Cross-subject workload classification with a hierarchical Bayes model
Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 64 - 69 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.01.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier.
► In this study we create a cross-subject EEG-based workload classifier. ► Subject-dependent Bayesian classifiers can perform as well as Neural Networks. ► Our cross-subject classifier performed as well as subject-dependent classifiers. |
---|---|
AbstractList | Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier. Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier. ► In this study we create a cross-subject EEG-based workload classifier. ► Subject-dependent Bayesian classifiers can perform as well as Neural Networks. ► Our cross-subject classifier performed as well as subject-dependent classifiers. Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier.Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier. Most of the current EEG-based workload classifiers aresubject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce across-subjectworkload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed theMulti-Attribute Task Batteryacross three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier. |
Author | Ji, Qiang Gray, Wayne D. Wang, Ziheng Wang, Zuoguan Hope, Ryan M. |
Author_xml | – sequence: 1 givenname: Ziheng surname: Wang fullname: Wang, Ziheng organization: Department of Electrical, Computer, & Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA – sequence: 2 givenname: Ryan M. surname: Hope fullname: Hope, Ryan M. email: hoper2@rpi.edu organization: Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA – sequence: 3 givenname: Zuoguan surname: Wang fullname: Wang, Zuoguan organization: Department of Electrical, Computer, & Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA – sequence: 4 givenname: Qiang surname: Ji fullname: Ji, Qiang organization: Department of Electrical, Computer, & Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA – sequence: 5 givenname: Wayne D. surname: Gray fullname: Gray, Wayne D. organization: Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21867763$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URD_gL6BIHDgljJ3Yji8IuiofUiUucLa8kwnrbTYudkK1_x6HLSDthT15ZD3zSvM-l-xsDCMxVnCoOHD1ZluNNMfgd-47VQI4r0BXYJon7IKDkaWRWpwts6zLlnNzzi5T2gKA4U37jJ0L3iqtVX3BblYxpFSmeb0lnIqHEO-G4LoCB5eS7z26yYexePDTpnDFxlN0ETf5eyiu3Z5SsQsdDc_Z094NiV48vlfs24ebr6tP5e2Xj59X729LbAxMpevRAe8QNOoe68Z02PBGqAZRcA1Ycy1ACqWUIFJSgm6UdCSMWZNWUtVX7PUh9z6GHzOlye58QhoGN1KYkzUgai21Fv8lW9O2TW5hIV8dkdswxzGfYbkE1cpa1pCpl4_UvN5RZ-9jLj_u7Z8mM9AeAFwKjdT_RTjYRZrd2n_S7CLNgrZZWl59e7SKfvrd-xSdH04JuD4EUO7-Z3ZkE3oakTofs1XbBX9KyLujEBz8uJi-o_1pEb8AY9XOJQ |
CitedBy_id | crossref_primary_10_3390_brainsci12050542 crossref_primary_10_1109_TIM_2020_3019849 crossref_primary_10_1109_TIM_2023_3276515 crossref_primary_10_1109_TNSRE_2019_2913400 crossref_primary_10_3390_s21134542 crossref_primary_10_1109_TNSRE_2017_2701002 crossref_primary_10_1177_1541931215591025 crossref_primary_10_3233_WEB_240141 crossref_primary_10_1007_s11571_020_09642_1 crossref_primary_10_1016_j_ijpsycho_2019_09_005 crossref_primary_10_1080_23080477_2024_2389681 crossref_primary_10_3390_app14125048 crossref_primary_10_3389_fnhum_2017_00389 crossref_primary_10_1016_j_neubiorev_2012_10_003 crossref_primary_10_1016_j_arcontrol_2017_09_010 crossref_primary_10_1007_s11571_024_10215_9 crossref_primary_10_1109_THMS_2018_2803025 crossref_primary_10_1016_j_neucom_2017_05_002 crossref_primary_10_1051_shsconf_202418901043 crossref_primary_10_1016_j_ijpsycho_2015_10_004 crossref_primary_10_1016_j_jneumeth_2014_06_029 crossref_primary_10_3389_fnhum_2014_00703 crossref_primary_10_1007_s10846_017_0648_9 crossref_primary_10_1109_JSEN_2022_3156152 crossref_primary_10_1016_j_eswa_2022_118694 crossref_primary_10_1109_TNSRE_2018_2872924 crossref_primary_10_1016_j_cmpb_2023_107352 crossref_primary_10_1109_THMS_2014_2366914 crossref_primary_10_1016_j_bspc_2016_11_013 crossref_primary_10_1088_1741_2552_abb9bc crossref_primary_10_3389_fnins_2021_703139 crossref_primary_10_1177_0967033519837986 crossref_primary_10_3390_s18051339 crossref_primary_10_1109_THMS_2017_2700631 crossref_primary_10_1016_j_apergo_2016_11_013 crossref_primary_10_1109_JBHI_2021_3133871 crossref_primary_10_1109_TCBB_2016_2561927 crossref_primary_10_1016_j_paerosci_2018_05_002 crossref_primary_10_3390_s19163465 crossref_primary_10_1016_j_neucom_2019_02_061 crossref_primary_10_3389_fnhum_2017_00286 crossref_primary_10_1142_S0219519421400200 crossref_primary_10_3389_fpsyg_2021_770000 crossref_primary_10_3390_s17102315 crossref_primary_10_3390_app14062282 crossref_primary_10_1007_s10111_017_0450_2 crossref_primary_10_3390_app9245340 crossref_primary_10_1016_j_medntd_2024_100340 crossref_primary_10_1016_j_eswa_2023_121253 crossref_primary_10_1016_j_neucom_2019_11_106 crossref_primary_10_1016_j_bspc_2021_103070 crossref_primary_10_1177_1541931215591056 crossref_primary_10_1088_1741_2560_13_1_016007 crossref_primary_10_1177_1729881419888042 crossref_primary_10_3389_fnbot_2017_00019 crossref_primary_10_1109_TCDS_2021_3090217 crossref_primary_10_1364_BOE_8_002583 crossref_primary_10_1109_TNSRE_2022_3140456 crossref_primary_10_1590_0103_6513_223916 crossref_primary_10_1109_TNSRE_2018_2884641 crossref_primary_10_3390_brainsci11020210 |
Cites_doi | 10.1016/0301-0511(95)05161-9 10.1207/s15327108ijap0502_3 10.1162/neco.1996.8.1.129 10.1518/001872098779480578 10.1518/hfes.45.3.381.27252 10.1016/0013-4694(58)90053-1 10.1111/j.2517-6161.1977.tb01600.x 10.1177/154193120905300301 10.1037/0033-295X.83.6.508 10.1518/001872007X249875 10.1080/00140139308967972 10.1016/S0893-6080(05)80056-5 10.1111/j.1464-0597.2004.00161.x 10.1080/00140130701235232 10.1016/j.ijpsycho.2004.11.003 10.1016/S1053-8119(03)00286-6 10.1518/hfes.45.4.635.27088 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 2, 2012 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 2, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2011.07.094 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database (ProQuest) Psychology Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 69 |
ExternalDocumentID | 3244984131 21867763 10_1016_j_neuroimage_2011_07_094 S1053811911009086 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c490t-afca01dc07c7fc349dc414264cc2170c31720526662ee65507465ae299be76563 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Jul 10 18:50:22 EDT 2025 Fri Jul 11 02:57:19 EDT 2025 Wed Aug 13 11:42:55 EDT 2025 Mon Jul 21 06:02:07 EDT 2025 Tue Jul 01 05:26:28 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Fri Feb 23 02:20:30 EST 2024 Tue Aug 26 16:33:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Artificial neural network Hierarchical Bayes model Workload classification EEG |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-afca01dc07c7fc349dc414264cc2170c31720526662ee65507465ae299be76563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 21867763 |
PQID | 1506853530 |
PQPubID | 2031077 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_902375772 proquest_miscellaneous_898841862 proquest_journals_1506853530 pubmed_primary_21867763 crossref_primary_10_1016_j_neuroimage_2011_07_094 crossref_citationtrail_10_1016_j_neuroimage_2011_07_094 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_094 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-02 |
PublicationDateYYYYMMDD | 2012-01-02 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Lysaght, Hill, Dick, Plamondon, Linton, Wierwille, Zaklad, Alvah, Bittner, Wherry (bb0090) 1989; 851 Zhang (bb0170) 2004; Vol. 17 Noyes, Bruneau (bb0110) 2007; 50 Jasper (bb0075) 1958; 10 Laufs, Kleinschmidt, Beyerle, Salek-Haddadi, Preibisch, Krakow (bb0085) 2003; 19 Xu, Jordan (bb0165) 1996; 8 Benferhat, Kenaza, Mokhtari (bb0010) 2008 Rubio, Diaz, Martin, Puente (bb0135) 2004; 53 Norman, Bobrow (bb0105) 1976; 83 Gelman, Hill (bb0045) 2006 Moller (bb0095) 1993; 6 Wilson, Estepp, Davis (bb0155) 2009; 53 Comstock, J. Raymond, Arnegard, R. J., 1992. The multi-attribute task battery for human operator workload and strategic behavior research. NASA Technical Memorandum 104174, Langley Research Center. Gevins, Smith (bb0050) 2003; 4 Byrne, Parasuraman (bb0015) 1996; 42 Harris, Hancock, Arthur, Caird (bb0065) 1995; 5 Qu, Vetter, Bird, Qiu, White (bb0125) 2010 P.M., Patra (bb0115) 2007 Norman, Bobrow (bb0100) 1976; 7 Wilson, Russell (bb0150) 2007; 49 Puttini, Marrakchi, Me (bb0120) 2002 Axelsson (bb0005) 2004 Dempster, Laird, Rubin (bb0025) 1977; 39 Rish (bb0130) 2001 Gaillard (bb0040) 1993; 36 Kamruzzaman, Rahman (bb0080) 2010 Gevins, Smith, Leong, McEvoy, Whitfield, Du, G.R. (bb0055) 1998; 40 Wilson, Russel (bb0140) 2003; 45 Domingos, Pazzani (bb0030) 1997 Hart, Staveland (bb0070) 1988 Wilson, Estepp, Christensen (bb0160) 2010; 54 Gowadia, Farkas, Valtorta (bb0060) 2005 Wilson, Russel (bb0145) 2003; 45 Fairclough, Venables, Tattersall (bb0035) 2005; 56 Lysaght (10.1016/j.neuroimage.2011.07.094_bb0090) 1989; 851 Hart (10.1016/j.neuroimage.2011.07.094_bb0070) 1988 Wilson (10.1016/j.neuroimage.2011.07.094_bb0140) 2003; 45 Noyes (10.1016/j.neuroimage.2011.07.094_bb0110) 2007; 50 Norman (10.1016/j.neuroimage.2011.07.094_bb0105) 1976; 83 Wilson (10.1016/j.neuroimage.2011.07.094_bb0160) 2010; 54 Wilson (10.1016/j.neuroimage.2011.07.094_bb0155) 2009; 53 Zhang (10.1016/j.neuroimage.2011.07.094_bb0170) 2004; Vol. 17 Puttini (10.1016/j.neuroimage.2011.07.094_bb0120) 2002 10.1016/j.neuroimage.2011.07.094_bb0020 Wilson (10.1016/j.neuroimage.2011.07.094_bb0145) 2003; 45 Dempster (10.1016/j.neuroimage.2011.07.094_bb0025) 1977; 39 Axelsson (10.1016/j.neuroimage.2011.07.094_bb0005) 2004 Rubio (10.1016/j.neuroimage.2011.07.094_bb0135) 2004; 53 Gevins (10.1016/j.neuroimage.2011.07.094_bb0050) 2003; 4 Xu (10.1016/j.neuroimage.2011.07.094_bb0165) 1996; 8 Moller (10.1016/j.neuroimage.2011.07.094_bb0095) 1993; 6 Gelman (10.1016/j.neuroimage.2011.07.094_bb0045) 2006 Norman (10.1016/j.neuroimage.2011.07.094_bb0100) 1976; 7 Fairclough (10.1016/j.neuroimage.2011.07.094_bb0035) 2005; 56 Rish (10.1016/j.neuroimage.2011.07.094_bb0130) 2001 Domingos (10.1016/j.neuroimage.2011.07.094_bb0030) 1997 Gevins (10.1016/j.neuroimage.2011.07.094_bb0055) 1998; 40 Benferhat (10.1016/j.neuroimage.2011.07.094_bb0010) 2008 Byrne (10.1016/j.neuroimage.2011.07.094_bb0015) 1996; 42 Gaillard (10.1016/j.neuroimage.2011.07.094_bb0040) 1993; 36 Jasper (10.1016/j.neuroimage.2011.07.094_bb0075) 1958; 10 Qu (10.1016/j.neuroimage.2011.07.094_bb0125) 2010 Gowadia (10.1016/j.neuroimage.2011.07.094_bb0060) 2005 Laufs (10.1016/j.neuroimage.2011.07.094_bb0085) 2003; 19 Wilson (10.1016/j.neuroimage.2011.07.094_bb0150) 2007; 49 Kamruzzaman (10.1016/j.neuroimage.2011.07.094_bb0080) 2010 P.M. (10.1016/j.neuroimage.2011.07.094_bb0115) 2007 Harris (10.1016/j.neuroimage.2011.07.094_bb0065) 1995; 5 |
References_xml | – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: bb0095 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. – year: 2001 ident: bb0130 article-title: An empirical study of the naive Bayes classifier publication-title: International Joint Conference on Artificial Intelligence – year: 2002 ident: bb0120 article-title: Bayesian classification model for real-time intrusion detection publication-title: In 22th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bb0025 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: J. R. Stat. Soc. – volume: 50 start-page: 514 year: 2007 end-page: 519 ident: bb0110 article-title: A self-analysis of the nasa-tlx workload measure publication-title: Ergonomics – volume: 49 start-page: 1005 year: 2007 end-page: 1018 ident: bb0150 article-title: Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding publication-title: Hum. Factors – volume: 53 start-page: 141 year: 2009 end-page: 145 ident: bb0155 article-title: A comparison of performance and psychophysiological classification of complex task performance publication-title: Human Factors and Ergonomics Society Annual Meeting Proceedings – year: 2006 ident: bb0045 article-title: Data Analysis Using Regression and Multilevel/Hierarchical Models – volume: 42 start-page: 249 year: 1996 end-page: 268 ident: bb0015 article-title: Psychophysiology and adaptive automation publication-title: Biol. Psychol. – start-page: 433 year: 2010 end-page: 437 ident: bb0125 article-title: A naive Bayes classifier for differential diagnosis of long qt syndrome in children publication-title: Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on – volume: 36 start-page: 991 year: 1993 end-page: 1005 ident: bb0040 article-title: Comparing the concepts of mental load and stress publication-title: Ergonomics – volume: 19 start-page: 1463 year: 2003 end-page: 1476 ident: bb0085 article-title: EEG-correlated fMRI of human alpha activity publication-title: NeuroImage – volume: 56 start-page: 171 year: 2005 end-page: 184 ident: bb0035 article-title: The influence of task demand and learning on the psychophysiological response publication-title: Int. J. Psychophysiol. – year: 2010 ident: bb0080 article-title: Text categorization using association rule and naive Bayes classifier, 9 – volume: 54 start-page: 264 year: 2010 end-page: 268 ident: bb0160 article-title: How does day-to-day variability in psychophysiological data affect classifier accuracy publication-title: Human Factors and Ergonomics Society Annual Meeting Proceedings – volume: Vol. 17 year: 2004 ident: bb0170 article-title: The optimality of naive Bayes publication-title: The International FLAIRS Conference – volume: 10 start-page: 370 year: 1958 end-page: 375 ident: bb0075 article-title: Report of the committee on methods of clinical examination publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 851 year: 1989 ident: bb0090 article-title: Operator workload: comprehensive review and evaluation of operator workload methodologies publication-title: AFI Technical Report – volume: 8 start-page: 129 year: 1996 end-page: 151 ident: bb0165 article-title: On convergence properties of the em algorithm for gaussian mixtures publication-title: Neural Comput. – volume: 45 start-page: 381 year: 2003 end-page: 389 ident: bb0140 article-title: Operator functional state classification using psychophysiological features in an air traffic control task publication-title: Hum. Factors – volume: 45 start-page: 635 year: 2003 end-page: 643 ident: bb0145 article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks publication-title: Hum. Factors – year: 1997 ident: bb0030 publication-title: On the optimality of the simple Bayesian classifier under zero-one loss – start-page: 139 year: 1988 end-page: 183 ident: bb0070 article-title: Development of nasa-tlx (task load index): results of empirical and theoretical research publication-title: Human mental workload – volume: 53 start-page: 61 year: 2004 end-page: 86 ident: bb0135 article-title: Evaluation of subjective mental workload: a comparison of swat, nasa-tlx, and workload profile methods publication-title: Appl. Psychol. Int. Rev. – start-page: 529 year: 2005 end-page: 545 ident: bb0060 article-title: Paid: a probabilistic agent-based intrusion detection system. computers and security 24(7):529-545 publication-title: In Computers and Security – reference: Comstock, J. Raymond, Arnegard, R. J., 1992. The multi-attribute task battery for human operator workload and strategic behavior research. NASA Technical Memorandum 104174, Langley Research Center. – volume: 4 start-page: 113 year: 2003 end-page: 131 ident: bb0050 article-title: Neurophysiological measures of cognitive workload during human–computer interaction publication-title: Theoretical Issues in Ergonomics Science – volume: 83 year: 1976 ident: bb0105 article-title: On the analysis of performance operating characteristics publication-title: Psychol. Rev. – start-page: 704 year: 2008 end-page: 709 ident: bb0010 article-title: A naive Bayes approach for detecting coordinated attacks publication-title: Computer Software and Applications Conference, Annual International 0 – volume: 5 start-page: 169 year: 1995 end-page: 185 ident: bb0065 article-title: Performance, workload, and fatigue changes associated with automation publication-title: Int. J. Aviat. Psychol. – volume: 7 year: 1976 ident: bb0100 article-title: On data-limited and resource-limited processes publication-title: Cogn. Psychol. – year: 2007 ident: bb0115 article-title: Network intrusion detection using naïve Bayes – start-page: 99 year: 2004 end-page: 108 ident: bb0005 article-title: Combining a Bayesian classifier with visualisation: understanding the ids publication-title: Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security. VizSEC/DMSEC '04 – volume: 40 start-page: 79 year: 1998 end-page: 91 ident: bb0055 article-title: Monitoring working memory load during computer-based tasks with eeg pattern recognition methods publication-title: Hum. Factors – volume: 42 start-page: 249 year: 1996 ident: 10.1016/j.neuroimage.2011.07.094_bb0015 article-title: Psychophysiology and adaptive automation publication-title: Biol. Psychol. doi: 10.1016/0301-0511(95)05161-9 – volume: 5 start-page: 169 year: 1995 ident: 10.1016/j.neuroimage.2011.07.094_bb0065 article-title: Performance, workload, and fatigue changes associated with automation publication-title: Int. J. Aviat. Psychol. doi: 10.1207/s15327108ijap0502_3 – start-page: 433 year: 2010 ident: 10.1016/j.neuroimage.2011.07.094_bb0125 article-title: A naive Bayes classifier for differential diagnosis of long qt syndrome in children – start-page: 99 year: 2004 ident: 10.1016/j.neuroimage.2011.07.094_bb0005 article-title: Combining a Bayesian classifier with visualisation: understanding the ids – ident: 10.1016/j.neuroimage.2011.07.094_bb0020 – volume: 4 start-page: 113 year: 2003 ident: 10.1016/j.neuroimage.2011.07.094_bb0050 article-title: Neurophysiological measures of cognitive workload during human–computer interaction – volume: 8 start-page: 129 year: 1996 ident: 10.1016/j.neuroimage.2011.07.094_bb0165 article-title: On convergence properties of the em algorithm for gaussian mixtures publication-title: Neural Comput. doi: 10.1162/neco.1996.8.1.129 – year: 2002 ident: 10.1016/j.neuroimage.2011.07.094_bb0120 article-title: Bayesian classification model for real-time intrusion detection – year: 2001 ident: 10.1016/j.neuroimage.2011.07.094_bb0130 article-title: An empirical study of the naive Bayes classifier – volume: 40 start-page: 79 year: 1998 ident: 10.1016/j.neuroimage.2011.07.094_bb0055 article-title: Monitoring working memory load during computer-based tasks with eeg pattern recognition methods publication-title: Hum. Factors doi: 10.1518/001872098779480578 – volume: 45 start-page: 381 year: 2003 ident: 10.1016/j.neuroimage.2011.07.094_bb0140 article-title: Operator functional state classification using psychophysiological features in an air traffic control task publication-title: Hum. Factors doi: 10.1518/hfes.45.3.381.27252 – start-page: 529 year: 2005 ident: 10.1016/j.neuroimage.2011.07.094_bb0060 article-title: Paid: a probabilistic agent-based intrusion detection system. computers and security 24(7):529-545 – volume: 10 start-page: 370 year: 1958 ident: 10.1016/j.neuroimage.2011.07.094_bb0075 article-title: Report of the committee on methods of clinical examination publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(58)90053-1 – volume: Vol. 17 year: 2004 ident: 10.1016/j.neuroimage.2011.07.094_bb0170 article-title: The optimality of naive Bayes – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.neuroimage.2011.07.094_bb0025 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1977.tb01600.x – start-page: 704 year: 2008 ident: 10.1016/j.neuroimage.2011.07.094_bb0010 article-title: A naive Bayes approach for detecting coordinated attacks – volume: 53 start-page: 141 year: 2009 ident: 10.1016/j.neuroimage.2011.07.094_bb0155 article-title: A comparison of performance and psychophysiological classification of complex task performance publication-title: Human Factors and Ergonomics Society Annual Meeting Proceedings doi: 10.1177/154193120905300301 – year: 2010 ident: 10.1016/j.neuroimage.2011.07.094_bb0080 – volume: 83 year: 1976 ident: 10.1016/j.neuroimage.2011.07.094_bb0105 article-title: On the analysis of performance operating characteristics publication-title: Psychol. Rev. doi: 10.1037/0033-295X.83.6.508 – volume: 54 start-page: 264 year: 2010 ident: 10.1016/j.neuroimage.2011.07.094_bb0160 article-title: How does day-to-day variability in psychophysiological data affect classifier accuracy – volume: 49 start-page: 1005 year: 2007 ident: 10.1016/j.neuroimage.2011.07.094_bb0150 article-title: Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding publication-title: Hum. Factors doi: 10.1518/001872007X249875 – year: 1997 ident: 10.1016/j.neuroimage.2011.07.094_bb0030 – volume: 36 start-page: 991 year: 1993 ident: 10.1016/j.neuroimage.2011.07.094_bb0040 article-title: Comparing the concepts of mental load and stress publication-title: Ergonomics doi: 10.1080/00140139308967972 – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 10.1016/j.neuroimage.2011.07.094_bb0095 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80056-5 – volume: 53 start-page: 61 year: 2004 ident: 10.1016/j.neuroimage.2011.07.094_bb0135 article-title: Evaluation of subjective mental workload: a comparison of swat, nasa-tlx, and workload profile methods publication-title: Appl. Psychol. Int. Rev. doi: 10.1111/j.1464-0597.2004.00161.x – volume: 851 year: 1989 ident: 10.1016/j.neuroimage.2011.07.094_bb0090 article-title: Operator workload: comprehensive review and evaluation of operator workload methodologies – volume: 7 year: 1976 ident: 10.1016/j.neuroimage.2011.07.094_bb0100 article-title: On data-limited and resource-limited processes publication-title: Cogn. Psychol. – start-page: 139 year: 1988 ident: 10.1016/j.neuroimage.2011.07.094_bb0070 article-title: Development of nasa-tlx (task load index): results of empirical and theoretical research – volume: 50 start-page: 514 year: 2007 ident: 10.1016/j.neuroimage.2011.07.094_bb0110 article-title: A self-analysis of the nasa-tlx workload measure publication-title: Ergonomics doi: 10.1080/00140130701235232 – volume: 56 start-page: 171 year: 2005 ident: 10.1016/j.neuroimage.2011.07.094_bb0035 article-title: The influence of task demand and learning on the psychophysiological response publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2004.11.003 – year: 2007 ident: 10.1016/j.neuroimage.2011.07.094_bb0115 – volume: 19 start-page: 1463 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2011.07.094_bb0085 article-title: EEG-correlated fMRI of human alpha activity publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00286-6 – year: 2006 ident: 10.1016/j.neuroimage.2011.07.094_bb0045 – volume: 45 start-page: 635 year: 2003 ident: 10.1016/j.neuroimage.2011.07.094_bb0145 article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks publication-title: Hum. Factors doi: 10.1518/hfes.45.4.635.27088 |
SSID | ssj0009148 |
Score | 2.381009 |
Snippet | Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper... Most of the current EEG-based workload classifiers aresubject-specific; that is, a new classifier is built and trained for each human subject. In this paper we... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 64 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural network Bayes Theorem Bayesian analysis EEG Electroencephalography Female Hierarchical Bayes model Humans Male Methods Models, Theoretical Neural networks Normal distribution Pattern Recognition, Automated - methods Studies Task Performance and Analysis Workload - classification Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iQbyIb-uLHLyu3UeeeNKiFKFeVPAW0iQLFW3Ftgcv_nZnstmKh0LB4-5mljCTmXyTzIOQCymG4BVwn3FVg4MivAad8z6Tqi5rgMteWEwUHjyI_jO7f-Eva6TX5sJgWGWy_Y1Nj9Y6vekmbnY_RqPuIyAD2G7A3ygAJwAyxwx2JnGVX37_hnnogjXpcLzKcHSK5mlivGLNyNE7aG4q5ikvc82WbVHLIGjciu62yVbCkPS6meYOWQvjXbIxSLfke-S2h__NpvMhHrJQDL16m1hPHSJlDA2K0qB4BEstxWbY8ToBpEVv7FeY0tgeZ588390-9fpZapeQOabzWWZrZ_PCu1w6WbuKae9YgYDHOfA7cgdIocTqLkKUIQisY8YEtwH2o2GQAOuqA7I-nozDEaHKe-VB-3VdBqYcjCoq7qywlcp9XfIOkS2HjEu1xLGlxZtpg8ZezS9vDfLW5NIAbzukWFB-NPU0VqDRrRBMmy8KFs6A0V-B9mpB-2ddrUh92srcJN2eGqzJCCCHV3mH0MVn0Eq8arHjMJlPjdJKsQK8xeVDNKAlycG56ZDDZjUtGFLGKoOiOv7X5E_IJjyV8byoPCXrs895OAMENRueRxX5AYq0Gcs priority: 102 providerName: Elsevier |
Title | Cross-subject workload classification with a hierarchical Bayes model |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811911009086 https://dx.doi.org/10.1016/j.neuroimage.2011.07.094 https://www.ncbi.nlm.nih.gov/pubmed/21867763 https://www.proquest.com/docview/1506853530 https://www.proquest.com/docview/898841862 https://www.proquest.com/docview/902375772 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCb6AIZdhnXPbF2gw67u_NDL6KFoixTpigbDsAK5CYokAxu6pJuTwy797SVlOTllyMkHi7ZBmtJHivoI8FnJGUYFwmdCNxigSF-jz3mfKd2UDcJlLy0dFL6dyPEd_zoV05Rwa1NZZT8nxonaLxzlyL8QEx4uLaLKzx7-ZNQ1inZXUwuNfTgk6jIq6VJTtSHdLXh3FE5UmcYBqZKnq--KfJE_f6PXJiJPdZLXfNvytA1-xmXo6iW8SPiRnXcGP4K9MH8Fz27TDvlrGF3Sc7N2NaMEC6Oyq_uF9cwRSqayoGgJRulXZhk1wo5bCWgpdmH_hZbF1jhv4O5q9ONynKVWCZnjdb7MbONsXniXK6caV_HaO14Q2HEOY47cIUooidlFyjIESRxmXAobcC2aBYWQrnoLB_PFPLwHpr3XHj2_bsrAtcNRRSWclbbSuW9KMQDVa8i4xCNO7SzuTV8w9stsdGtItyZXBnU7gGIt-dBxaewgU_dGMP1ZUZzdDE74O8iermUTnuhwwo7Sx73NTfLr1mz-wgGw9W30SNpmsfOwWLVG11rzAiPF7UNqREpKYGAzgHfd37RWSBkZBmX14f-v_wjP8VvLmAwqj-Fg-XcVPiE8Ws6GsH_yWAyjJwzh8Pz6ZjzB68Vo8u37E7PaEoQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuFW9SCvgAx4Vdr1-rCiFaUqW0iRBqpd6MY3slUEkKm6jqn-I3MrOP5BSUS8-7412NxzPf2ONvAN5oNcGsQIZEmhITFBUKXHMhJNqUvES4HJSji8KjsRqeiy8X8mIL_nZ3YaissvOJtaMOM0975O-JCQ9Di8zTj1e_E-oaRaerXQuNxixO4s01pmzVh-PPOL9vOT8anB0Ok7arQOJFkc4TV3qXZsGn2uvS56IIXmSEC7xHeJ56DKicSFCU4jEqovsSSrqIbnsSNaKfHMe9A9six1SmB9sHg_HXbyua30w0l-9knpgsK9raoaairGao_PEL_URLHarfpYVYFxDXAd468B09gJ0WsbJPjYk9hK04fQR3R-2Z_GMYHNK4SbWY0JYOo0Kvy5kLzBMup0Kkeu4Zbfgyx6j1dn14gbbBDtxNrFjdjOcJnN-KGp9CbzqbxufATAgmoK8pSh6F8fhWlkvvlMtNGkou-6A7DVnfMpdTA41L25Wo_bQr3VrSrU21Rd32IVtKXjXsHRvIFN0k2O52KvpTiyFmA9n9pWyLYBpksqH0XjfntvUklV3ZfR_Y8jH6ADrYcdM4W1TWFMaIDHPT9a8UiM20xFSqD88aa1oqhNechirf_f_nX8O94dno1J4ej09ewH38b15vRfE96M3_LOJLBGfzyat2RTD4ftuL8B89P0rV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcUHk2UGAPcDS1196XKoSgbdRSWnGgUm7LZnctgUpScKKqf62_jhl7nZyCcuk5Hjuancc3u7PfALxVcoxVgQiZ0DUWKDIY9LkQMqVrXiNcDtLRReGzc3l8UX0ZidEG3PZ3Yaitso-JbaAOU0975HvEhIepRZT5Xp3aIr4dDj9e_cloghSdtPbjNDoTOY0311i-NR9ODnGt33E-PPp-cJylCQOZr0w-y1ztXV4Enyuval9WJviqIIzgPUL13GNy5USIIiWPURL1VyWFixjCx1EhEirxvffgvipFQT6mRmpJ-FtU3TU8UWa6KEzqIup6y1quyp-_MWIkElH1PjfVqtS4Cvq2KXC4DQ8TdmWfOmN7BBtx8hi2ztLp_BM4OqD3Zs18TJs7jFq-LqcuME8InVqSWitgtPXLHKMh3O0xBloJ--xuYsPasTxP4eJOlPgMNifTSdwBpkPQAaOOqXmstMenilJ4J12p81BzMQDVa8j6xGFOozQubd-s9ssudWtJtzZXFnU7gGIhedXxeKwhY_pFsP09VYysFpPNGrL7C9mEZTqMsqb0br_mNsWUxi49YABs8TNGAzricZM4nTdWG62rAqvU1Y8YRGlKYFE1gOedNS0Uwlt2Q1m--P_n38AWup79enJ--hIe4N_m7Z4U34XN2d95fIUobTZ-3boDgx937X__AAn0TaU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+workload+classification+with+a+hierarchical+Bayes+model&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wang%2C+Ziheng&rft.au=Hope%2C+Ryan+M.&rft.au=Wang%2C+Zuoguan&rft.au=Ji%2C+Qiang&rft.date=2012-01-02&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=59&rft.issue=1&rft.spage=64&rft.epage=69&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.094&rft.externalDocID=S1053811911009086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |