Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold

Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection method...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 11; p. 441
Main Authors Bordier, Cécile, Nicolini, Carlo, Bifone, Angelo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 03.08.2017
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.
AbstractList Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.
Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.
Author Nicolini, Carlo
Bifone, Angelo
Bordier, Cécile
AuthorAffiliation Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia Rovereto, Italy
AuthorAffiliation_xml – name: Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia Rovereto, Italy
Author_xml – sequence: 1
  givenname: Cécile
  surname: Bordier
  fullname: Bordier, Cécile
– sequence: 2
  givenname: Carlo
  surname: Nicolini
  fullname: Nicolini, Carlo
– sequence: 3
  givenname: Angelo
  surname: Bifone
  fullname: Bifone, Angelo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28824364$$D View this record in MEDLINE/PubMed
BookMark eNp1kslvEzEYxUeoiC5w54QsceGS4PE2NgekErWlUqEHisTNcrxkHCZ2sD1F-e_rJC1qK3Hy9t5PT_7ecXMQYrBN87aFU4y5-OiCD3mKYNtNISSkfdEctYyhCaH418Gj_WFznPMSQoY4Qa-aQ8Q5IpiRo2a4SGrdg9Oghk32GahgwLdoxkElXzYgOvAlKR_A-Rh08bHKwCyGYOvhdiv4bsvfmH7nT-CHVUn3PiyAiwmU3oLrdfGrarjpk819HMzr5qVTQ7Zv7teT5uf52c3s6-Tq-uJydno10UTAMpl3basIc3bOoaGaCoh4pxBFnDokmOgcwkZhA22nhEJIUUiha51GTsHOWHzSXO65JqqlXKeaIm1kVF7uLmJaSJWK14OV0KIKYMRA5ogmnWKdJdgQzi3DhIjK-rxnrcf5yhptQ0lqeAJ9-hJ8LxfxVlJKoKCsAj7cA1L8M9pc5MpnbYdBBRvHLFuBocCUd22Vvn8mXcYx1T_PEmFIOeGCb1XvHif6F-VhqFXA9gKdYs7JOql9Udvp1YB-kC2U2_bIXXvktj1y155qhM-MD-z_Wu4AW2_JSg
CitedBy_id crossref_primary_10_1093_cercor_bhaa150
crossref_primary_10_1007_s12559_025_10416_2
crossref_primary_10_1016_j_bspc_2020_101878
crossref_primary_10_1109_TNSRE_2022_3190390
crossref_primary_10_1162_netn_a_00246
crossref_primary_10_3389_fnins_2019_01114
crossref_primary_10_1162_netn_a_00324
crossref_primary_10_3390_brainsci15010004
crossref_primary_10_1016_j_neuroimage_2020_116603
crossref_primary_10_1371_journal_pone_0274218
crossref_primary_10_3389_fnins_2018_00528
crossref_primary_10_1007_s11517_022_02708_8
crossref_primary_10_1162_netn_a_00365
crossref_primary_10_1214_23_AOS2330
crossref_primary_10_1038_s41398_020_0727_8
crossref_primary_10_1016_j_neunet_2024_106771
crossref_primary_10_1016_j_neuroimage_2019_116354
crossref_primary_10_1142_S0219467822500292
crossref_primary_10_1089_brain_2022_0082
crossref_primary_10_1016_j_irbm_2021_02_007
crossref_primary_10_3390_e27040328
crossref_primary_10_1007_s11571_023_09931_5
crossref_primary_10_3389_fnagi_2023_1039496
crossref_primary_10_3390_e25111509
crossref_primary_10_3389_fncir_2021_662882
crossref_primary_10_1038_s41598_017_09887_7
crossref_primary_10_1162_netn_a_00310
crossref_primary_10_1515_revneuro_2024_0020
crossref_primary_10_1016_j_neuroimage_2018_02_029
crossref_primary_10_1016_j_nicl_2020_102186
crossref_primary_10_1016_j_neuroimage_2021_118005
crossref_primary_10_1111_adb_13096
crossref_primary_10_1002_hbm_26669
crossref_primary_10_1016_j_neuroimage_2021_118289
crossref_primary_10_1002_hbm_26304
crossref_primary_10_1038_s41398_019_0506_6
crossref_primary_10_1088_1741_2552_abecc6
crossref_primary_10_1093_cercor_bhac198
crossref_primary_10_3389_fnins_2022_989988
crossref_primary_10_1080_24725579_2021_1933268
crossref_primary_10_1016_j_neuroscience_2021_11_045
crossref_primary_10_1016_j_sigpro_2020_107834
crossref_primary_10_1038_s41598_024_58682_8
crossref_primary_10_1088_1741_2552_ac5150
crossref_primary_10_1007_s00429_024_02847_8
crossref_primary_10_1038_s42005_021_00725_x
crossref_primary_10_1162_imag_a_00381
crossref_primary_10_1038_s41598_022_08975_7
crossref_primary_10_1080_01621459_2024_2337158
crossref_primary_10_1093_cercor_bhac438
crossref_primary_10_3389_fped_2022_847037
crossref_primary_10_1080_10618600_2024_2336147
crossref_primary_10_1016_j_parkreldis_2019_09_006
crossref_primary_10_1038_s41467_024_48781_5
crossref_primary_10_1089_brain_2020_0969
crossref_primary_10_1016_j_eswa_2024_125298
crossref_primary_10_1080_23737484_2019_1634500
crossref_primary_10_1016_j_ijpsycho_2021_10_004
crossref_primary_10_1007_s10479_022_04647_x
crossref_primary_10_1080_10618600_2024_2409789
crossref_primary_10_1007_s10548_018_0643_x
crossref_primary_10_1038_s41467_023_43165_7
crossref_primary_10_1371_journal_pone_0187715
crossref_primary_10_1002_jnr_24760
crossref_primary_10_1016_j_cmpb_2021_105954
crossref_primary_10_1126_sciadv_abb7187
crossref_primary_10_1103_PhysRevE_109_034309
crossref_primary_10_1142_S0129065719500072
crossref_primary_10_3390_bioengineering12010082
crossref_primary_10_1017_S0269888921000151
crossref_primary_10_1089_neu_2023_0183
Cites_doi 10.1103/PhysRevE.91.012809
10.1038/nrn2575
10.1016/j.neuroimage.2016.11.026
10.1098/rstb.2005.1634
10.1103/PhysRevLett.85.5468
10.1016/0005-1098(78)90005-5
10.1103/PhysRevE.78.046110
10.1007/s11065-014-9248-7
10.1523/JNEUROSCI.1929-08.2008
10.1073/pnas.1220826110
10.1016/S0304-3975(00)00015-3
10.1002/mrm.1240
10.1371/journal.pone.0077089
10.1016/0024-3795(88)90223-6
10.1073/pnas.0601417103
10.1073/pnas.1106612109
10.1016/j.neuroimage.2009.10.003
10.1103/PhysRevLett.94.018102
10.1523/JNEUROSCI.0333-10.2010
10.1523/JNEUROSCI.3539-11.2011
10.1038/srep19250
10.1073/pnas.0601602103
10.1088/1742-5468/2005/09/P09008
10.1103/PhysRevE.92.022816
10.1088/1742-5468/2008/10/P10008
10.18637/jss.v044.i10
10.3389/fnsys.2010.00147
10.1073/pnas.0706851105
10.1016/j.jmva.2006.11.013
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Bordier, Nicolini and Bifone. 2017 Bordier, Nicolini and Bifone
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Bordier, Nicolini and Bifone. 2017 Bordier, Nicolini and Bifone
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2017.00441
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_0e222a64d06f4c47a67e43d488e63449
PMC5540956
28824364
10_3389_fnins_2017_00441
Genre Journal Article
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: 668863
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-b711a46feb80d5c590287a25285f29697f23da3d0e7a9a22a5050f1fc2fa07de3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:22:18 EDT 2025
Thu Aug 21 13:59:00 EDT 2025
Fri Jul 11 04:20:00 EDT 2025
Fri Jul 25 11:35:33 EDT 2025
Thu Jan 02 22:41:25 EST 2025
Thu Apr 24 23:04:57 EDT 2025
Tue Jul 01 01:01:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords threshold
functional connectivity
percolation
brain networks
sparsification
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-b711a46feb80d5c590287a25285f29697f23da3d0e7a9a22a5050f1fc2fa07de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Veena A. Nair, University of Wisconsin-Madison, United States; Andrea Soddu, University of Western Ontario, Canada
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Federico Giove, Centro Fermi, Italy
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2017.00441
PMID 28824364
PQID 2305848981
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_0e222a64d06f4c47a67e43d488e63449
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540956
proquest_miscellaneous_1930935871
proquest_journals_2305848981
pubmed_primary_28824364
crossref_citationtrail_10_3389_fnins_2017_00441
crossref_primary_10_3389_fnins_2017_00441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-03
PublicationDateYYYYMMDD 2017-08-03
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-03
  day: 03
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Danon (B10) 2005; 9
Kawamoto (B15) 2015; 91
Nicolini (B22) 2016; 6
Rissanen (B24) 1978; 14
Lancichinetti (B17) 2008; 78
Higham (B14) 1988; 103
Rubinov (B26) 2010; 52
Alexander-Bloch (B1) 2010; 4
Bullmore (B5) 2009; 10
Callaway (B6) 2000; 85
Eguiluz (B11) 2005; 94
Meilǎ (B20) 2007; 98
Gallos (B12) 2012; 109
Traag (B27) 2015; 92
Crossley (B7) 2013; 110
van den Heuvel (B28) 2014; 24
Newman (B21) 2006; 103
Welvaert (B31) 2013; 8
Rosvall (B25) 2008; 105
Damoiseaux (B9) 2006; 103
van den Heuvel (B29) 2011; 31
Lynall (B19) 2010; 30
Blondel (B4) 2008; 10008
Welvaert (B30) 2011; 44
Bassett (B2) 2008; 28
Krüger (B16) 2001; 46
Leiserson (B18) 2009
Beckmann (B3) 2005; 360
Goerdt (B13) 2001; 259
Csárdi (B8) 2006; 1695
Nicolini (B23) 2017; 146
26763931 - Sci Rep. 2016 Jan 14;6:19250
24500505 - Neuropsychol Rev. 2014 Mar;24(1):32-48
20631176 - J Neurosci. 2010 Jul 14;30(28):9477-87
16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82
22308319 - Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2825-30
18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48
22049421 - J Neurosci. 2011 Nov 2;31(44):15775-86
18999496 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110
23798414 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11583-8
18216267 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23
21031030 - Front Syst Neurosci. 2010 Oct 08;4:147
24223118 - PLoS One. 2013 Nov 06;8(11):e77089
16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
19819337 - Neuroimage. 2010 Sep;52(3):1059-69
15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102
27865921 - Neuroimage. 2017 Feb 1;146:28-39
16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
11136023 - Phys Rev Lett. 2000 Dec 18;85(25):5468-71
11590638 - Magn Reson Med. 2001 Oct;46(4):631-7
19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98
26382463 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022816
25679659 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012809
References_xml – volume: 91
  start-page: 10
  year: 2015
  ident: B15
  article-title: Estimating the resolution limit of the map equation in community detection
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.91.012809
– volume: 10
  start-page: 186
  year: 2009
  ident: B5
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 146
  start-page: 28
  year: 2017
  ident: B23
  article-title: Modular organization of weighted brain networks beyond the resolution limit
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.026
– volume-title: Introduction to Algorithms, 3rd Edn
  year: 2009
  ident: B18
– volume: 360
  start-page: 1001
  year: 2005
  ident: B3
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 85
  start-page: 5468
  year: 2000
  ident: B6
  article-title: Network robustness and fragility: percolation on random graphs
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.5468
– volume: 14
  start-page: 465
  year: 1978
  ident: B24
  article-title: Modeling by shortest data description
  publication-title: Automatica
  doi: 10.1016/0005-1098(78)90005-5
– volume: 78
  start-page: 46110
  year: 2008
  ident: B17
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.046110
– volume: 24
  start-page: 32
  year: 2014
  ident: B28
  article-title: Brain networks in schizophrenia
  publication-title: Neuropsychol. Rev.
  doi: 10.1007/s11065-014-9248-7
– volume: 28
  start-page: 9239
  year: 2008
  ident: B2
  article-title: Hierarchical organization of human cortical networks in health and schizophrenia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1929-08.2008
– volume: 110
  start-page: 11583
  year: 2013
  ident: B7
  article-title: Cognitive relevance of the community structure of the human brain functional coactivation network
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1220826110
– volume: 259
  start-page: 307
  year: 2001
  ident: B13
  article-title: The giant component threshold for random regular graphs with edge faults
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(00)00015-3
– volume: 46
  start-page: 631
  year: 2001
  ident: B16
  article-title: Physiological noise in oxygenation-sensitive magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1240
– volume: 8
  start-page: e77089
  year: 2013
  ident: B31
  article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fmri data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0077089
– volume: 103
  start-page: 103
  year: 1988
  ident: B14
  article-title: Computing a nearest symmetric positive semidefinite matrix
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(88)90223-6
– volume: 103
  start-page: 13848
  year: 2006
  ident: B9
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0601417103
– volume: 109
  start-page: 2825
  year: 2012
  ident: B12
  article-title: A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1106612109
– volume: 52
  start-page: 1059
  year: 2010
  ident: B26
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 94
  start-page: 18102
  year: 2005
  ident: B11
  article-title: Scale-free brain functional networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.018102
– volume: 30
  start-page: 9477
  year: 2010
  ident: B19
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0333-10.2010
– volume: 31
  start-page: 15775
  year: 2011
  ident: B29
  article-title: Rich-club organization of the human connectome
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3539-11.2011
– volume: 6
  start-page: 19250
  year: 2016
  ident: B22
  article-title: Modular structure of brain functional networks: breaking the resolution limit by Surprise
  publication-title: Sci. Rep.
  doi: 10.1038/srep19250
– volume: 103
  start-page: 8577
  year: 2006
  ident: B21
  article-title: Modularity and community structure in networks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0601602103
– volume: 9
  start-page: P09008
  year: 2005
  ident: B10
  article-title: Comparing community structure identification
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2005/09/P09008
– volume: 92
  start-page: 002816
  year: 2015
  ident: B27
  article-title: Detecting communities using asymptotical surprise
  publication-title: Phys. Rev. E Stat. Nonlinear Soft. Matter Phys.
  doi: 10.1103/PhysRevE.92.022816
– volume: 10008
  start-page: 6
  year: 2008
  ident: B4
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 44
  start-page: 1
  year: 2011
  ident: B30
  article-title: neuRosim: an R package for generating fMRI data
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v044.i10
– volume: 4
  start-page: 147
  year: 2010
  ident: B1
  article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2010.00147
– volume: 1695
  start-page: 1695
  year: 2006
  ident: B8
  article-title: The igraph software package for complex network research
  publication-title: InterJ. Complex Syst.
– volume: 105
  start-page: 1118
  year: 2008
  ident: B25
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0706851105
– volume: 98
  start-page: 873
  year: 2007
  ident: B20
  article-title: Comparing clusterings-an information based distance
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2006.11.013
– reference: 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48
– reference: 21031030 - Front Syst Neurosci. 2010 Oct 08;4:147
– reference: 18216267 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23
– reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
– reference: 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102
– reference: 20631176 - J Neurosci. 2010 Jul 14;30(28):9477-87
– reference: 11136023 - Phys Rev Lett. 2000 Dec 18;85(25):5468-71
– reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69
– reference: 26763931 - Sci Rep. 2016 Jan 14;6:19250
– reference: 16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82
– reference: 22308319 - Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2825-30
– reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
– reference: 24500505 - Neuropsychol Rev. 2014 Mar;24(1):32-48
– reference: 27865921 - Neuroimage. 2017 Feb 1;146:28-39
– reference: 11590638 - Magn Reson Med. 2001 Oct;46(4):631-7
– reference: 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98
– reference: 24223118 - PLoS One. 2013 Nov 06;8(11):e77089
– reference: 25679659 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012809
– reference: 18999496 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110
– reference: 23798414 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11583-8
– reference: 22049421 - J Neurosci. 2011 Nov 2;31(44):15775-86
– reference: 26382463 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022816
SSID ssj0062842
Score 2.4527547
Snippet Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 441
SubjectTerms Algorithms
Brain architecture
brain networks
Community structure
functional connectivity
Hypotheses
Linear algebra
Methods
Neural networks
Neuroimaging
Neuroscience
Neurosciences
NMR
Noise
Noise reduction
Nuclear magnetic resonance
percolation
Schizophrenia
Simulation
sparsification
threshold
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYQJy6IwRjdAHkSQtohamI7dsINJjo0qeVSJG6WHdsCCdxpLYf9e96z06qdpnHhmtiJ4_f83vfsl-8RcubbUDaG26JhlhVg_Vhh68oV3ituW2atTVRK44m8uRM_7-v7tVJfmBOW6YHzxA1LDx7MSOFKGUQnlJHKC-5A77zkQqRf98DnLYOpbIMlGF2WDyUhBGuHIT5G5OaukK9QiGrDCSWu_n8BzL_zJNccz2iP7PaIkV7mkX4gWz7uk4PLCNHy8x96TlMOZ9ocPyBPP5B_mi6ZRqiJjo5nDlNNAW3TWaBXWBKCjsCb5U1AmjJdulxDgk5yUvj8guY0ZPBrFFAtBZRIb8G4PEOHKUh_jodWH8nd6Hr6_abo6ykUnWjLRWFVVRkhg7dN6eouEbcow2rW1IG1slWBcWe4K70yrYFZB3RUhip0LJhSOc8PyXacRX9EqAi414vYEZ4YrDUMwp5QQ1ProJcZkOFygnXXk41jzYsnDUEHikQnkWgUiU4iGZBvqx6_MtHGf9peocxW7ZAiO10AxdG94ui3FGdAjpcS1_26hXeA-WtE0zbwjq-r27Di8BjFRD97mWuAvOn0WEGbT1lBViNhELAILsWAqA3V2Rjq5p34-JBYvQHXISnk5_f4ti9kB2crJSryY7K9-P3iTwA8LexpWiev9qAZTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkECjISQuIQbWI7dtIL6qIuFVIXhFqpt8iO7VKpdUp3e-Dfd8ZxIraqek3sxMrYM9888g0hn1zji1pzk9fMsBy0H8tNVdrcOcVNw4wxkUrpaCkPT8SP0-o0BdxWqaxy1IlRUdu-wxj5DKAy2Mq6qcuvV39z7BqF2dXUQuMx2QYVXIPztT0_WP76PepiCco35jsl_hsE4HxIVIJb1sx8OA_I110ih6EQ5YZhivz994HOu7WT_xmjxTPyNKFIuj-I_Tl55MILsrMfwIO-_Ec_01jXGQPmO-TiO3JS05F9hOpg6VFvsfwUEDjtPZ1jmwi6AAs3BAZprH7phr4SdDkUiq_26FCaDLaOAtKlgBzpT1A4lzDhGHbEChNZL8nJ4uD422GeeizknWiKdW5UWWohvTN1YasukrkozSpWV541slGecau5LZzSjWZMA2IqfOk75nWhrOOvyFbog3tDqPAY_0U8CU_0xmgGrpCvYKixMEtnZDZ-4LZLBOTYB-OiBUcERdJGkbQokjaKJCNfphlXA_nGA2PnKLNpHNJmxwv99VmbTmFbOIBDWgpbSC86obRUTnALSsxJLkSTkd1R4m06y_COaedl5ON0G04hplZ0cP3NqgUYHDPKCsa8HjbItBIGTozgUmREbWydjaVu3gnnfyLTN2A9JIp8-_Cy3pEn-B1iWSLfJVvr6xv3HqDS2nxI5-EWzcQVGA
  priority: 102
  providerName: ProQuest
Title Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold
URI https://www.ncbi.nlm.nih.gov/pubmed/28824364
https://www.proquest.com/docview/2305848981
https://www.proquest.com/docview/1930935871
https://pubmed.ncbi.nlm.nih.gov/PMC5540956
https://doaj.org/article/0e222a64d06f4c47a67e43d488e63449
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQ9sILAsaPwqiMhJB4CEtsx06QEFrRugmpBaFV6ptlx_aY1CVb20nsv-fOSQNFFeIlD4mdRL6z7zvf-TtC3vgypIXhNimYZQmsfiyxeeYS7xW3JbPWRiqlyVSezcSXeT7_fTy6G8DVTtcO60nNlov3P2_uPsGE_4geJ9jbo1Bf1si8nSEbocBT7PtglxRO04noYwoSFuIY-5R4TgiAehu03PmGLSMVufx3AdC_8yj_MEzjh-RBhyjpcasCj8g9Xz8mB8c1eNNXd_QtjTmecfP8gCxOkZ-abphIqKkdnTQOU1EBjdMm0BGWjKBjsHbtJiGNmTBVW2OCTtuk8dUH2qYpg92jgHopoEj6FRafK-hwDtqxwqDWEzIbn5x_Pku6egtJJcp0nViVZUbI4G2RuryKxC7KsJwVeWClLFVg3BnuUq9MaRgzgJ7SkIWKBZMq5_lTslc3tX9OqAi4F4zYEt4YrDUM3KKQQ1ProJcZkKPNAOuqIyPHmhgLDU4JikRHkWgUiY4iGZB3fY_rlojjH21HKLO-HVJoxxvN8kJ3M1KnHqCRkcKlMohKKCOVF9zBguYlF6IckMONxPVGLTU4bIDYirKAb7zuH8OMxDCLqX1zu9IAiWN0WUGbZ62C9H_CwKERXIoBUVuqs_Wr20_qyx-R9RtwH5JGvviP774k93EwYp4iPyR76-WtfwXYaW2HZH90Mv32fRj3HuB6Os-GcZr8AqlPHNs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPtAWMBEgcok0c54WEUBe6bGl3QWgr9ZbasQ2V2qR0t0L9U_xGZpyHWIR663VjZy3PeOYbz-QbgJcmt0EmI-VnXHEfrR_3VRxq35g0UjlXSjkqpeksmRyKz0fx0Rr87r6FobLKziY6Q63rku7IhwiV0VdmeRa-P__pU9coyq52LTQatdg3V78wZFu82_uI8n3F-Xh3_mHit10F_FLkwdJXaRhKkVijskDHpaMvSSWPeRZbnid5anmkZaQDk8pcci4RIwQ2tCW3Mki1ifC9t2BdRBjKDGB9tDv7-q2z_Qkae5dfTehbJAwGmsQohoH50FYnFfGDh8SZKES44ghdv4D_gdx_azX_cn7je3C3Ra1sp1Gz-7BmqgewsVNhxH52xV4zV0fqLug34PQTcWCzju2EyUqzaa2p3BURP6stG1FbCjZGj9pcRDJXbVM2fSzYrClMX7xlTSk0-laGyJohUmVf0MCd4YQ5auCCEmcP4fBGdv8RDKq6Mk-ACUv3zYRf8Y1WKckx9LIxDlUaZ0kPht0GF2VLeE59N04LDHxIJIUTSUEiKZxIPHjTzzhvyD6uGTsimfXjiKbb_VBffC_aU18EBuGXTIQOEitKkcokNSLSaDRNEgmRe7DdSbxobQf-R6_pHrzoH-Opp1SOrEx9uSgQdrsMdopjHjcK0q-EY9CE2ik8SFdUZ2Wpq0-qkx-OWRyxJRFTbl6_rOdwezKfHhQHe7P9LbhDe-JKIqNtGCwvLs1ThGlL9aw9GwyOb_o4_gFzaVGn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8AgWMBEgcok0cJ06QEOrSLi2lS4VaqbdgxzZUapPS3Qr1r_HrmHEeYhHqrdeNnbU845lvPJNvAF7awkW5SnSYc81DtH481GlsQmtloguutfZUSnuzbPtQfDpKj1bgd_8tDJVV9jbRG2rTVHRHPkaojL4yL_J47LqyiP3N6fuznyF1kKJMa99Oo1WRXXv5C8O3-budTZT1K86nWwcftsOuw0BYiSJahFrGsRKZszqPTFp5KhOpeMrz1PEiK6TjiVGJiaxUheJcIV6IXOwq7lQkjU3wvTdgVWJUFI1gdbI12__a-4EMDb_PtWb0XRIGBm2SFEPCYuzq45q4wmPiTxQiXnKKvnfA_wDvv3WbfznC6R243SFYttGq3F1YsfU9WNuoMXo_vWSvma8p9Zf1a3DykfiwWc98wlRt2F5jqPQV0T9rHJtQiwo2Re_aXkoyX3lTtT0t2KwtUp-_ZW1ZNPpZhiibIWplX9DYneKEA9TGOSXR7sPhtez-AxjVTW0fAROO7p4Jy-IbndaKYxjmUhyqDc5SAYz7DS6rjvycenCclBgEkUhKL5KSRFJ6kQTwZphx1hJ_XDF2QjIbxhFlt_-hOf9edhagjCxCMZUJE2VOVEKqTFqRGDSgNkuEKAJY7yVednYE_2PQ-gBeDI_RAlBaR9W2uZiXCMF9NlvimIetggwr4RhAiSQTAcgl1Vla6vKT-viHZxlHnEkklY-vXtZzuInHsPy8M9t9ArdoS3x1ZLIOo8X5hX2KiG2hn3VHg8G36z6NfwATLVXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Analysis+and+Modularity+of+Brain+Functional+Connectivity+Networks%3A+Searching+for+the+Optimal+Threshold&rft.jtitle=Frontiers+in+neuroscience&rft.au=Bordier%2C+C%C3%A9cile&rft.au=Nicolini%2C+Carlo&rft.au=Bifone%2C+Angelo&rft.date=2017-08-03&rft.issn=1662-4548&rft.volume=11&rft.spage=441&rft_id=info:doi/10.3389%2Ffnins.2017.00441&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon