossref_primary_10_1093_eurheartj_ehaa229
crossref_primary_10_1093_eurheartj_ehx640
crossref_primary_10_1007_s00418_021_01992_z
crossref_primary_10_1536_ihj_18_701
crossref_primary_10_20517_jca_2024_06
crossref_primary_10_1038_s41569_023_00881_3
crossref_primary_10_3390_cells12091296
crossref_primary_10_1139_cjpp_2020_0033
crossref_primary_10_1016_j_mad_2020_111308
crossref_primary_10_1016_j_matbio_2024_08_001
crossref_primary_10_1038_s41420_022_01205_z
crossref_primary_10_1016_j_jacbts_2018_05_003
crossref_primary_10_1016_j_yjmcc_2019_04_018
crossref_primary_10_1016_j_mam_2018_07_001
crossref_primary_10_1152_physrev_00020_2018
crossref_primary_10_1161_JAHA_116_005353
crossref_primary_10_1016_j_mad_2021_111550
crossref_primary_10_1161_JAHA_118_009111
crossref_primary_10_1186_s12979_020_00187_9
crossref_primary_10_1016_j_lfs_2020_118116
crossref_primary_10_1016_j_mad_2023_111870
crossref_primary_10_1146_annurev_physiol_021119_034527
crossref_primary_10_1111_febs_16351
crossref_primary_10_1002_1873_3468_14234
crossref_primary_10_1161_JAHA_120_021069
crossref_primary_10_3390_biom11040538
crossref_primary_10_1039_D4TB00578C
crossref_primary_10_3390_cells12192341
crossref_primary_10_3390_cells10040805
crossref_primary_10_1038_s41580_022_00531_5
crossref_primary_10_3390_ijms21041359
crossref_primary_10_1080_15384101_2023_2215081
crossref_primary_10_1016_j_cmet_2023_10_014
crossref_primary_10_1016_j_omtn_2020_04_001
crossref_primary_10_1093_cvr_cvae003
crossref_primary_10_1159_000501929
crossref_primary_10_1371_journal_pone_0244096
crossref_primary_10_1165_rcmb_2020_0182TR
crossref_primary_10_1152_ajplung_00511_2017
crossref_primary_10_3390_ijms21186579
crossref_primary_10_1016_j_arr_2025_102728
crossref_primary_10_1242_dev_191957
crossref_primary_10_1093_cvr_cvaa324
crossref_primary_10_1016_j_mad_2021_111565
crossref_primary_10_3390_cells12121652
crossref_primary_10_1161_JAHA_120_020488
crossref_primary_10_1111_febs_16984
crossref_primary_10_3389_fphar_2024_1486717
crossref_primary_10_1002_ehf2_14204
crossref_primary_10_1111_acel_13826
crossref_primary_10_1016_j_yjmcc_2019_04_023
crossref_primary_10_3892_mmr_2022_12852
crossref_primary_10_1002_ejhf_1406
crossref_primary_10_18632_oncotarget_19853
crossref_primary_10_2459_JCM_0000000000000694
crossref_primary_10_1016_j_pharmthera_2020_107751
crossref_primary_10_7554_eLife_72449
crossref_primary_10_1167_iovs_19_26983
crossref_primary_10_1507_endocrj_EJ22_0010
crossref_primary_10_3390_cells12030431
crossref_primary_10_1016_j_celrep_2021_109334
crossref_primary_10_14336_AD_2018_0601
crossref_primary_10_1007_s10522_024_10141_7
crossref_primary_10_1093_cvr_cvab161
crossref_primary_10_1172_JCI93563
crossref_primary_10_1016_j_cub_2017_07_033
crossref_primary_10_1007_s10522_022_09972_z
crossref_primary_10_1016_j_freeradbiomed_2018_11_006
crossref_primary_10_1016_j_devcel_2022_04_005
crossref_primary_10_3390_ijms22126214
crossref_primary_10_1111_febs_16573
crossref_primary_10_1007_s10561_021_09978_w
crossref_primary_10_1007_s11626_020_00481_2
crossref_primary_10_1016_j_biopha_2024_117463
crossref_primary_10_1016_j_mce_2016_08_047
crossref_primary_10_14336_AD_2021_0619
crossref_primary_10_1016_j_acvd_2024_02_001
crossref_primary_10_3390_ijms24076737
crossref_primary_10_1038_s42255_023_00928_2
crossref_primary_10_1262_jrd_2023_021
crossref_primary_10_1016_j_lfs_2020_118199
crossref_primary_10_1016_j_mad_2021_111617
crossref_primary_10_1016_j_mad_2021_111618
crossref_primary_10_20517_jca_2024_18
crossref_primary_10_2217_bmm_2019_0111
crossref_primary_10_1038_s41598_019_41314_x
crossref_primary_10_20517_jca_2024_15
crossref_primary_10_1042_CS20190893
crossref_primary_10_1161_CIRCULATIONAHA_117_031358
crossref_primary_10_3389_fragi_2022_1058435
crossref_primary_10_1093_cvr_cvaa222
crossref_primary_10_1016_j_arr_2021_101412
crossref_primary_10_1016_j_freeradbiomed_2018_10_457
crossref_primary_10_1038_s41514_024_00170_4
crossref_primary_10_1016_j_bbadis_2016_10_004
crossref_primary_10_1007_s10557_020_07075_w
crossref_primary_10_1093_cvr_cvw106
crossref_primary_10_3389_fcell_2020_00773
crossref_primary_10_1016_j_arr_2020_101072
crossref_primary_10_1111_acel_13249
crossref_primary_10_1093_jnen_nlz088
crossref_primary_10_1093_eurheartj_ehx165
crossref_primary_10_1111_acel_13580
crossref_primary_10_1111_cpr_13246
crossref_primary_10_1210_endocr_bqaa052
crossref_primary_10_3390_jcm9010036
crossref_primary_10_1016_j_devcel_2023_09_009
crossref_primary_10_1038_s41514_023_00113_5
crossref_primary_10_1152_ajpheart_00545_2023
crossref_primary_10_1016_j_jacc_2016_02_048
crossref_primary_10_1093_cvr_cvab106
crossref_primary_10_1002_ehf2_12218
crossref_primary_10_1016_j_devcel_2021_04_022
crossref_primary_10_1038_s41569_022_00739_0
crossref_primary_10_1042_CS20191213
crossref_primary_10_1097_XCS_0000000000000922
crossref_primary_10_1002_jcp_30171
crossref_primary_10_1016_j_ejphar_2018_10_023
crossref_primary_10_1038_s41569_025_01130_5
crossref_primary_10_1016_j_clinre_2021_101737
crossref_primary_10_1016_j_yexcr_2023_113556
crossref_primary_10_1007_s12079_016_0359_1
crossref_primary_10_1126_science_abm4443
crossref_primary_10_1165_rcmb_2019_0092OC
crossref_primary_10_1172_JCI121079
crossref_primary_10_1177_15353702231199076
crossref_primary_10_1007_s40610_021_00143_6
crossref_primary_10_1016_j_vph_2025_107470
crossref_primary_10_1038_s41569_021_00624_2
crossref_primary_10_1093_cvr_cvae044
crossref_primary_10_1016_j_arr_2023_101995
crossref_primary_10_1093_eurheartj_ehz919
crossref_primary_10_1186_s12886_023_02917_1
crossref_primary_10_3390_cells9030671
crossref_primary_10_1016_j_bbrc_2022_01_077
crossref_primary_10_1093_gerona_glac226
crossref_primary_10_1002_jcp_29732
crossref_primary_10_1007_s10522_023_10068_5
crossref_primary_10_1111_acel_13743
Cites_doi 10.1146/annurev-physiol-030212-183653
10.1038/ncb2070
10.1016/j.molcel.2008.03.009
10.1242/jcs.113.20.3613
10.1126/science.1122446
10.1038/nrm2233
10.1073/pnas.92.20.9363
10.1161/CIRCULATIONAHA.111.031229
10.1038/nrm3823
10.1016/j.cell.2007.07.003
10.1016/j.yjmcc.2014.07.017
10.18632/aging.100201
10.1016/j.cell.2013.10.019
10.1016/j.cell.2008.06.049
10.1038/nrc2560
10.1007/s12265-012-9404-5
10.1073/pnas.88.18.8277
10.1101/gad.13.12.1501
10.1038/nrc1884
10.1016/j.devcel.2014.11.012
10.1007/s11357-012-9407-9
10.2152/jmi.51.146
10.1038/nrc3057
10.1038/embor.2009.22
10.1161/CIRCULATIONAHA.112.000882
10.1016/S0092-8674(00)81902-9
10.1161/CIRCULATIONAHA.108.783852
10.1074/jbc.M209288200
10.1038/nature03918
10.1038/nrcardio.2009.199
10.1152/physrev.00008.2011
10.1073/pnas.96.12.7059
10.1016/j.biocel.2008.07.025
10.1038/347400a0
10.1172/JCI22475
10.1038/nature03841
10.1038/nature03890
10.1161/01.CIR.0000013836.85741.17
10.1016/0014-4827(61)90192-6
10.1371/journal.pone.0074535
10.1161/CIRCRESAHA.116.305381
ContentType Journal Article
Copyright 2016 American College of Cardiology Foundation
American College of Cardiology Foundation
Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 3, 2016
Copyright_xml – notice: 2016 American College of Cardiology Foundation
– notice: American College of Cardiology Foundation
– notice: Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 3, 2016
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
NAPCQ
DOI 10.1016/j.jacc.2016.02.047
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
Neurosciences Abstracts
DatabaseTitleList
AIDS and Cancer Research Abstracts


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-3597
EndPage 2028
ExternalDocumentID 4044026291
27126529
10_1016_j_jacc_2016_02_047
S0735109716009153
1_s2_0_S0735109716009153
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
18M
1B1
1P~
1~.
1~5
2WC
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
AABNK
AABVL
AAEDT
AAEDW
AAIKJ
AAOAW
AAQFI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABLJU
ABMAC
ABMZM
ABOCM
ACGFO
ACGFS
ACIUM
ACJTP
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFPUW
AFRAH
AFRHN
AFTJW
AGCQF
AGYEJ
AHMBA
AIGII
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BLXMC
CS3
DIK
DU5
E3Z
EBS
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
G-Q
GBLVA
GX1
H13
HVGLF
IHE
IXB
J1W
K-O
KQ8
L7B
MO0
N9A
O-L
O9-
OA.
OAUVE
OK1
OL~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SSZ
TR2
UNMZH
UV1
W8F
WH7
WOQ
WOW
YYM
YZZ
Z5R
.55
.GJ
0SF
1CY
29L
3O-
3V.
6I.
7RV
AACTN
AAFTH
AAKUH
AALRI
AAQQT
AAQXK
AAYOK
ABVKL
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFCTW
AFETI
AFFNX
AGHFR
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
BENPR
BPHCQ
FGOYB
HX~
HZ~
J5H
N4W
NCXOZ
QTD
R2-
RIG
SEW
T5K
X7M
XPP
YYP
ZGI
ZXP
AAIAV
ABJNI
EFLBG
LCYCR
NAHTW
ZA5
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
NAPCQ
ID FETCH-LOGICAL-c490t-bfc354b3337101386855d8c5982593f1715ac80f61067c952cdffb60edbc34b33
IEDL.DBID .~1
ISSN 0735-1097
IngestDate Wed Aug 13 08:50:07 EDT 2025
Wed Feb 19 02:43:00 EST 2025
Thu Apr 24 23:01:45 EDT 2025
Tue Jul 01 03:28:25 EDT 2025
Fri Feb 23 02:33:20 EST 2024
Sun Feb 23 10:18:58 EST 2025
Tue Aug 26 16:31:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords antifibrotic therapy
CF
cardiac fibroblasts
gene therapy
CM
DN
ECM
RB
TG
TAC
transverse aortic constriction
SA-ß-gal
AAV9
WT
extracellular matrix
senescence-associated ß-galactosidase
adeno-associated virus serotype 9
retinoblastoma
dominant-negative
cardiomyocyte
transgenic
wild type
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-bfc354b3337101386855d8c5982593f1715ac80f61067c952cdffb60edbc34b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0735109716009153
PMID 27126529
PQID 1786626806
PQPubID 2031078
PageCount 11
ParticipantIDs proquest_journals_1786626806
pubmed_primary_27126529
crossref_citationtrail_10_1016_j_jacc_2016_02_047
crossref_primary_10_1016_j_jacc_2016_02_047
elsevier_sciencedirect_doi_10_1016_j_jacc_2016_02_047
elsevier_clinicalkeyesjournals_1_s2_0_S0735109716009153
elsevier_clinicalkey_doi_10_1016_j_jacc_2016_02_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-03
PublicationDateYYYYMMDD 2016-05-03
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of the American College of Cardiology
PublicationTitleAlternate J Am Coll Cardiol
PublicationYear 2016
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Kurz, Decary, Hong, Erusalimsky (bib22) 2000; 113
Sherr, Roberts (bib24) 1999; 13
Krishnamurthy, Torrice, Ramsey (bib38) 2004; 114
Braig, Lee, Loddenkemper (bib7) 2005; 436
Ohtani, Yamakoshi, Takahashi, Hara (bib23) 2004; 51
Leask (bib1) 2015; 116
Xu, Sarikas, Dias-Santagata (bib20) 2008; 30
Jun, Lau (bib28) 2010; 2
Minamino (bib40) 2002; 105
Chen, Trotman, Shaffer (bib8) 2005; 436
Leu, Lam, Lau (bib36) 2002; 277
Zhao, Ding, Yu (bib37) 2014; 75
Hulot, Fauconnier, Ramanujam (bib30) 2011; 124
Jazbutyte, Fiedler, Kneitz (bib39) 2013; 35
Kipling, Cooke (bib32) 1990; 347
van den Borne, Diez, Blankesteijn, Verjans, Hofstra, Narula (bib25) 2010; 7
Rockman, Ross, Harris (bib17) 1991; 88
Young, Narita (bib13) 2009; 10
Michaloglou, Vredeveld, Soengas (bib9) 2005; 436
Jun, Lau (bib16) 2010; 12
Nardella, Clohessy, Alimonti, Pandolfi (bib41) 2011; 11
Chen, Lau (bib27) 2009; 41
Suckau, Fechner, Chemaly (bib29) 2009; 119
Muñoz-Espín, Cañamero, Maraver (bib34) 2013; 155
Muñoz-Espín, Serrano (bib4) 2014; 15
Herbig, Ferreira, Condel, Carey, Sedivy (bib10) 2006; 311
Ganesan, Ramanujam, Sassi (bib19) 2013; 127
Campisi (bib6) 2013; 75
Zhu, Li, Zhang (bib33) 2013; 8
Frangogiannis (bib2) 2012; 92
Hayflick, Moorhead (bib5) 1961; 25
Campisi, d’Adda di Fagagna (bib11) 2007; 8
Martin, Blaxall (bib3) 2012; 5
Krizhanovsky, Yon, Dickins (bib15) 2008; 134
Engelhardt, Hein, Wiesmann, Lohse (bib18) 1999; 96
Serrano, Lin, McCurrach, Beach, Lowe (bib31) 1997; 88
Dimri, Lee, Basile (bib12) 1995; 92
Kuilman, Peeper (bib14) 2009; 9
Collado, Blasco, Serrano (bib26) 2007; 130
Demaria, Ohtani, Youssef (bib35) 2014; 31
Collado, Serrano (bib21) 2006; 6
Dimri (10.1016/j.jacc.2016.02.047_bib12) 1995; 92
Hulot (10.1016/j.jacc.2016.02.047_bib30) 2011; 124
Chen (10.1016/j.jacc.2016.02.047_bib8) 2005; 436
Campisi (10.1016/j.jacc.2016.02.047_bib11) 2007; 8
Engelhardt (10.1016/j.jacc.2016.02.047_bib18) 1999; 96
Chen (10.1016/j.jacc.2016.02.047_bib27) 2009; 41
Krishnamurthy (10.1016/j.jacc.2016.02.047_bib38) 2004; 114
Hayflick (10.1016/j.jacc.2016.02.047_bib5) 1961; 25
van den Borne (10.1016/j.jacc.2016.02.047_bib25) 2010; 7
Serrano (10.1016/j.jacc.2016.02.047_bib31) 1997; 88
Leu (10.1016/j.jacc.2016.02.047_bib36) 2002; 277
Sherr (10.1016/j.jacc.2016.02.047_bib24) 1999; 13
Krizhanovsky (10.1016/j.jacc.2016.02.047_bib15) 2008; 134
Jazbutyte (10.1016/j.jacc.2016.02.047_bib39) 2013; 35
Campisi (10.1016/j.jacc.2016.02.047_bib6) 2013; 75
Kipling (10.1016/j.jacc.2016.02.047_bib32) 1990; 347
Zhao (10.1016/j.jacc.2016.02.047_bib37) 2014; 75
Frangogiannis (10.1016/j.jacc.2016.02.047_bib2) 2012; 92
Kuilman (10.1016/j.jacc.2016.02.047_bib14) 2009; 9
Collado (10.1016/j.jacc.2016.02.047_bib26) 2007; 130
Herbig (10.1016/j.jacc.2016.02.047_bib10) 2006; 311
Braig (10.1016/j.jacc.2016.02.047_bib7) 2005; 436
Ohtani (10.1016/j.jacc.2016.02.047_bib23) 2004; 51
Young (10.1016/j.jacc.2016.02.047_bib13) 2009; 10
Suckau (10.1016/j.jacc.2016.02.047_bib29) 2009; 119
Kurz (10.1016/j.jacc.2016.02.047_bib22) 2000; 113
Xu (10.1016/j.jacc.2016.02.047_bib20) 2008; 30
Leask (10.1016/j.jacc.2016.02.047_bib1) 2015; 116
Collado (10.1016/j.jacc.2016.02.047_bib21) 2006; 6
Michaloglou (10.1016/j.jacc.2016.02.047_bib9) 2005; 436
Ganesan (10.1016/j.jacc.2016.02.047_bib19) 2013; 127
Muñoz-Espín (10.1016/j.jacc.2016.02.047_bib4) 2014; 15
Martin (10.1016/j.jacc.2016.02.047_bib3) 2012; 5
Demaria (10.1016/j.jacc.2016.02.047_bib35) 2014; 31
Muñoz-Espín (10.1016/j.jacc.2016.02.047_bib34) 2013; 155
Jun (10.1016/j.jacc.2016.02.047_bib16) 2010; 12
Minamino (10.1016/j.jacc.2016.02.047_bib40) 2002; 105
Nardella (10.1016/j.jacc.2016.02.047_bib41) 2011; 11
Zhu (10.1016/j.jacc.2016.02.047_bib33) 2013; 8
Rockman (10.1016/j.jacc.2016.02.047_bib17) 1991; 88
Jun (10.1016/j.jacc.2016.02.047_bib28) 2010; 2
27126530 - J Am Coll Cardiol. 2016 May 3;67(17):2029-31
References_xml – volume: 8
  start-page: 729
  year: 2007
  end-page: 740
  ident: bib11
  article-title: Cellular senescence: when bad things happen to good cells
  publication-title: Nat Rev Mol Cell Biol
– volume: 113
  start-page: 3613
  year: 2000
  end-page: 3622
  ident: bib22
  article-title: Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells
  publication-title: J Cell Sci
– volume: 436
  start-page: 720
  year: 2005
  end-page: 724
  ident: bib9
  article-title: BRAFE600-associated senescence-like cell cycle arrest of human naevi
  publication-title: Nature
– volume: 92
  start-page: 9363
  year: 1995
  end-page: 9367
  ident: bib12
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo
  publication-title: Proc Natl Acad Sci
– volume: 8
  start-page: e74535
  year: 2013
  ident: bib33
  article-title: Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction
  publication-title: PLoS One
– volume: 41
  start-page: 771
  year: 2009
  end-page: 783
  ident: bib27
  article-title: Functions and mechanisms of action of CCN matricellular proteins
  publication-title: Int J Biochem Cell Biol
– volume: 11
  start-page: 503
  year: 2011
  end-page: 511
  ident: bib41
  article-title: Pro-senescence therapy for cancer treatment
  publication-title: Nat Rev Cancer
– volume: 5
  start-page: 768
  year: 2012
  end-page: 782
  ident: bib3
  article-title: Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends?
  publication-title: J Cardiovasc Transl Res
– volume: 127
  start-page: 2097
  year: 2013
  end-page: 2106
  ident: bib19
  article-title: MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors
  publication-title: Circulation
– volume: 96
  start-page: 7059
  year: 1999
  end-page: 7064
  ident: bib18
  article-title: Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 277
  start-page: 46248
  year: 2002
  end-page: 46255
  ident: bib36
  article-title: Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells
  publication-title: J Biol Chem
– volume: 12
  start-page: 676
  year: 2010
  end-page: 685
  ident: bib16
  article-title: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing
  publication-title: Nat Cell Biol
– volume: 124
  start-page: 796
  year: 2011
  end-page: 805
  ident: bib30
  article-title: Critical role for stromal interaction molecule 1 in cardiac hypertrophy
  publication-title: Circulation
– volume: 436
  start-page: 660
  year: 2005
  end-page: 665
  ident: bib7
  article-title: Oncogene-induced senescence as an initial barrier in lymphoma development
  publication-title: Nature
– volume: 436
  start-page: 725
  year: 2005
  end-page: 730
  ident: bib8
  article-title: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis
  publication-title: Nature
– volume: 155
  start-page: 1104
  year: 2013
  end-page: 1118
  ident: bib34
  article-title: Programmed cell senescence during mammalian embryonic development
  publication-title: Cell
– volume: 119
  start-page: 1241
  year: 2009
  end-page: 1252
  ident: bib29
  article-title: Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy
  publication-title: Circulation
– volume: 2
  start-page: 627
  year: 2010
  end-page: 631
  ident: bib28
  article-title: Cellular senescence controls fibrosis in wound healing
  publication-title: Aging (Albany NY)
– volume: 15
  start-page: 482
  year: 2014
  end-page: 496
  ident: bib4
  article-title: Cellular senescence: from physiology to pathology
  publication-title: Nat Rev Mol Cell Biol
– volume: 25
  start-page: 585
  year: 1961
  end-page: 621
  ident: bib5
  article-title: The serial cultivation of human diploid cell strains
  publication-title: Exp Cell Res
– volume: 75
  start-page: 152
  year: 2014
  end-page: 161
  ident: bib37
  article-title: Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection
  publication-title: J Mol Cell Cardiol
– volume: 88
  start-page: 593
  year: 1997
  end-page: 602
  ident: bib31
  article-title: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a
  publication-title: Cell
– volume: 116
  start-page: 1269
  year: 2015
  end-page: 1276
  ident: bib1
  article-title: Getting to the heart of the matter: new insights into cardiac fibrosis
  publication-title: Circ Res
– volume: 10
  start-page: 228
  year: 2009
  end-page: 230
  ident: bib13
  article-title: SASP reflects senescence
  publication-title: EMBO Rep
– volume: 35
  start-page: 747
  year: 2013
  end-page: 762
  ident: bib39
  article-title: MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart
  publication-title: Age (Dordr)
– volume: 105
  start-page: 1541
  year: 2002
  end-page: 1544
  ident: bib40
  article-title: Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction
  publication-title: Circulation
– volume: 30
  start-page: 403
  year: 2008
  end-page: 414
  ident: bib20
  article-title: The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation
  publication-title: Mol Cell
– volume: 130
  start-page: 223
  year: 2007
  end-page: 233
  ident: bib26
  article-title: Cellular senescence in cancer and aging
  publication-title: Cell
– volume: 311
  start-page: 1257
  year: 2006
  ident: bib10
  article-title: Cellular senescence in aging primates
  publication-title: Science
– volume: 9
  start-page: 81
  year: 2009
  end-page: 94
  ident: bib14
  article-title: Senescence-messaging secretome: SMS-ing cellular stress
  publication-title: Nat Rev Cancer
– volume: 6
  start-page: 472
  year: 2006
  end-page: 476
  ident: bib21
  article-title: The power and the promise of oncogene-induced senescence markers
  publication-title: Nat Rev Cancer
– volume: 92
  start-page: 635
  year: 2012
  end-page: 688
  ident: bib2
  article-title: Matricellular proteins in cardiac adaptation and disease
  publication-title: Physiol Rev
– volume: 347
  start-page: 400
  year: 1990
  end-page: 402
  ident: bib32
  article-title: Hypervariable ultra-long telomeres in mice
  publication-title: Nature
– volume: 134
  start-page: 657
  year: 2008
  end-page: 667
  ident: bib15
  article-title: Senescence of activated stellate cells limits liver fibrosis
  publication-title: Cell
– volume: 13
  start-page: 1501
  year: 1999
  end-page: 1512
  ident: bib24
  article-title: CDK inhibitors: positive and negative regulators of G1-phase progression
  publication-title: Genes Dev
– volume: 114
  start-page: 1299
  year: 2004
  end-page: 1307
  ident: bib38
  article-title: Ink4a/Arf expression is a biomarker of aging
  publication-title: J Clin Invest
– volume: 7
  start-page: 30
  year: 2010
  end-page: 37
  ident: bib25
  article-title: Myocardial remodeling after infarction: the role of myofibroblasts
  publication-title: Nat Rev Cardiol
– volume: 75
  start-page: 685
  year: 2013
  end-page: 705
  ident: bib6
  article-title: Aging, cellular senescence, and cancer
  publication-title: Annu Rev Physiol
– volume: 88
  start-page: 8277
  year: 1991
  end-page: 8281
  ident: bib17
  article-title: Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy
  publication-title: Proc Natl Acad Sci U S A
– volume: 51
  start-page: 146
  year: 2004
  end-page: 153
  ident: bib23
  article-title: The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression
  publication-title: J Med Invest
– volume: 31
  start-page: 722
  year: 2014
  end-page: 733
  ident: bib35
  article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA
  publication-title: Dev Cell
– volume: 75
  start-page: 685
  year: 2013
  ident: 10.1016/j.jacc.2016.02.047_bib6
  article-title: Aging, cellular senescence, and cancer
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-030212-183653
– volume: 12
  start-page: 676
  year: 2010
  ident: 10.1016/j.jacc.2016.02.047_bib16
  article-title: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2070
– volume: 30
  start-page: 403
  year: 2008
  ident: 10.1016/j.jacc.2016.02.047_bib20
  article-title: The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.03.009
– volume: 113
  start-page: 3613
  year: 2000
  ident: 10.1016/j.jacc.2016.02.047_bib22
  article-title: Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells
  publication-title: J Cell Sci
  doi: 10.1242/jcs.113.20.3613
– volume: 311
  start-page: 1257
  year: 2006
  ident: 10.1016/j.jacc.2016.02.047_bib10
  article-title: Cellular senescence in aging primates
  publication-title: Science
  doi: 10.1126/science.1122446
– volume: 8
  start-page: 729
  year: 2007
  ident: 10.1016/j.jacc.2016.02.047_bib11
  article-title: Cellular senescence: when bad things happen to good cells
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2233
– volume: 92
  start-page: 9363
  year: 1995
  ident: 10.1016/j.jacc.2016.02.047_bib12
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.92.20.9363
– volume: 124
  start-page: 796
  year: 2011
  ident: 10.1016/j.jacc.2016.02.047_bib30
  article-title: Critical role for stromal interaction molecule 1 in cardiac hypertrophy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.111.031229
– volume: 15
  start-page: 482
  year: 2014
  ident: 10.1016/j.jacc.2016.02.047_bib4
  article-title: Cellular senescence: from physiology to pathology
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3823
– volume: 130
  start-page: 223
  year: 2007
  ident: 10.1016/j.jacc.2016.02.047_bib26
  article-title: Cellular senescence in cancer and aging
  publication-title: Cell
  doi: 10.1016/j.cell.2007.07.003
– volume: 75
  start-page: 152
  year: 2014
  ident: 10.1016/j.jacc.2016.02.047_bib37
  article-title: Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2014.07.017
– volume: 2
  start-page: 627
  year: 2010
  ident: 10.1016/j.jacc.2016.02.047_bib28
  article-title: Cellular senescence controls fibrosis in wound healing
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100201
– volume: 155
  start-page: 1104
  year: 2013
  ident: 10.1016/j.jacc.2016.02.047_bib34
  article-title: Programmed cell senescence during mammalian embryonic development
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.019
– volume: 134
  start-page: 657
  year: 2008
  ident: 10.1016/j.jacc.2016.02.047_bib15
  article-title: Senescence of activated stellate cells limits liver fibrosis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.049
– volume: 9
  start-page: 81
  year: 2009
  ident: 10.1016/j.jacc.2016.02.047_bib14
  article-title: Senescence-messaging secretome: SMS-ing cellular stress
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2560
– volume: 5
  start-page: 768
  year: 2012
  ident: 10.1016/j.jacc.2016.02.047_bib3
  article-title: Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends?
  publication-title: J Cardiovasc Transl Res
  doi: 10.1007/s12265-012-9404-5
– volume: 88
  start-page: 8277
  year: 1991
  ident: 10.1016/j.jacc.2016.02.047_bib17
  article-title: Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.88.18.8277
– volume: 13
  start-page: 1501
  year: 1999
  ident: 10.1016/j.jacc.2016.02.047_bib24
  article-title: CDK inhibitors: positive and negative regulators of G1-phase progression
  publication-title: Genes Dev
  doi: 10.1101/gad.13.12.1501
– volume: 6
  start-page: 472
  year: 2006
  ident: 10.1016/j.jacc.2016.02.047_bib21
  article-title: The power and the promise of oncogene-induced senescence markers
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1884
– volume: 31
  start-page: 722
  year: 2014
  ident: 10.1016/j.jacc.2016.02.047_bib35
  article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2014.11.012
– volume: 35
  start-page: 747
  year: 2013
  ident: 10.1016/j.jacc.2016.02.047_bib39
  article-title: MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart
  publication-title: Age (Dordr)
  doi: 10.1007/s11357-012-9407-9
– volume: 51
  start-page: 146
  year: 2004
  ident: 10.1016/j.jacc.2016.02.047_bib23
  article-title: The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression
  publication-title: J Med Invest
  doi: 10.2152/jmi.51.146
– volume: 11
  start-page: 503
  year: 2011
  ident: 10.1016/j.jacc.2016.02.047_bib41
  article-title: Pro-senescence therapy for cancer treatment
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3057
– volume: 10
  start-page: 228
  year: 2009
  ident: 10.1016/j.jacc.2016.02.047_bib13
  article-title: SASP reflects senescence
  publication-title: EMBO Rep
  doi: 10.1038/embor.2009.22
– volume: 127
  start-page: 2097
  year: 2013
  ident: 10.1016/j.jacc.2016.02.047_bib19
  article-title: MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.000882
– volume: 88
  start-page: 593
  year: 1997
  ident: 10.1016/j.jacc.2016.02.047_bib31
  article-title: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81902-9
– volume: 119
  start-page: 1241
  year: 2009
  ident: 10.1016/j.jacc.2016.02.047_bib29
  article-title: Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.783852
– volume: 277
  start-page: 46248
  year: 2002
  ident: 10.1016/j.jacc.2016.02.047_bib36
  article-title: Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M209288200
– volume: 436
  start-page: 725
  year: 2005
  ident: 10.1016/j.jacc.2016.02.047_bib8
  article-title: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis
  publication-title: Nature
  doi: 10.1038/nature03918
– volume: 7
  start-page: 30
  year: 2010
  ident: 10.1016/j.jacc.2016.02.047_bib25
  article-title: Myocardial remodeling after infarction: the role of myofibroblasts
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2009.199
– volume: 92
  start-page: 635
  year: 2012
  ident: 10.1016/j.jacc.2016.02.047_bib2
  article-title: Matricellular proteins in cardiac adaptation and disease
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00008.2011
– volume: 96
  start-page: 7059
  year: 1999
  ident: 10.1016/j.jacc.2016.02.047_bib18
  article-title: Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.12.7059
– volume: 41
  start-page: 771
  year: 2009
  ident: 10.1016/j.jacc.2016.02.047_bib27
  article-title: Functions and mechanisms of action of CCN matricellular proteins
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2008.07.025
– volume: 347
  start-page: 400
  year: 1990
  ident: 10.1016/j.jacc.2016.02.047_bib32
  article-title: Hypervariable ultra-long telomeres in mice
  publication-title: Nature
  doi: 10.1038/347400a0
– volume: 114
  start-page: 1299
  year: 2004
  ident: 10.1016/j.jacc.2016.02.047_bib38
  article-title: Ink4a/Arf expression is a biomarker of aging
  publication-title: J Clin Invest
  doi: 10.1172/JCI22475
– volume: 436
  start-page: 660
  year: 2005
  ident: 10.1016/j.jacc.2016.02.047_bib7
  article-title: Oncogene-induced senescence as an initial barrier in lymphoma development
  publication-title: Nature
  doi: 10.1038/nature03841
– volume: 436
  start-page: 720
  year: 2005
  ident: 10.1016/j.jacc.2016.02.047_bib9
  article-title: BRAFE600-associated senescence-like cell cycle arrest of human naevi
  publication-title: Nature
  doi: 10.1038/nature03890
– volume: 105
  start-page: 1541
  year: 2002
  ident: 10.1016/j.jacc.2016.02.047_bib40
  article-title: Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000013836.85741.17
– volume: 25
  start-page: 585
  year: 1961
  ident: 10.1016/j.jacc.2016.02.047_bib5
  article-title: The serial cultivation of human diploid cell strains
  publication-title: Exp Cell Res
  doi: 10.1016/0014-4827(61)90192-6
– volume: 8
  start-page: e74535
  year: 2013
  ident: 10.1016/j.jacc.2016.02.047_bib33
  article-title: Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074535
– volume: 116
  start-page: 1269
  year: 2015
  ident: 10.1016/j.jacc.2016.02.047_bib1
  article-title: Getting to the heart of the matter: new insights into cardiac fibrosis
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.305381
– reference: 27126530 - J Am Coll Cardiol. 2016 May 3;67(17):2029-31
SSID ssj0006819
Score 2.58081
Snippet Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature...
AbstractBackgroundFibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have...
Background Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2018
SubjectTerms Actins - metabolism
Animals
antifibrotic therapy
beta-Galactosidase - metabolism
Biopsy
cardiac fibroblasts
Cardiology
Cardiovascular
Cell cycle
Cellular Senescence
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
Cyclin-dependent kinases
Cysteine-Rich Protein 61 - metabolism
Deoxyribonucleic acid
Dependovirus - genetics
DNA
Enzymes
extracellular matrix
Fibroblasts
Fibrosis
gene therapy
Gene Transfer Techniques
Heart
Humans
Mice, Knockout
Myocardium - metabolism
Myocardium - pathology
Myofibroblasts - pathology
Proteins
Receptor, Platelet-Derived Growth Factor alpha - metabolism
Rodents
Senescence
Statistical analysis
Studies
Surgery
transverse aortic constriction
Tumor Suppressor Protein p53 - deficiency
Vimentin - metabolism
Wound healing
Title Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0735109716009153
https://www.clinicalkey.es/playcontent/1-s2.0-S0735109716009153
https://dx.doi.org/10.1016/j.jacc.2016.02.047
https://www.ncbi.nlm.nih.gov/pubmed/27126529
https://www.proquest.com/docview/1786626806
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_DB_FF_HZ-kQffpK5pmjR9VHGoMBlOYW-hSVqYjE3W-eCLf7t3bToRp4IvhaZ3pL3-crnSu98Rcho5JeK4cIFUQgYxCAUmNCLAvtvWGeFYgdXIvXt58xTfDcWwRa6aWhhMq_S-v_bplbf2Ix1vzc7LaNQZADgFqyiQIE6AhYsV7HGCKD9__0zzkKpq7oHCAUr7wpk6x-s5s0hjyGTF24ktVpZvTj8Fn9Um1N0g6z56pBf1DW6SVj7ZIqs9_398m_SvSywmAkzRh-k4pxCR0v4MaVlfZzkdoF-z-Ih0WtDeG-DKYD-ZrJyXdDTBEVsBZky7eKUclTvkqXv9eHUT-J4JgY3TcB6YwnIRG845hA6MK3gFwimLNH0i5QVLmMisCguJ1HE2FZF1RWFkmDtjOertkpXJdJLvEwqRSxa5EParGLY6ZTOF3GBZ4nhmE5UmbcIaY2nrCcWxr8VYN5ljzxoNrNHAOow0GLhNzhY6LzWdxq_SvHkHuikUBdemwdv_qpUs08pLvzpLzXQJkvobgtpELDS_gPDPGY8agOjPSRIl4WtRhbJN9mrQLB45SlgkRZQe_HPCQ7KGZ1XiJT8iK_PZa34MwdHcnFToh-Pt8PID9wkKHA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RKrW9IPpFt6WtD-2pSje2Y8c59ICA1VJYhApI3NzYSaRFq120WVRx4U_1D3YmcRZVpVSqxDXxxM7keWaszLwB-CAKo5KkKiJtlI4SHBS52KmI-m77wqmCV1SNPDrUw9Pk65k6W4GfXS0MpVUG29_a9MZahyv9oM3-xXjcP0ZwKt5QIGGcgBs3ZFbul1c_8NxWf9nbwY_8UYjB7sn2MAqtBSKfZPEicpWXKnFSSvSwXBpcqSqMJzY7lcmKp1zl3sSVJoY1nynhi6pyOi4L5yXJ4XMfwMMEzQW1Tfh8fZNXok3TTYRWF9HyQqVOm1R2nnviTeS6IQqlni63e8O_RbuN1xusw1oIV9lWq5GnsFJOn8GjUfgh_xyOdmuqXkIQs2-zSckwBGZHc-KBvZyX7JgMqSedslnFRlcIZEcNbPJ6UbPxlK74BqETNqA79bh-Aaf3osmXsDqdTctXwDBUykURo4NM0LcanxsiI8vTQuY-NVnaA94py_rAYE6NNCa2S1U7t6RgSwq2sbCo4B58WspctPwdd46W3TewXWUq2lKL7uVOqfQ2qbIO5qC23NY40v4B2R6opeRvqP_njJsdQOzNJKnReDw1se7BRgua5SuLlAutRPb6Pyd8D4-HJ6MDe7B3uP8GntCdJutTbsLqYn5ZvsXIbOHeNTuBwff73nq_ADDtRPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Essential+Role+for+Premature+Senescence+of+Myofibroblasts+in+Myocardial+Fibrosis&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Meyer%2C+Kathleen%2C+MSc&rft.au=Hodwin%2C+Bettina%2C+MSc&rft.au=Ramanujam%2C+Deepak%2C+PhD&rft.au=Engelhardt%2C+Stefan%2C+MD%2C+PhD&rft.date=2016-05-03&rft.issn=0735-1097&rft.volume=67&rft.issue=17&rft.spage=2018&rft.epage=2028&rft_id=info:doi/10.1016%2Fj.jacc.2016.02.047&rft.externalDBID=ECK1-s2.0-S0735109716009153&rft.externalDocID=1_s2_0_S0735109716009153
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109716X00125%2Fcov150h.gif