Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis
Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. This study investigated the...
Saved in:
Published in | Journal of the American College of Cardiology Vol. 67; no. 17; pp. 2018 - 2028 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.05.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established.
This study investigated the role of premature senescence in myocardial fibrosis.
Murine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis.
Senescence markers p21CIP1/WAF1, senescence-associated ß-galactosidase (SA-ß-gal), and p16INK4a were increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16INK4a (Trp53-/-Cdkn2a-/- mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ∼50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function.
Our data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis. |
---|---|
AbstractList | Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established.
This study investigated the role of premature senescence in myocardial fibrosis.
Murine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis.
Senescence markers p21CIP1/WAF1, senescence-associated ß-galactosidase (SA-ß-gal), and p16INK4a were increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16INK4a (Trp53-/-Cdkn2a-/- mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ∼50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function.
Our data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis. Background Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. Objectives This study investigated the role of premature senescence in myocardial fibrosis. Methods Murine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis. Results Senescence markers p21CIP1/WAF1, senescence-associated ß-galactosidase (SA-ß-gal), and p16INK4awere increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16INK4a(Trp53-/-Cdkn2a-/-mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ~50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function. Conclusions Our data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis. AbstractBackgroundFibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. ObjectivesThis study investigated the role of premature senescence in myocardial fibrosis. MethodsMurine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis. ResultsSenescence markers p21 CIP1/WAF1, senescence-associated ß-galactosidase (SA-ß-gal), and p16 INK4a were increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16 INK4a ( Trp53-/-Cdkn2a-/- mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ∼50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function. ConclusionsOur data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis. Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature senescence as a regulatory mechanism of tissue fibrosis, but its relevance in the heart remains to be established. This study investigated the role of premature senescence in myocardial fibrosis. Murine models of cardiac diseases and human heart biopsies were analyzed for characteristics of premature senescence and fibrosis. Loss-of-function and gain-of-function models of premature senescence were used to determine its pathophysiological role in myocardial fibrosis. Senescence markers p21(CIP1/WAF1), senescence-associated ß-galactosidase (SA-ß-gal), and p16(INK4a) were increased 2-, 8-, and 20-fold (n = 5 to 7; p < 0.01), respectively, in perivascular fibrotic areas after transverse aortic constriction compared with sham-treated control subjects. Similar results were observed with cardiomyocyte-specific β1-adrenoceptor transgenic mice and human heart biopsies. Senescent cells were positive for platelet-derived growth factor receptor-α, vimentin, and α-smooth muscle actin, specifying myofibroblasts as the predominant cell population undergoing premature senescence in the heart. Inactivation of the premature senescence program by genetic ablation of p53 and p16(INK4a) (Trp53(-/-)Cdkn2a(-/-) mice) resulted in aggravated fibrosis after transverse aortic constriction, when compared with wild-type control subjects (49 ± 4.9% vs. 33 ± 2.7%; p < 0.01), and was associated with impaired cardiac function. Conversely, cardiac-specific expression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype 9 gene transfer, resulted in ∼50% reduction of perivascular fibrosis after transverse aortic constriction, when compared with mock- or dominant-negative CCN1-infected control subjects, and improved cardiac function. Our data establish premature senescence of myofibroblasts as an essential antifibrotic mechanism and potential therapeutic target in myocardial fibrosis. |
Author | Engelhardt, Stefan Hodwin, Bettina Ramanujam, Deepak Meyer, Kathleen Sarikas, Antonio |
Author_xml | – sequence: 1 givenname: Kathleen surname: Meyer fullname: Meyer, Kathleen organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany – sequence: 2 givenname: Bettina surname: Hodwin fullname: Hodwin, Bettina organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany – sequence: 3 givenname: Deepak surname: Ramanujam fullname: Ramanujam, Deepak organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany – sequence: 4 givenname: Stefan surname: Engelhardt fullname: Engelhardt, Stefan organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany – sequence: 5 givenname: Antonio surname: Sarikas fullname: Sarikas, Antonio email: antonio.sarikas@tum.de organization: Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27126529$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rHCEUhqWkNJu0f6AXZaDXM1Fn_SqlUEK-IKWhaa_FcY7gdHZM1S3sv4-yCYVA0itF3-ccfThH6GAJCyD0nuCOYMJPpm4y1na07DtMO7wWr9CKMCbbnilxgFZY9KwlWIlDdJTShDHmkqg36JAKQjmjaoVuzlKCJXszNz_CDI0LsbmJsDF5G6G5hQWShcVCE1zzbRecH2IYZpNyavxST6yJY6XP603y6S167cyc4N3Deox-nZ_9PL1sr79fXJ1-vW7tWuHcDs72bD30fS_KX3rJJWOjtExJylTviCDMWIkdJ5gLqxi1o3MDxzAOtq_cMfq4r3sXw58tpKynsI1LaamJkJxTLjEvqQ8Pqe2wgVHfRb8xcacfBZSA3AdseX2K4LT12WQflhyNnzXBurrWk66udXWtMdXFdUHpE_Sx-ovQ5z0Exc1fD1En66vg0UewWY_Bv4x_eYLb2S_emvk37CD9U6BTAfRtnYA6AIRjrAir2j49X-B_3e8BKp2-sQ |
CitedBy_id | crossref_primary_10_1161_CIRCRESAHA_120_317791 crossref_primary_10_14336_AD_2021_0927 crossref_primary_10_1002_jcp_29313 crossref_primary_10_1161_CIRCRESAHA_121_320324 crossref_primary_10_1111_jcmm_17539 crossref_primary_10_1016_j_intimp_2024_112882 crossref_primary_10_1007_s00395_018_0669_y crossref_primary_10_1016_j_bbadis_2022_166525 crossref_primary_10_1016_j_bbadis_2023_166642 crossref_primary_10_1016_j_tma_2019_01_003 crossref_primary_10_1016_j_mad_2020_111411 crossref_primary_10_1016_j_mad_2020_111410 crossref_primary_10_3389_fcell_2019_00032 crossref_primary_10_2147_JIR_S374951 crossref_primary_10_1038_s43587_024_00597_0 crossref_primary_10_1172_JCI95146 crossref_primary_10_1016_j_arr_2023_102096 crossref_primary_10_1152_ajpheart_00247_2020 crossref_primary_10_1161_CIRCRESAHA_123_323209 crossref_primary_10_1161_CIRCRESAHA_119_315889 crossref_primary_10_30607_kvj_437999 crossref_primary_10_1016_j_gde_2020_06_002 crossref_primary_10_1093_cvr_cvy059 crossref_primary_10_1007_s00018_020_03694_6 crossref_primary_10_1002_jcp_31504 crossref_primary_10_1002_rmb2_12221 crossref_primary_10_3390_ijms25052658 crossref_primary_10_1152_ajpheart_00532_2023 crossref_primary_10_1042_CS20171556 crossref_primary_10_3390_biom12111574 crossref_primary_10_1016_j_bbamcr_2024_119825 crossref_primary_10_1016_j_mad_2021_111540 crossref_primary_10_1038_s43587_021_00121_8 crossref_primary_10_1007_s00345_017_2060_2 crossref_primary_10_7554_eLife_84088 crossref_primary_10_18632_aging_205036 crossref_primary_10_12677_hjbm_2024_142015 crossref_primary_10_1021_acsmaterialsau_3c00009 crossref_primary_10_3390_biology11121768 crossref_primary_10_1038_s41419_020_2243_4 crossref_primary_10_1093_eurheartj_ehaa229 crossref_primary_10_1093_eurheartj_ehx640 crossref_primary_10_1007_s00418_021_01992_z crossref_primary_10_1536_ihj_18_701 crossref_primary_10_20517_jca_2024_06 crossref_primary_10_1038_s41569_023_00881_3 crossref_primary_10_3390_cells12091296 crossref_primary_10_1139_cjpp_2020_0033 crossref_primary_10_1016_j_mad_2020_111308 crossref_primary_10_1016_j_matbio_2024_08_001 crossref_primary_10_1038_s41420_022_01205_z crossref_primary_10_1016_j_jacbts_2018_05_003 crossref_primary_10_1016_j_yjmcc_2019_04_018 crossref_primary_10_1016_j_mam_2018_07_001 crossref_primary_10_1152_physrev_00020_2018 crossref_primary_10_1161_JAHA_116_005353 crossref_primary_10_1016_j_mad_2021_111550 crossref_primary_10_1161_JAHA_118_009111 crossref_primary_10_1186_s12979_020_00187_9 crossref_primary_10_1016_j_lfs_2020_118116 crossref_primary_10_1016_j_mad_2023_111870 crossref_primary_10_1146_annurev_physiol_021119_034527 crossref_primary_10_1111_febs_16351 crossref_primary_10_1002_1873_3468_14234 crossref_primary_10_1161_JAHA_120_021069 crossref_primary_10_3390_biom11040538 crossref_primary_10_1039_D4TB00578C crossref_primary_10_3390_cells12192341 crossref_primary_10_3390_cells10040805 crossref_primary_10_1038_s41580_022_00531_5 crossref_primary_10_3390_ijms21041359 crossref_primary_10_1080_15384101_2023_2215081 crossref_primary_10_1016_j_cmet_2023_10_014 crossref_primary_10_1016_j_omtn_2020_04_001 crossref_primary_10_1093_cvr_cvae003 crossref_primary_10_1159_000501929 crossref_primary_10_1371_journal_pone_0244096 crossref_primary_10_1165_rcmb_2020_0182TR crossref_primary_10_1152_ajplung_00511_2017 crossref_primary_10_3390_ijms21186579 crossref_primary_10_1016_j_arr_2025_102728 crossref_primary_10_1242_dev_191957 crossref_primary_10_1093_cvr_cvaa324 crossref_primary_10_1016_j_mad_2021_111565 crossref_primary_10_3390_cells12121652 crossref_primary_10_1161_JAHA_120_020488 crossref_primary_10_1111_febs_16984 crossref_primary_10_3389_fphar_2024_1486717 crossref_primary_10_1002_ehf2_14204 crossref_primary_10_1111_acel_13826 crossref_primary_10_1016_j_yjmcc_2019_04_023 crossref_primary_10_3892_mmr_2022_12852 crossref_primary_10_1002_ejhf_1406 crossref_primary_10_18632_oncotarget_19853 crossref_primary_10_2459_JCM_0000000000000694 crossref_primary_10_1016_j_pharmthera_2020_107751 crossref_primary_10_7554_eLife_72449 crossref_primary_10_1167_iovs_19_26983 crossref_primary_10_1507_endocrj_EJ22_0010 crossref_primary_10_3390_cells12030431 crossref_primary_10_1016_j_celrep_2021_109334 crossref_primary_10_14336_AD_2018_0601 crossref_primary_10_1007_s10522_024_10141_7 crossref_primary_10_1093_cvr_cvab161 crossref_primary_10_1172_JCI93563 crossref_primary_10_1016_j_cub_2017_07_033 crossref_primary_10_1007_s10522_022_09972_z crossref_primary_10_1016_j_freeradbiomed_2018_11_006 crossref_primary_10_1016_j_devcel_2022_04_005 crossref_primary_10_3390_ijms22126214 crossref_primary_10_1111_febs_16573 crossref_primary_10_1007_s10561_021_09978_w crossref_primary_10_1007_s11626_020_00481_2 crossref_primary_10_1016_j_biopha_2024_117463 crossref_primary_10_1016_j_mce_2016_08_047 crossref_primary_10_14336_AD_2021_0619 crossref_primary_10_1016_j_acvd_2024_02_001 crossref_primary_10_3390_ijms24076737 crossref_primary_10_1038_s42255_023_00928_2 crossref_primary_10_1262_jrd_2023_021 crossref_primary_10_1016_j_lfs_2020_118199 crossref_primary_10_1016_j_mad_2021_111617 crossref_primary_10_1016_j_mad_2021_111618 crossref_primary_10_20517_jca_2024_18 crossref_primary_10_2217_bmm_2019_0111 crossref_primary_10_1038_s41598_019_41314_x crossref_primary_10_20517_jca_2024_15 crossref_primary_10_1042_CS20190893 crossref_primary_10_1161_CIRCULATIONAHA_117_031358 crossref_primary_10_3389_fragi_2022_1058435 crossref_primary_10_1093_cvr_cvaa222 crossref_primary_10_1016_j_arr_2021_101412 crossref_primary_10_1016_j_freeradbiomed_2018_10_457 crossref_primary_10_1038_s41514_024_00170_4 crossref_primary_10_1016_j_bbadis_2016_10_004 crossref_primary_10_1007_s10557_020_07075_w crossref_primary_10_1093_cvr_cvw106 crossref_primary_10_3389_fcell_2020_00773 crossref_primary_10_1016_j_arr_2020_101072 crossref_primary_10_1111_acel_13249 crossref_primary_10_1093_jnen_nlz088 crossref_primary_10_1093_eurheartj_ehx165 crossref_primary_10_1111_acel_13580 crossref_primary_10_1111_cpr_13246 crossref_primary_10_1210_endocr_bqaa052 crossref_primary_10_3390_jcm9010036 crossref_primary_10_1016_j_devcel_2023_09_009 crossref_primary_10_1038_s41514_023_00113_5 crossref_primary_10_1152_ajpheart_00545_2023 crossref_primary_10_1016_j_jacc_2016_02_048 crossref_primary_10_1093_cvr_cvab106 crossref_primary_10_1002_ehf2_12218 crossref_primary_10_1016_j_devcel_2021_04_022 crossref_primary_10_1038_s41569_022_00739_0 crossref_primary_10_1042_CS20191213 crossref_primary_10_1097_XCS_0000000000000922 crossref_primary_10_1002_jcp_30171 crossref_primary_10_1016_j_ejphar_2018_10_023 crossref_primary_10_1038_s41569_025_01130_5 crossref_primary_10_1016_j_clinre_2021_101737 crossref_primary_10_1016_j_yexcr_2023_113556 crossref_primary_10_1007_s12079_016_0359_1 crossref_primary_10_1126_science_abm4443 crossref_primary_10_1165_rcmb_2019_0092OC crossref_primary_10_1172_JCI121079 crossref_primary_10_1177_15353702231199076 crossref_primary_10_1007_s40610_021_00143_6 crossref_primary_10_1016_j_vph_2025_107470 crossref_primary_10_1038_s41569_021_00624_2 crossref_primary_10_1093_cvr_cvae044 crossref_primary_10_1016_j_arr_2023_101995 crossref_primary_10_1093_eurheartj_ehz919 crossref_primary_10_1186_s12886_023_02917_1 crossref_primary_10_3390_cells9030671 crossref_primary_10_1016_j_bbrc_2022_01_077 crossref_primary_10_1093_gerona_glac226 crossref_primary_10_1002_jcp_29732 crossref_primary_10_1007_s10522_023_10068_5 crossref_primary_10_1111_acel_13743 |
Cites_doi | 10.1146/annurev-physiol-030212-183653 10.1038/ncb2070 10.1016/j.molcel.2008.03.009 10.1242/jcs.113.20.3613 10.1126/science.1122446 10.1038/nrm2233 10.1073/pnas.92.20.9363 10.1161/CIRCULATIONAHA.111.031229 10.1038/nrm3823 10.1016/j.cell.2007.07.003 10.1016/j.yjmcc.2014.07.017 10.18632/aging.100201 10.1016/j.cell.2013.10.019 10.1016/j.cell.2008.06.049 10.1038/nrc2560 10.1007/s12265-012-9404-5 10.1073/pnas.88.18.8277 10.1101/gad.13.12.1501 10.1038/nrc1884 10.1016/j.devcel.2014.11.012 10.1007/s11357-012-9407-9 10.2152/jmi.51.146 10.1038/nrc3057 10.1038/embor.2009.22 10.1161/CIRCULATIONAHA.112.000882 10.1016/S0092-8674(00)81902-9 10.1161/CIRCULATIONAHA.108.783852 10.1074/jbc.M209288200 10.1038/nature03918 10.1038/nrcardio.2009.199 10.1152/physrev.00008.2011 10.1073/pnas.96.12.7059 10.1016/j.biocel.2008.07.025 10.1038/347400a0 10.1172/JCI22475 10.1038/nature03841 10.1038/nature03890 10.1161/01.CIR.0000013836.85741.17 10.1016/0014-4827(61)90192-6 10.1371/journal.pone.0074535 10.1161/CIRCRESAHA.116.305381 |
ContentType | Journal Article |
Copyright | 2016 American College of Cardiology Foundation American College of Cardiology Foundation Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 3, 2016 |
Copyright_xml | – notice: 2016 American College of Cardiology Foundation – notice: American College of Cardiology Foundation – notice: Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 3, 2016 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. NAPCQ |
DOI | 10.1016/j.jacc.2016.02.047 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts Neurosciences Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-3597 |
EndPage | 2028 |
ExternalDocumentID | 4044026291 27126529 10_1016_j_jacc_2016_02_047 S0735109716009153 1_s2_0_S0735109716009153 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 18M 1B1 1P~ 1~. 1~5 2WC 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ AABNK AABVL AAEDT AAEDW AAIKJ AAOAW AAQFI AAXUO AAYWO ABBQC ABFNM ABFRF ABLJU ABMAC ABMZM ABOCM ACGFO ACGFS ACIUM ACJTP ACPRK ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AEKER AENEX AEUPX AEVXI AEXQZ AFPUW AFRAH AFRHN AFTJW AGCQF AGYEJ AHMBA AIGII AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BLXMC CS3 DIK DU5 E3Z EBS EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FNPLU G-Q GBLVA GX1 H13 HVGLF IHE IXB J1W K-O KQ8 L7B MO0 N9A O-L O9- OA. OAUVE OK1 OL~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 ROL RPZ SCC SDF SDG SDP SES SSZ TR2 UNMZH UV1 W8F WH7 WOQ WOW YYM YZZ Z5R .55 .GJ 0SF 1CY 29L 3O- 3V. 6I. 7RV AACTN AAFTH AAKUH AALRI AAQQT AAQXK AAYOK ABVKL ABWVN ABXDB ACRPL ADMUD ADNMO AFCTW AFETI AFFNX AGHFR AJOXV AMFUW ASPBG AVWKF AZFZN BENPR BPHCQ FGOYB HX~ HZ~ J5H N4W NCXOZ QTD R2- RIG SEW T5K X7M XPP YYP ZGI ZXP AAIAV ABJNI EFLBG LCYCR NAHTW ZA5 AAYXX AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. NAPCQ |
ID | FETCH-LOGICAL-c490t-bfc354b3337101386855d8c5982593f1715ac80f61067c952cdffb60edbc34b33 |
IEDL.DBID | .~1 |
ISSN | 0735-1097 |
IngestDate | Wed Aug 13 08:50:07 EDT 2025 Wed Feb 19 02:43:00 EST 2025 Thu Apr 24 23:01:45 EDT 2025 Tue Jul 01 03:28:25 EDT 2025 Fri Feb 23 02:33:20 EST 2024 Sun Feb 23 10:18:58 EST 2025 Tue Aug 26 16:31:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | antifibrotic therapy CF cardiac fibroblasts gene therapy CM DN ECM RB TG TAC transverse aortic constriction SA-ß-gal AAV9 WT extracellular matrix senescence-associated ß-galactosidase adeno-associated virus serotype 9 retinoblastoma dominant-negative cardiomyocyte transgenic wild type |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-bfc354b3337101386855d8c5982593f1715ac80f61067c952cdffb60edbc34b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0735109716009153 |
PMID | 27126529 |
PQID | 1786626806 |
PQPubID | 2031078 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1786626806 pubmed_primary_27126529 crossref_citationtrail_10_1016_j_jacc_2016_02_047 crossref_primary_10_1016_j_jacc_2016_02_047 elsevier_sciencedirect_doi_10_1016_j_jacc_2016_02_047 elsevier_clinicalkeyesjournals_1_s2_0_S0735109716009153 elsevier_clinicalkey_doi_10_1016_j_jacc_2016_02_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-03 |
PublicationDateYYYYMMDD | 2016-05-03 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of the American College of Cardiology |
PublicationTitleAlternate | J Am Coll Cardiol |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Kurz, Decary, Hong, Erusalimsky (bib22) 2000; 113 Sherr, Roberts (bib24) 1999; 13 Krishnamurthy, Torrice, Ramsey (bib38) 2004; 114 Braig, Lee, Loddenkemper (bib7) 2005; 436 Ohtani, Yamakoshi, Takahashi, Hara (bib23) 2004; 51 Leask (bib1) 2015; 116 Xu, Sarikas, Dias-Santagata (bib20) 2008; 30 Jun, Lau (bib28) 2010; 2 Minamino (bib40) 2002; 105 Chen, Trotman, Shaffer (bib8) 2005; 436 Leu, Lam, Lau (bib36) 2002; 277 Zhao, Ding, Yu (bib37) 2014; 75 Hulot, Fauconnier, Ramanujam (bib30) 2011; 124 Jazbutyte, Fiedler, Kneitz (bib39) 2013; 35 Kipling, Cooke (bib32) 1990; 347 van den Borne, Diez, Blankesteijn, Verjans, Hofstra, Narula (bib25) 2010; 7 Rockman, Ross, Harris (bib17) 1991; 88 Young, Narita (bib13) 2009; 10 Michaloglou, Vredeveld, Soengas (bib9) 2005; 436 Jun, Lau (bib16) 2010; 12 Nardella, Clohessy, Alimonti, Pandolfi (bib41) 2011; 11 Chen, Lau (bib27) 2009; 41 Suckau, Fechner, Chemaly (bib29) 2009; 119 Muñoz-Espín, Cañamero, Maraver (bib34) 2013; 155 Muñoz-Espín, Serrano (bib4) 2014; 15 Herbig, Ferreira, Condel, Carey, Sedivy (bib10) 2006; 311 Ganesan, Ramanujam, Sassi (bib19) 2013; 127 Campisi (bib6) 2013; 75 Zhu, Li, Zhang (bib33) 2013; 8 Frangogiannis (bib2) 2012; 92 Hayflick, Moorhead (bib5) 1961; 25 Campisi, d’Adda di Fagagna (bib11) 2007; 8 Martin, Blaxall (bib3) 2012; 5 Krizhanovsky, Yon, Dickins (bib15) 2008; 134 Engelhardt, Hein, Wiesmann, Lohse (bib18) 1999; 96 Serrano, Lin, McCurrach, Beach, Lowe (bib31) 1997; 88 Dimri, Lee, Basile (bib12) 1995; 92 Kuilman, Peeper (bib14) 2009; 9 Collado, Blasco, Serrano (bib26) 2007; 130 Demaria, Ohtani, Youssef (bib35) 2014; 31 Collado, Serrano (bib21) 2006; 6 Dimri (10.1016/j.jacc.2016.02.047_bib12) 1995; 92 Hulot (10.1016/j.jacc.2016.02.047_bib30) 2011; 124 Chen (10.1016/j.jacc.2016.02.047_bib8) 2005; 436 Campisi (10.1016/j.jacc.2016.02.047_bib11) 2007; 8 Engelhardt (10.1016/j.jacc.2016.02.047_bib18) 1999; 96 Chen (10.1016/j.jacc.2016.02.047_bib27) 2009; 41 Krishnamurthy (10.1016/j.jacc.2016.02.047_bib38) 2004; 114 Hayflick (10.1016/j.jacc.2016.02.047_bib5) 1961; 25 van den Borne (10.1016/j.jacc.2016.02.047_bib25) 2010; 7 Serrano (10.1016/j.jacc.2016.02.047_bib31) 1997; 88 Leu (10.1016/j.jacc.2016.02.047_bib36) 2002; 277 Sherr (10.1016/j.jacc.2016.02.047_bib24) 1999; 13 Krizhanovsky (10.1016/j.jacc.2016.02.047_bib15) 2008; 134 Jazbutyte (10.1016/j.jacc.2016.02.047_bib39) 2013; 35 Campisi (10.1016/j.jacc.2016.02.047_bib6) 2013; 75 Kipling (10.1016/j.jacc.2016.02.047_bib32) 1990; 347 Zhao (10.1016/j.jacc.2016.02.047_bib37) 2014; 75 Frangogiannis (10.1016/j.jacc.2016.02.047_bib2) 2012; 92 Kuilman (10.1016/j.jacc.2016.02.047_bib14) 2009; 9 Collado (10.1016/j.jacc.2016.02.047_bib26) 2007; 130 Herbig (10.1016/j.jacc.2016.02.047_bib10) 2006; 311 Braig (10.1016/j.jacc.2016.02.047_bib7) 2005; 436 Ohtani (10.1016/j.jacc.2016.02.047_bib23) 2004; 51 Young (10.1016/j.jacc.2016.02.047_bib13) 2009; 10 Suckau (10.1016/j.jacc.2016.02.047_bib29) 2009; 119 Kurz (10.1016/j.jacc.2016.02.047_bib22) 2000; 113 Xu (10.1016/j.jacc.2016.02.047_bib20) 2008; 30 Leask (10.1016/j.jacc.2016.02.047_bib1) 2015; 116 Collado (10.1016/j.jacc.2016.02.047_bib21) 2006; 6 Michaloglou (10.1016/j.jacc.2016.02.047_bib9) 2005; 436 Ganesan (10.1016/j.jacc.2016.02.047_bib19) 2013; 127 Muñoz-Espín (10.1016/j.jacc.2016.02.047_bib4) 2014; 15 Martin (10.1016/j.jacc.2016.02.047_bib3) 2012; 5 Demaria (10.1016/j.jacc.2016.02.047_bib35) 2014; 31 Muñoz-Espín (10.1016/j.jacc.2016.02.047_bib34) 2013; 155 Jun (10.1016/j.jacc.2016.02.047_bib16) 2010; 12 Minamino (10.1016/j.jacc.2016.02.047_bib40) 2002; 105 Nardella (10.1016/j.jacc.2016.02.047_bib41) 2011; 11 Zhu (10.1016/j.jacc.2016.02.047_bib33) 2013; 8 Rockman (10.1016/j.jacc.2016.02.047_bib17) 1991; 88 Jun (10.1016/j.jacc.2016.02.047_bib28) 2010; 2 27126530 - J Am Coll Cardiol. 2016 May 3;67(17):2029-31 |
References_xml | – volume: 8 start-page: 729 year: 2007 end-page: 740 ident: bib11 article-title: Cellular senescence: when bad things happen to good cells publication-title: Nat Rev Mol Cell Biol – volume: 113 start-page: 3613 year: 2000 end-page: 3622 ident: bib22 article-title: Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells publication-title: J Cell Sci – volume: 436 start-page: 720 year: 2005 end-page: 724 ident: bib9 article-title: BRAFE600-associated senescence-like cell cycle arrest of human naevi publication-title: Nature – volume: 92 start-page: 9363 year: 1995 end-page: 9367 ident: bib12 article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo publication-title: Proc Natl Acad Sci – volume: 8 start-page: e74535 year: 2013 ident: bib33 article-title: Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction publication-title: PLoS One – volume: 41 start-page: 771 year: 2009 end-page: 783 ident: bib27 article-title: Functions and mechanisms of action of CCN matricellular proteins publication-title: Int J Biochem Cell Biol – volume: 11 start-page: 503 year: 2011 end-page: 511 ident: bib41 article-title: Pro-senescence therapy for cancer treatment publication-title: Nat Rev Cancer – volume: 5 start-page: 768 year: 2012 end-page: 782 ident: bib3 article-title: Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends? publication-title: J Cardiovasc Transl Res – volume: 127 start-page: 2097 year: 2013 end-page: 2106 ident: bib19 article-title: MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors publication-title: Circulation – volume: 96 start-page: 7059 year: 1999 end-page: 7064 ident: bib18 article-title: Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice publication-title: Proc Natl Acad Sci U S A – volume: 277 start-page: 46248 year: 2002 end-page: 46255 ident: bib36 article-title: Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells publication-title: J Biol Chem – volume: 12 start-page: 676 year: 2010 end-page: 685 ident: bib16 article-title: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing publication-title: Nat Cell Biol – volume: 124 start-page: 796 year: 2011 end-page: 805 ident: bib30 article-title: Critical role for stromal interaction molecule 1 in cardiac hypertrophy publication-title: Circulation – volume: 436 start-page: 660 year: 2005 end-page: 665 ident: bib7 article-title: Oncogene-induced senescence as an initial barrier in lymphoma development publication-title: Nature – volume: 436 start-page: 725 year: 2005 end-page: 730 ident: bib8 article-title: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis publication-title: Nature – volume: 155 start-page: 1104 year: 2013 end-page: 1118 ident: bib34 article-title: Programmed cell senescence during mammalian embryonic development publication-title: Cell – volume: 119 start-page: 1241 year: 2009 end-page: 1252 ident: bib29 article-title: Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy publication-title: Circulation – volume: 2 start-page: 627 year: 2010 end-page: 631 ident: bib28 article-title: Cellular senescence controls fibrosis in wound healing publication-title: Aging (Albany NY) – volume: 15 start-page: 482 year: 2014 end-page: 496 ident: bib4 article-title: Cellular senescence: from physiology to pathology publication-title: Nat Rev Mol Cell Biol – volume: 25 start-page: 585 year: 1961 end-page: 621 ident: bib5 article-title: The serial cultivation of human diploid cell strains publication-title: Exp Cell Res – volume: 75 start-page: 152 year: 2014 end-page: 161 ident: bib37 article-title: Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection publication-title: J Mol Cell Cardiol – volume: 88 start-page: 593 year: 1997 end-page: 602 ident: bib31 article-title: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a publication-title: Cell – volume: 116 start-page: 1269 year: 2015 end-page: 1276 ident: bib1 article-title: Getting to the heart of the matter: new insights into cardiac fibrosis publication-title: Circ Res – volume: 10 start-page: 228 year: 2009 end-page: 230 ident: bib13 article-title: SASP reflects senescence publication-title: EMBO Rep – volume: 35 start-page: 747 year: 2013 end-page: 762 ident: bib39 article-title: MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart publication-title: Age (Dordr) – volume: 105 start-page: 1541 year: 2002 end-page: 1544 ident: bib40 article-title: Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction publication-title: Circulation – volume: 30 start-page: 403 year: 2008 end-page: 414 ident: bib20 article-title: The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation publication-title: Mol Cell – volume: 130 start-page: 223 year: 2007 end-page: 233 ident: bib26 article-title: Cellular senescence in cancer and aging publication-title: Cell – volume: 311 start-page: 1257 year: 2006 ident: bib10 article-title: Cellular senescence in aging primates publication-title: Science – volume: 9 start-page: 81 year: 2009 end-page: 94 ident: bib14 article-title: Senescence-messaging secretome: SMS-ing cellular stress publication-title: Nat Rev Cancer – volume: 6 start-page: 472 year: 2006 end-page: 476 ident: bib21 article-title: The power and the promise of oncogene-induced senescence markers publication-title: Nat Rev Cancer – volume: 92 start-page: 635 year: 2012 end-page: 688 ident: bib2 article-title: Matricellular proteins in cardiac adaptation and disease publication-title: Physiol Rev – volume: 347 start-page: 400 year: 1990 end-page: 402 ident: bib32 article-title: Hypervariable ultra-long telomeres in mice publication-title: Nature – volume: 134 start-page: 657 year: 2008 end-page: 667 ident: bib15 article-title: Senescence of activated stellate cells limits liver fibrosis publication-title: Cell – volume: 13 start-page: 1501 year: 1999 end-page: 1512 ident: bib24 article-title: CDK inhibitors: positive and negative regulators of G1-phase progression publication-title: Genes Dev – volume: 114 start-page: 1299 year: 2004 end-page: 1307 ident: bib38 article-title: Ink4a/Arf expression is a biomarker of aging publication-title: J Clin Invest – volume: 7 start-page: 30 year: 2010 end-page: 37 ident: bib25 article-title: Myocardial remodeling after infarction: the role of myofibroblasts publication-title: Nat Rev Cardiol – volume: 75 start-page: 685 year: 2013 end-page: 705 ident: bib6 article-title: Aging, cellular senescence, and cancer publication-title: Annu Rev Physiol – volume: 88 start-page: 8277 year: 1991 end-page: 8281 ident: bib17 article-title: Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy publication-title: Proc Natl Acad Sci U S A – volume: 51 start-page: 146 year: 2004 end-page: 153 ident: bib23 article-title: The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression publication-title: J Med Invest – volume: 31 start-page: 722 year: 2014 end-page: 733 ident: bib35 article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA publication-title: Dev Cell – volume: 75 start-page: 685 year: 2013 ident: 10.1016/j.jacc.2016.02.047_bib6 article-title: Aging, cellular senescence, and cancer publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-030212-183653 – volume: 12 start-page: 676 year: 2010 ident: 10.1016/j.jacc.2016.02.047_bib16 article-title: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing publication-title: Nat Cell Biol doi: 10.1038/ncb2070 – volume: 30 start-page: 403 year: 2008 ident: 10.1016/j.jacc.2016.02.047_bib20 article-title: The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation publication-title: Mol Cell doi: 10.1016/j.molcel.2008.03.009 – volume: 113 start-page: 3613 year: 2000 ident: 10.1016/j.jacc.2016.02.047_bib22 article-title: Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells publication-title: J Cell Sci doi: 10.1242/jcs.113.20.3613 – volume: 311 start-page: 1257 year: 2006 ident: 10.1016/j.jacc.2016.02.047_bib10 article-title: Cellular senescence in aging primates publication-title: Science doi: 10.1126/science.1122446 – volume: 8 start-page: 729 year: 2007 ident: 10.1016/j.jacc.2016.02.047_bib11 article-title: Cellular senescence: when bad things happen to good cells publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2233 – volume: 92 start-page: 9363 year: 1995 ident: 10.1016/j.jacc.2016.02.047_bib12 article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.92.20.9363 – volume: 124 start-page: 796 year: 2011 ident: 10.1016/j.jacc.2016.02.047_bib30 article-title: Critical role for stromal interaction molecule 1 in cardiac hypertrophy publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.031229 – volume: 15 start-page: 482 year: 2014 ident: 10.1016/j.jacc.2016.02.047_bib4 article-title: Cellular senescence: from physiology to pathology publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3823 – volume: 130 start-page: 223 year: 2007 ident: 10.1016/j.jacc.2016.02.047_bib26 article-title: Cellular senescence in cancer and aging publication-title: Cell doi: 10.1016/j.cell.2007.07.003 – volume: 75 start-page: 152 year: 2014 ident: 10.1016/j.jacc.2016.02.047_bib37 article-title: Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2014.07.017 – volume: 2 start-page: 627 year: 2010 ident: 10.1016/j.jacc.2016.02.047_bib28 article-title: Cellular senescence controls fibrosis in wound healing publication-title: Aging (Albany NY) doi: 10.18632/aging.100201 – volume: 155 start-page: 1104 year: 2013 ident: 10.1016/j.jacc.2016.02.047_bib34 article-title: Programmed cell senescence during mammalian embryonic development publication-title: Cell doi: 10.1016/j.cell.2013.10.019 – volume: 134 start-page: 657 year: 2008 ident: 10.1016/j.jacc.2016.02.047_bib15 article-title: Senescence of activated stellate cells limits liver fibrosis publication-title: Cell doi: 10.1016/j.cell.2008.06.049 – volume: 9 start-page: 81 year: 2009 ident: 10.1016/j.jacc.2016.02.047_bib14 article-title: Senescence-messaging secretome: SMS-ing cellular stress publication-title: Nat Rev Cancer doi: 10.1038/nrc2560 – volume: 5 start-page: 768 year: 2012 ident: 10.1016/j.jacc.2016.02.047_bib3 article-title: Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends? publication-title: J Cardiovasc Transl Res doi: 10.1007/s12265-012-9404-5 – volume: 88 start-page: 8277 year: 1991 ident: 10.1016/j.jacc.2016.02.047_bib17 article-title: Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.88.18.8277 – volume: 13 start-page: 1501 year: 1999 ident: 10.1016/j.jacc.2016.02.047_bib24 article-title: CDK inhibitors: positive and negative regulators of G1-phase progression publication-title: Genes Dev doi: 10.1101/gad.13.12.1501 – volume: 6 start-page: 472 year: 2006 ident: 10.1016/j.jacc.2016.02.047_bib21 article-title: The power and the promise of oncogene-induced senescence markers publication-title: Nat Rev Cancer doi: 10.1038/nrc1884 – volume: 31 start-page: 722 year: 2014 ident: 10.1016/j.jacc.2016.02.047_bib35 article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA publication-title: Dev Cell doi: 10.1016/j.devcel.2014.11.012 – volume: 35 start-page: 747 year: 2013 ident: 10.1016/j.jacc.2016.02.047_bib39 article-title: MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart publication-title: Age (Dordr) doi: 10.1007/s11357-012-9407-9 – volume: 51 start-page: 146 year: 2004 ident: 10.1016/j.jacc.2016.02.047_bib23 article-title: The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression publication-title: J Med Invest doi: 10.2152/jmi.51.146 – volume: 11 start-page: 503 year: 2011 ident: 10.1016/j.jacc.2016.02.047_bib41 article-title: Pro-senescence therapy for cancer treatment publication-title: Nat Rev Cancer doi: 10.1038/nrc3057 – volume: 10 start-page: 228 year: 2009 ident: 10.1016/j.jacc.2016.02.047_bib13 article-title: SASP reflects senescence publication-title: EMBO Rep doi: 10.1038/embor.2009.22 – volume: 127 start-page: 2097 year: 2013 ident: 10.1016/j.jacc.2016.02.047_bib19 article-title: MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.000882 – volume: 88 start-page: 593 year: 1997 ident: 10.1016/j.jacc.2016.02.047_bib31 article-title: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a publication-title: Cell doi: 10.1016/S0092-8674(00)81902-9 – volume: 119 start-page: 1241 year: 2009 ident: 10.1016/j.jacc.2016.02.047_bib29 article-title: Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.783852 – volume: 277 start-page: 46248 year: 2002 ident: 10.1016/j.jacc.2016.02.047_bib36 article-title: Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells publication-title: J Biol Chem doi: 10.1074/jbc.M209288200 – volume: 436 start-page: 725 year: 2005 ident: 10.1016/j.jacc.2016.02.047_bib8 article-title: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis publication-title: Nature doi: 10.1038/nature03918 – volume: 7 start-page: 30 year: 2010 ident: 10.1016/j.jacc.2016.02.047_bib25 article-title: Myocardial remodeling after infarction: the role of myofibroblasts publication-title: Nat Rev Cardiol doi: 10.1038/nrcardio.2009.199 – volume: 92 start-page: 635 year: 2012 ident: 10.1016/j.jacc.2016.02.047_bib2 article-title: Matricellular proteins in cardiac adaptation and disease publication-title: Physiol Rev doi: 10.1152/physrev.00008.2011 – volume: 96 start-page: 7059 year: 1999 ident: 10.1016/j.jacc.2016.02.047_bib18 article-title: Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.12.7059 – volume: 41 start-page: 771 year: 2009 ident: 10.1016/j.jacc.2016.02.047_bib27 article-title: Functions and mechanisms of action of CCN matricellular proteins publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2008.07.025 – volume: 347 start-page: 400 year: 1990 ident: 10.1016/j.jacc.2016.02.047_bib32 article-title: Hypervariable ultra-long telomeres in mice publication-title: Nature doi: 10.1038/347400a0 – volume: 114 start-page: 1299 year: 2004 ident: 10.1016/j.jacc.2016.02.047_bib38 article-title: Ink4a/Arf expression is a biomarker of aging publication-title: J Clin Invest doi: 10.1172/JCI22475 – volume: 436 start-page: 660 year: 2005 ident: 10.1016/j.jacc.2016.02.047_bib7 article-title: Oncogene-induced senescence as an initial barrier in lymphoma development publication-title: Nature doi: 10.1038/nature03841 – volume: 436 start-page: 720 year: 2005 ident: 10.1016/j.jacc.2016.02.047_bib9 article-title: BRAFE600-associated senescence-like cell cycle arrest of human naevi publication-title: Nature doi: 10.1038/nature03890 – volume: 105 start-page: 1541 year: 2002 ident: 10.1016/j.jacc.2016.02.047_bib40 article-title: Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction publication-title: Circulation doi: 10.1161/01.CIR.0000013836.85741.17 – volume: 25 start-page: 585 year: 1961 ident: 10.1016/j.jacc.2016.02.047_bib5 article-title: The serial cultivation of human diploid cell strains publication-title: Exp Cell Res doi: 10.1016/0014-4827(61)90192-6 – volume: 8 start-page: e74535 year: 2013 ident: 10.1016/j.jacc.2016.02.047_bib33 article-title: Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction publication-title: PLoS One doi: 10.1371/journal.pone.0074535 – volume: 116 start-page: 1269 year: 2015 ident: 10.1016/j.jacc.2016.02.047_bib1 article-title: Getting to the heart of the matter: new insights into cardiac fibrosis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.305381 – reference: 27126530 - J Am Coll Cardiol. 2016 May 3;67(17):2029-31 |
SSID | ssj0006819 |
Score | 2.58081 |
Snippet | Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified premature... AbstractBackgroundFibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have... Background Fibrosis is a hallmark of many myocardial pathologies and contributes to distorted organ architecture and function. Recent studies have identified... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2018 |
SubjectTerms | Actins - metabolism Animals antifibrotic therapy beta-Galactosidase - metabolism Biopsy cardiac fibroblasts Cardiology Cardiovascular Cell cycle Cellular Senescence Cyclin-Dependent Kinase Inhibitor p16 - metabolism Cyclin-Dependent Kinase Inhibitor p21 - metabolism Cyclin-dependent kinases Cysteine-Rich Protein 61 - metabolism Deoxyribonucleic acid Dependovirus - genetics DNA Enzymes extracellular matrix Fibroblasts Fibrosis gene therapy Gene Transfer Techniques Heart Humans Mice, Knockout Myocardium - metabolism Myocardium - pathology Myofibroblasts - pathology Proteins Receptor, Platelet-Derived Growth Factor alpha - metabolism Rodents Senescence Statistical analysis Studies Surgery transverse aortic constriction Tumor Suppressor Protein p53 - deficiency Vimentin - metabolism Wound healing |
Title | Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0735109716009153 https://www.clinicalkey.es/playcontent/1-s2.0-S0735109716009153 https://dx.doi.org/10.1016/j.jacc.2016.02.047 https://www.ncbi.nlm.nih.gov/pubmed/27126529 https://www.proquest.com/docview/1786626806 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_DB_FF_HZ-kQffpK5pmjR9VHGoMBlOYW-hSVqYjE3W-eCLf7t3bToRp4IvhaZ3pL3-crnSu98Rcho5JeK4cIFUQgYxCAUmNCLAvtvWGeFYgdXIvXt58xTfDcWwRa6aWhhMq_S-v_bplbf2Ix1vzc7LaNQZADgFqyiQIE6AhYsV7HGCKD9__0zzkKpq7oHCAUr7wpk6x-s5s0hjyGTF24ktVpZvTj8Fn9Um1N0g6z56pBf1DW6SVj7ZIqs9_398m_SvSywmAkzRh-k4pxCR0v4MaVlfZzkdoF-z-Ih0WtDeG-DKYD-ZrJyXdDTBEVsBZky7eKUclTvkqXv9eHUT-J4JgY3TcB6YwnIRG845hA6MK3gFwimLNH0i5QVLmMisCguJ1HE2FZF1RWFkmDtjOertkpXJdJLvEwqRSxa5EParGLY6ZTOF3GBZ4nhmE5UmbcIaY2nrCcWxr8VYN5ljzxoNrNHAOow0GLhNzhY6LzWdxq_SvHkHuikUBdemwdv_qpUs08pLvzpLzXQJkvobgtpELDS_gPDPGY8agOjPSRIl4WtRhbJN9mrQLB45SlgkRZQe_HPCQ7KGZ1XiJT8iK_PZa34MwdHcnFToh-Pt8PID9wkKHA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RKrW9IPpFt6WtD-2pSje2Y8c59ICA1VJYhApI3NzYSaRFq120WVRx4U_1D3YmcRZVpVSqxDXxxM7keWaszLwB-CAKo5KkKiJtlI4SHBS52KmI-m77wqmCV1SNPDrUw9Pk65k6W4GfXS0MpVUG29_a9MZahyv9oM3-xXjcP0ZwKt5QIGGcgBs3ZFbul1c_8NxWf9nbwY_8UYjB7sn2MAqtBSKfZPEicpWXKnFSSvSwXBpcqSqMJzY7lcmKp1zl3sSVJoY1nynhi6pyOi4L5yXJ4XMfwMMEzQW1Tfh8fZNXok3TTYRWF9HyQqVOm1R2nnviTeS6IQqlni63e8O_RbuN1xusw1oIV9lWq5GnsFJOn8GjUfgh_xyOdmuqXkIQs2-zSckwBGZHc-KBvZyX7JgMqSedslnFRlcIZEcNbPJ6UbPxlK74BqETNqA79bh-Aaf3osmXsDqdTctXwDBUykURo4NM0LcanxsiI8vTQuY-NVnaA94py_rAYE6NNCa2S1U7t6RgSwq2sbCo4B58WspctPwdd46W3TewXWUq2lKL7uVOqfQ2qbIO5qC23NY40v4B2R6opeRvqP_njJsdQOzNJKnReDw1se7BRgua5SuLlAutRPb6Pyd8D4-HJ6MDe7B3uP8GntCdJutTbsLqYn5ZvsXIbOHeNTuBwff73nq_ADDtRPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Essential+Role+for+Premature+Senescence+of+Myofibroblasts+in+Myocardial+Fibrosis&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Meyer%2C+Kathleen%2C+MSc&rft.au=Hodwin%2C+Bettina%2C+MSc&rft.au=Ramanujam%2C+Deepak%2C+PhD&rft.au=Engelhardt%2C+Stefan%2C+MD%2C+PhD&rft.date=2016-05-03&rft.issn=0735-1097&rft.volume=67&rft.issue=17&rft.spage=2018&rft.epage=2028&rft_id=info:doi/10.1016%2Fj.jacc.2016.02.047&rft.externalDBID=ECK1-s2.0-S0735109716009153&rft.externalDocID=1_s2_0_S0735109716009153 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109716X00125%2Fcov150h.gif |