An Optimization Method of Deep Transfer Learning for Vegetation Segmentation under Rainy and Dry Season Differences in a Dry Thermal Valley
Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and...
Saved in:
Published in | Plants (Basel) Vol. 12; no. 19; p. 3383 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and dry seasons); however, existing transfer learning methods lack systematicity and controllability. So, an MTPI method (Maximum Transfer Potential Index method) was proposed to find the optimal conditions in data and feature quantity for transfer learning (MTPI conditions) in this study. The four pre-trained deep networks (Seg-Net (Semantic Segmentation Networks), FCN (Fully Convolutional Networks), Mobile net v2, and Res-Net 50 (Residual Network)) using the rainy season dataset showed that Res-Net 50 had the best accuracy with 93.58% and an WIoU (weight Intersection over Union) of 88.14%, most worthy to transfer training in vegetation segmentation. By obtaining each layer’s TPI performance (Transfer Potential Index) of the pre-trained Res-Net 50, the MTPI method results show that the 1000-TDS and 37-TP were estimated as the best training speed with the smallest dataset and a small error risk. The MTPI transfer learning results show 91.56% accuracy and 84.86% WIoU with 90% new dataset reduction and 90% iteration reduction, which is informative for deep networks in segmentation tasks between complex vegetation scenes. |
---|---|
AbstractList | Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and dry seasons); however, existing transfer learning methods lack systematicity and controllability. So, an MTPI method (Maximum Transfer Potential Index method) was proposed to find the optimal conditions in data and feature quantity for transfer learning (MTPI conditions) in this study. The four pre-trained deep networks (Seg-Net (Semantic Segmentation Networks), FCN (Fully Convolutional Networks), Mobile net v2, and Res-Net 50 (Residual Network)) using the rainy season dataset showed that Res-Net 50 had the best accuracy with 93.58% and an WIoU (weight Intersection over Union) of 88.14%, most worthy to transfer training in vegetation segmentation. By obtaining each layer’s TPI performance (Transfer Potential Index) of the pre-trained Res-Net 50, the MTPI method results show that the 1000-TDS and 37-TP were estimated as the best training speed with the smallest dataset and a small error risk. The MTPI transfer learning results show 91.56% accuracy and 84.86% WIoU with 90% new dataset reduction and 90% iteration reduction, which is informative for deep networks in segmentation tasks between complex vegetation scenes. |
Audience | Academic |
Author | Ye, Dapeng Chen, Yayong Cui, Lei Feng, Lei Zhou, Beibei Han, Xiaojie |
AuthorAffiliation | 6 China Electric Construction Group Beijing Survey and Design Institute Co., Beijing 100024, China; longhao69563082@163.com 4 China Renewable Energy Engineering Institute, Beijing 100032, China; zan350639414@163.com 2 Fujian Key Laboratory of Agricultural Information Sensoring Technology, Fuzhou 350012, China 1 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350012, China; yysuper@fafu.edu.cn 5 Central South Survey and Design Institute Group Co., Ltd., Changsha 410014, China; pingchen43982@163.com 3 State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China |
AuthorAffiliation_xml | – name: 1 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350012, China; yysuper@fafu.edu.cn – name: 2 Fujian Key Laboratory of Agricultural Information Sensoring Technology, Fuzhou 350012, China – name: 6 China Electric Construction Group Beijing Survey and Design Institute Co., Beijing 100024, China; longhao69563082@163.com – name: 4 China Renewable Energy Engineering Institute, Beijing 100032, China; zan350639414@163.com – name: 5 Central South Survey and Design Institute Group Co., Ltd., Changsha 410014, China; pingchen43982@163.com – name: 3 State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China |
Author_xml | – sequence: 1 givenname: Yayong surname: Chen fullname: Chen, Yayong – sequence: 2 givenname: Beibei surname: Zhou fullname: Zhou, Beibei – sequence: 3 givenname: Dapeng surname: Ye fullname: Ye, Dapeng – sequence: 4 givenname: Lei surname: Cui fullname: Cui, Lei – sequence: 5 givenname: Lei surname: Feng fullname: Feng, Lei – sequence: 6 givenname: Xiaojie surname: Han fullname: Han, Xiaojie |
BookMark | eNpdkk2P2yAQhq1qq-423WvPSL20h2yNwQafqmjTj0ipVtpN94owDA6RDSnYVdO_0D9dsomquoAEzDy8MMO8zC6cd5Blr3F-Q0idv9930g0RF7gmhJNn2VVRFGTOGGUX_6wvs-sYd3lqPA1cvcguCeOkwgW5yn4vHLrbD7a3v-RgvUNfYdh6jbxBS4A92gTpooGA1iCDs65Fxgf0CC0MJ_4B2h7ceTM6ndB7ad0BSafRMhwSIGNyLa1JMuAURGQdkk--zRZCLzv0KLsODq-y50Z2Ea7P8yz79unj5vbLfH33eXW7WM8VrfNh3nBsmNaQl7SpCa8bkMYYrCsogJasqCvOtJK81lgRyDGjVJtag6SmSBmoySxbnXS1lzuxD7aX4SC8tOLJ4EMrZBis6kCYSjaVKktFTEPzBjeNNLQwUEJTc25I0vpw0tqPTQ9apVQE2U1Epx5nt6L1PwTOS0YxrZLC27NC8N9HiIPobVTQpb8FP0ZRcMYILzEpE_rmP3Tnx-BSro5URVl1LIVZdnOiWpkisM74dLFKXUNvVaogY5N9wViCeV0eX_BuciAxA_wcWjnGKFYP91P2LK6CjzGA-RsqzsWxKMW0KMkfYgbXdg |
Cites_doi | 10.1109/LGRS.2018.2886559 10.1016/j.compag.2019.105091 10.3389/fpls.2023.1118098 10.1109/WCICA.2018.8630376 10.1016/j.rse.2014.09.010 10.1016/j.compeleceng.2019.08.010 10.1109/ACCESS.2020.3025196 10.1109/ACCESS.2019.2936892 10.3390/agriculture11101003 10.1016/j.neucom.2021.03.091 10.1002/cpe.7405 10.3390/technologies11020040 10.1002/ece3.7564 10.1109/ICCV.2015.123 10.3390/rs14020265 10.3390/rs14174312 10.1042/ETLS20200273 10.1109/CVPR.2016.90 10.1016/j.compag.2021.106279 10.3390/rs12162602 10.3390/agriculture11070651 10.1049/ipr2.12090 10.3390/s17092022 10.1109/TENCON55691.2022.9978026 10.1109/TVCG.2018.2843369 10.1016/j.compag.2020.105603 10.1371/journal.pone.0282297 10.1109/ACCESS.2020.2998839 10.1109/TPAMI.2016.2644615 10.1186/s40537-021-00444-8 10.1016/j.compag.2018.02.016 10.3390/rs12040633 10.1109/icbbe.2011.5781564 10.3390/s23136008 10.17520/biods.2015251 10.1016/j.compag.2022.107094 10.1186/s40537-020-00335-4 10.3390/rs14091973 10.1371/journal.pone.0230856 10.1016/j.ecoinf.2022.101552 10.1186/s12859-021-04234-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION ISR 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PIMPY PQEST PQQKQ PQUKI PRINS PYCSY 7X8 5PM DOA |
DOI | 10.3390/plants12193383 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_f6ab6c55c3fb40b1bbaf42fe5eb988f3 A772198956 10_3390_plants12193383 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52222903; 41977007 – fundername: China Three Gorges Corporation-funded “Research on Soil Improvement, Plant Selection, and Slope Ecological Restoration Techniques in the Arid Hot Valley Area of the Baihetan Hydropower Station” grantid: BHT/0869 |
GroupedDBID | 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M48 M7P MODMG M~E OK1 OZF PATMY PGMZT PIMPY PROAC PYCSY RIG RPM 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c490t-b81f7dde054b9389beafff1d6e2e45729687dca89d1c3e01744df9dea4f280093 |
IEDL.DBID | RPM |
ISSN | 2223-7747 |
IngestDate | Tue Oct 22 15:10:29 EDT 2024 Tue Sep 17 21:29:27 EDT 2024 Fri Oct 25 04:02:30 EDT 2024 Thu Oct 10 16:41:26 EDT 2024 Tue Jul 09 03:50:51 EDT 2024 Sat Sep 28 21:38:27 EDT 2024 Thu Sep 26 17:07:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-b81f7dde054b9389beafff1d6e2e45729687dca89d1c3e01744df9dea4f280093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574146/ |
PMID | 37836123 |
PQID | 2876476219 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6ab6c55c3fb40b1bbaf42fe5eb988f3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10574146 proquest_miscellaneous_2877385135 proquest_journals_2876476219 gale_infotracacademiconefile_A772198956 gale_incontextgauss_ISR_A772198956 crossref_primary_10_3390_plants12193383 |
PublicationCentury | 2000 |
PublicationDate | 20230925 |
PublicationDateYYYYMMDD | 2023-09-25 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230925 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Amreen (ref_50) 2021; 187 Andreas (ref_6) 2018; 147 ref_58 ref_13 ref_12 ref_56 ref_11 ref_10 ref_53 ref_52 Xing (ref_27) 2022; 14 Alzubaidi (ref_28) 2021; 8 ref_17 ref_15 Abdalla (ref_51) 2019; 167 Sadegh (ref_3) 2015; 156 Liu (ref_36) 2020; 8 Yu (ref_40) 2022; 19 ref_24 ref_23 Best (ref_46) 2020; 7 ref_22 Saheba (ref_5) 2020; 12 ref_21 Wu (ref_47) 2019; 16 Fred (ref_7) 2019; 25 Chen (ref_20) 2021; 11 Mohammadreza (ref_43) 2023; 11 Vijay (ref_55) 2017; 39 Aya (ref_19) 2022; 68 Chen (ref_14) 2021; 15 ref_33 ref_32 ref_31 Bashar (ref_18) 2020; 1296 ref_30 ref_39 ref_38 Eli (ref_8) 2021; 5 Zhu (ref_34) 2020; 175 Ma (ref_41) 2022; 15 ref_45 ref_44 Kumar (ref_1) 2022; 198 ref_42 Muhammed (ref_57) 2023; 35 Niu (ref_16) 2021; 452 Ben (ref_29) 2022; 35 Yang (ref_25) 2019; 7 ref_2 ref_49 ref_48 ref_9 Zeng (ref_35) 2020; 8 Geetharamani (ref_37) 2019; 78 ref_4 Yu (ref_26) 2023; 14 Yan (ref_54) 2016; 24 |
References_xml | – volume: 19 start-page: 1 year: 2022 ident: ref_40 article-title: A Deep Transfer Learning Method for Estimating Fractional Vegetation Cover of Sentinel-2 Multispectral Images publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Yu – ident: ref_32 – volume: 16 start-page: 977 year: 2019 ident: ref_47 article-title: PolSAR Image Semantic Segmentation Based on Deep Transfer Learning—Realizing Smooth Classification With Small Training Sets publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2886559 contributor: fullname: Wu – volume: 167 start-page: 105091 year: 2019 ident: ref_51 article-title: Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105091 contributor: fullname: Abdalla – volume: 14 start-page: 1118098 year: 2023 ident: ref_26 article-title: Estimating the rice nitrogen nutrition index based on hyperspectral transform technology publication-title: Front. Plant Sci. doi: 10.3389/fpls.2023.1118098 contributor: fullname: Yu – ident: ref_38 doi: 10.1109/WCICA.2018.8630376 – volume: 1296 start-page: 425 year: 2020 ident: ref_18 article-title: Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments publication-title: Acta Hortic. contributor: fullname: Bashar – volume: 156 start-page: 182 year: 2015 ident: ref_3 article-title: Detecting changes in vegetation trends using time series segmentation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.010 contributor: fullname: Sadegh – volume: 35 start-page: 19523 year: 2022 ident: ref_29 article-title: Beyond neural scaling laws: Beating power law scaling via data pruning publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Ben – volume: 78 start-page: 536 year: 2019 ident: ref_37 article-title: Corrigendum to: ‘Identification of plant leaf diseases using a nine-layer deep convolutional neural network’ publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.08.010 contributor: fullname: Geetharamani – volume: 8 start-page: 172882 year: 2020 ident: ref_35 article-title: GANs-Based Data Augmentation for Citrus Disease Severity Detection Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025196 contributor: fullname: Zeng – volume: 7 start-page: 118239 year: 2019 ident: ref_25 article-title: Diagnosis of Plant Cold Damage Based on Hyperspectral Imaging and Convolutional Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936892 contributor: fullname: Yang – ident: ref_23 doi: 10.3390/agriculture11101003 – volume: 452 start-page: 48 year: 2021 ident: ref_16 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 contributor: fullname: Niu – volume: 35 start-page: e7405 year: 2023 ident: ref_57 article-title: Comparative parotid gland segmentation by using ResNet-18 and MobileNetV2 based DeepLab v3+ architectures from magnetic resonance images publication-title: Concurr. Comput. doi: 10.1002/cpe.7405 contributor: fullname: Muhammed – volume: 11 start-page: 40 year: 2023 ident: ref_43 article-title: A Review of Deep Transfer Learning and Recent Advancements publication-title: Technologies doi: 10.3390/technologies11020040 contributor: fullname: Mohammadreza – volume: 11 start-page: 7335 year: 2021 ident: ref_20 article-title: Modeling vegetation greenness and its climate sensitivity with deep-learning technology publication-title: Ecol. Evol. doi: 10.1002/ece3.7564 contributor: fullname: Chen – ident: ref_52 doi: 10.1109/ICCV.2015.123 – ident: ref_31 – ident: ref_56 – ident: ref_44 doi: 10.3390/rs14020265 – volume: 15 start-page: 187 year: 2022 ident: ref_41 article-title: Maize leaf disease identification using deep transfer convolutional neural networks publication-title: Int. J. Agric. Biol. Eng. contributor: fullname: Ma – ident: ref_24 doi: 10.3390/rs14174312 – ident: ref_48 – volume: 5 start-page: 239 year: 2021 ident: ref_8 article-title: High-throughput image segmentation and machine learning approaches in the plant sciences across multiple scales publication-title: Emerg. Top. Life Sci. doi: 10.1042/ETLS20200273 contributor: fullname: Eli – ident: ref_10 – ident: ref_58 doi: 10.1109/CVPR.2016.90 – ident: ref_13 – ident: ref_17 – ident: ref_45 – volume: 187 start-page: 106279 year: 2021 ident: ref_50 article-title: Tomato plant disease detection using transfer learning with C-GAN synthetic images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106279 contributor: fullname: Amreen – volume: 12 start-page: 2602 year: 2020 ident: ref_5 article-title: Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities publication-title: Remote Sens. doi: 10.3390/rs12162602 contributor: fullname: Saheba – ident: ref_12 doi: 10.3390/agriculture11070651 – volume: 15 start-page: 1115 year: 2021 ident: ref_14 article-title: Identification of plant disease images via a squeeze-and-excitation MobileNet model and twice transfer learning publication-title: IET Image Process. doi: 10.1049/ipr2.12090 contributor: fullname: Chen – ident: ref_39 doi: 10.3390/s17092022 – ident: ref_42 doi: 10.1109/TENCON55691.2022.9978026 – ident: ref_30 – volume: 25 start-page: 2674 year: 2019 ident: ref_7 article-title: Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2018.2843369 contributor: fullname: Fred – volume: 175 start-page: 105603 year: 2020 ident: ref_34 article-title: Data augmentation using improved cDCGAN for plant vigor rating publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105603 contributor: fullname: Zhu – ident: ref_9 doi: 10.1371/journal.pone.0282297 – ident: ref_11 – volume: 8 start-page: 102188 year: 2020 ident: ref_36 article-title: A Data Augmentation Method Based on Generative Adversarial Networks for Grape Leaf Disease Identification publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998839 contributor: fullname: Liu – volume: 39 start-page: 2481 year: 2017 ident: ref_55 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 contributor: fullname: Vijay – volume: 8 start-page: 53 year: 2021 ident: ref_28 article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 contributor: fullname: Alzubaidi – volume: 147 start-page: 70 year: 2018 ident: ref_6 article-title: Deep learning in agriculture: A survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 contributor: fullname: Andreas – ident: ref_21 – ident: ref_2 doi: 10.3390/rs12040633 – ident: ref_53 doi: 10.1109/icbbe.2011.5781564 – ident: ref_15 doi: 10.3390/s23136008 – volume: 24 start-page: 462 year: 2016 ident: ref_54 article-title: Review of research on the vegetation and environment of dry-hot valleys in Yunnan publication-title: Biodivers. Sci. doi: 10.17520/biods.2015251 contributor: fullname: Yan – ident: ref_33 – volume: 198 start-page: 107094 year: 2022 ident: ref_1 article-title: Vegetation Extraction from UAV-based Aerial Images through Deep Learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107094 contributor: fullname: Kumar – volume: 7 start-page: 59 year: 2020 ident: ref_46 article-title: Exploring the efficacy of transfer learning in mining image-based software artifacts publication-title: J. Big Data doi: 10.1186/s40537-020-00335-4 contributor: fullname: Best – volume: 14 start-page: 1973 year: 2022 ident: ref_27 article-title: Hyperspectral Anomaly Detection Using Deep Learning: A Review publication-title: Remote Sens. doi: 10.3390/rs14091973 contributor: fullname: Xing – ident: ref_4 doi: 10.1371/journal.pone.0230856 – volume: 68 start-page: 101552 year: 2022 ident: ref_19 article-title: Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101552 contributor: fullname: Aya – ident: ref_22 – ident: ref_49 doi: 10.1186/s12859-021-04234-0 |
SSID | ssj0000800816 |
Score | 2.2798777 |
Snippet | Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 3383 |
SubjectTerms | Accuracy Artificial intelligence best migration learning conditions Comparative analysis Datasets Deep learning deep learning optimization Dry season dry-hot valley environment Grasses Image segmentation Machine learning Measurement Methods migration training Network management systems Networks Neural networks Optimization Plant communities Rainy season Reduction Seasons Semantic segmentation Semantics Task complexity Training Transfer learning Vegetation vegetation in field Water conservation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4ikCBRmExClqnDhe-7hlqQoSIFFa9Wb5MV6KWme1j8P-hv7pjhO32sCBC9d4DrZnxvNNPP6GkPfMcYDK8FIGBiU3TpSq4U3p3YQ5piau9n2V7zdxfMq_nLfnO62-Uk3YQA88bNxBEMYK17auCZZXlllrAq8DtGCVlGHg-azUTjL1O-MgycTA0thgXn-wuEx1JQwdNCVloyjUk_X_fST_WSa5E3eOHpGHGTDS6TDRx-QexCfk_mGHoG77lFxPI_2OXn-Vn1PSr31HaNoFOgNY0D4UBVjSzKM6pwhS6RnMc5UhPYH5VX5-FGl6ULak6cpnS030dLbcooBBSE5nuZEKHiv0IlLTj6GN4bl-Sc9SQ5btM3J69Onnx-My91coHVfVurSShQkeb4jarELgYsGEEJgXUANvEXULOfHOSOWZawBdl3MflAfDQy3Tr5DnZC92EV4QChIwBDYeU-0GIWAjhbK-rixvBFdOVgX5cLvfejHQaGhMP5Jm9FgzBTlM6riTSvTX_Qc0Cp2NQv_LKAryLilTJ4KLmCpo5mazWunPJz_0FNOJVCfWCpxTFgod6teZ_CABV5Q4sUaS-7dGobOLrzSmmoJjKGGqIG_vhtE5042LidBtepnEFsSatiByZEyj9Y1H4sWvnuY7dWDmGMhe_o8deUUe1AjPUqVL3e6TvfVyA68RTq3tm95zbgDBeSNj priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5ByoEL4ikCBS0IiZPVrL3erE8oIa0KEgW1tOrN2sesW6m1g5Mc8hv408w4m4BB4uod-TU7M9_szn7D2DvhJMDIyEQHAYk0TiVFJrPEu7Fwohi71HdVvifq-Fx-vswv44LbIpZVbn1i56h942iN_ACRvZJouaL4MP-RUNco2l2NLTTusr0UM4V0wPamhyffTnerLISHtFAbtsYM8_uD-Q3Vlwi8DyVnvWjUkfb_65r_Lpf8I_4cPWQPInDkk42mH7E7UD9m96YNgrv1E_ZzUvOvaP238Vgl_9J1huZN4DOAOe9CUoCWRz7ViiNY5RdQxWpDfgbVbTyGVHM6WNZy2vpZc1N7PmvXKGAQmvNZbKiC7oVf19x0YzjX0L_f8AtqzLJ-ys6PDr9_PE5in4XEyWK0TKwWYYxuDtGbLRDAWDAhBOEVpCBzRN9Kj70zuvDCZYAmLKUPhQcjQ6ppSeQZG9RNDc8ZBw0YCjOPKXeGUDDTqrA-HVmZKVk4PRqy99v_Xc43dBolpiGkmbKvmSGbkjp2UkSD3V1o2qqMVlUGZaxyee6yYOXICmtNkGmAHGyhdcCbvCVllkR0UVMlTWVWi0X56ey0nGBaQfViucJ3ikKhQf06Ew8m4BcRN1ZPcn87Kcpo6ovy98Qcsje7YTRS2nkxNTSrToZYg0SWD5nuTabe9_VH6uurju6bOjFLDGgv_v_0l-x-igCMalnSfJ8Nlu0KXiFgWtrX0Sp-AT1XGls priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgcOCCypdYKMggJE6BOHG8zgGhLUtVkACJslVvke2M06Jtss3uSuQ38KeZyXoLgR65xpMo8Xhm3sTjN4y9EE4CxEZG2guIpHEqylOZRqUbCyfysUvKvsr3szqcyY8n2cnv-qcwgcsrUzvqJzVr569-XHRv0eDfUMaJKfvrxZxKRgTaHuVb19mNhEi5qIwvQP3vARlpoTa8jVfcNohLPX3_v07678LJPyLRwS67HSAkn2x0foddg_ouu7nfIMzr7rGfk5p_QT9wHg5Y8k99j2jeeD4FWPA-OHloeWBWrTjCVn4MVag75EdQnYcDSTWnI2Ytp02gjpu65NO2QwGDIJ1PQ2sVdDT8rOamH8NVh55-zo-pRUt3n80O3n97dxiFjguRk3m8iqwWfowOD3GczRHKWDDee1EqSEBmiMOVHpfO6LwULgU0ZilLn5dgpE80_Rx5wHbqpoaHjIMGDIppicl3iqAw1Sq3ZRJbmSqZOx2P2MvtfBeLDbFGgQkJaaYYambE9kkdl1JEiN1faNqqCPZVeGWsclnmUm9lbIW1xsvEQwY219rjQ56TMguivKippqYy6-Wy-HD0tZhggkGVY5nCdwpCvkH9OhOOKOAXEUvWQHJvuyiK7ZotMPlUEoOLyEfs2eUwmivtwZgamnUvQ_xBIs1GTA8W0-D7hiP12WlP_E09mSWGtkf_Y0Yes1sJAjaqfUmyPbazatfwBAHWyj7tLecXKV8qdw priority: 102 providerName: Scholars Portal |
Title | An Optimization Method of Deep Transfer Learning for Vegetation Segmentation under Rainy and Dry Season Differences in a Dry Thermal Valley |
URI | https://www.proquest.com/docview/2876476219 https://search.proquest.com/docview/2877385135 https://pubmed.ncbi.nlm.nih.gov/PMC10574146 https://doaj.org/article/f6ab6c55c3fb40b1bbaf42fe5eb988f3 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbabhh6GfZEs3WBNgzYyY1lyYp8TJoW3YB0RbsWvRmSLGUZEjnI45DfsD89SpGLervt4oNFG7ZJSh_ljyRCn4lmxqSSJcISkzCpeVJQRpNK94kmRV9nVWD5XvKLW_btPr_fQ7zJhQmkfa2mJ242P3HTn4FbuZjrXsMT612NT31vWuZbteyjfbDQRzH6r4iBBOG7Co0UYvreYuY5JQSc0wdkh-gZ9bkLJKOtxSjU7P93Zv6bLflo-Tl_gZ5H3IgHu-d7ifaMe4WeDmvAdtvX6PfA4e_g_POYVYnHoTE0ri0eGbPAYUWyZoljOdUJBqyK78wkkg3xjZnMYxaSwz6vbIn9n58tlq7Co-UWBCQgczyK_VRgdsFTh2UYA1OD6X2G73xflu0bdHt-9uP0IoltFhLNinSdKEFsH2Y5AG-qAPyijLTWkoqbzLAcwDcX_UpLUVREUwMezFhli8pIZjPhd0TeogNXO3OEsBEGviqtIOKmgASp4IWqslQxylmhRdpBX5rvXS521TRKiEK8ksq2kjpo6NXxIOWrYIcT9XJSRlsoLZeK6zzX1CqWKqKUtCyzJjeqEMLCTT55ZZa-zoXzRJqJ3KxW5deb63IAUYWni-UcnikK2Rr0q2XMS4A38qWxWpLHjVGU0dNXJUScnMGKQooO-vgwDD7qf7xIZ-pNkPFFgwjNO0i0jKn1fu0RMP5Q7bsx9nf_f-l7dJgBNvM0lyw_Rgfr5cZ8ACy1Vl30ZHh2eXXdDXsRcBwz0Q3u9AdSdCWi |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,21402,24332,27938,27939,33758,33759,43819,53806,53808,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagRYJLxVMNLWAQEqdV412v4z2hhLRKoQ2oL_Vm-RkqtbthkxzyG_jTzGycwILENR5tspnXN_b4G0LeM8u972qeyMB8wrUVSZHxLHG2xywrejZ1TZfvWIwu-efr_DpuuM1iW-U6JjaB2lUW98gPANkLDp7Lio_THwlOjcLT1ThC4z7ZRqoqsOrtweH429lmlwXxkGRixdaYQX1_ML3F_hIGz8HirJWNGtL-f0Pz3-2Sf-Sfo8dkJwJH2l9p-gm558un5MGgAnC3fEZ-9kv6Fbz_Ll6rpKfNZGhaBTr0fkqblBR8TSOf6oQCWKVXfhK7Dem5n9zFa0glxYtlNcWjnyXVpaPDegkCGqA5HcaBKhBe6E1JdbMGtgbx_ZZe4WCW5XNyeXR48WmUxDkLieVFd54YyUIPwhygN1MAgDFehxCYEz71PAf0LWTPWS0Lx2zmwYU5d6FwXvOQStwSeUG2yqr0u4R66SEVZg5K7gygYCZFYVzaNTwTvLCy2yEf1v-3mq7oNBSUIagZ1dZMhwxQHRsppMFuPqjqiYpepYLQRtg8t1kwvGuYMTrwNPjcm0LKAA95h8pUSHRRYifNRC9mM3V8fqb6UFZgv1gu4DdFoVCBfq2OFxPgjZAbqyW5vzYKFV19pn4bZoe83SyDk-LJiy59tWhkkDWIZXmHyJYxtd6vvVLefG_ovnESM4eE9vL_3_6GPBxdnJ6ok-Pxlz3yKAUwhn0tab5Ptub1wr8C8DQ3r6OH_ALLZx1V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgRYgL4qkGChiExGmVeNfreE8oIY1aHqFqadWb5edSqd0NeRzyG_jTzGycwILENR5tspnXN_b4G0LeMsu972ueyMB8wrUVSZHxLHF2wCwrBjZ1TZfvVByd84-X-WXsf1rEtsptTGwCtast7pH3ANkLDp7Lil6IbREn48n72Y8EJ0jhSWscp3Gb7A04WFWH7I0Opyenux0XxEaSiQ1zYwa1fm92jb0mDJ6JhVorMzUE_v-G6b9bJ__IRZMH5H4EkXS40fpDcstXj8idUQ1Ab_2Y_BxW9CtEgpt4xZJ-aaZE0zrQsfcz2qSn4Oc0cquWFIArvfBl7DykZ768iVeSKoqXzOYUj4HWVFeOjudrENAA0-k4DleBUEOvKqqbNbA7iPXX9AKHtKyfkPPJ4bcPR0mcuZBYXvSXiZEsDCDkAZIzBYAZ43UIgTnhU89zQOJCDpzVsnDMZh7cmXMXCuc1D6nE7ZGnpFPVld8n1EsPaTFzUH5nAAszKQrj0r7hmeCFlf0uebf9v9VsQ62hoCRBzai2ZrpkhOrYSSEldvNBPS9V9DAVhDbC5rnNguF9w4zRgafB594UUgZ4yBtUpkLSiwrNp9SrxUIdn52qIZQY2DuWC_hNUSjUoF-r4yUFeCPkyWpJHmyNQkW3X6jfRtolr3fL4LB4CqMrX68aGWQQYlneJbJlTK33a69UV98b6m-cyswhuT37_7e_InfBOdTn4-mn5-ReCrgMW1zS_IB0lvOVfwE4amleRgf5Bfq6IYk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimization+Method+of+Deep+Transfer+Learning+for+Vegetation+Segmentation+under+Rainy+and+Dry+Season+Differences+in+a+Dry+Thermal+Valley&rft.jtitle=Plants+%28Basel%29&rft.au=Yayong+Chen&rft.au=Beibei+Zhou&rft.au=Dapeng+Ye&rft.au=Lei+Cui&rft.date=2023-09-25&rft.pub=MDPI+AG&rft.eissn=2223-7747&rft.volume=12&rft.issue=19&rft.spage=3383&rft_id=info:doi/10.3390%2Fplants12193383&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f6ab6c55c3fb40b1bbaf42fe5eb988f3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |