Cross-subject workload classification with a hierarchical Bayes model

Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 64 - 69
Main Authors Wang, Ziheng, Hope, Ryan M., Wang, Zuoguan, Ji, Qiang, Gray, Wayne D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.01.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier. ► In this study we create a cross-subject EEG-based workload classifier. ► Subject-dependent Bayesian classifiers can perform as well as Neural Networks. ► Our cross-subject classifier performed as well as subject-dependent classifiers.
AbstractList Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier.
Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier. ► In this study we create a cross-subject EEG-based workload classifier. ► Subject-dependent Bayesian classifiers can perform as well as Neural Networks. ► Our cross-subject classifier performed as well as subject-dependent classifiers.
Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier.Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed the Multi-Attribute Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier.
Most of the current EEG-based workload classifiers aresubject-specific; that is, a new classifier is built and trained for each human subject. In this paper we introduce across-subjectworkload classifier based on a hierarchical Bayes model. The cross-subject classifier is trained and tested with data from a group of subjects. In our work, it was trained and tested on EEG data collected from 8 subjects as they performed theMulti-Attribute Task Batteryacross three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three levels of workload and comparable to a benchmark subject-specific neural network classifier.
Author Ji, Qiang
Gray, Wayne D.
Wang, Ziheng
Wang, Zuoguan
Hope, Ryan M.
Author_xml – sequence: 1
  givenname: Ziheng
  surname: Wang
  fullname: Wang, Ziheng
  organization: Department of Electrical, Computer, & Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
– sequence: 2
  givenname: Ryan M.
  surname: Hope
  fullname: Hope, Ryan M.
  email: hoper2@rpi.edu
  organization: Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
– sequence: 3
  givenname: Zuoguan
  surname: Wang
  fullname: Wang, Zuoguan
  organization: Department of Electrical, Computer, & Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
– sequence: 4
  givenname: Qiang
  surname: Ji
  fullname: Ji, Qiang
  organization: Department of Electrical, Computer, & Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
– sequence: 5
  givenname: Wayne D.
  surname: Gray
  fullname: Gray, Wayne D.
  organization: Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21867763$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gL6BIHDgljJ3Yji8IuiofUiUucLa8kwnrbTYudkK1_x6HLSDthT15ZD3zSvM-l-xsDCMxVnCoOHD1ZluNNMfgd-47VQI4r0BXYJon7IKDkaWRWpwts6zLlnNzzi5T2gKA4U37jJ0L3iqtVX3BblYxpFSmeb0lnIqHEO-G4LoCB5eS7z26yYexePDTpnDFxlN0ETf5eyiu3Z5SsQsdDc_Z094NiV48vlfs24ebr6tP5e2Xj59X729LbAxMpevRAe8QNOoe68Z02PBGqAZRcA1Ycy1ACqWUIFJSgm6UdCSMWZNWUtVX7PUh9z6GHzOlye58QhoGN1KYkzUgai21Fv8lW9O2TW5hIV8dkdswxzGfYbkE1cpa1pCpl4_UvN5RZ-9jLj_u7Z8mM9AeAFwKjdT_RTjYRZrd2n_S7CLNgrZZWl59e7SKfvrd-xSdH04JuD4EUO7-Z3ZkE3oakTofs1XbBX9KyLujEBz8uJi-o_1pEb8AY9XOJQ
CitedBy_id crossref_primary_10_3390_brainsci12050542
crossref_primary_10_1109_TIM_2020_3019849
crossref_primary_10_1109_TIM_2023_3276515
crossref_primary_10_1109_TNSRE_2019_2913400
crossref_primary_10_3390_s21134542
crossref_primary_10_1109_TNSRE_2017_2701002
crossref_primary_10_1177_1541931215591025
crossref_primary_10_3233_WEB_240141
crossref_primary_10_1007_s11571_020_09642_1
crossref_primary_10_1016_j_ijpsycho_2019_09_005
crossref_primary_10_1080_23080477_2024_2389681
crossref_primary_10_3390_app14125048
crossref_primary_10_3389_fnhum_2017_00389
crossref_primary_10_1016_j_neubiorev_2012_10_003
crossref_primary_10_1016_j_arcontrol_2017_09_010
crossref_primary_10_1007_s11571_024_10215_9
crossref_primary_10_1109_THMS_2018_2803025
crossref_primary_10_1016_j_neucom_2017_05_002
crossref_primary_10_1051_shsconf_202418901043
crossref_primary_10_1016_j_ijpsycho_2015_10_004
crossref_primary_10_1016_j_jneumeth_2014_06_029
crossref_primary_10_3389_fnhum_2014_00703
crossref_primary_10_1007_s10846_017_0648_9
crossref_primary_10_1109_JSEN_2022_3156152
crossref_primary_10_1016_j_eswa_2022_118694
crossref_primary_10_1109_TNSRE_2018_2872924
crossref_primary_10_1016_j_cmpb_2023_107352
crossref_primary_10_1109_THMS_2014_2366914
crossref_primary_10_1016_j_bspc_2016_11_013
crossref_primary_10_1088_1741_2552_abb9bc
crossref_primary_10_3389_fnins_2021_703139
crossref_primary_10_1177_0967033519837986
crossref_primary_10_3390_s18051339
crossref_primary_10_1109_THMS_2017_2700631
crossref_primary_10_1016_j_apergo_2016_11_013
crossref_primary_10_1109_JBHI_2021_3133871
crossref_primary_10_1109_TCBB_2016_2561927
crossref_primary_10_1016_j_paerosci_2018_05_002
crossref_primary_10_3390_s19163465
crossref_primary_10_1016_j_neucom_2019_02_061
crossref_primary_10_3389_fnhum_2017_00286
crossref_primary_10_1142_S0219519421400200
crossref_primary_10_3389_fpsyg_2021_770000
crossref_primary_10_3390_s17102315
crossref_primary_10_3390_app14062282
crossref_primary_10_1007_s10111_017_0450_2
crossref_primary_10_3390_app9245340
crossref_primary_10_1016_j_medntd_2024_100340
crossref_primary_10_1016_j_eswa_2023_121253
crossref_primary_10_1016_j_neucom_2019_11_106
crossref_primary_10_1016_j_bspc_2021_103070
crossref_primary_10_1177_1541931215591056
crossref_primary_10_1088_1741_2560_13_1_016007
crossref_primary_10_1177_1729881419888042
crossref_primary_10_3389_fnbot_2017_00019
crossref_primary_10_1109_TCDS_2021_3090217
crossref_primary_10_1364_BOE_8_002583
crossref_primary_10_1109_TNSRE_2022_3140456
crossref_primary_10_1590_0103_6513_223916
crossref_primary_10_1109_TNSRE_2018_2884641
crossref_primary_10_3390_brainsci11020210
Cites_doi 10.1016/0301-0511(95)05161-9
10.1207/s15327108ijap0502_3
10.1162/neco.1996.8.1.129
10.1518/001872098779480578
10.1518/hfes.45.3.381.27252
10.1016/0013-4694(58)90053-1
10.1111/j.2517-6161.1977.tb01600.x
10.1177/154193120905300301
10.1037/0033-295X.83.6.508
10.1518/001872007X249875
10.1080/00140139308967972
10.1016/S0893-6080(05)80056-5
10.1111/j.1464-0597.2004.00161.x
10.1080/00140130701235232
10.1016/j.ijpsycho.2004.11.003
10.1016/S1053-8119(03)00286-6
10.1518/hfes.45.4.635.27088
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 2, 2012
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 2, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2011.07.094
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database (ProQuest)
Psychology Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database


MEDLINE - Academic
ProQuest One Psychology
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 69
ExternalDocumentID 3244984131
21867763
10_1016_j_neuroimage_2011_07_094
S1053811911009086
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c490t-afca01dc07c7fc349dc414264cc2170c31720526662ee65507465ae299be76563
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Jul 10 18:50:22 EDT 2025
Fri Jul 11 02:57:19 EDT 2025
Wed Aug 13 11:42:55 EDT 2025
Mon Jul 21 06:02:07 EDT 2025
Tue Jul 01 05:26:28 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Fri Feb 23 02:20:30 EST 2024
Tue Aug 26 16:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Artificial neural network
Hierarchical Bayes model
Workload classification
EEG
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-afca01dc07c7fc349dc414264cc2170c31720526662ee65507465ae299be76563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21867763
PQID 1506853530
PQPubID 2031077
PageCount 6
ParticipantIDs proquest_miscellaneous_902375772
proquest_miscellaneous_898841862
proquest_journals_1506853530
pubmed_primary_21867763
crossref_primary_10_1016_j_neuroimage_2011_07_094
crossref_citationtrail_10_1016_j_neuroimage_2011_07_094
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_094
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-02
PublicationDateYYYYMMDD 2012-01-02
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Lysaght, Hill, Dick, Plamondon, Linton, Wierwille, Zaklad, Alvah, Bittner, Wherry (bb0090) 1989; 851
Zhang (bb0170) 2004; Vol. 17
Noyes, Bruneau (bb0110) 2007; 50
Jasper (bb0075) 1958; 10
Laufs, Kleinschmidt, Beyerle, Salek-Haddadi, Preibisch, Krakow (bb0085) 2003; 19
Xu, Jordan (bb0165) 1996; 8
Benferhat, Kenaza, Mokhtari (bb0010) 2008
Rubio, Diaz, Martin, Puente (bb0135) 2004; 53
Norman, Bobrow (bb0105) 1976; 83
Gelman, Hill (bb0045) 2006
Moller (bb0095) 1993; 6
Wilson, Estepp, Davis (bb0155) 2009; 53
Comstock, J. Raymond, Arnegard, R. J., 1992. The multi-attribute task battery for human operator workload and strategic behavior research. NASA Technical Memorandum 104174, Langley Research Center.
Gevins, Smith (bb0050) 2003; 4
Byrne, Parasuraman (bb0015) 1996; 42
Harris, Hancock, Arthur, Caird (bb0065) 1995; 5
Qu, Vetter, Bird, Qiu, White (bb0125) 2010
P.M., Patra (bb0115) 2007
Norman, Bobrow (bb0100) 1976; 7
Wilson, Russell (bb0150) 2007; 49
Puttini, Marrakchi, Me (bb0120) 2002
Axelsson (bb0005) 2004
Dempster, Laird, Rubin (bb0025) 1977; 39
Rish (bb0130) 2001
Gaillard (bb0040) 1993; 36
Kamruzzaman, Rahman (bb0080) 2010
Gevins, Smith, Leong, McEvoy, Whitfield, Du, G.R. (bb0055) 1998; 40
Wilson, Russel (bb0140) 2003; 45
Domingos, Pazzani (bb0030) 1997
Hart, Staveland (bb0070) 1988
Wilson, Estepp, Christensen (bb0160) 2010; 54
Gowadia, Farkas, Valtorta (bb0060) 2005
Wilson, Russel (bb0145) 2003; 45
Fairclough, Venables, Tattersall (bb0035) 2005; 56
Lysaght (10.1016/j.neuroimage.2011.07.094_bb0090) 1989; 851
Hart (10.1016/j.neuroimage.2011.07.094_bb0070) 1988
Wilson (10.1016/j.neuroimage.2011.07.094_bb0140) 2003; 45
Noyes (10.1016/j.neuroimage.2011.07.094_bb0110) 2007; 50
Norman (10.1016/j.neuroimage.2011.07.094_bb0105) 1976; 83
Wilson (10.1016/j.neuroimage.2011.07.094_bb0160) 2010; 54
Wilson (10.1016/j.neuroimage.2011.07.094_bb0155) 2009; 53
Zhang (10.1016/j.neuroimage.2011.07.094_bb0170) 2004; Vol. 17
Puttini (10.1016/j.neuroimage.2011.07.094_bb0120) 2002
10.1016/j.neuroimage.2011.07.094_bb0020
Wilson (10.1016/j.neuroimage.2011.07.094_bb0145) 2003; 45
Dempster (10.1016/j.neuroimage.2011.07.094_bb0025) 1977; 39
Axelsson (10.1016/j.neuroimage.2011.07.094_bb0005) 2004
Rubio (10.1016/j.neuroimage.2011.07.094_bb0135) 2004; 53
Gevins (10.1016/j.neuroimage.2011.07.094_bb0050) 2003; 4
Xu (10.1016/j.neuroimage.2011.07.094_bb0165) 1996; 8
Moller (10.1016/j.neuroimage.2011.07.094_bb0095) 1993; 6
Gelman (10.1016/j.neuroimage.2011.07.094_bb0045) 2006
Norman (10.1016/j.neuroimage.2011.07.094_bb0100) 1976; 7
Fairclough (10.1016/j.neuroimage.2011.07.094_bb0035) 2005; 56
Rish (10.1016/j.neuroimage.2011.07.094_bb0130) 2001
Domingos (10.1016/j.neuroimage.2011.07.094_bb0030) 1997
Gevins (10.1016/j.neuroimage.2011.07.094_bb0055) 1998; 40
Benferhat (10.1016/j.neuroimage.2011.07.094_bb0010) 2008
Byrne (10.1016/j.neuroimage.2011.07.094_bb0015) 1996; 42
Gaillard (10.1016/j.neuroimage.2011.07.094_bb0040) 1993; 36
Jasper (10.1016/j.neuroimage.2011.07.094_bb0075) 1958; 10
Qu (10.1016/j.neuroimage.2011.07.094_bb0125) 2010
Gowadia (10.1016/j.neuroimage.2011.07.094_bb0060) 2005
Laufs (10.1016/j.neuroimage.2011.07.094_bb0085) 2003; 19
Wilson (10.1016/j.neuroimage.2011.07.094_bb0150) 2007; 49
Kamruzzaman (10.1016/j.neuroimage.2011.07.094_bb0080) 2010
P.M. (10.1016/j.neuroimage.2011.07.094_bb0115) 2007
Harris (10.1016/j.neuroimage.2011.07.094_bb0065) 1995; 5
References_xml – volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: bb0095
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
– year: 2001
  ident: bb0130
  article-title: An empirical study of the naive Bayes classifier
  publication-title: International Joint Conference on Artificial Intelligence
– year: 2002
  ident: bb0120
  article-title: Bayesian classification model for real-time intrusion detection
  publication-title: In 22th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bb0025
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. R. Stat. Soc.
– volume: 50
  start-page: 514
  year: 2007
  end-page: 519
  ident: bb0110
  article-title: A self-analysis of the nasa-tlx workload measure
  publication-title: Ergonomics
– volume: 49
  start-page: 1005
  year: 2007
  end-page: 1018
  ident: bb0150
  article-title: Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding
  publication-title: Hum. Factors
– volume: 53
  start-page: 141
  year: 2009
  end-page: 145
  ident: bb0155
  article-title: A comparison of performance and psychophysiological classification of complex task performance
  publication-title: Human Factors and Ergonomics Society Annual Meeting Proceedings
– year: 2006
  ident: bb0045
  article-title: Data Analysis Using Regression and Multilevel/Hierarchical Models
– volume: 42
  start-page: 249
  year: 1996
  end-page: 268
  ident: bb0015
  article-title: Psychophysiology and adaptive automation
  publication-title: Biol. Psychol.
– start-page: 433
  year: 2010
  end-page: 437
  ident: bb0125
  article-title: A naive Bayes classifier for differential diagnosis of long qt syndrome in children
  publication-title: Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on
– volume: 36
  start-page: 991
  year: 1993
  end-page: 1005
  ident: bb0040
  article-title: Comparing the concepts of mental load and stress
  publication-title: Ergonomics
– volume: 19
  start-page: 1463
  year: 2003
  end-page: 1476
  ident: bb0085
  article-title: EEG-correlated fMRI of human alpha activity
  publication-title: NeuroImage
– volume: 56
  start-page: 171
  year: 2005
  end-page: 184
  ident: bb0035
  article-title: The influence of task demand and learning on the psychophysiological response
  publication-title: Int. J. Psychophysiol.
– year: 2010
  ident: bb0080
  article-title: Text categorization using association rule and naive Bayes classifier, 9
– volume: 54
  start-page: 264
  year: 2010
  end-page: 268
  ident: bb0160
  article-title: How does day-to-day variability in psychophysiological data affect classifier accuracy
  publication-title: Human Factors and Ergonomics Society Annual Meeting Proceedings
– volume: Vol. 17
  year: 2004
  ident: bb0170
  article-title: The optimality of naive Bayes
  publication-title: The International FLAIRS Conference
– volume: 10
  start-page: 370
  year: 1958
  end-page: 375
  ident: bb0075
  article-title: Report of the committee on methods of clinical examination
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 851
  year: 1989
  ident: bb0090
  article-title: Operator workload: comprehensive review and evaluation of operator workload methodologies
  publication-title: AFI Technical Report
– volume: 8
  start-page: 129
  year: 1996
  end-page: 151
  ident: bb0165
  article-title: On convergence properties of the em algorithm for gaussian mixtures
  publication-title: Neural Comput.
– volume: 45
  start-page: 381
  year: 2003
  end-page: 389
  ident: bb0140
  article-title: Operator functional state classification using psychophysiological features in an air traffic control task
  publication-title: Hum. Factors
– volume: 45
  start-page: 635
  year: 2003
  end-page: 643
  ident: bb0145
  article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks
  publication-title: Hum. Factors
– year: 1997
  ident: bb0030
  publication-title: On the optimality of the simple Bayesian classifier under zero-one loss
– start-page: 139
  year: 1988
  end-page: 183
  ident: bb0070
  article-title: Development of nasa-tlx (task load index): results of empirical and theoretical research
  publication-title: Human mental workload
– volume: 53
  start-page: 61
  year: 2004
  end-page: 86
  ident: bb0135
  article-title: Evaluation of subjective mental workload: a comparison of swat, nasa-tlx, and workload profile methods
  publication-title: Appl. Psychol. Int. Rev.
– start-page: 529
  year: 2005
  end-page: 545
  ident: bb0060
  article-title: Paid: a probabilistic agent-based intrusion detection system. computers and security 24(7):529-545
  publication-title: In Computers and Security
– reference: Comstock, J. Raymond, Arnegard, R. J., 1992. The multi-attribute task battery for human operator workload and strategic behavior research. NASA Technical Memorandum 104174, Langley Research Center.
– volume: 4
  start-page: 113
  year: 2003
  end-page: 131
  ident: bb0050
  article-title: Neurophysiological measures of cognitive workload during human–computer interaction
  publication-title: Theoretical Issues in Ergonomics Science
– volume: 83
  year: 1976
  ident: bb0105
  article-title: On the analysis of performance operating characteristics
  publication-title: Psychol. Rev.
– start-page: 704
  year: 2008
  end-page: 709
  ident: bb0010
  article-title: A naive Bayes approach for detecting coordinated attacks
  publication-title: Computer Software and Applications Conference, Annual International 0
– volume: 5
  start-page: 169
  year: 1995
  end-page: 185
  ident: bb0065
  article-title: Performance, workload, and fatigue changes associated with automation
  publication-title: Int. J. Aviat. Psychol.
– volume: 7
  year: 1976
  ident: bb0100
  article-title: On data-limited and resource-limited processes
  publication-title: Cogn. Psychol.
– year: 2007
  ident: bb0115
  article-title: Network intrusion detection using naïve Bayes
– start-page: 99
  year: 2004
  end-page: 108
  ident: bb0005
  article-title: Combining a Bayesian classifier with visualisation: understanding the ids
  publication-title: Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security. VizSEC/DMSEC '04
– volume: 40
  start-page: 79
  year: 1998
  end-page: 91
  ident: bb0055
  article-title: Monitoring working memory load during computer-based tasks with eeg pattern recognition methods
  publication-title: Hum. Factors
– volume: 42
  start-page: 249
  year: 1996
  ident: 10.1016/j.neuroimage.2011.07.094_bb0015
  article-title: Psychophysiology and adaptive automation
  publication-title: Biol. Psychol.
  doi: 10.1016/0301-0511(95)05161-9
– volume: 5
  start-page: 169
  year: 1995
  ident: 10.1016/j.neuroimage.2011.07.094_bb0065
  article-title: Performance, workload, and fatigue changes associated with automation
  publication-title: Int. J. Aviat. Psychol.
  doi: 10.1207/s15327108ijap0502_3
– start-page: 433
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.094_bb0125
  article-title: A naive Bayes classifier for differential diagnosis of long qt syndrome in children
– start-page: 99
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.094_bb0005
  article-title: Combining a Bayesian classifier with visualisation: understanding the ids
– ident: 10.1016/j.neuroimage.2011.07.094_bb0020
– volume: 4
  start-page: 113
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.094_bb0050
  article-title: Neurophysiological measures of cognitive workload during human–computer interaction
– volume: 8
  start-page: 129
  year: 1996
  ident: 10.1016/j.neuroimage.2011.07.094_bb0165
  article-title: On convergence properties of the em algorithm for gaussian mixtures
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.1.129
– year: 2002
  ident: 10.1016/j.neuroimage.2011.07.094_bb0120
  article-title: Bayesian classification model for real-time intrusion detection
– year: 2001
  ident: 10.1016/j.neuroimage.2011.07.094_bb0130
  article-title: An empirical study of the naive Bayes classifier
– volume: 40
  start-page: 79
  year: 1998
  ident: 10.1016/j.neuroimage.2011.07.094_bb0055
  article-title: Monitoring working memory load during computer-based tasks with eeg pattern recognition methods
  publication-title: Hum. Factors
  doi: 10.1518/001872098779480578
– volume: 45
  start-page: 381
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.094_bb0140
  article-title: Operator functional state classification using psychophysiological features in an air traffic control task
  publication-title: Hum. Factors
  doi: 10.1518/hfes.45.3.381.27252
– start-page: 529
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.094_bb0060
  article-title: Paid: a probabilistic agent-based intrusion detection system. computers and security 24(7):529-545
– volume: 10
  start-page: 370
  year: 1958
  ident: 10.1016/j.neuroimage.2011.07.094_bb0075
  article-title: Report of the committee on methods of clinical examination
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(58)90053-1
– volume: Vol. 17
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.094_bb0170
  article-title: The optimality of naive Bayes
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.neuroimage.2011.07.094_bb0025
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 704
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.094_bb0010
  article-title: A naive Bayes approach for detecting coordinated attacks
– volume: 53
  start-page: 141
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.094_bb0155
  article-title: A comparison of performance and psychophysiological classification of complex task performance
  publication-title: Human Factors and Ergonomics Society Annual Meeting Proceedings
  doi: 10.1177/154193120905300301
– year: 2010
  ident: 10.1016/j.neuroimage.2011.07.094_bb0080
– volume: 83
  year: 1976
  ident: 10.1016/j.neuroimage.2011.07.094_bb0105
  article-title: On the analysis of performance operating characteristics
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.83.6.508
– volume: 54
  start-page: 264
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.094_bb0160
  article-title: How does day-to-day variability in psychophysiological data affect classifier accuracy
– volume: 49
  start-page: 1005
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.094_bb0150
  article-title: Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding
  publication-title: Hum. Factors
  doi: 10.1518/001872007X249875
– year: 1997
  ident: 10.1016/j.neuroimage.2011.07.094_bb0030
– volume: 36
  start-page: 991
  year: 1993
  ident: 10.1016/j.neuroimage.2011.07.094_bb0040
  article-title: Comparing the concepts of mental load and stress
  publication-title: Ergonomics
  doi: 10.1080/00140139308967972
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 10.1016/j.neuroimage.2011.07.094_bb0095
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 53
  start-page: 61
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.094_bb0135
  article-title: Evaluation of subjective mental workload: a comparison of swat, nasa-tlx, and workload profile methods
  publication-title: Appl. Psychol. Int. Rev.
  doi: 10.1111/j.1464-0597.2004.00161.x
– volume: 851
  year: 1989
  ident: 10.1016/j.neuroimage.2011.07.094_bb0090
  article-title: Operator workload: comprehensive review and evaluation of operator workload methodologies
– volume: 7
  year: 1976
  ident: 10.1016/j.neuroimage.2011.07.094_bb0100
  article-title: On data-limited and resource-limited processes
  publication-title: Cogn. Psychol.
– start-page: 139
  year: 1988
  ident: 10.1016/j.neuroimage.2011.07.094_bb0070
  article-title: Development of nasa-tlx (task load index): results of empirical and theoretical research
– volume: 50
  start-page: 514
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.094_bb0110
  article-title: A self-analysis of the nasa-tlx workload measure
  publication-title: Ergonomics
  doi: 10.1080/00140130701235232
– volume: 56
  start-page: 171
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.094_bb0035
  article-title: The influence of task demand and learning on the psychophysiological response
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2004.11.003
– year: 2007
  ident: 10.1016/j.neuroimage.2011.07.094_bb0115
– volume: 19
  start-page: 1463
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.094_bb0085
  article-title: EEG-correlated fMRI of human alpha activity
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00286-6
– year: 2006
  ident: 10.1016/j.neuroimage.2011.07.094_bb0045
– volume: 45
  start-page: 635
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.094_bb0145
  article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks
  publication-title: Hum. Factors
  doi: 10.1518/hfes.45.4.635.27088
SSID ssj0009148
Score 2.381009
Snippet Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and trained for each human subject. In this paper...
Most of the current EEG-based workload classifiers aresubject-specific; that is, a new classifier is built and trained for each human subject. In this paper we...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural network
Bayes Theorem
Bayesian analysis
EEG
Electroencephalography
Female
Hierarchical Bayes model
Humans
Male
Methods
Models, Theoretical
Neural networks
Normal distribution
Pattern Recognition, Automated - methods
Studies
Task Performance and Analysis
Workload - classification
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iQbyIb-uLHLyu3UeeeNKiFKFeVPAW0iQLFW3Ftgcv_nZnstmKh0LB4-5mljCTmXyTzIOQCymG4BVwn3FVg4MivAad8z6Tqi5rgMteWEwUHjyI_jO7f-Eva6TX5sJgWGWy_Y1Nj9Y6vekmbnY_RqPuIyAD2G7A3ygAJwAyxwx2JnGVX37_hnnogjXpcLzKcHSK5mlivGLNyNE7aG4q5ikvc82WbVHLIGjciu62yVbCkPS6meYOWQvjXbIxSLfke-S2h__NpvMhHrJQDL16m1hPHSJlDA2K0qB4BEstxWbY8ToBpEVv7FeY0tgeZ588390-9fpZapeQOabzWWZrZ_PCu1w6WbuKae9YgYDHOfA7cgdIocTqLkKUIQisY8YEtwH2o2GQAOuqA7I-nozDEaHKe-VB-3VdBqYcjCoq7qywlcp9XfIOkS2HjEu1xLGlxZtpg8ZezS9vDfLW5NIAbzukWFB-NPU0VqDRrRBMmy8KFs6A0V-B9mpB-2ddrUh92srcJN2eGqzJCCCHV3mH0MVn0Eq8arHjMJlPjdJKsQK8xeVDNKAlycG56ZDDZjUtGFLGKoOiOv7X5E_IJjyV8byoPCXrs895OAMENRueRxX5AYq0Gcs
  priority: 102
  providerName: Elsevier
Title Cross-subject workload classification with a hierarchical Bayes model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811911009086
https://dx.doi.org/10.1016/j.neuroimage.2011.07.094
https://www.ncbi.nlm.nih.gov/pubmed/21867763
https://www.proquest.com/docview/1506853530
https://www.proquest.com/docview/898841862
https://www.proquest.com/docview/902375772
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCb6AIZdhnXPbF2gw67u_NDL6KFoixTpigbDsAK5CYokAxu6pJuTwy797SVlOTllyMkHi7ZBmtJHivoI8FnJGUYFwmdCNxigSF-jz3mfKd2UDcJlLy0dFL6dyPEd_zoV05Rwa1NZZT8nxonaLxzlyL8QEx4uLaLKzx7-ZNQ1inZXUwuNfTgk6jIq6VJTtSHdLXh3FE5UmcYBqZKnq--KfJE_f6PXJiJPdZLXfNvytA1-xmXo6iW8SPiRnXcGP4K9MH8Fz27TDvlrGF3Sc7N2NaMEC6Oyq_uF9cwRSqayoGgJRulXZhk1wo5bCWgpdmH_hZbF1jhv4O5q9ONynKVWCZnjdb7MbONsXniXK6caV_HaO14Q2HEOY47cIUooidlFyjIESRxmXAobcC2aBYWQrnoLB_PFPLwHpr3XHj2_bsrAtcNRRSWclbbSuW9KMQDVa8i4xCNO7SzuTV8w9stsdGtItyZXBnU7gGIt-dBxaewgU_dGMP1ZUZzdDE74O8iermUTnuhwwo7Sx73NTfLr1mz-wgGw9W30SNpmsfOwWLVG11rzAiPF7UNqREpKYGAzgHfd37RWSBkZBmX14f-v_wjP8VvLmAwqj-Fg-XcVPiE8Ws6GsH_yWAyjJwzh8Pz6ZjzB68Vo8u37E7PaEoQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuFW9SCvgAx4Vdr1-rCiFaUqW0iRBqpd6MY3slUEkKm6jqn-I3MrOP5BSUS8-7412NxzPf2ONvAN5oNcGsQIZEmhITFBUKXHMhJNqUvES4HJSji8KjsRqeiy8X8mIL_nZ3YaissvOJtaMOM0975O-JCQ9Di8zTj1e_E-oaRaerXQuNxixO4s01pmzVh-PPOL9vOT8anB0Ok7arQOJFkc4TV3qXZsGn2uvS56IIXmSEC7xHeJ56DKicSFCU4jEqovsSSrqIbnsSNaKfHMe9A9six1SmB9sHg_HXbyua30w0l-9knpgsK9raoaairGao_PEL_URLHarfpYVYFxDXAd468B09gJ0WsbJPjYk9hK04fQR3R-2Z_GMYHNK4SbWY0JYOo0Kvy5kLzBMup0Kkeu4Zbfgyx6j1dn14gbbBDtxNrFjdjOcJnN-KGp9CbzqbxufATAgmoK8pSh6F8fhWlkvvlMtNGkou-6A7DVnfMpdTA41L25Wo_bQr3VrSrU21Rd32IVtKXjXsHRvIFN0k2O52KvpTiyFmA9n9pWyLYBpksqH0XjfntvUklV3ZfR_Y8jH6ADrYcdM4W1TWFMaIDHPT9a8UiM20xFSqD88aa1oqhNechirf_f_nX8O94dno1J4ej09ewH38b15vRfE96M3_LOJLBGfzyat2RTD4ftuL8B89P0rV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcUHk2UGAPcDS1196XKoSgbdRSWnGgUm7LZnctgUpScKKqf62_jhl7nZyCcuk5Hjuancc3u7PfALxVcoxVgQiZ0DUWKDIY9LkQMqVrXiNcDtLRReGzc3l8UX0ZidEG3PZ3Yaitso-JbaAOU0975HvEhIepRZT5Xp3aIr4dDj9e_cloghSdtPbjNDoTOY0311i-NR9ODnGt33E-PPp-cJylCQOZr0w-y1ztXV4Enyuval9WJviqIIzgPUL13GNy5USIIiWPURL1VyWFixjCx1EhEirxvffgvipFQT6mRmpJ-FtU3TU8UWa6KEzqIup6y1quyp-_MWIkElH1PjfVqtS4Cvq2KXC4DQ8TdmWfOmN7BBtx8hi2ztLp_BM4OqD3Zs18TJs7jFq-LqcuME8InVqSWitgtPXLHKMh3O0xBloJ--xuYsPasTxP4eJOlPgMNifTSdwBpkPQAaOOqXmstMenilJ4J12p81BzMQDVa8j6xGFOozQubd-s9ssudWtJtzZXFnU7gGIhedXxeKwhY_pFsP09VYysFpPNGrL7C9mEZTqMsqb0br_mNsWUxi49YABs8TNGAzricZM4nTdWG62rAqvU1Y8YRGlKYFE1gOedNS0Uwlt2Q1m--P_n38AWup79enJ--hIe4N_m7Z4U34XN2d95fIUobTZ-3boDgx937X__AAn0TaU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+workload+classification+with+a+hierarchical+Bayes+model&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wang%2C+Ziheng&rft.au=Hope%2C+Ryan+M.&rft.au=Wang%2C+Zuoguan&rft.au=Ji%2C+Qiang&rft.date=2012-01-02&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=59&rft.issue=1&rft.spage=64&rft.epage=69&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.094&rft.externalDocID=S1053811911009086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon