Femoral and acetabular features explain acetabular contact pressure sensitivity to hip internal rotation in persons with cam morphology: A finite element analysis

Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have be...

Full description

Saved in:
Bibliographic Details
Published inClinical biomechanics (Bristol) Vol. 107; p. 106025
Main Authors Cannon, Jordan, Rankin, Jeffery W., Lewton, Kristi L., Liu, Jia, Powers, Christopher M.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology. Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure. The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables. Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology. •Bony features beyond cam morphology may influence femoroacetabular impingement.•Subject-specific finite element models were derived from computed tomography scans.•Load and posture were controlled to investigate the influence of bony morphology.•Multiple morphological features modulate loading in femoroacetabular impingement.•Femoral neck-shaft, acetabular anteversion and inclination angle were key variables.
AbstractList Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology. Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure. The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables. Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology. •Bony features beyond cam morphology may influence femoroacetabular impingement.•Subject-specific finite element models were derived from computed tomography scans.•Load and posture were controlled to investigate the influence of bony morphology.•Multiple morphological features modulate loading in femoroacetabular impingement.•Femoral neck-shaft, acetabular anteversion and inclination angle were key variables.
Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology. Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure. The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables. Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology.
Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology.BACKGROUNDFemoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology.Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure.METHODSTwenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure.The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables.FINDINGSThe stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables.Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology.INTERPRETATIONMechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology.
AbstractBackgroundFemoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology. MethodsTwenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure. FindingsThe stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables. InterpretationMechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology.
ArticleNumber 106025
Author Powers, Christopher M.
Rankin, Jeffery W.
Lewton, Kristi L.
Cannon, Jordan
Liu, Jia
Author_xml – sequence: 1
  givenname: Jordan
  surname: Cannon
  fullname: Cannon, Jordan
  organization: Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: Jeffery W.
  surname: Rankin
  fullname: Rankin, Jeffery W.
  organization: Rancho Research Institute, Rehabilitation Engineering Program, Downey, CA, USA
– sequence: 3
  givenname: Kristi L.
  surname: Lewton
  fullname: Lewton, Kristi L.
  organization: Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
– sequence: 4
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
– sequence: 5
  givenname: Christopher M.
  surname: Powers
  fullname: Powers, Christopher M.
  email: powers@pt.usc.edu
  organization: Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37302302$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vEzEQtVARTQt_AZkblwR_ZL27HEBRRAtSJQ7A2fJ6x8TBay-2t5C_wy-tV2mlqhJSLrY0896b0Xtzgc588IDQG0pWlFDxbr_SzvrOhgH0bsUI46UuCKueoQVt6nZJWU3P0IIw0SwJ4fwcXaS0J4SsWVW_QOe85oVE2AL9u4IhROWw8j1WGrLqJqciNqDyFCFh-Ds6Zf3jng4-K53xWPqpgHACn2y2tzYfcA54Z0dsfYboi24MWWUbfKngEWIKPuE_Nu-wVgMuo8ddcOHn4T3eYGO9zYDBwQA-l42UOySbXqLnRrkEr-7_S_Tj6tP37eflzdfrL9vNzVKvW5KXyggjoK4a0wrOe96A6SretVyLVnSiUmLN644pBuWpuehUUxlidF9ophItv0Rvj7pjDL8nSFkONmlwTnkIU5KsYRWtWto2Bfr6Hjp1A_RyjHZQ8SAffC2Aj0eAjiGlCEZqe_QhR2WdpETOScq9fJSknJOUxySLQvtE4WHIKdztkQvFrlsLUSZtwWvobQSdZR_sSSofnqjMSKuV-wUHSPswzQEnSWVikshv87XNx1YMILQSpAhs_i9w4hJ3guTvXg
CitedBy_id crossref_primary_10_1007_s12008_024_01865_4
crossref_primary_10_1016_j_jhevol_2024_103633
crossref_primary_10_1016_j_jbiomech_2025_112568
Cites_doi 10.1017/pab.2020.46
10.1302/0301-620X.91B1.21329
10.1016/j.arthro.2019.07.025
10.1016/j.arthro.2017.03.018
10.1177/2325967120938312
10.1016/S0264-9993(99)00034-6
10.1002/jor.20747
10.1177/0363546516669325
10.1007/s11999-014-4084-x
10.1007/s11548-015-1303-1
10.1097/01.blo.0000096804.78689.c2
10.1007/s11999-012-2539-5
10.1177/0363546517726983
10.1016/j.joca.2013.11.007
10.1016/S0021-9290(01)00040-9
10.1080/10255842.2012.744398
10.1016/S0140-6736(18)31202-9
10.1136/annrheumdis-2012-201643
10.1177/0363546519897273
10.1302/0301-620X.87B7.15203
10.1177/0363546513488861
10.1136/bjsports-2016-096743
10.26603/ijspt20190514
10.1148/radiol.2403050767
10.1115/1.2953472
10.1016/S1063-4584(03)00075-X
10.1016/j.arthro.2019.09.035
10.1007/s11548-010-0521-9
10.1016/j.pmrj.2012.03.012
10.1007/s00256-010-1065-3
10.1115/1.2794181
10.3389/fsurg.2015.00058
10.1007/s11420-012-9292-x
10.2106/JBJS.K.01664
10.1007/s00330-016-4530-0
10.1136/bjsports-2016-096936
10.1302/0301-620X.84B4.0840556
10.1097/RCT.0000000000000161
10.1136/bmj.h2622
10.1177/0363546518786971
10.1177/2325967117708307
10.1177/2325967120958699
10.1097/CORR.0000000000000528
10.2106/JBJS.M.01320
10.1177/0363546511414635
10.2106/JBJS.17.00376
10.2106/00004623-200302000-00015
10.1177/230949901101900109
10.1115/1.1894148
10.1007/s11999-014-4104-x
10.1249/MSS.0000000000002721
10.1302/0301-620X.97B4.34577
10.3928/01477447-20130222-17
10.1007/s11999-014-4037-4
10.1016/j.mri.2012.05.001
10.1007/s11999-014-3797-1
10.1007/s11999-012-2509-y
10.1007/s11999-008-0627-3
10.1002/jor.22040
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.clinbiomech.2023.106025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-1271
EndPage 106025
ExternalDocumentID 37302302
10_1016_j_clinbiomech_2023_106025
S0268003323001560
1_s2_0_S0268003323001560
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
H~9
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
QZG
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UAP
UPT
WH7
WUQ
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c490t-af6f6e758f9633d38efb53b93c696b65a6437b2a2eb2a736ba85f0fcd6f6f5693
IEDL.DBID .~1
ISSN 0268-0033
1879-1271
IngestDate Fri Jul 11 11:26:13 EDT 2025
Mon Jul 21 05:32:42 EDT 2025
Tue Jul 01 01:24:41 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Tue Dec 03 03:45:29 EST 2024
Tue Feb 25 19:54:30 EST 2025
Tue Aug 26 16:34:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Finite element analysis
Hip internal rotation
Femoral and acetabular morphology
Cam morphology
Femoroacetabular impingement
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-af6f6e758f9633d38efb53b93c696b65a6437b2a2eb2a736ba85f0fcd6f6f5693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37302302
PQID 2825159198
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2825159198
pubmed_primary_37302302
crossref_citationtrail_10_1016_j_clinbiomech_2023_106025
crossref_primary_10_1016_j_clinbiomech_2023_106025
elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2023_106025
elsevier_clinicalkeyesjournals_1_s2_0_S0268003323001560
elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2023_106025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Clinical biomechanics (Bristol)
PublicationTitleAlternate Clin Biomech (Bristol, Avon)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Lewton, Colletti, Powers (bb0205) 2021; 53
Kuhns, Weber, Levy, Wuerz (bb0185) 2015; 2
Mallets, Turner, Durbin, Bader, Murray (bb0215) 2019; 14
Agricola, Waarsing, Thomas, Carr, Reijman, Bierma-Zeinstra, Glyn-Jones, Weinans, Arden (bb0010) 2014; 22
Ng, Lamontagne, Adamczyk, Rahkra, Beaulé (bb0240) 2015; 473
Mascarenhas, Rego, Dantas, Gaspar, Soldado, Consciência (bb0220) 2017; 27
Ng, Mantovani, Lamontagne, Labrosse, Beaule (bb0245) 2019; 477
Emara, Samir, Motasem, Ghafar (bb0115) 2011; 19
Bouma, Hogervorst, Audenaert, Krekel, van Kampen (bb0075) 2015; 473
Bedi, Dolan, Hetsroni, Magennis, Lipman, Buly, Kelly (bb0050) 2011; 39
Bland, Altman (bb0065) 2015; 350
Notzli, Wyss, Stoecklin, Schmid, Treiber, Hodler (bb0250) 2002; 84-B
Philippon, Briggs, Yen, Kuppersmith, Philippon, Surgeon, Briggs, Yen (bb0275) 2009; 91
Anderson, Kapron, Aoki, Peters (bb0025) 2012; 470
Liu, Ecker, Schumann, Siebenrock, Zheng (bb0200) 2016; 11
Hellwig, Tong, Hussell (bb0160) 2015; 5842
Thorborg, Kraemer, Madsen, Hölmich (bb0310) 2018; 46
Grammatopoulos, Speirs, Ng, Riviere, Rakhra, Lamontagne, Beaule (bb0140) 2018; 1–9
Siebenrock, Schroeniger, Ganz (bb0305) 2003; 85
Fujii, Nakamura, Hara, Nakashima, Iwamoto (bb0125) 2015; 473
Lerch, Todorski, Steppacher, Schmaranzer, Werlen, Siebenrock, Tannast (bb0190) 2018; 46
Kraeutler, Chadayammuri, Garabekyan, Mei-Dan (bb0180) 2018; 100
Bishop, Cuff, Hutchinson (bb0060) 2021; 47
van Klij, Reiman, Waarsing, Reijman, Bramer, Verhaar, Agricola (bb0315) 2020; 8
Nepple, Lehmann, Ross, Schoenecker, Clohisy (bb0225) 2013; 95
Kemp (bb0175) 2020; 36
Wagner, Hofstetter, Chiquet, Mainil-Varlet, Stauffer, Ganz, Siebenrock (bb0320) 2003; 11
Nepple, Riggs, Ross, Clohisy (bb0230) 2014; 96
Goldman, Land, Adsit, Balazs (bb0135) 2020; 8
Rakhra, Sheikh, Allen, Beaulé (bb0285) 2009; 467
Clohisy, Baca, Beaulé, Kim, Larson, Millis, Podeszwa, Schoenecker, Sierra, Sink, Sucato, Trousdale, Zaltz (bb0085) 2013; 41
Peters, Laing, Emerson, Mutchler, Joyce, Thorborg, Hölmich, Reiman (bb0265) 2017; 51
Hunt, Prather, Harris Hayes, Clohisy (bb0165) 2012; 4
Chegini, Beck, Ferguson (bb0080) 2009; 27
Boone, Pagnotto, Walker, Trousdale, Sierra (bb0070) 2012; 470
Pfirrmann, Mengiardi, Dora, Kalberer, Zanetti, Hodler (bb0270) 2006; 240
Rhee, Le Francois, Byrd, Glazebrook, Wong (bb0290) 2017; 5
Assassi, Magnenat-Thalmann (bb0035) 2016; 11
Dwyer, Whelan, Shah, Ajrawat, Hoit, Chahal (bb0105) 2020; 36
Bagwell, Powers (bb0040) 2017; 33
Diesel, Ribeiro, Coussirat, Scheidt, Macedo, Galia (bb0100) 2015; 97-B
Beck, Kalhor, Leunig, Ganz, Surgeon (bb0045) 2005; 87
R Core Team (bb0280) 2021
Ganz, Parvizi, Beck, Leunig, Notzli, Siebenrock (bb0130) 2003; 417
Harris, Anderson, Henak, Ellis, Peters, Weiss (bb0155) 2012; 30
Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka, Buatti, Aylward, Miller, Pieper, Kikinis (bb0120) 2012; 30
Ross, Tannenbaum, Nepple, Kelly, Larson, Bedi (bb0295) 2015; 473
Griffin, Dickenson, Wall, Achana, Donovan, Griffin, Hobson, Hutchinson, Jepson, Parsons, Petrou, Realpe, Smith, Foster, Stevens, Gemperle-Mannion, Brown, Philippon, Beck, O’Donnell, Robinson, Hughes, Hunter, Bennell, Bache, McBryde, Politis, Bankes, George, Bartlett, Norton, Board, Mohammed, Rajpura, Cronin, Dandachli, Witt, Eastaugh-Waring, Fehily, Fern, Field, Stafford, Hashemi-Nejad, Khan, Kavathapu, Kiely, Whitaker, Latimer, Madan, Malviya, Patil, Ramachandran, Sturridge, Thomas, White, Wilson, Williams, Jones, Baker, Stanton, Nicholls, Smeatham, Gosling, MacFarlane, Pressdee, Dickinson, Boulton, Goss, Venter, Kassam, Simmons, Poll, Bergmann, Pilkington, Armstrong, Wright, Dolphin, Bainbridge, Callum, Lewis, Smith, Cornes, Benfield, Monnington, Stewart, Borrill, Pinches, Dawson, Harding, Willis, Moore, MacCauley, Cooke, Fleck, Ball, Morrison, Kennedy, Turner, Bryant, Harris, McKeown, Clarkson, Lewis, Rowland-Axe, Grice, Githens-Mazer, Aughwan, Moore, Keeling, Amero, Atkinson, Graves, Fouracres, Hammonds, Curtis, Brackenridge, Taylor, Dobb, Whitworth, Commey, Limbani, Maclintock, Milne, Cleary, Murray, Dubia, Gokturk, Bray (bb0150) 2018; 391
Lerch, Siegfried, Schmaranzer, Leibold, Zurmühle, Hanke, Ryan, Steppacher, Siebenrock, Tannast (bb0195) 2020; 48
Anderson, Peters, Tuttle, Weiss (bb0015) 2005; 127
Griffin, Dickenson, O’Donnell, Agricola, Awan, Beck, Clohisy, Dijkstra, Falvey, Gimpel, Hinman, Hölmich, Kassarjian, Martin, Martin, Mather, Philippon, Reiman, Takla, Thorborg, Walker, Weir, Bennell (bb0145) 2016; 50
Lubovsky, Peleg, Joskowicz, Liebergall, Khoury (bb0210) 2010; 5
Nwachukwu, Fields, Chang, Nawabi, Kelly, Ranawat (bb0255) 2017; 45
Anderson, Ellis, Maas, Peters, Weiss (bb0020) 2008; 130
Ng, Rouhi, Lamontagne, Beaulé (bb0235) 2012; 8
Bergmann, Deuretzabacher, Heller, Graichen, Rohlmann, Strauss, Duda (bb0055) 2001; 34
Ohtani (bb0260) 2000; 17
Sangeux, Pascoe, Kerr Graham, Ramanauskas, Cain (bb0300) 2015; 39
Dalstra, Huiskes, van Erning (bb0090) 1995; 117
Dandachli, Ul Islam, Tippett, Hall-Craggs, Witt (bb0095) 2011; 40
Agricola, Heijboer, Bierma-Zeinstra, Verhaar, Weinans, Waarsing (bb0005) 2013; 72
Ejnisman, Philippon, Lertwanich, Pennock, Herzog, Briggs, Ho (bb0110) 2013; 36
Jorge, Simões, Pires, Rego, Tavares, Lopes, Gaspar (bb0170) 2014
Nepple (10.1016/j.clinbiomech.2023.106025_bb0230) 2014; 96
Diesel (10.1016/j.clinbiomech.2023.106025_bb0100) 2015; 97-B
Fujii (10.1016/j.clinbiomech.2023.106025_bb0125) 2015; 473
Clohisy (10.1016/j.clinbiomech.2023.106025_bb0085) 2013; 41
Dandachli (10.1016/j.clinbiomech.2023.106025_bb0095) 2011; 40
Bishop (10.1016/j.clinbiomech.2023.106025_bb0060) 2021; 47
Pfirrmann (10.1016/j.clinbiomech.2023.106025_bb0270) 2006; 240
Emara (10.1016/j.clinbiomech.2023.106025_bb0115) 2011; 19
Kraeutler (10.1016/j.clinbiomech.2023.106025_bb0180) 2018; 100
Grammatopoulos (10.1016/j.clinbiomech.2023.106025_bb0140) 2018; 1–9
Liu (10.1016/j.clinbiomech.2023.106025_bb0200) 2016; 11
Liu (10.1016/j.clinbiomech.2023.106025_bb0205) 2021; 53
Jorge (10.1016/j.clinbiomech.2023.106025_bb0170) 2014
Sangeux (10.1016/j.clinbiomech.2023.106025_bb0300) 2015; 39
Philippon (10.1016/j.clinbiomech.2023.106025_bb0275) 2009; 91
Rhee (10.1016/j.clinbiomech.2023.106025_bb0290) 2017; 5
Agricola (10.1016/j.clinbiomech.2023.106025_bb0005) 2013; 72
Bedi (10.1016/j.clinbiomech.2023.106025_bb0050) 2011; 39
Hunt (10.1016/j.clinbiomech.2023.106025_bb0165) 2012; 4
Ganz (10.1016/j.clinbiomech.2023.106025_bb0130) 2003; 417
Bagwell (10.1016/j.clinbiomech.2023.106025_bb0040) 2017; 33
Dalstra (10.1016/j.clinbiomech.2023.106025_bb0090) 1995; 117
Mallets (10.1016/j.clinbiomech.2023.106025_bb0215) 2019; 14
Goldman (10.1016/j.clinbiomech.2023.106025_bb0135) 2020; 8
Lubovsky (10.1016/j.clinbiomech.2023.106025_bb0210) 2010; 5
Notzli (10.1016/j.clinbiomech.2023.106025_bb0250) 2002; 84-B
Ng (10.1016/j.clinbiomech.2023.106025_bb0240) 2015; 473
Nwachukwu (10.1016/j.clinbiomech.2023.106025_bb0255) 2017; 45
Griffin (10.1016/j.clinbiomech.2023.106025_bb0150) 2018; 391
Mascarenhas (10.1016/j.clinbiomech.2023.106025_bb0220) 2017; 27
Siebenrock (10.1016/j.clinbiomech.2023.106025_bb0305) 2003; 85
Thorborg (10.1016/j.clinbiomech.2023.106025_bb0310) 2018; 46
Anderson (10.1016/j.clinbiomech.2023.106025_bb0020) 2008; 130
Hellwig (10.1016/j.clinbiomech.2023.106025_bb0160) 2015; 5842
Beck (10.1016/j.clinbiomech.2023.106025_bb0045) 2005; 87
Ohtani (10.1016/j.clinbiomech.2023.106025_bb0260) 2000; 17
Bland (10.1016/j.clinbiomech.2023.106025_bb0065) 2015; 350
Anderson (10.1016/j.clinbiomech.2023.106025_bb0015) 2005; 127
Assassi (10.1016/j.clinbiomech.2023.106025_bb0035) 2016; 11
Nepple (10.1016/j.clinbiomech.2023.106025_bb0225) 2013; 95
Wagner (10.1016/j.clinbiomech.2023.106025_bb0320) 2003; 11
Bouma (10.1016/j.clinbiomech.2023.106025_bb0075) 2015; 473
Griffin (10.1016/j.clinbiomech.2023.106025_bb0145) 2016; 50
Ng (10.1016/j.clinbiomech.2023.106025_bb0235) 2012; 8
Lerch (10.1016/j.clinbiomech.2023.106025_bb0190) 2018; 46
Kemp (10.1016/j.clinbiomech.2023.106025_bb0175) 2020; 36
Anderson (10.1016/j.clinbiomech.2023.106025_bb0025) 2012; 470
Rakhra (10.1016/j.clinbiomech.2023.106025_bb0285) 2009; 467
Bergmann (10.1016/j.clinbiomech.2023.106025_bb0055) 2001; 34
Chegini (10.1016/j.clinbiomech.2023.106025_bb0080) 2009; 27
Ng (10.1016/j.clinbiomech.2023.106025_bb0245) 2019; 477
van Klij (10.1016/j.clinbiomech.2023.106025_bb0315) 2020; 8
Dwyer (10.1016/j.clinbiomech.2023.106025_bb0105) 2020; 36
Boone (10.1016/j.clinbiomech.2023.106025_bb0070) 2012; 470
Peters (10.1016/j.clinbiomech.2023.106025_bb0265) 2017; 51
Ejnisman (10.1016/j.clinbiomech.2023.106025_bb0110) 2013; 36
R Core Team (10.1016/j.clinbiomech.2023.106025_bb0280) 2021
Ross (10.1016/j.clinbiomech.2023.106025_bb0295) 2015; 473
Agricola (10.1016/j.clinbiomech.2023.106025_bb0010) 2014; 22
Lerch (10.1016/j.clinbiomech.2023.106025_bb0195) 2020; 48
Fedorov (10.1016/j.clinbiomech.2023.106025_bb0120) 2012; 30
Harris (10.1016/j.clinbiomech.2023.106025_bb0155) 2012; 30
Kuhns (10.1016/j.clinbiomech.2023.106025_bb0185) 2015; 2
References_xml – volume: 4
  start-page: 479
  year: 2012
  end-page: 487
  ident: bb0165
  article-title: Clinical outcomes analysis of conservative and surgical treatment of patients with clinical indications of prearthritic, intra-articular hip disorders
  publication-title: PM R
– volume: 1–9
  year: 2018
  ident: bb0140
  article-title: Acetabular and spino-pelvic morphologies are different in subjects with symptomatic cam femoro-acetabular impingement
  publication-title: J. Orthop. Res.
– volume: 46
  start-page: 2607
  year: 2018
  end-page: 2614
  ident: bb0310
  article-title: Patient-reported outcomes within the first year after hip arthroscopy and rehabilitation for femoroacetabular impingement and/or labral injury: the difference between getting better and getting back to normal
  publication-title: Am. J. Sports Med.
– volume: 36
  start-page: 263
  year: 2020
  end-page: 273
  ident: bb0105
  article-title: Operative versus nonoperative treatment of femoroacetabular impingement syndrome: a meta-analysis of short-term outcomes
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
– volume: 470
  start-page: 3375
  year: 2012
  end-page: 3382
  ident: bb0025
  article-title: Coxa profunda: is the deep acetabulum overcovered?
  publication-title: Clin. Orthop. Relat. Res.
– volume: 46
  start-page: 122
  year: 2018
  end-page: 134
  ident: bb0190
  article-title: Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: a controlled study of 538 hips
  publication-title: Am. J. Sports Med.
– volume: 39
  start-page: 83
  year: 2015
  end-page: 85
  ident: bb0300
  article-title: Three-dimensional measurement of femoral neck anteversion and neck shaft angle
  publication-title: J. Comput. Assist. Tomogr.
– volume: 477
  start-page: 1053
  year: 2019
  end-page: 1063
  ident: bb0245
  article-title: Cam FAI and smaller neck angles increase subchondral bone stresses during squatting: a finite element analysis
  publication-title: Clin. Orthop. Relat. Res.
– volume: 467
  start-page: 660
  year: 2009
  end-page: 665
  ident: bb0285
  article-title: Comparison of MRI alpha angle measurement planes in femoroacetabular impingement
  publication-title: Clin. Orthop. Relat. Res.
– volume: 95
  start-page: 417
  year: 2013
  end-page: 423
  ident: bb0225
  article-title: Coxa profunda is not a useful radiographic parameter for diagnosing pincer-type femoroacetabular impingement
  publication-title: J. Bone Joint Surg. A
– volume: 85
  start-page: 278
  year: 2003
  end-page: 286
  ident: bb0305
  article-title: Anterior femoro-acetabular impingement due to acetabular retroversion: treatment with periacetabular osteotomy
  publication-title: J. Bone Joint Surg. Am.
– volume: 391
  start-page: 2225
  year: 2018
  end-page: 2235
  ident: bb0150
  article-title: Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHIoN): a multicentre randomised controlled trial
  publication-title: Lancet
– volume: 417
  start-page: 112
  year: 2003
  end-page: 120
  ident: bb0130
  article-title: Femoroacetabular impingement: a cause for osteoarthritis of the hip
  publication-title: Clin. Orthop. Relat. Res.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0315
  article-title: Classifying cam morphology by the alpha angle: a systematic review on threshold values
  publication-title: Orthop. J. Sports Med.
– volume: 14
  start-page: 514
  year: 2019
  end-page: 524
  ident: bb0215
  article-title: Short-term outcomes of conservative treatment for femoroacetabular impingement: a systematic review and meta-analysis
  publication-title: Int. J. Sports Phys. Ther.
– volume: 72
  start-page: 918
  year: 2013
  end-page: 923
  ident: bb0005
  article-title: Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK)
  publication-title: Ann. Rheum. Dis.
– volume: 5
  start-page: 449
  year: 2010
  end-page: 454
  ident: bb0210
  article-title: Acetabular orientation variability and symmetry based on CT scans of adults
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 473
  start-page: 1267
  year: 2015
  end-page: 1273
  ident: bb0295
  article-title: Functional acetabular orientation varies between supine and standing radiographs: implications for treatment of femoroacetabular impingement
  publication-title: Clin. Orthop. Relat. Res.
– volume: 40
  start-page: 877
  year: 2011
  end-page: 883
  ident: bb0095
  article-title: Analysis of acetabular version in the native hip: comparison between 2D axial CT and 3D CT measurements
  publication-title: Skelet. Radiol.
– volume: 11
  start-page: 508
  year: 2003
  end-page: 518
  ident: bb0320
  article-title: Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement
  publication-title: Osteoarthr. Cartil.
– volume: 22
  start-page: 218
  year: 2014
  end-page: 225
  ident: bb0010
  article-title: Cam impingement: defining the presence of a cam deformity by the alpha angle: data from the CHECK cohort and Chingford cohort
  publication-title: Osteoarthr. Cartil.
– volume: 11
  start-page: 745
  year: 2016
  end-page: 756
  ident: bb0035
  article-title: Assessment of cartilage contact pressure and loading in the hip joint during split posture
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 50
  start-page: 1169
  year: 2016
  end-page: 1176
  ident: bb0145
  article-title: The Warwick agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement
  publication-title: Br. J. Sports Med.
– volume: 39
  start-page: 43S
  year: 2011
  end-page: 49S
  ident: bb0050
  article-title: Surgical treatment of femoroacetabular impingement improves hip kinematics
  publication-title: Am. J. Sports Med.
– volume: 30
  start-page: 1133
  year: 2012
  end-page: 1139
  ident: bb0155
  article-title: Finite element prediction of cartilage contact stresses in normal human hips
  publication-title: J. Orthop. Res.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 6
  ident: bb0135
  article-title: Hip stability may influence the development of greater trochanteric pain syndrome: a case-control study of consecutive patients
  publication-title: Orthop. J. Sports Med.
– volume: 27
  start-page: 2011
  year: 2017
  end-page: 2023
  ident: bb0220
  article-title: Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects
  publication-title: Eur. Radiol.
– volume: 100
  start-page: 205
  year: 2018
  end-page: 210
  ident: bb0180
  article-title: Femoral version abnormalities significantly outweigh effect of cam impingement on hip internal rotation
  publication-title: J. Bone Joint Surg. Am.
– volume: 45
  start-page: 612
  year: 2017
  end-page: 619
  ident: bb0255
  article-title: Preoperative outcome scores are predictive of achieving the minimal clinically important difference after arthroscopic treatment of femoroacetabular impingement
  publication-title: Am. J. Sports Med.
– volume: 51
  start-page: 1605
  year: 2017
  end-page: 1610
  ident: bb0265
  article-title: Surgical criteria for femoroacetabular impingement syndrome: a scoping review
  publication-title: Br. J. Sports Med.
– volume: 33
  start-page: 1797
  year: 2017
  end-page: 1803
  ident: bb0040
  article-title: The influence of squat kinematics and cam morphology on acetabular stress
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
– volume: 2
  year: 2015
  ident: bb0185
  article-title: The natural history of femoroacetabular impingement
  publication-title: Front. Surg.
– volume: 117
  start-page: 272
  year: 1995
  end-page: 278
  ident: bb0090
  article-title: Development and validation of a three-dimensional finite element model of the pelvic bone
  publication-title: J. Biomech. Eng.
– volume: 470
  start-page: 3368
  year: 2012
  end-page: 3374
  ident: bb0070
  article-title: Radiographic features associated with differing impinging hip morphologies with special attention to coxa profunda
  publication-title: Clin. Orthop. Relat. Res.
– volume: 87
  start-page: 1012
  year: 2005
  end-page: 1018
  ident: bb0045
  article-title: Hip morphology influences the pattern of damage to the acetabular cartilage. Femoroacetabular impingement as a cause of early osteoarthritis of the hip
  publication-title: J. Bone Joint Surg. (Br.)
– volume: 11
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0200
  article-title: Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy
  publication-title: PLoS One
– year: 2021
  ident: bb0280
  article-title: R: A Language and Environment for Statistical Computing
– volume: 47
  start-page: 1
  year: 2021
  end-page: 38
  ident: bb0060
  article-title: How to build a dinosaur: musculoskeletal modeling and simulation of locomotor biomechanics in extinct animals
  publication-title: Paleobiology
– volume: 240
  start-page: 778
  year: 2006
  end-page: 785
  ident: bb0270
  article-title: Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients
  publication-title: Radiology
– volume: 36
  start-page: 293
  year: 2013
  end-page: 300
  ident: bb0110
  article-title: Relationship between femoral anteversion and findings in hips with femoroacetabular impingement
  publication-title: Orthopedics
– volume: 36
  start-page: 274
  year: 2020
  end-page: 276
  ident: bb0175
  article-title: Editorial commentary: a commentary on a meta-analysis of short-term outcomes
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
– volume: 97-B
  start-page: 478
  year: 2015
  end-page: 483
  ident: bb0100
  article-title: Coxa profunda in the diagnosis of pincertype femoroacetabular impingement and its prevalence in asymptomatic subjects
  publication-title: Bone Joint J.
– volume: 53
  start-page: 2346
  year: 2021
  end-page: 2353
  ident: bb0205
  article-title: Hip adduction during running: influence of sex, hip abductor strength and activation, and pelvis and femur morphology
  publication-title: Med. Sci. Sports Exerc.
– volume: 5842
  start-page: 1
  year: 2015
  end-page: 8
  ident: bb0160
  article-title: Hip joint degeneration due to cam impingement: a finite element analysis
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 5
  year: 2017
  ident: bb0290
  article-title: Radiographic diagnosis of pincer-type femoroacetabular impingement: a systematic review
  publication-title: Orthop. J. Sports Med.
– volume: 30
  start-page: 13223
  year: 2012
  end-page: 13241
  ident: bb0120
  article-title: 3D slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn. Reson. Imaging
– volume: 130
  start-page: 1
  year: 2008
  end-page: 10
  ident: bb0020
  article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint
  publication-title: J. Biomech. Eng.
– volume: 473
  start-page: 1396
  year: 2015
  end-page: 1403
  ident: bb0075
  article-title: Can combining femoral and acetabular morphology parameters improve the characterization of femoroacetabular impingement?
  publication-title: Clin. Orthop. Relat. Res.
– volume: 34
  start-page: 859
  year: 2001
  end-page: 871
  ident: bb0055
  article-title: Hip contact forces and gait patterns from routine activities
  publication-title: J. Biomech.
– volume: 473
  start-page: 1289
  year: 2015
  end-page: 1296
  ident: bb0240
  article-title: Patient-specific anatomical and functional parameters provide new insights into the pathomechanism of cam FAI
  publication-title: Clin. Orthop. Relat. Res.
– volume: 127
  year: 2005
  ident: bb0015
  article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies
  publication-title: J. Biomech. Eng.
– volume: 350
  start-page: 2
  year: 2015
  end-page: 3
  ident: bb0065
  article-title: Statistics notes: bootstrap resampling methods
  publication-title: BMJ
– volume: 84-B
  start-page: 556
  year: 2002
  end-page: 560
  ident: bb0250
  article-title: The contour of the femoral head-neck junction as a predictor for the risk of anterior impingment: commentary
  publication-title: J. Bone Joint Surg.
– volume: 96
  start-page: 1683
  year: 2014
  end-page: 1689
  ident: bb0230
  article-title: Clinical presentation and disease characteristics of femoroacetabular impingement are sex-dependent
  publication-title: J. Bone Joint Surg. Am.
– volume: 8
  start-page: 206
  year: 2012
  end-page: 212
  ident: bb0235
  article-title: Finite element analysis examining the effects of cam FAI on hip joint mechanical loading using subject-specific geometries during standing and maximum squat
  publication-title: HSS J.
– volume: 473
  start-page: 2056
  year: 2015
  end-page: 2066
  ident: bb0125
  article-title: Does radiographic coxa profunda indicate increased acetabular coverage or depth in hip dysplasia?
  publication-title: Clin. Orthop. Relat. Res.
– year: 2014
  ident: bb0170
  article-title: Finite element simulations of a hip joint with femoroacetabular impingement
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 27
  start-page: 195
  year: 2009
  end-page: 201
  ident: bb0080
  article-title: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis
  publication-title: J. Orthop. Res.
– volume: 48
  start-page: 661
  year: 2020
  end-page: 672
  ident: bb0195
  article-title: Location of intra- and extra-articular hip impingement is different in patients with pincer-type and mixed-type femoroacetabular impingement due to acetabular retroversion or protrusio acetabuli on 3D CT–based impingement simulation
  publication-title: Am. J. Sports Med.
– volume: 19
  start-page: 41
  year: 2011
  end-page: 45
  ident: bb0115
  article-title: Conservative treatment for mild femoroacetabular impingement
  publication-title: J. Orthop. Surg.
– volume: 41
  start-page: 1348
  year: 2013
  end-page: 1356
  ident: bb0085
  article-title: Descriptive epidemiology of femoroacetabular impingement
  publication-title: Am. J. Sports Med.
– volume: 17
  start-page: 473
  year: 2000
  end-page: 483
  ident: bb0260
  article-title: Bootstrapping R2 and adjusted R2 in regression analysis
  publication-title: Econ. Model.
– volume: 91
  start-page: 16
  year: 2009
  end-page: 23
  ident: bb0275
  article-title: Outcomes following hip arthroscopy for femoroacetabular impingement with associated chondrolabral dysfunction MINIMUM TWO-YEAR FOLLOW-UP
  publication-title: J. Bone Joint Surg. (Br.)
– year: 2021
  ident: 10.1016/j.clinbiomech.2023.106025_bb0280
– volume: 47
  start-page: 1
  year: 2021
  ident: 10.1016/j.clinbiomech.2023.106025_bb0060
  article-title: How to build a dinosaur: musculoskeletal modeling and simulation of locomotor biomechanics in extinct animals
  publication-title: Paleobiology
  doi: 10.1017/pab.2020.46
– volume: 91
  start-page: 16
  year: 2009
  ident: 10.1016/j.clinbiomech.2023.106025_bb0275
  article-title: Outcomes following hip arthroscopy for femoroacetabular impingement with associated chondrolabral dysfunction MINIMUM TWO-YEAR FOLLOW-UP
  publication-title: J. Bone Joint Surg. (Br.)
  doi: 10.1302/0301-620X.91B1.21329
– volume: 36
  start-page: 263
  year: 2020
  ident: 10.1016/j.clinbiomech.2023.106025_bb0105
  article-title: Operative versus nonoperative treatment of femoroacetabular impingement syndrome: a meta-analysis of short-term outcomes
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
  doi: 10.1016/j.arthro.2019.07.025
– volume: 33
  start-page: 1797
  year: 2017
  ident: 10.1016/j.clinbiomech.2023.106025_bb0040
  article-title: The influence of squat kinematics and cam morphology on acetabular stress
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
  doi: 10.1016/j.arthro.2017.03.018
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.clinbiomech.2023.106025_bb0200
  article-title: Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy
  publication-title: PLoS One
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.clinbiomech.2023.106025_bb0315
  article-title: Classifying cam morphology by the alpha angle: a systematic review on threshold values
  publication-title: Orthop. J. Sports Med.
  doi: 10.1177/2325967120938312
– volume: 17
  start-page: 473
  year: 2000
  ident: 10.1016/j.clinbiomech.2023.106025_bb0260
  article-title: Bootstrapping R2 and adjusted R2 in regression analysis
  publication-title: Econ. Model.
  doi: 10.1016/S0264-9993(99)00034-6
– volume: 27
  start-page: 195
  year: 2009
  ident: 10.1016/j.clinbiomech.2023.106025_bb0080
  article-title: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20747
– volume: 45
  start-page: 612
  year: 2017
  ident: 10.1016/j.clinbiomech.2023.106025_bb0255
  article-title: Preoperative outcome scores are predictive of achieving the minimal clinically important difference after arthroscopic treatment of femoroacetabular impingement
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546516669325
– volume: 473
  start-page: 2056
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0125
  article-title: Does radiographic coxa profunda indicate increased acetabular coverage or depth in hip dysplasia?
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-014-4084-x
– volume: 11
  start-page: 745
  year: 2016
  ident: 10.1016/j.clinbiomech.2023.106025_bb0035
  article-title: Assessment of cartilage contact pressure and loading in the hip joint during split posture
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-015-1303-1
– volume: 417
  start-page: 112
  year: 2003
  ident: 10.1016/j.clinbiomech.2023.106025_bb0130
  article-title: Femoroacetabular impingement: a cause for osteoarthritis of the hip
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/01.blo.0000096804.78689.c2
– volume: 470
  start-page: 3368
  year: 2012
  ident: 10.1016/j.clinbiomech.2023.106025_bb0070
  article-title: Radiographic features associated with differing impinging hip morphologies with special attention to coxa profunda
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-012-2539-5
– volume: 46
  start-page: 122
  year: 2018
  ident: 10.1016/j.clinbiomech.2023.106025_bb0190
  article-title: Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: a controlled study of 538 hips
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546517726983
– volume: 22
  start-page: 218
  year: 2014
  ident: 10.1016/j.clinbiomech.2023.106025_bb0010
  article-title: Cam impingement: defining the presence of a cam deformity by the alpha angle: data from the CHECK cohort and Chingford cohort
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2013.11.007
– volume: 34
  start-page: 859
  year: 2001
  ident: 10.1016/j.clinbiomech.2023.106025_bb0055
  article-title: Hip contact forces and gait patterns from routine activities
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00040-9
– year: 2014
  ident: 10.1016/j.clinbiomech.2023.106025_bb0170
  article-title: Finite element simulations of a hip joint with femoroacetabular impingement
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2012.744398
– volume: 391
  start-page: 2225
  year: 2018
  ident: 10.1016/j.clinbiomech.2023.106025_bb0150
  article-title: Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHIoN): a multicentre randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31202-9
– volume: 72
  start-page: 918
  year: 2013
  ident: 10.1016/j.clinbiomech.2023.106025_bb0005
  article-title: Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK)
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2012-201643
– volume: 48
  start-page: 661
  year: 2020
  ident: 10.1016/j.clinbiomech.2023.106025_bb0195
  article-title: Location of intra- and extra-articular hip impingement is different in patients with pincer-type and mixed-type femoroacetabular impingement due to acetabular retroversion or protrusio acetabuli on 3D CT–based impingement simulation
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546519897273
– volume: 87
  start-page: 1012
  year: 2005
  ident: 10.1016/j.clinbiomech.2023.106025_bb0045
  article-title: Hip morphology influences the pattern of damage to the acetabular cartilage. Femoroacetabular impingement as a cause of early osteoarthritis of the hip
  publication-title: J. Bone Joint Surg. (Br.)
  doi: 10.1302/0301-620X.87B7.15203
– volume: 41
  start-page: 1348
  year: 2013
  ident: 10.1016/j.clinbiomech.2023.106025_bb0085
  article-title: Descriptive epidemiology of femoroacetabular impingement
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546513488861
– volume: 50
  start-page: 1169
  year: 2016
  ident: 10.1016/j.clinbiomech.2023.106025_bb0145
  article-title: The Warwick agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2016-096743
– volume: 14
  start-page: 514
  year: 2019
  ident: 10.1016/j.clinbiomech.2023.106025_bb0215
  article-title: Short-term outcomes of conservative treatment for femoroacetabular impingement: a systematic review and meta-analysis
  publication-title: Int. J. Sports Phys. Ther.
  doi: 10.26603/ijspt20190514
– volume: 240
  start-page: 778
  year: 2006
  ident: 10.1016/j.clinbiomech.2023.106025_bb0270
  article-title: Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients
  publication-title: Radiology
  doi: 10.1148/radiol.2403050767
– volume: 130
  start-page: 1
  year: 2008
  ident: 10.1016/j.clinbiomech.2023.106025_bb0020
  article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2953472
– volume: 11
  start-page: 508
  year: 2003
  ident: 10.1016/j.clinbiomech.2023.106025_bb0320
  article-title: Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/S1063-4584(03)00075-X
– volume: 36
  start-page: 274
  year: 2020
  ident: 10.1016/j.clinbiomech.2023.106025_bb0175
  article-title: Editorial commentary: a commentary on a meta-analysis of short-term outcomes
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
  doi: 10.1016/j.arthro.2019.09.035
– volume: 5
  start-page: 449
  year: 2010
  ident: 10.1016/j.clinbiomech.2023.106025_bb0210
  article-title: Acetabular orientation variability and symmetry based on CT scans of adults
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-010-0521-9
– volume: 4
  start-page: 479
  year: 2012
  ident: 10.1016/j.clinbiomech.2023.106025_bb0165
  article-title: Clinical outcomes analysis of conservative and surgical treatment of patients with clinical indications of prearthritic, intra-articular hip disorders
  publication-title: PM R
  doi: 10.1016/j.pmrj.2012.03.012
– volume: 40
  start-page: 877
  year: 2011
  ident: 10.1016/j.clinbiomech.2023.106025_bb0095
  article-title: Analysis of acetabular version in the native hip: comparison between 2D axial CT and 3D CT measurements
  publication-title: Skelet. Radiol.
  doi: 10.1007/s00256-010-1065-3
– volume: 117
  start-page: 272
  year: 1995
  ident: 10.1016/j.clinbiomech.2023.106025_bb0090
  article-title: Development and validation of a three-dimensional finite element model of the pelvic bone
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2794181
– volume: 2
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0185
  article-title: The natural history of femoroacetabular impingement
  publication-title: Front. Surg.
  doi: 10.3389/fsurg.2015.00058
– volume: 8
  start-page: 206
  year: 2012
  ident: 10.1016/j.clinbiomech.2023.106025_bb0235
  article-title: Finite element analysis examining the effects of cam FAI on hip joint mechanical loading using subject-specific geometries during standing and maximum squat
  publication-title: HSS J.
  doi: 10.1007/s11420-012-9292-x
– volume: 95
  start-page: 417
  year: 2013
  ident: 10.1016/j.clinbiomech.2023.106025_bb0225
  article-title: Coxa profunda is not a useful radiographic parameter for diagnosing pincer-type femoroacetabular impingement
  publication-title: J. Bone Joint Surg. A
  doi: 10.2106/JBJS.K.01664
– volume: 27
  start-page: 2011
  year: 2017
  ident: 10.1016/j.clinbiomech.2023.106025_bb0220
  article-title: Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-016-4530-0
– volume: 51
  start-page: 1605
  year: 2017
  ident: 10.1016/j.clinbiomech.2023.106025_bb0265
  article-title: Surgical criteria for femoroacetabular impingement syndrome: a scoping review
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2016-096936
– volume: 84-B
  start-page: 556
  year: 2002
  ident: 10.1016/j.clinbiomech.2023.106025_bb0250
  article-title: The contour of the femoral head-neck junction as a predictor for the risk of anterior impingment: commentary
  publication-title: J. Bone Joint Surg.
  doi: 10.1302/0301-620X.84B4.0840556
– volume: 39
  start-page: 83
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0300
  article-title: Three-dimensional measurement of femoral neck anteversion and neck shaft angle
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/RCT.0000000000000161
– volume: 350
  start-page: 2
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0065
  article-title: Statistics notes: bootstrap resampling methods
  publication-title: BMJ
  doi: 10.1136/bmj.h2622
– volume: 46
  start-page: 2607
  year: 2018
  ident: 10.1016/j.clinbiomech.2023.106025_bb0310
  article-title: Patient-reported outcomes within the first year after hip arthroscopy and rehabilitation for femoroacetabular impingement and/or labral injury: the difference between getting better and getting back to normal
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546518786971
– volume: 5
  year: 2017
  ident: 10.1016/j.clinbiomech.2023.106025_bb0290
  article-title: Radiographic diagnosis of pincer-type femoroacetabular impingement: a systematic review
  publication-title: Orthop. J. Sports Med.
  doi: 10.1177/2325967117708307
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.clinbiomech.2023.106025_bb0135
  article-title: Hip stability may influence the development of greater trochanteric pain syndrome: a case-control study of consecutive patients
  publication-title: Orthop. J. Sports Med.
  doi: 10.1177/2325967120958699
– volume: 477
  start-page: 1053
  year: 2019
  ident: 10.1016/j.clinbiomech.2023.106025_bb0245
  article-title: Cam FAI and smaller neck angles increase subchondral bone stresses during squatting: a finite element analysis
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/CORR.0000000000000528
– volume: 96
  start-page: 1683
  year: 2014
  ident: 10.1016/j.clinbiomech.2023.106025_bb0230
  article-title: Clinical presentation and disease characteristics of femoroacetabular impingement are sex-dependent
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.M.01320
– volume: 39
  start-page: 43S
  year: 2011
  ident: 10.1016/j.clinbiomech.2023.106025_bb0050
  article-title: Surgical treatment of femoroacetabular impingement improves hip kinematics
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546511414635
– volume: 100
  start-page: 205
  year: 2018
  ident: 10.1016/j.clinbiomech.2023.106025_bb0180
  article-title: Femoral version abnormalities significantly outweigh effect of cam impingement on hip internal rotation
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.17.00376
– volume: 85
  start-page: 278
  year: 2003
  ident: 10.1016/j.clinbiomech.2023.106025_bb0305
  article-title: Anterior femoro-acetabular impingement due to acetabular retroversion: treatment with periacetabular osteotomy
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-200302000-00015
– volume: 19
  start-page: 41
  year: 2011
  ident: 10.1016/j.clinbiomech.2023.106025_bb0115
  article-title: Conservative treatment for mild femoroacetabular impingement
  publication-title: J. Orthop. Surg.
  doi: 10.1177/230949901101900109
– volume: 5842
  start-page: 1
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0160
  article-title: Hip joint degeneration due to cam impingement: a finite element analysis
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 127
  year: 2005
  ident: 10.1016/j.clinbiomech.2023.106025_bb0015
  article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1894148
– volume: 473
  start-page: 1267
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0295
  article-title: Functional acetabular orientation varies between supine and standing radiographs: implications for treatment of femoroacetabular impingement
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-014-4104-x
– volume: 53
  start-page: 2346
  year: 2021
  ident: 10.1016/j.clinbiomech.2023.106025_bb0205
  article-title: Hip adduction during running: influence of sex, hip abductor strength and activation, and pelvis and femur morphology
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000002721
– volume: 1–9
  year: 2018
  ident: 10.1016/j.clinbiomech.2023.106025_bb0140
  article-title: Acetabular and spino-pelvic morphologies are different in subjects with symptomatic cam femoro-acetabular impingement
  publication-title: J. Orthop. Res.
– volume: 97-B
  start-page: 478
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0100
  article-title: Coxa profunda in the diagnosis of pincertype femoroacetabular impingement and its prevalence in asymptomatic subjects
  publication-title: Bone Joint J.
  doi: 10.1302/0301-620X.97B4.34577
– volume: 36
  start-page: 293
  year: 2013
  ident: 10.1016/j.clinbiomech.2023.106025_bb0110
  article-title: Relationship between femoral anteversion and findings in hips with femoroacetabular impingement
  publication-title: Orthopedics
  doi: 10.3928/01477447-20130222-17
– volume: 473
  start-page: 1396
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0075
  article-title: Can combining femoral and acetabular morphology parameters improve the characterization of femoroacetabular impingement?
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-014-4037-4
– volume: 30
  start-page: 13223
  year: 2012
  ident: 10.1016/j.clinbiomech.2023.106025_bb0120
  article-title: 3D slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 473
  start-page: 1289
  year: 2015
  ident: 10.1016/j.clinbiomech.2023.106025_bb0240
  article-title: Patient-specific anatomical and functional parameters provide new insights into the pathomechanism of cam FAI
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-014-3797-1
– volume: 470
  start-page: 3375
  year: 2012
  ident: 10.1016/j.clinbiomech.2023.106025_bb0025
  article-title: Coxa profunda: is the deep acetabulum overcovered?
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-012-2509-y
– volume: 467
  start-page: 660
  year: 2009
  ident: 10.1016/j.clinbiomech.2023.106025_bb0285
  article-title: Comparison of MRI alpha angle measurement planes in femoroacetabular impingement
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-008-0627-3
– volume: 30
  start-page: 1133
  year: 2012
  ident: 10.1016/j.clinbiomech.2023.106025_bb0155
  article-title: Finite element prediction of cartilage contact stresses in normal human hips
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22040
SSID ssj0004257
Score 2.408414
Snippet Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity...
AbstractBackgroundFemoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106025
SubjectTerms Acetabulum - diagnostic imaging
Cam morphology
Female
Femoracetabular Impingement - diagnostic imaging
Femoral and acetabular morphology
Femoroacetabular impingement
Femur - diagnostic imaging
Finite Element Analysis
Hip internal rotation
Hip Joint - diagnostic imaging
Humans
Male
Physical Medicine and Rehabilitation
Range of Motion, Articular
Title Femoral and acetabular features explain acetabular contact pressure sensitivity to hip internal rotation in persons with cam morphology: A finite element analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0268003323001560
https://www.clinicalkey.es/playcontent/1-s2.0-S0268003323001560
https://dx.doi.org/10.1016/j.clinbiomech.2023.106025
https://www.ncbi.nlm.nih.gov/pubmed/37302302
https://www.proquest.com/docview/2825159198
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqGX0iZ9bB9hAqU3d71-yFLoZQldti3JpQ3kJmStRB02XhM70FzyY_JLO5LsTUpTWOjNljVIeKTRjOabGYD3XGWMm4mNcqGTiE4IG3HLRGRyS8_WisI72o9P2Pw0-3qWn23B0RAL42CVvewPMt1L675l3P_NcVNV4-9kPXBXioyUaB8P7CLYs8Kt8o83dzCPrM_2SZ0j13sHDu4wXi760Ie5e79EklI7i13V7IfPqH_poP4smj2FJ70SidMwz2ewZepd2JvWZEBfXOMH9LBOf1--CzvHvfd8D25nDlZLhKpeoNKmU6UDoaI1Prtni-ZXs1RVff-bg7Ir3aHHy1InbB3iPZScwG6FP6sGq3CruMTLVXDsUws2XpVv0V30olYXSEM3XtReH-IUbeWUXTQBvU4zCrlRnsPp7POPo3nU12iIdCbiLlKWWWbI6LC0k9NFyo0t87QUqWaClSxXzjFYJiohC14VKSsVz21s9YLIbM5E-gK261VtXgFmRltO9o1IClLrFC-VJc0_0SYtyeosihHwgStS9wnMXR2NpRyQaufyHkOlY6gMDB1BsiZtQhaPTYgOB9bLIUyVBKuks2YT4uIhYtP2IqKVE9kmMpZ_LeMRfFpT_rETNh34YFilkiSFc_-o2qyuWumjlHMxEXwEL8PyXf-MtHDFo-Lk9f8N_gYeu7cAZ34L293llXlHSltX7vtduQ-Ppl--zU9-A4zsRa0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FLq9jK3dR_apwtibiWPHslT2EspCujZ5WQt9E7IiUY_UMbUL7b_Tv3SnD6cd6yCwNyPrkNBJpzvd7-4AvjA5okwPTZRxlUR4Q5iIGcojnRn8NobnztE-m9Pp2ejHeXa-BYddLIyFVQbZ72W6k9ahZRBWc1CX5eAnWg_MliJDJdrFAz-BbZudKuvB9vjoeDq_D48MCT-xf2QJdmD_HuZlAxBdpLtzTSQpttPYFs5-_Jr6lxrqrqPJC3ge9Egy9lN9CVu62oW9cYU29OUt-UocstM9me_Cziw40PfgbmKRtUgoqwWRSreysDhUYrRL8NkQfVMvZVk9_GfR7FK1xEFmsRNpLOjdV50g7YpclDUp_cPiklytvG8fW0jttPmG2LdeouQlwaFrJ21vD8iYmNLqu0R7ADvOyKdHeQVnk--nh9MolGmI1IjHbSQNNVSj3WHwMKeLlGlTZGnBU0U5LWgmrW-wSGSCRrzMU1pIlpnYqAWSmYzy9DX0qlWl3wIZaWUYmjg8yVGzk6yQBpX_ROm0QMMzz_vAOq4IFXKY21IaS9GB1X6JBwwVlqHCM7QPyZq09ok8NiE66FgvukhVlK0Cr5tNiPPHiHUTpEQjhqJJRCz-2sl9-Lam_OMwbDrwfrdLBQoL6wGSlV5dN8IFKmd8yFkf3vjtu16MNLf1o-Lk3f8N_hmeTk9nJ-LkaH78Hp7ZPx7d_AF67dW1_og6XFt8Cmf0N4V7SF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Femoral+and+acetabular+features+explain+acetabular+contact+pressure+sensitivity+to+hip+internal+rotation+in+persons+with+cam+morphology%3A+A+finite+element+analysis&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Cannon%2C+Jordan&rft.au=Rankin%2C+Jeffery+W&rft.au=Lewton%2C+Kristi+L&rft.au=Liu%2C+Jia&rft.date=2023-07-01&rft.issn=1879-1271&rft.eissn=1879-1271&rft.volume=107&rft.spage=106025&rft_id=info:doi/10.1016%2Fj.clinbiomech.2023.106025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-0033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-0033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-0033&client=summon