Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold
Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection method...
Saved in:
Published in | Frontiers in neuroscience Vol. 11; p. 441 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
03.08.2017
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls. |
---|---|
AbstractList | Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls. Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls. |
Author | Nicolini, Carlo Bifone, Angelo Bordier, Cécile |
AuthorAffiliation | Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia Rovereto, Italy |
AuthorAffiliation_xml | – name: Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia Rovereto, Italy |
Author_xml | – sequence: 1 givenname: Cécile surname: Bordier fullname: Bordier, Cécile – sequence: 2 givenname: Carlo surname: Nicolini fullname: Nicolini, Carlo – sequence: 3 givenname: Angelo surname: Bifone fullname: Bifone, Angelo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28824364$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kslvEzEYxUeoiC5w54QsceGS4PE2NgekErWlUqEHisTNcrxkHCZ2sD1F-e_rJC1qK3Hy9t5PT_7ecXMQYrBN87aFU4y5-OiCD3mKYNtNISSkfdEctYyhCaH418Gj_WFznPMSQoY4Qa-aQ8Q5IpiRo2a4SGrdg9Oghk32GahgwLdoxkElXzYgOvAlKR_A-Rh08bHKwCyGYOvhdiv4bsvfmH7nT-CHVUn3PiyAiwmU3oLrdfGrarjpk819HMzr5qVTQ7Zv7teT5uf52c3s6-Tq-uJydno10UTAMpl3basIc3bOoaGaCoh4pxBFnDokmOgcwkZhA22nhEJIUUiha51GTsHOWHzSXO65JqqlXKeaIm1kVF7uLmJaSJWK14OV0KIKYMRA5ogmnWKdJdgQzi3DhIjK-rxnrcf5yhptQ0lqeAJ9-hJ8LxfxVlJKoKCsAj7cA1L8M9pc5MpnbYdBBRvHLFuBocCUd22Vvn8mXcYx1T_PEmFIOeGCb1XvHif6F-VhqFXA9gKdYs7JOql9Udvp1YB-kC2U2_bIXXvktj1y155qhM-MD-z_Wu4AW2_JSg |
CitedBy_id | crossref_primary_10_1093_cercor_bhaa150 crossref_primary_10_1007_s12559_025_10416_2 crossref_primary_10_1016_j_bspc_2020_101878 crossref_primary_10_1109_TNSRE_2022_3190390 crossref_primary_10_1162_netn_a_00246 crossref_primary_10_3389_fnins_2019_01114 crossref_primary_10_1162_netn_a_00324 crossref_primary_10_3390_brainsci15010004 crossref_primary_10_1016_j_neuroimage_2020_116603 crossref_primary_10_1371_journal_pone_0274218 crossref_primary_10_3389_fnins_2018_00528 crossref_primary_10_1007_s11517_022_02708_8 crossref_primary_10_1162_netn_a_00365 crossref_primary_10_1214_23_AOS2330 crossref_primary_10_1038_s41398_020_0727_8 crossref_primary_10_1016_j_neunet_2024_106771 crossref_primary_10_1016_j_neuroimage_2019_116354 crossref_primary_10_1142_S0219467822500292 crossref_primary_10_1089_brain_2022_0082 crossref_primary_10_1016_j_irbm_2021_02_007 crossref_primary_10_3390_e27040328 crossref_primary_10_1007_s11571_023_09931_5 crossref_primary_10_3389_fnagi_2023_1039496 crossref_primary_10_3390_e25111509 crossref_primary_10_3389_fncir_2021_662882 crossref_primary_10_1038_s41598_017_09887_7 crossref_primary_10_1162_netn_a_00310 crossref_primary_10_1515_revneuro_2024_0020 crossref_primary_10_1016_j_neuroimage_2018_02_029 crossref_primary_10_1016_j_nicl_2020_102186 crossref_primary_10_1016_j_neuroimage_2021_118005 crossref_primary_10_1111_adb_13096 crossref_primary_10_1002_hbm_26669 crossref_primary_10_1016_j_neuroimage_2021_118289 crossref_primary_10_1002_hbm_26304 crossref_primary_10_1038_s41398_019_0506_6 crossref_primary_10_1088_1741_2552_abecc6 crossref_primary_10_1093_cercor_bhac198 crossref_primary_10_3389_fnins_2022_989988 crossref_primary_10_1080_24725579_2021_1933268 crossref_primary_10_1016_j_neuroscience_2021_11_045 crossref_primary_10_1016_j_sigpro_2020_107834 crossref_primary_10_1038_s41598_024_58682_8 crossref_primary_10_1088_1741_2552_ac5150 crossref_primary_10_1007_s00429_024_02847_8 crossref_primary_10_1038_s42005_021_00725_x crossref_primary_10_1162_imag_a_00381 crossref_primary_10_1038_s41598_022_08975_7 crossref_primary_10_1080_01621459_2024_2337158 crossref_primary_10_1093_cercor_bhac438 crossref_primary_10_3389_fped_2022_847037 crossref_primary_10_1080_10618600_2024_2336147 crossref_primary_10_1016_j_parkreldis_2019_09_006 crossref_primary_10_1038_s41467_024_48781_5 crossref_primary_10_1089_brain_2020_0969 crossref_primary_10_1016_j_eswa_2024_125298 crossref_primary_10_1080_23737484_2019_1634500 crossref_primary_10_1016_j_ijpsycho_2021_10_004 crossref_primary_10_1007_s10479_022_04647_x crossref_primary_10_1080_10618600_2024_2409789 crossref_primary_10_1007_s10548_018_0643_x crossref_primary_10_1038_s41467_023_43165_7 crossref_primary_10_1371_journal_pone_0187715 crossref_primary_10_1002_jnr_24760 crossref_primary_10_1016_j_cmpb_2021_105954 crossref_primary_10_1126_sciadv_abb7187 crossref_primary_10_1103_PhysRevE_109_034309 crossref_primary_10_1142_S0129065719500072 crossref_primary_10_3390_bioengineering12010082 crossref_primary_10_1017_S0269888921000151 crossref_primary_10_1089_neu_2023_0183 |
Cites_doi | 10.1103/PhysRevE.91.012809 10.1038/nrn2575 10.1016/j.neuroimage.2016.11.026 10.1098/rstb.2005.1634 10.1103/PhysRevLett.85.5468 10.1016/0005-1098(78)90005-5 10.1103/PhysRevE.78.046110 10.1007/s11065-014-9248-7 10.1523/JNEUROSCI.1929-08.2008 10.1073/pnas.1220826110 10.1016/S0304-3975(00)00015-3 10.1002/mrm.1240 10.1371/journal.pone.0077089 10.1016/0024-3795(88)90223-6 10.1073/pnas.0601417103 10.1073/pnas.1106612109 10.1016/j.neuroimage.2009.10.003 10.1103/PhysRevLett.94.018102 10.1523/JNEUROSCI.0333-10.2010 10.1523/JNEUROSCI.3539-11.2011 10.1038/srep19250 10.1073/pnas.0601602103 10.1088/1742-5468/2005/09/P09008 10.1103/PhysRevE.92.022816 10.1088/1742-5468/2008/10/P10008 10.18637/jss.v044.i10 10.3389/fnsys.2010.00147 10.1073/pnas.0706851105 10.1016/j.jmva.2006.11.013 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017 Bordier, Nicolini and Bifone. 2017 Bordier, Nicolini and Bifone |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017 Bordier, Nicolini and Bifone. 2017 Bordier, Nicolini and Bifone |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2017.00441 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_0e222a64d06f4c47a67e43d488e63449 PMC5540956 28824364 10_3389_fnins_2017_00441 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Horizon 2020 Framework Programme grantid: 668863 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-b711a46feb80d5c590287a25285f29697f23da3d0e7a9a22a5050f1fc2fa07de3 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:22:18 EDT 2025 Thu Aug 21 13:59:00 EDT 2025 Fri Jul 11 04:20:00 EDT 2025 Fri Jul 25 11:35:33 EDT 2025 Thu Jan 02 22:41:25 EST 2025 Thu Apr 24 23:04:57 EDT 2025 Tue Jul 01 01:01:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | threshold functional connectivity percolation brain networks sparsification |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-b711a46feb80d5c590287a25285f29697f23da3d0e7a9a22a5050f1fc2fa07de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Veena A. Nair, University of Wisconsin-Madison, United States; Andrea Soddu, University of Western Ontario, Canada This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: Federico Giove, Centro Fermi, Italy |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2017.00441 |
PMID | 28824364 |
PQID | 2305848981 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0e222a64d06f4c47a67e43d488e63449 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540956 proquest_miscellaneous_1930935871 proquest_journals_2305848981 pubmed_primary_28824364 crossref_citationtrail_10_3389_fnins_2017_00441 crossref_primary_10_3389_fnins_2017_00441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-03 |
PublicationDateYYYYMMDD | 2017-08-03 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2017 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Danon (B10) 2005; 9 Kawamoto (B15) 2015; 91 Nicolini (B22) 2016; 6 Rissanen (B24) 1978; 14 Lancichinetti (B17) 2008; 78 Higham (B14) 1988; 103 Rubinov (B26) 2010; 52 Alexander-Bloch (B1) 2010; 4 Bullmore (B5) 2009; 10 Callaway (B6) 2000; 85 Eguiluz (B11) 2005; 94 Meilǎ (B20) 2007; 98 Gallos (B12) 2012; 109 Traag (B27) 2015; 92 Crossley (B7) 2013; 110 van den Heuvel (B28) 2014; 24 Newman (B21) 2006; 103 Welvaert (B31) 2013; 8 Rosvall (B25) 2008; 105 Damoiseaux (B9) 2006; 103 van den Heuvel (B29) 2011; 31 Lynall (B19) 2010; 30 Blondel (B4) 2008; 10008 Welvaert (B30) 2011; 44 Bassett (B2) 2008; 28 Krüger (B16) 2001; 46 Leiserson (B18) 2009 Beckmann (B3) 2005; 360 Goerdt (B13) 2001; 259 Csárdi (B8) 2006; 1695 Nicolini (B23) 2017; 146 26763931 - Sci Rep. 2016 Jan 14;6:19250 24500505 - Neuropsychol Rev. 2014 Mar;24(1):32-48 20631176 - J Neurosci. 2010 Jul 14;30(28):9477-87 16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82 22308319 - Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2825-30 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48 22049421 - J Neurosci. 2011 Nov 2;31(44):15775-86 18999496 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110 23798414 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11583-8 18216267 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23 21031030 - Front Syst Neurosci. 2010 Oct 08;4:147 24223118 - PLoS One. 2013 Nov 06;8(11):e77089 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102 27865921 - Neuroimage. 2017 Feb 1;146:28-39 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 11136023 - Phys Rev Lett. 2000 Dec 18;85(25):5468-71 11590638 - Magn Reson Med. 2001 Oct;46(4):631-7 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98 26382463 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022816 25679659 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012809 |
References_xml | – volume: 91 start-page: 10 year: 2015 ident: B15 article-title: Estimating the resolution limit of the map equation in community detection publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.91.012809 – volume: 10 start-page: 186 year: 2009 ident: B5 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 146 start-page: 28 year: 2017 ident: B23 article-title: Modular organization of weighted brain networks beyond the resolution limit publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.026 – volume-title: Introduction to Algorithms, 3rd Edn year: 2009 ident: B18 – volume: 360 start-page: 1001 year: 2005 ident: B3 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 85 start-page: 5468 year: 2000 ident: B6 article-title: Network robustness and fragility: percolation on random graphs publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.5468 – volume: 14 start-page: 465 year: 1978 ident: B24 article-title: Modeling by shortest data description publication-title: Automatica doi: 10.1016/0005-1098(78)90005-5 – volume: 78 start-page: 46110 year: 2008 ident: B17 article-title: Benchmark graphs for testing community detection algorithms publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.046110 – volume: 24 start-page: 32 year: 2014 ident: B28 article-title: Brain networks in schizophrenia publication-title: Neuropsychol. Rev. doi: 10.1007/s11065-014-9248-7 – volume: 28 start-page: 9239 year: 2008 ident: B2 article-title: Hierarchical organization of human cortical networks in health and schizophrenia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1929-08.2008 – volume: 110 start-page: 11583 year: 2013 ident: B7 article-title: Cognitive relevance of the community structure of the human brain functional coactivation network publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1220826110 – volume: 259 start-page: 307 year: 2001 ident: B13 article-title: The giant component threshold for random regular graphs with edge faults publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(00)00015-3 – volume: 46 start-page: 631 year: 2001 ident: B16 article-title: Physiological noise in oxygenation-sensitive magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1240 – volume: 8 start-page: e77089 year: 2013 ident: B31 article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fmri data publication-title: PLoS ONE doi: 10.1371/journal.pone.0077089 – volume: 103 start-page: 103 year: 1988 ident: B14 article-title: Computing a nearest symmetric positive semidefinite matrix publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(88)90223-6 – volume: 103 start-page: 13848 year: 2006 ident: B9 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0601417103 – volume: 109 start-page: 2825 year: 2012 ident: B12 article-title: A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1106612109 – volume: 52 start-page: 1059 year: 2010 ident: B26 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 94 start-page: 18102 year: 2005 ident: B11 article-title: Scale-free brain functional networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.018102 – volume: 30 start-page: 9477 year: 2010 ident: B19 article-title: Functional connectivity and brain networks in schizophrenia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0333-10.2010 – volume: 31 start-page: 15775 year: 2011 ident: B29 article-title: Rich-club organization of the human connectome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3539-11.2011 – volume: 6 start-page: 19250 year: 2016 ident: B22 article-title: Modular structure of brain functional networks: breaking the resolution limit by Surprise publication-title: Sci. Rep. doi: 10.1038/srep19250 – volume: 103 start-page: 8577 year: 2006 ident: B21 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0601602103 – volume: 9 start-page: P09008 year: 2005 ident: B10 article-title: Comparing community structure identification publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2005/09/P09008 – volume: 92 start-page: 002816 year: 2015 ident: B27 article-title: Detecting communities using asymptotical surprise publication-title: Phys. Rev. E Stat. Nonlinear Soft. Matter Phys. doi: 10.1103/PhysRevE.92.022816 – volume: 10008 start-page: 6 year: 2008 ident: B4 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 44 start-page: 1 year: 2011 ident: B30 article-title: neuRosim: an R package for generating fMRI data publication-title: J. Stat. Softw. doi: 10.18637/jss.v044.i10 – volume: 4 start-page: 147 year: 2010 ident: B1 article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2010.00147 – volume: 1695 start-page: 1695 year: 2006 ident: B8 article-title: The igraph software package for complex network research publication-title: InterJ. Complex Syst. – volume: 105 start-page: 1118 year: 2008 ident: B25 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0706851105 – volume: 98 start-page: 873 year: 2007 ident: B20 article-title: Comparing clusterings-an information based distance publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2006.11.013 – reference: 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48 – reference: 21031030 - Front Syst Neurosci. 2010 Oct 08;4:147 – reference: 18216267 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23 – reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 – reference: 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102 – reference: 20631176 - J Neurosci. 2010 Jul 14;30(28):9477-87 – reference: 11136023 - Phys Rev Lett. 2000 Dec 18;85(25):5468-71 – reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 – reference: 26763931 - Sci Rep. 2016 Jan 14;6:19250 – reference: 16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82 – reference: 22308319 - Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2825-30 – reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 – reference: 24500505 - Neuropsychol Rev. 2014 Mar;24(1):32-48 – reference: 27865921 - Neuroimage. 2017 Feb 1;146:28-39 – reference: 11590638 - Magn Reson Med. 2001 Oct;46(4):631-7 – reference: 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98 – reference: 24223118 - PLoS One. 2013 Nov 06;8(11):e77089 – reference: 25679659 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012809 – reference: 18999496 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110 – reference: 23798414 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11583-8 – reference: 22049421 - J Neurosci. 2011 Nov 2;31(44):15775-86 – reference: 26382463 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022816 |
SSID | ssj0062842 |
Score | 2.4527547 |
Snippet | Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 441 |
SubjectTerms | Algorithms Brain architecture brain networks Community structure functional connectivity Hypotheses Linear algebra Methods Neural networks Neuroimaging Neuroscience Neurosciences NMR Noise Noise reduction Nuclear magnetic resonance percolation Schizophrenia Simulation sparsification threshold |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYQJy6IwRjdAHkSQtohamI7dsINJjo0qeVSJG6WHdsCCdxpLYf9e96z06qdpnHhmtiJ4_f83vfsl-8RcubbUDaG26JhlhVg_Vhh68oV3ituW2atTVRK44m8uRM_7-v7tVJfmBOW6YHzxA1LDx7MSOFKGUQnlJHKC-5A77zkQqRf98DnLYOpbIMlGF2WDyUhBGuHIT5G5OaukK9QiGrDCSWu_n8BzL_zJNccz2iP7PaIkV7mkX4gWz7uk4PLCNHy8x96TlMOZ9ocPyBPP5B_mi6ZRqiJjo5nDlNNAW3TWaBXWBKCjsCb5U1AmjJdulxDgk5yUvj8guY0ZPBrFFAtBZRIb8G4PEOHKUh_jodWH8nd6Hr6_abo6ykUnWjLRWFVVRkhg7dN6eouEbcow2rW1IG1slWBcWe4K70yrYFZB3RUhip0LJhSOc8PyXacRX9EqAi414vYEZ4YrDUMwp5QQ1ProJcZkOFygnXXk41jzYsnDUEHikQnkWgUiU4iGZBvqx6_MtHGf9peocxW7ZAiO10AxdG94ui3FGdAjpcS1_26hXeA-WtE0zbwjq-r27Di8BjFRD97mWuAvOn0WEGbT1lBViNhELAILsWAqA3V2Rjq5p34-JBYvQHXISnk5_f4ti9kB2crJSryY7K9-P3iTwA8LexpWiev9qAZTQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkECjISQuIQbWI7dtIL6qIuFVIXhFqpt8iO7VKpdUp3e-Dfd8ZxIraqek3sxMrYM9888g0hn1zji1pzk9fMsBy0H8tNVdrcOcVNw4wxkUrpaCkPT8SP0-o0BdxWqaxy1IlRUdu-wxj5DKAy2Mq6qcuvV39z7BqF2dXUQuMx2QYVXIPztT0_WP76PepiCco35jsl_hsE4HxIVIJb1sx8OA_I110ih6EQ5YZhivz994HOu7WT_xmjxTPyNKFIuj-I_Tl55MILsrMfwIO-_Ec_01jXGQPmO-TiO3JS05F9hOpg6VFvsfwUEDjtPZ1jmwi6AAs3BAZprH7phr4SdDkUiq_26FCaDLaOAtKlgBzpT1A4lzDhGHbEChNZL8nJ4uD422GeeizknWiKdW5UWWohvTN1YasukrkozSpWV541slGecau5LZzSjWZMA2IqfOk75nWhrOOvyFbog3tDqPAY_0U8CU_0xmgGrpCvYKixMEtnZDZ-4LZLBOTYB-OiBUcERdJGkbQokjaKJCNfphlXA_nGA2PnKLNpHNJmxwv99VmbTmFbOIBDWgpbSC86obRUTnALSsxJLkSTkd1R4m06y_COaedl5ON0G04hplZ0cP3NqgUYHDPKCsa8HjbItBIGTozgUmREbWydjaVu3gnnfyLTN2A9JIp8-_Cy3pEn-B1iWSLfJVvr6xv3HqDS2nxI5-EWzcQVGA priority: 102 providerName: ProQuest |
Title | Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28824364 https://www.proquest.com/docview/2305848981 https://www.proquest.com/docview/1930935871 https://pubmed.ncbi.nlm.nih.gov/PMC5540956 https://doaj.org/article/0e222a64d06f4c47a67e43d488e63449 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQ9sILAsaPwqiMhJB4CEtsx06QEFrRugmpBaFV6ptlx_aY1CVb20nsv-fOSQNFFeIlD4mdRL6z7zvf-TtC3vgypIXhNimYZQmsfiyxeeYS7xW3JbPWRiqlyVSezcSXeT7_fTy6G8DVTtcO60nNlov3P2_uPsGE_4geJ9jbo1Bf1si8nSEbocBT7PtglxRO04noYwoSFuIY-5R4TgiAehu03PmGLSMVufx3AdC_8yj_MEzjh-RBhyjpcasCj8g9Xz8mB8c1eNNXd_QtjTmecfP8gCxOkZ-abphIqKkdnTQOU1EBjdMm0BGWjKBjsHbtJiGNmTBVW2OCTtuk8dUH2qYpg92jgHopoEj6FRafK-hwDtqxwqDWEzIbn5x_Pku6egtJJcp0nViVZUbI4G2RuryKxC7KsJwVeWClLFVg3BnuUq9MaRgzgJ7SkIWKBZMq5_lTslc3tX9OqAi4F4zYEt4YrDUM3KKQQ1ProJcZkKPNAOuqIyPHmhgLDU4JikRHkWgUiY4iGZB3fY_rlojjH21HKLO-HVJoxxvN8kJ3M1KnHqCRkcKlMohKKCOVF9zBguYlF6IckMONxPVGLTU4bIDYirKAb7zuH8OMxDCLqX1zu9IAiWN0WUGbZ62C9H_CwKERXIoBUVuqs_Wr20_qyx-R9RtwH5JGvviP774k93EwYp4iPyR76-WtfwXYaW2HZH90Mv32fRj3HuB6Os-GcZr8AqlPHNs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPtAWMBEgcok0c54WEUBe6bGl3QWgr9ZbasQ2V2qR0t0L9U_xGZpyHWIR663VjZy3PeOYbz-QbgJcmt0EmI-VnXHEfrR_3VRxq35g0UjlXSjkqpeksmRyKz0fx0Rr87r6FobLKziY6Q63rku7IhwiV0VdmeRa-P__pU9coyq52LTQatdg3V78wZFu82_uI8n3F-Xh3_mHit10F_FLkwdJXaRhKkVijskDHpaMvSSWPeRZbnid5anmkZaQDk8pcci4RIwQ2tCW3Mki1ifC9t2BdRBjKDGB9tDv7-q2z_Qkae5dfTehbJAwGmsQohoH50FYnFfGDh8SZKES44ghdv4D_gdx_azX_cn7je3C3Ra1sp1Gz-7BmqgewsVNhxH52xV4zV0fqLug34PQTcWCzju2EyUqzaa2p3BURP6stG1FbCjZGj9pcRDJXbVM2fSzYrClMX7xlTSk0-laGyJohUmVf0MCd4YQ5auCCEmcP4fBGdv8RDKq6Mk-ACUv3zYRf8Y1WKckx9LIxDlUaZ0kPht0GF2VLeE59N04LDHxIJIUTSUEiKZxIPHjTzzhvyD6uGTsimfXjiKbb_VBffC_aU18EBuGXTIQOEitKkcokNSLSaDRNEgmRe7DdSbxobQf-R6_pHrzoH-Opp1SOrEx9uSgQdrsMdopjHjcK0q-EY9CE2ik8SFdUZ2Wpq0-qkx-OWRyxJRFTbl6_rOdwezKfHhQHe7P9LbhDe-JKIqNtGCwvLs1ThGlL9aw9GwyOb_o4_gFzaVGn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8AgWMBEgcok0cJ06QEOrSLi2lS4VaqbdgxzZUapPS3Qr1r_HrmHEeYhHqrdeNnbU845lvPJNvAF7awkW5SnSYc81DtH481GlsQmtloguutfZUSnuzbPtQfDpKj1bgd_8tDJVV9jbRG2rTVHRHPkaojL4yL_J47LqyiP3N6fuznyF1kKJMa99Oo1WRXXv5C8O3-budTZT1K86nWwcftsOuw0BYiSJahFrGsRKZszqPTFp5KhOpeMrz1PEiK6TjiVGJiaxUheJcIV6IXOwq7lQkjU3wvTdgVWJUFI1gdbI12__a-4EMDb_PtWb0XRIGBm2SFEPCYuzq45q4wmPiTxQiXnKKvnfA_wDvv3WbfznC6R243SFYttGq3F1YsfU9WNuoMXo_vWSvma8p9Zf1a3DykfiwWc98wlRt2F5jqPQV0T9rHJtQiwo2Re_aXkoyX3lTtT0t2KwtUp-_ZW1ZNPpZhiibIWplX9DYneKEA9TGOSXR7sPhtez-AxjVTW0fAROO7p4Jy-IbndaKYxjmUhyqDc5SAYz7DS6rjvycenCclBgEkUhKL5KSRFJ6kQTwZphx1hJ_XDF2QjIbxhFlt_-hOf9edhagjCxCMZUJE2VOVEKqTFqRGDSgNkuEKAJY7yVednYE_2PQ-gBeDI_RAlBaR9W2uZiXCMF9NlvimIetggwr4RhAiSQTAcgl1Vla6vKT-viHZxlHnEkklY-vXtZzuInHsPy8M9t9ArdoS3x1ZLIOo8X5hX2KiG2hn3VHg8G36z6NfwATLVXc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Analysis+and+Modularity+of+Brain+Functional+Connectivity+Networks%3A+Searching+for+the+Optimal+Threshold&rft.jtitle=Frontiers+in+neuroscience&rft.au=Bordier%2C+C%C3%A9cile&rft.au=Nicolini%2C+Carlo&rft.au=Bifone%2C+Angelo&rft.date=2017-08-03&rft.issn=1662-4548&rft.volume=11&rft.spage=441&rft_id=info:doi/10.3389%2Ffnins.2017.00441&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |