An Optimization Method of Deep Transfer Learning for Vegetation Segmentation under Rainy and Dry Season Differences in a Dry Thermal Valley

Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 12; no. 19; p. 3383
Main Authors Chen, Yayong, Zhou, Beibei, Ye, Dapeng, Cui, Lei, Feng, Lei, Han, Xiaojie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and dry seasons); however, existing transfer learning methods lack systematicity and controllability. So, an MTPI method (Maximum Transfer Potential Index method) was proposed to find the optimal conditions in data and feature quantity for transfer learning (MTPI conditions) in this study. The four pre-trained deep networks (Seg-Net (Semantic Segmentation Networks), FCN (Fully Convolutional Networks), Mobile net v2, and Res-Net 50 (Residual Network)) using the rainy season dataset showed that Res-Net 50 had the best accuracy with 93.58% and an WIoU (weight Intersection over Union) of 88.14%, most worthy to transfer training in vegetation segmentation. By obtaining each layer’s TPI performance (Transfer Potential Index) of the pre-trained Res-Net 50, the MTPI method results show that the 1000-TDS and 37-TP were estimated as the best training speed with the smallest dataset and a small error risk. The MTPI transfer learning results show 91.56% accuracy and 84.86% WIoU with 90% new dataset reduction and 90% iteration reduction, which is informative for deep networks in segmentation tasks between complex vegetation scenes.
AbstractList Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and dry seasons); however, existing transfer learning methods lack systematicity and controllability. So, an MTPI method (Maximum Transfer Potential Index method) was proposed to find the optimal conditions in data and feature quantity for transfer learning (MTPI conditions) in this study. The four pre-trained deep networks (Seg-Net (Semantic Segmentation Networks), FCN (Fully Convolutional Networks), Mobile net v2, and Res-Net 50 (Residual Network)) using the rainy season dataset showed that Res-Net 50 had the best accuracy with 93.58% and an WIoU (weight Intersection over Union) of 88.14%, most worthy to transfer training in vegetation segmentation. By obtaining each layer’s TPI performance (Transfer Potential Index) of the pre-trained Res-Net 50, the MTPI method results show that the 1000-TDS and 37-TP were estimated as the best training speed with the smallest dataset and a small error risk. The MTPI transfer learning results show 91.56% accuracy and 84.86% WIoU with 90% new dataset reduction and 90% iteration reduction, which is informative for deep networks in segmentation tasks between complex vegetation scenes.
Audience Academic
Author Ye, Dapeng
Chen, Yayong
Cui, Lei
Feng, Lei
Zhou, Beibei
Han, Xiaojie
AuthorAffiliation 6 China Electric Construction Group Beijing Survey and Design Institute Co., Beijing 100024, China; longhao69563082@163.com
4 China Renewable Energy Engineering Institute, Beijing 100032, China; zan350639414@163.com
2 Fujian Key Laboratory of Agricultural Information Sensoring Technology, Fuzhou 350012, China
1 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350012, China; yysuper@fafu.edu.cn
5 Central South Survey and Design Institute Group Co., Ltd., Changsha 410014, China; pingchen43982@163.com
3 State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China
AuthorAffiliation_xml – name: 1 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350012, China; yysuper@fafu.edu.cn
– name: 2 Fujian Key Laboratory of Agricultural Information Sensoring Technology, Fuzhou 350012, China
– name: 6 China Electric Construction Group Beijing Survey and Design Institute Co., Beijing 100024, China; longhao69563082@163.com
– name: 4 China Renewable Energy Engineering Institute, Beijing 100032, China; zan350639414@163.com
– name: 5 Central South Survey and Design Institute Group Co., Ltd., Changsha 410014, China; pingchen43982@163.com
– name: 3 State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China
Author_xml – sequence: 1
  givenname: Yayong
  surname: Chen
  fullname: Chen, Yayong
– sequence: 2
  givenname: Beibei
  surname: Zhou
  fullname: Zhou, Beibei
– sequence: 3
  givenname: Dapeng
  surname: Ye
  fullname: Ye, Dapeng
– sequence: 4
  givenname: Lei
  surname: Cui
  fullname: Cui, Lei
– sequence: 5
  givenname: Lei
  surname: Feng
  fullname: Feng, Lei
– sequence: 6
  givenname: Xiaojie
  surname: Han
  fullname: Han, Xiaojie
BookMark eNpdkk2P2yAQhq1qq-423WvPSL20h2yNwQafqmjTj0ipVtpN94owDA6RDSnYVdO_0D9dsomquoAEzDy8MMO8zC6cd5Blr3F-Q0idv9930g0RF7gmhJNn2VVRFGTOGGUX_6wvs-sYd3lqPA1cvcguCeOkwgW5yn4vHLrbD7a3v-RgvUNfYdh6jbxBS4A92gTpooGA1iCDs65Fxgf0CC0MJ_4B2h7ceTM6ndB7ad0BSafRMhwSIGNyLa1JMuAURGQdkk--zRZCLzv0KLsODq-y50Z2Ea7P8yz79unj5vbLfH33eXW7WM8VrfNh3nBsmNaQl7SpCa8bkMYYrCsogJasqCvOtJK81lgRyDGjVJtag6SmSBmoySxbnXS1lzuxD7aX4SC8tOLJ4EMrZBis6kCYSjaVKktFTEPzBjeNNLQwUEJTc25I0vpw0tqPTQ9apVQE2U1Epx5nt6L1PwTOS0YxrZLC27NC8N9HiIPobVTQpb8FP0ZRcMYILzEpE_rmP3Tnx-BSro5URVl1LIVZdnOiWpkisM74dLFKXUNvVaogY5N9wViCeV0eX_BuciAxA_wcWjnGKFYP91P2LK6CjzGA-RsqzsWxKMW0KMkfYgbXdg
Cites_doi 10.1109/LGRS.2018.2886559
10.1016/j.compag.2019.105091
10.3389/fpls.2023.1118098
10.1109/WCICA.2018.8630376
10.1016/j.rse.2014.09.010
10.1016/j.compeleceng.2019.08.010
10.1109/ACCESS.2020.3025196
10.1109/ACCESS.2019.2936892
10.3390/agriculture11101003
10.1016/j.neucom.2021.03.091
10.1002/cpe.7405
10.3390/technologies11020040
10.1002/ece3.7564
10.1109/ICCV.2015.123
10.3390/rs14020265
10.3390/rs14174312
10.1042/ETLS20200273
10.1109/CVPR.2016.90
10.1016/j.compag.2021.106279
10.3390/rs12162602
10.3390/agriculture11070651
10.1049/ipr2.12090
10.3390/s17092022
10.1109/TENCON55691.2022.9978026
10.1109/TVCG.2018.2843369
10.1016/j.compag.2020.105603
10.1371/journal.pone.0282297
10.1109/ACCESS.2020.2998839
10.1109/TPAMI.2016.2644615
10.1186/s40537-021-00444-8
10.1016/j.compag.2018.02.016
10.3390/rs12040633
10.1109/icbbe.2011.5781564
10.3390/s23136008
10.17520/biods.2015251
10.1016/j.compag.2022.107094
10.1186/s40537-020-00335-4
10.3390/rs14091973
10.1371/journal.pone.0230856
10.1016/j.ecoinf.2022.101552
10.1186/s12859-021-04234-0
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
ISR
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.3390/plants12193383
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_f6ab6c55c3fb40b1bbaf42fe5eb988f3
A772198956
10_3390_plants12193383
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52222903; 41977007
– fundername: China Three Gorges Corporation-funded “Research on Soil Improvement, Plant Selection, and Slope Ecological Restoration Techniques in the Arid Hot Valley Area of the Baihetan Hydropower Station”
  grantid: BHT/0869
GroupedDBID 5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
OZF
PATMY
PGMZT
PIMPY
PROAC
PYCSY
RIG
RPM
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c490t-b81f7dde054b9389beafff1d6e2e45729687dca89d1c3e01744df9dea4f280093
IEDL.DBID RPM
ISSN 2223-7747
IngestDate Tue Oct 22 15:10:29 EDT 2024
Tue Sep 17 21:29:27 EDT 2024
Fri Oct 25 04:02:30 EDT 2024
Thu Oct 10 16:41:26 EDT 2024
Tue Jul 09 03:50:51 EDT 2024
Sat Sep 28 21:38:27 EDT 2024
Thu Sep 26 17:07:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-b81f7dde054b9389beafff1d6e2e45729687dca89d1c3e01744df9dea4f280093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574146/
PMID 37836123
PQID 2876476219
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_f6ab6c55c3fb40b1bbaf42fe5eb988f3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10574146
proquest_miscellaneous_2877385135
proquest_journals_2876476219
gale_infotracacademiconefile_A772198956
gale_incontextgauss_ISR_A772198956
crossref_primary_10_3390_plants12193383
PublicationCentury 2000
PublicationDate 20230925
PublicationDateYYYYMMDD 2023-09-25
PublicationDate_xml – month: 9
  year: 2023
  text: 20230925
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Plants (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Amreen (ref_50) 2021; 187
Andreas (ref_6) 2018; 147
ref_58
ref_13
ref_12
ref_56
ref_11
ref_10
ref_53
ref_52
Xing (ref_27) 2022; 14
Alzubaidi (ref_28) 2021; 8
ref_17
ref_15
Abdalla (ref_51) 2019; 167
Sadegh (ref_3) 2015; 156
Liu (ref_36) 2020; 8
Yu (ref_40) 2022; 19
ref_24
ref_23
Best (ref_46) 2020; 7
ref_22
Saheba (ref_5) 2020; 12
ref_21
Wu (ref_47) 2019; 16
Fred (ref_7) 2019; 25
Chen (ref_20) 2021; 11
Mohammadreza (ref_43) 2023; 11
Vijay (ref_55) 2017; 39
Aya (ref_19) 2022; 68
Chen (ref_14) 2021; 15
ref_33
ref_32
ref_31
Bashar (ref_18) 2020; 1296
ref_30
ref_39
ref_38
Eli (ref_8) 2021; 5
Zhu (ref_34) 2020; 175
Ma (ref_41) 2022; 15
ref_45
ref_44
Kumar (ref_1) 2022; 198
ref_42
Muhammed (ref_57) 2023; 35
Niu (ref_16) 2021; 452
Ben (ref_29) 2022; 35
Yang (ref_25) 2019; 7
ref_2
ref_49
ref_48
ref_9
Zeng (ref_35) 2020; 8
Geetharamani (ref_37) 2019; 78
ref_4
Yu (ref_26) 2023; 14
Yan (ref_54) 2016; 24
References_xml – volume: 19
  start-page: 1
  year: 2022
  ident: ref_40
  article-title: A Deep Transfer Learning Method for Estimating Fractional Vegetation Cover of Sentinel-2 Multispectral Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Yu
– ident: ref_32
– volume: 16
  start-page: 977
  year: 2019
  ident: ref_47
  article-title: PolSAR Image Semantic Segmentation Based on Deep Transfer Learning—Realizing Smooth Classification With Small Training Sets
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2886559
  contributor:
    fullname: Wu
– volume: 167
  start-page: 105091
  year: 2019
  ident: ref_51
  article-title: Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105091
  contributor:
    fullname: Abdalla
– volume: 14
  start-page: 1118098
  year: 2023
  ident: ref_26
  article-title: Estimating the rice nitrogen nutrition index based on hyperspectral transform technology
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1118098
  contributor:
    fullname: Yu
– ident: ref_38
  doi: 10.1109/WCICA.2018.8630376
– volume: 1296
  start-page: 425
  year: 2020
  ident: ref_18
  article-title: Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments
  publication-title: Acta Hortic.
  contributor:
    fullname: Bashar
– volume: 156
  start-page: 182
  year: 2015
  ident: ref_3
  article-title: Detecting changes in vegetation trends using time series segmentation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.010
  contributor:
    fullname: Sadegh
– volume: 35
  start-page: 19523
  year: 2022
  ident: ref_29
  article-title: Beyond neural scaling laws: Beating power law scaling via data pruning
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Ben
– volume: 78
  start-page: 536
  year: 2019
  ident: ref_37
  article-title: Corrigendum to: ‘Identification of plant leaf diseases using a nine-layer deep convolutional neural network’
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.08.010
  contributor:
    fullname: Geetharamani
– volume: 8
  start-page: 172882
  year: 2020
  ident: ref_35
  article-title: GANs-Based Data Augmentation for Citrus Disease Severity Detection Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025196
  contributor:
    fullname: Zeng
– volume: 7
  start-page: 118239
  year: 2019
  ident: ref_25
  article-title: Diagnosis of Plant Cold Damage Based on Hyperspectral Imaging and Convolutional Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936892
  contributor:
    fullname: Yang
– ident: ref_23
  doi: 10.3390/agriculture11101003
– volume: 452
  start-page: 48
  year: 2021
  ident: ref_16
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
  contributor:
    fullname: Niu
– volume: 35
  start-page: e7405
  year: 2023
  ident: ref_57
  article-title: Comparative parotid gland segmentation by using ResNet-18 and MobileNetV2 based DeepLab v3+ architectures from magnetic resonance images
  publication-title: Concurr. Comput.
  doi: 10.1002/cpe.7405
  contributor:
    fullname: Muhammed
– volume: 11
  start-page: 40
  year: 2023
  ident: ref_43
  article-title: A Review of Deep Transfer Learning and Recent Advancements
  publication-title: Technologies
  doi: 10.3390/technologies11020040
  contributor:
    fullname: Mohammadreza
– volume: 11
  start-page: 7335
  year: 2021
  ident: ref_20
  article-title: Modeling vegetation greenness and its climate sensitivity with deep-learning technology
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.7564
  contributor:
    fullname: Chen
– ident: ref_52
  doi: 10.1109/ICCV.2015.123
– ident: ref_31
– ident: ref_56
– ident: ref_44
  doi: 10.3390/rs14020265
– volume: 15
  start-page: 187
  year: 2022
  ident: ref_41
  article-title: Maize leaf disease identification using deep transfer convolutional neural networks
  publication-title: Int. J. Agric. Biol. Eng.
  contributor:
    fullname: Ma
– ident: ref_24
  doi: 10.3390/rs14174312
– ident: ref_48
– volume: 5
  start-page: 239
  year: 2021
  ident: ref_8
  article-title: High-throughput image segmentation and machine learning approaches in the plant sciences across multiple scales
  publication-title: Emerg. Top. Life Sci.
  doi: 10.1042/ETLS20200273
  contributor:
    fullname: Eli
– ident: ref_10
– ident: ref_58
  doi: 10.1109/CVPR.2016.90
– ident: ref_13
– ident: ref_17
– ident: ref_45
– volume: 187
  start-page: 106279
  year: 2021
  ident: ref_50
  article-title: Tomato plant disease detection using transfer learning with C-GAN synthetic images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106279
  contributor:
    fullname: Amreen
– volume: 12
  start-page: 2602
  year: 2020
  ident: ref_5
  article-title: Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities
  publication-title: Remote Sens.
  doi: 10.3390/rs12162602
  contributor:
    fullname: Saheba
– ident: ref_12
  doi: 10.3390/agriculture11070651
– volume: 15
  start-page: 1115
  year: 2021
  ident: ref_14
  article-title: Identification of plant disease images via a squeeze-and-excitation MobileNet model and twice transfer learning
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12090
  contributor:
    fullname: Chen
– ident: ref_39
  doi: 10.3390/s17092022
– ident: ref_42
  doi: 10.1109/TENCON55691.2022.9978026
– ident: ref_30
– volume: 25
  start-page: 2674
  year: 2019
  ident: ref_7
  article-title: Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2018.2843369
  contributor:
    fullname: Fred
– volume: 175
  start-page: 105603
  year: 2020
  ident: ref_34
  article-title: Data augmentation using improved cDCGAN for plant vigor rating
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105603
  contributor:
    fullname: Zhu
– ident: ref_9
  doi: 10.1371/journal.pone.0282297
– ident: ref_11
– volume: 8
  start-page: 102188
  year: 2020
  ident: ref_36
  article-title: A Data Augmentation Method Based on Generative Adversarial Networks for Grape Leaf Disease Identification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998839
  contributor:
    fullname: Liu
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_55
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
  contributor:
    fullname: Vijay
– volume: 8
  start-page: 53
  year: 2021
  ident: ref_28
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
  contributor:
    fullname: Alzubaidi
– volume: 147
  start-page: 70
  year: 2018
  ident: ref_6
  article-title: Deep learning in agriculture: A survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
  contributor:
    fullname: Andreas
– ident: ref_21
– ident: ref_2
  doi: 10.3390/rs12040633
– ident: ref_53
  doi: 10.1109/icbbe.2011.5781564
– ident: ref_15
  doi: 10.3390/s23136008
– volume: 24
  start-page: 462
  year: 2016
  ident: ref_54
  article-title: Review of research on the vegetation and environment of dry-hot valleys in Yunnan
  publication-title: Biodivers. Sci.
  doi: 10.17520/biods.2015251
  contributor:
    fullname: Yan
– ident: ref_33
– volume: 198
  start-page: 107094
  year: 2022
  ident: ref_1
  article-title: Vegetation Extraction from UAV-based Aerial Images through Deep Learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107094
  contributor:
    fullname: Kumar
– volume: 7
  start-page: 59
  year: 2020
  ident: ref_46
  article-title: Exploring the efficacy of transfer learning in mining image-based software artifacts
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00335-4
  contributor:
    fullname: Best
– volume: 14
  start-page: 1973
  year: 2022
  ident: ref_27
  article-title: Hyperspectral Anomaly Detection Using Deep Learning: A Review
  publication-title: Remote Sens.
  doi: 10.3390/rs14091973
  contributor:
    fullname: Xing
– ident: ref_4
  doi: 10.1371/journal.pone.0230856
– volume: 68
  start-page: 101552
  year: 2022
  ident: ref_19
  article-title: Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101552
  contributor:
    fullname: Aya
– ident: ref_22
– ident: ref_49
  doi: 10.1186/s12859-021-04234-0
SSID ssj0000800816
Score 2.2798777
Snippet Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 3383
SubjectTerms Accuracy
Artificial intelligence
best migration learning conditions
Comparative analysis
Datasets
Deep learning
deep learning optimization
Dry season
dry-hot valley environment
Grasses
Image segmentation
Machine learning
Measurement
Methods
migration training
Network management systems
Networks
Neural networks
Optimization
Plant communities
Rainy season
Reduction
Seasons
Semantic segmentation
Semantics
Task complexity
Training
Transfer learning
Vegetation
vegetation in field
Water conservation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4ikCBRmExClqnDhe-7hlqQoSIFFa9Wb5MV6KWme1j8P-hv7pjhO32sCBC9d4DrZnxvNNPP6GkPfMcYDK8FIGBiU3TpSq4U3p3YQ5piau9n2V7zdxfMq_nLfnO62-Uk3YQA88bNxBEMYK17auCZZXlllrAq8DtGCVlGHg-azUTjL1O-MgycTA0thgXn-wuEx1JQwdNCVloyjUk_X_fST_WSa5E3eOHpGHGTDS6TDRx-QexCfk_mGHoG77lFxPI_2OXn-Vn1PSr31HaNoFOgNY0D4UBVjSzKM6pwhS6RnMc5UhPYH5VX5-FGl6ULak6cpnS030dLbcooBBSE5nuZEKHiv0IlLTj6GN4bl-Sc9SQ5btM3J69Onnx-My91coHVfVurSShQkeb4jarELgYsGEEJgXUANvEXULOfHOSOWZawBdl3MflAfDQy3Tr5DnZC92EV4QChIwBDYeU-0GIWAjhbK-rixvBFdOVgX5cLvfejHQaGhMP5Jm9FgzBTlM6riTSvTX_Qc0Cp2NQv_LKAryLilTJ4KLmCpo5mazWunPJz_0FNOJVCfWCpxTFgod6teZ_CABV5Q4sUaS-7dGobOLrzSmmoJjKGGqIG_vhtE5042LidBtepnEFsSatiByZEyj9Y1H4sWvnuY7dWDmGMhe_o8deUUe1AjPUqVL3e6TvfVyA68RTq3tm95zbgDBeSNj
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5ByoEL4ikCBS0IiZPVrL3erE8oIa0KEgW1tOrN2sesW6m1g5Mc8hv408w4m4BB4uod-TU7M9_szn7D2DvhJMDIyEQHAYk0TiVFJrPEu7Fwohi71HdVvifq-Fx-vswv44LbIpZVbn1i56h942iN_ACRvZJouaL4MP-RUNco2l2NLTTusr0UM4V0wPamhyffTnerLISHtFAbtsYM8_uD-Q3Vlwi8DyVnvWjUkfb_65r_Lpf8I_4cPWQPInDkk42mH7E7UD9m96YNgrv1E_ZzUvOvaP238Vgl_9J1huZN4DOAOe9CUoCWRz7ViiNY5RdQxWpDfgbVbTyGVHM6WNZy2vpZc1N7PmvXKGAQmvNZbKiC7oVf19x0YzjX0L_f8AtqzLJ-ys6PDr9_PE5in4XEyWK0TKwWYYxuDtGbLRDAWDAhBOEVpCBzRN9Kj70zuvDCZYAmLKUPhQcjQ6ppSeQZG9RNDc8ZBw0YCjOPKXeGUDDTqrA-HVmZKVk4PRqy99v_Xc43dBolpiGkmbKvmSGbkjp2UkSD3V1o2qqMVlUGZaxyee6yYOXICmtNkGmAHGyhdcCbvCVllkR0UVMlTWVWi0X56ey0nGBaQfViucJ3ikKhQf06Ew8m4BcRN1ZPcn87Kcpo6ovy98Qcsje7YTRS2nkxNTSrToZYg0SWD5nuTabe9_VH6uurju6bOjFLDGgv_v_0l-x-igCMalnSfJ8Nlu0KXiFgWtrX0Sp-AT1XGls
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgcOCCypdYKMggJE6BOHG8zgGhLUtVkACJslVvke2M06Jtss3uSuQ38KeZyXoLgR65xpMo8Xhm3sTjN4y9EE4CxEZG2guIpHEqylOZRqUbCyfysUvKvsr3szqcyY8n2cnv-qcwgcsrUzvqJzVr569-XHRv0eDfUMaJKfvrxZxKRgTaHuVb19mNhEi5qIwvQP3vARlpoTa8jVfcNohLPX3_v07678LJPyLRwS67HSAkn2x0foddg_ouu7nfIMzr7rGfk5p_QT9wHg5Y8k99j2jeeD4FWPA-OHloeWBWrTjCVn4MVag75EdQnYcDSTWnI2Ytp02gjpu65NO2QwGDIJ1PQ2sVdDT8rOamH8NVh55-zo-pRUt3n80O3n97dxiFjguRk3m8iqwWfowOD3GczRHKWDDee1EqSEBmiMOVHpfO6LwULgU0ZilLn5dgpE80_Rx5wHbqpoaHjIMGDIppicl3iqAw1Sq3ZRJbmSqZOx2P2MvtfBeLDbFGgQkJaaYYambE9kkdl1JEiN1faNqqCPZVeGWsclnmUm9lbIW1xsvEQwY219rjQ56TMguivKippqYy6-Wy-HD0tZhggkGVY5nCdwpCvkH9OhOOKOAXEUvWQHJvuyiK7ZotMPlUEoOLyEfs2eUwmivtwZgamnUvQ_xBIs1GTA8W0-D7hiP12WlP_E09mSWGtkf_Y0Yes1sJAjaqfUmyPbazatfwBAHWyj7tLecXKV8qdw
  priority: 102
  providerName: Scholars Portal
Title An Optimization Method of Deep Transfer Learning for Vegetation Segmentation under Rainy and Dry Season Differences in a Dry Thermal Valley
URI https://www.proquest.com/docview/2876476219
https://search.proquest.com/docview/2877385135
https://pubmed.ncbi.nlm.nih.gov/PMC10574146
https://doaj.org/article/f6ab6c55c3fb40b1bbaf42fe5eb988f3
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbabhh6GfZEs3WBNgzYyY1lyYp8TJoW3YB0RbsWvRmSLGUZEjnI45DfsD89SpGLervt4oNFG7ZJSh_ljyRCn4lmxqSSJcISkzCpeVJQRpNK94kmRV9nVWD5XvKLW_btPr_fQ7zJhQmkfa2mJ242P3HTn4FbuZjrXsMT612NT31vWuZbteyjfbDQRzH6r4iBBOG7Co0UYvreYuY5JQSc0wdkh-gZ9bkLJKOtxSjU7P93Zv6bLflo-Tl_gZ5H3IgHu-d7ifaMe4WeDmvAdtvX6PfA4e_g_POYVYnHoTE0ri0eGbPAYUWyZoljOdUJBqyK78wkkg3xjZnMYxaSwz6vbIn9n58tlq7Co-UWBCQgczyK_VRgdsFTh2UYA1OD6X2G73xflu0bdHt-9uP0IoltFhLNinSdKEFsH2Y5AG-qAPyijLTWkoqbzLAcwDcX_UpLUVREUwMezFhli8pIZjPhd0TeogNXO3OEsBEGviqtIOKmgASp4IWqslQxylmhRdpBX5rvXS521TRKiEK8ksq2kjpo6NXxIOWrYIcT9XJSRlsoLZeK6zzX1CqWKqKUtCyzJjeqEMLCTT55ZZa-zoXzRJqJ3KxW5deb63IAUYWni-UcnikK2Rr0q2XMS4A38qWxWpLHjVGU0dNXJUScnMGKQooO-vgwDD7qf7xIZ-pNkPFFgwjNO0i0jKn1fu0RMP5Q7bsx9nf_f-l7dJgBNvM0lyw_Rgfr5cZ8ACy1Vl30ZHh2eXXdDXsRcBwz0Q3u9AdSdCWi
link.rule.ids 230,315,730,783,787,867,888,2109,2228,21402,24332,27938,27939,33758,33759,43819,53806,53808,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagRYJLxVMNLWAQEqdV412v4z2hhLRKoQ2oL_Vm-RkqtbthkxzyG_jTzGycwILENR5tspnXN_b4G0LeM8u972qeyMB8wrUVSZHxLHG2xywrejZ1TZfvWIwu-efr_DpuuM1iW-U6JjaB2lUW98gPANkLDp7Lio_THwlOjcLT1ThC4z7ZRqoqsOrtweH429lmlwXxkGRixdaYQX1_ML3F_hIGz8HirJWNGtL-f0Pz3-2Sf-Sfo8dkJwJH2l9p-gm558un5MGgAnC3fEZ-9kv6Fbz_Ll6rpKfNZGhaBTr0fkqblBR8TSOf6oQCWKVXfhK7Dem5n9zFa0glxYtlNcWjnyXVpaPDegkCGqA5HcaBKhBe6E1JdbMGtgbx_ZZe4WCW5XNyeXR48WmUxDkLieVFd54YyUIPwhygN1MAgDFehxCYEz71PAf0LWTPWS0Lx2zmwYU5d6FwXvOQStwSeUG2yqr0u4R66SEVZg5K7gygYCZFYVzaNTwTvLCy2yEf1v-3mq7oNBSUIagZ1dZMhwxQHRsppMFuPqjqiYpepYLQRtg8t1kwvGuYMTrwNPjcm0LKAA95h8pUSHRRYifNRC9mM3V8fqb6UFZgv1gu4DdFoVCBfq2OFxPgjZAbqyW5vzYKFV19pn4bZoe83SyDk-LJiy59tWhkkDWIZXmHyJYxtd6vvVLefG_ovnESM4eE9vL_3_6GPBxdnJ6ok-Pxlz3yKAUwhn0tab5Ptub1wr8C8DQ3r6OH_ALLZx1V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgRYgL4qkGChiExGmVeNfreE8oIY1aHqFqadWb5edSqd0NeRzyG_jTzGycwILENR5tspnXN_b4G0LeMsu972ueyMB8wrUVSZHxLHF2wCwrBjZ1TZfvVByd84-X-WXsf1rEtsptTGwCtast7pH3ANkLDp7Lil6IbREn48n72Y8EJ0jhSWscp3Gb7A04WFWH7I0Opyenux0XxEaSiQ1zYwa1fm92jb0mDJ6JhVorMzUE_v-G6b9bJ__IRZMH5H4EkXS40fpDcstXj8idUQ1Ab_2Y_BxW9CtEgpt4xZJ-aaZE0zrQsfcz2qSn4Oc0cquWFIArvfBl7DykZ768iVeSKoqXzOYUj4HWVFeOjudrENAA0-k4DleBUEOvKqqbNbA7iPXX9AKHtKyfkPPJ4bcPR0mcuZBYXvSXiZEsDCDkAZIzBYAZ43UIgTnhU89zQOJCDpzVsnDMZh7cmXMXCuc1D6nE7ZGnpFPVld8n1EsPaTFzUH5nAAszKQrj0r7hmeCFlf0uebf9v9VsQ62hoCRBzai2ZrpkhOrYSSEldvNBPS9V9DAVhDbC5rnNguF9w4zRgafB594UUgZ4yBtUpkLSiwrNp9SrxUIdn52qIZQY2DuWC_hNUSjUoF-r4yUFeCPkyWpJHmyNQkW3X6jfRtolr3fL4LB4CqMrX68aGWQQYlneJbJlTK33a69UV98b6m-cyswhuT37_7e_InfBOdTn4-mn5-ReCrgMW1zS_IB0lvOVfwE4amleRgf5Bfq6IYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimization+Method+of+Deep+Transfer+Learning+for+Vegetation+Segmentation+under+Rainy+and+Dry+Season+Differences+in+a+Dry+Thermal+Valley&rft.jtitle=Plants+%28Basel%29&rft.au=Yayong+Chen&rft.au=Beibei+Zhou&rft.au=Dapeng+Ye&rft.au=Lei+Cui&rft.date=2023-09-25&rft.pub=MDPI+AG&rft.eissn=2223-7747&rft.volume=12&rft.issue=19&rft.spage=3383&rft_id=info:doi/10.3390%2Fplants12193383&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f6ab6c55c3fb40b1bbaf42fe5eb988f3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon