Femoral and acetabular features explain acetabular contact pressure sensitivity to hip internal rotation in persons with cam morphology: A finite element analysis
Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have be...
Saved in:
Published in | Clinical biomechanics (Bristol) Vol. 107; p. 106025 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology.
Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure.
The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables.
Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology.
•Bony features beyond cam morphology may influence femoroacetabular impingement.•Subject-specific finite element models were derived from computed tomography scans.•Load and posture were controlled to investigate the influence of bony morphology.•Multiple morphological features modulate loading in femoroacetabular impingement.•Femoral neck-shaft, acetabular anteversion and inclination angle were key variables. |
---|---|
AbstractList | Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology.
Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure.
The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables.
Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology.
•Bony features beyond cam morphology may influence femoroacetabular impingement.•Subject-specific finite element models were derived from computed tomography scans.•Load and posture were controlled to investigate the influence of bony morphology.•Multiple morphological features modulate loading in femoroacetabular impingement.•Femoral neck-shaft, acetabular anteversion and inclination angle were key variables. Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology. Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure. The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables. Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology. Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology.BACKGROUNDFemoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology.Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure.METHODSTwenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure.The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables.FINDINGSThe stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables.Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology.INTERPRETATIONMechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology. AbstractBackgroundFemoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology. MethodsTwenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure. FindingsThe stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables. InterpretationMechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology. |
ArticleNumber | 106025 |
Author | Powers, Christopher M. Rankin, Jeffery W. Lewton, Kristi L. Cannon, Jordan Liu, Jia |
Author_xml | – sequence: 1 givenname: Jordan surname: Cannon fullname: Cannon, Jordan organization: Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA – sequence: 2 givenname: Jeffery W. surname: Rankin fullname: Rankin, Jeffery W. organization: Rancho Research Institute, Rehabilitation Engineering Program, Downey, CA, USA – sequence: 3 givenname: Kristi L. surname: Lewton fullname: Lewton, Kristi L. organization: Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA – sequence: 4 givenname: Jia surname: Liu fullname: Liu, Jia organization: Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA – sequence: 5 givenname: Christopher M. surname: Powers fullname: Powers, Christopher M. email: powers@pt.usc.edu organization: Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37302302$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1vEzEQtVARTQt_AZkblwR_ZL27HEBRRAtSJQ7A2fJ6x8TBay-2t5C_wy-tV2mlqhJSLrY0896b0Xtzgc588IDQG0pWlFDxbr_SzvrOhgH0bsUI46UuCKueoQVt6nZJWU3P0IIw0SwJ4fwcXaS0J4SsWVW_QOe85oVE2AL9u4IhROWw8j1WGrLqJqciNqDyFCFh-Ds6Zf3jng4-K53xWPqpgHACn2y2tzYfcA54Z0dsfYboi24MWWUbfKngEWIKPuE_Nu-wVgMuo8ddcOHn4T3eYGO9zYDBwQA-l42UOySbXqLnRrkEr-7_S_Tj6tP37eflzdfrL9vNzVKvW5KXyggjoK4a0wrOe96A6SretVyLVnSiUmLN644pBuWpuehUUxlidF9ophItv0Rvj7pjDL8nSFkONmlwTnkIU5KsYRWtWto2Bfr6Hjp1A_RyjHZQ8SAffC2Aj0eAjiGlCEZqe_QhR2WdpETOScq9fJSknJOUxySLQvtE4WHIKdztkQvFrlsLUSZtwWvobQSdZR_sSSofnqjMSKuV-wUHSPswzQEnSWVikshv87XNx1YMILQSpAhs_i9w4hJ3guTvXg |
CitedBy_id | crossref_primary_10_1007_s12008_024_01865_4 crossref_primary_10_1016_j_jhevol_2024_103633 crossref_primary_10_1016_j_jbiomech_2025_112568 |
Cites_doi | 10.1017/pab.2020.46 10.1302/0301-620X.91B1.21329 10.1016/j.arthro.2019.07.025 10.1016/j.arthro.2017.03.018 10.1177/2325967120938312 10.1016/S0264-9993(99)00034-6 10.1002/jor.20747 10.1177/0363546516669325 10.1007/s11999-014-4084-x 10.1007/s11548-015-1303-1 10.1097/01.blo.0000096804.78689.c2 10.1007/s11999-012-2539-5 10.1177/0363546517726983 10.1016/j.joca.2013.11.007 10.1016/S0021-9290(01)00040-9 10.1080/10255842.2012.744398 10.1016/S0140-6736(18)31202-9 10.1136/annrheumdis-2012-201643 10.1177/0363546519897273 10.1302/0301-620X.87B7.15203 10.1177/0363546513488861 10.1136/bjsports-2016-096743 10.26603/ijspt20190514 10.1148/radiol.2403050767 10.1115/1.2953472 10.1016/S1063-4584(03)00075-X 10.1016/j.arthro.2019.09.035 10.1007/s11548-010-0521-9 10.1016/j.pmrj.2012.03.012 10.1007/s00256-010-1065-3 10.1115/1.2794181 10.3389/fsurg.2015.00058 10.1007/s11420-012-9292-x 10.2106/JBJS.K.01664 10.1007/s00330-016-4530-0 10.1136/bjsports-2016-096936 10.1302/0301-620X.84B4.0840556 10.1097/RCT.0000000000000161 10.1136/bmj.h2622 10.1177/0363546518786971 10.1177/2325967117708307 10.1177/2325967120958699 10.1097/CORR.0000000000000528 10.2106/JBJS.M.01320 10.1177/0363546511414635 10.2106/JBJS.17.00376 10.2106/00004623-200302000-00015 10.1177/230949901101900109 10.1115/1.1894148 10.1007/s11999-014-4104-x 10.1249/MSS.0000000000002721 10.1302/0301-620X.97B4.34577 10.3928/01477447-20130222-17 10.1007/s11999-014-4037-4 10.1016/j.mri.2012.05.001 10.1007/s11999-014-3797-1 10.1007/s11999-012-2509-y 10.1007/s11999-008-0627-3 10.1002/jor.22040 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.clinbiomech.2023.106025 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1879-1271 |
EndPage | 106025 |
ExternalDocumentID | 37302302 10_1016_j_clinbiomech_2023_106025 S0268003323001560 1_s2_0_S0268003323001560 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ H~9 IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OH. OT. OVD OZT P-8 P-9 P2P PC. Q38 QZG R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TEORI UAP UPT WH7 WUQ Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c490t-af6f6e758f9633d38efb53b93c696b65a6437b2a2eb2a736ba85f0fcd6f6f5693 |
IEDL.DBID | .~1 |
ISSN | 0268-0033 1879-1271 |
IngestDate | Fri Jul 11 11:26:13 EDT 2025 Mon Jul 21 05:32:42 EDT 2025 Tue Jul 01 01:24:41 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Tue Dec 03 03:45:29 EST 2024 Tue Feb 25 19:54:30 EST 2025 Tue Aug 26 16:34:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element analysis Hip internal rotation Femoral and acetabular morphology Cam morphology Femoroacetabular impingement |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-af6f6e758f9633d38efb53b93c696b65a6437b2a2eb2a736ba85f0fcd6f6f5693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37302302 |
PQID | 2825159198 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2825159198 pubmed_primary_37302302 crossref_citationtrail_10_1016_j_clinbiomech_2023_106025 crossref_primary_10_1016_j_clinbiomech_2023_106025 elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2023_106025 elsevier_clinicalkeyesjournals_1_s2_0_S0268003323001560 elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2023_106025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Clinical biomechanics (Bristol) |
PublicationTitleAlternate | Clin Biomech (Bristol, Avon) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Lewton, Colletti, Powers (bb0205) 2021; 53 Kuhns, Weber, Levy, Wuerz (bb0185) 2015; 2 Mallets, Turner, Durbin, Bader, Murray (bb0215) 2019; 14 Agricola, Waarsing, Thomas, Carr, Reijman, Bierma-Zeinstra, Glyn-Jones, Weinans, Arden (bb0010) 2014; 22 Ng, Lamontagne, Adamczyk, Rahkra, Beaulé (bb0240) 2015; 473 Mascarenhas, Rego, Dantas, Gaspar, Soldado, Consciência (bb0220) 2017; 27 Ng, Mantovani, Lamontagne, Labrosse, Beaule (bb0245) 2019; 477 Emara, Samir, Motasem, Ghafar (bb0115) 2011; 19 Bouma, Hogervorst, Audenaert, Krekel, van Kampen (bb0075) 2015; 473 Bedi, Dolan, Hetsroni, Magennis, Lipman, Buly, Kelly (bb0050) 2011; 39 Bland, Altman (bb0065) 2015; 350 Notzli, Wyss, Stoecklin, Schmid, Treiber, Hodler (bb0250) 2002; 84-B Philippon, Briggs, Yen, Kuppersmith, Philippon, Surgeon, Briggs, Yen (bb0275) 2009; 91 Anderson, Kapron, Aoki, Peters (bb0025) 2012; 470 Liu, Ecker, Schumann, Siebenrock, Zheng (bb0200) 2016; 11 Hellwig, Tong, Hussell (bb0160) 2015; 5842 Thorborg, Kraemer, Madsen, Hölmich (bb0310) 2018; 46 Grammatopoulos, Speirs, Ng, Riviere, Rakhra, Lamontagne, Beaule (bb0140) 2018; 1–9 Siebenrock, Schroeniger, Ganz (bb0305) 2003; 85 Fujii, Nakamura, Hara, Nakashima, Iwamoto (bb0125) 2015; 473 Lerch, Todorski, Steppacher, Schmaranzer, Werlen, Siebenrock, Tannast (bb0190) 2018; 46 Kraeutler, Chadayammuri, Garabekyan, Mei-Dan (bb0180) 2018; 100 Bishop, Cuff, Hutchinson (bb0060) 2021; 47 van Klij, Reiman, Waarsing, Reijman, Bramer, Verhaar, Agricola (bb0315) 2020; 8 Nepple, Lehmann, Ross, Schoenecker, Clohisy (bb0225) 2013; 95 Kemp (bb0175) 2020; 36 Wagner, Hofstetter, Chiquet, Mainil-Varlet, Stauffer, Ganz, Siebenrock (bb0320) 2003; 11 Nepple, Riggs, Ross, Clohisy (bb0230) 2014; 96 Goldman, Land, Adsit, Balazs (bb0135) 2020; 8 Rakhra, Sheikh, Allen, Beaulé (bb0285) 2009; 467 Clohisy, Baca, Beaulé, Kim, Larson, Millis, Podeszwa, Schoenecker, Sierra, Sink, Sucato, Trousdale, Zaltz (bb0085) 2013; 41 Peters, Laing, Emerson, Mutchler, Joyce, Thorborg, Hölmich, Reiman (bb0265) 2017; 51 Hunt, Prather, Harris Hayes, Clohisy (bb0165) 2012; 4 Chegini, Beck, Ferguson (bb0080) 2009; 27 Boone, Pagnotto, Walker, Trousdale, Sierra (bb0070) 2012; 470 Pfirrmann, Mengiardi, Dora, Kalberer, Zanetti, Hodler (bb0270) 2006; 240 Rhee, Le Francois, Byrd, Glazebrook, Wong (bb0290) 2017; 5 Assassi, Magnenat-Thalmann (bb0035) 2016; 11 Dwyer, Whelan, Shah, Ajrawat, Hoit, Chahal (bb0105) 2020; 36 Bagwell, Powers (bb0040) 2017; 33 Diesel, Ribeiro, Coussirat, Scheidt, Macedo, Galia (bb0100) 2015; 97-B Beck, Kalhor, Leunig, Ganz, Surgeon (bb0045) 2005; 87 R Core Team (bb0280) 2021 Ganz, Parvizi, Beck, Leunig, Notzli, Siebenrock (bb0130) 2003; 417 Harris, Anderson, Henak, Ellis, Peters, Weiss (bb0155) 2012; 30 Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka, Buatti, Aylward, Miller, Pieper, Kikinis (bb0120) 2012; 30 Ross, Tannenbaum, Nepple, Kelly, Larson, Bedi (bb0295) 2015; 473 Griffin, Dickenson, Wall, Achana, Donovan, Griffin, Hobson, Hutchinson, Jepson, Parsons, Petrou, Realpe, Smith, Foster, Stevens, Gemperle-Mannion, Brown, Philippon, Beck, O’Donnell, Robinson, Hughes, Hunter, Bennell, Bache, McBryde, Politis, Bankes, George, Bartlett, Norton, Board, Mohammed, Rajpura, Cronin, Dandachli, Witt, Eastaugh-Waring, Fehily, Fern, Field, Stafford, Hashemi-Nejad, Khan, Kavathapu, Kiely, Whitaker, Latimer, Madan, Malviya, Patil, Ramachandran, Sturridge, Thomas, White, Wilson, Williams, Jones, Baker, Stanton, Nicholls, Smeatham, Gosling, MacFarlane, Pressdee, Dickinson, Boulton, Goss, Venter, Kassam, Simmons, Poll, Bergmann, Pilkington, Armstrong, Wright, Dolphin, Bainbridge, Callum, Lewis, Smith, Cornes, Benfield, Monnington, Stewart, Borrill, Pinches, Dawson, Harding, Willis, Moore, MacCauley, Cooke, Fleck, Ball, Morrison, Kennedy, Turner, Bryant, Harris, McKeown, Clarkson, Lewis, Rowland-Axe, Grice, Githens-Mazer, Aughwan, Moore, Keeling, Amero, Atkinson, Graves, Fouracres, Hammonds, Curtis, Brackenridge, Taylor, Dobb, Whitworth, Commey, Limbani, Maclintock, Milne, Cleary, Murray, Dubia, Gokturk, Bray (bb0150) 2018; 391 Lerch, Siegfried, Schmaranzer, Leibold, Zurmühle, Hanke, Ryan, Steppacher, Siebenrock, Tannast (bb0195) 2020; 48 Anderson, Peters, Tuttle, Weiss (bb0015) 2005; 127 Griffin, Dickenson, O’Donnell, Agricola, Awan, Beck, Clohisy, Dijkstra, Falvey, Gimpel, Hinman, Hölmich, Kassarjian, Martin, Martin, Mather, Philippon, Reiman, Takla, Thorborg, Walker, Weir, Bennell (bb0145) 2016; 50 Lubovsky, Peleg, Joskowicz, Liebergall, Khoury (bb0210) 2010; 5 Nwachukwu, Fields, Chang, Nawabi, Kelly, Ranawat (bb0255) 2017; 45 Anderson, Ellis, Maas, Peters, Weiss (bb0020) 2008; 130 Ng, Rouhi, Lamontagne, Beaulé (bb0235) 2012; 8 Bergmann, Deuretzabacher, Heller, Graichen, Rohlmann, Strauss, Duda (bb0055) 2001; 34 Ohtani (bb0260) 2000; 17 Sangeux, Pascoe, Kerr Graham, Ramanauskas, Cain (bb0300) 2015; 39 Dalstra, Huiskes, van Erning (bb0090) 1995; 117 Dandachli, Ul Islam, Tippett, Hall-Craggs, Witt (bb0095) 2011; 40 Agricola, Heijboer, Bierma-Zeinstra, Verhaar, Weinans, Waarsing (bb0005) 2013; 72 Ejnisman, Philippon, Lertwanich, Pennock, Herzog, Briggs, Ho (bb0110) 2013; 36 Jorge, Simões, Pires, Rego, Tavares, Lopes, Gaspar (bb0170) 2014 Nepple (10.1016/j.clinbiomech.2023.106025_bb0230) 2014; 96 Diesel (10.1016/j.clinbiomech.2023.106025_bb0100) 2015; 97-B Fujii (10.1016/j.clinbiomech.2023.106025_bb0125) 2015; 473 Clohisy (10.1016/j.clinbiomech.2023.106025_bb0085) 2013; 41 Dandachli (10.1016/j.clinbiomech.2023.106025_bb0095) 2011; 40 Bishop (10.1016/j.clinbiomech.2023.106025_bb0060) 2021; 47 Pfirrmann (10.1016/j.clinbiomech.2023.106025_bb0270) 2006; 240 Emara (10.1016/j.clinbiomech.2023.106025_bb0115) 2011; 19 Kraeutler (10.1016/j.clinbiomech.2023.106025_bb0180) 2018; 100 Grammatopoulos (10.1016/j.clinbiomech.2023.106025_bb0140) 2018; 1–9 Liu (10.1016/j.clinbiomech.2023.106025_bb0200) 2016; 11 Liu (10.1016/j.clinbiomech.2023.106025_bb0205) 2021; 53 Jorge (10.1016/j.clinbiomech.2023.106025_bb0170) 2014 Sangeux (10.1016/j.clinbiomech.2023.106025_bb0300) 2015; 39 Philippon (10.1016/j.clinbiomech.2023.106025_bb0275) 2009; 91 Rhee (10.1016/j.clinbiomech.2023.106025_bb0290) 2017; 5 Agricola (10.1016/j.clinbiomech.2023.106025_bb0005) 2013; 72 Bedi (10.1016/j.clinbiomech.2023.106025_bb0050) 2011; 39 Hunt (10.1016/j.clinbiomech.2023.106025_bb0165) 2012; 4 Ganz (10.1016/j.clinbiomech.2023.106025_bb0130) 2003; 417 Bagwell (10.1016/j.clinbiomech.2023.106025_bb0040) 2017; 33 Dalstra (10.1016/j.clinbiomech.2023.106025_bb0090) 1995; 117 Mallets (10.1016/j.clinbiomech.2023.106025_bb0215) 2019; 14 Goldman (10.1016/j.clinbiomech.2023.106025_bb0135) 2020; 8 Lubovsky (10.1016/j.clinbiomech.2023.106025_bb0210) 2010; 5 Notzli (10.1016/j.clinbiomech.2023.106025_bb0250) 2002; 84-B Ng (10.1016/j.clinbiomech.2023.106025_bb0240) 2015; 473 Nwachukwu (10.1016/j.clinbiomech.2023.106025_bb0255) 2017; 45 Griffin (10.1016/j.clinbiomech.2023.106025_bb0150) 2018; 391 Mascarenhas (10.1016/j.clinbiomech.2023.106025_bb0220) 2017; 27 Siebenrock (10.1016/j.clinbiomech.2023.106025_bb0305) 2003; 85 Thorborg (10.1016/j.clinbiomech.2023.106025_bb0310) 2018; 46 Anderson (10.1016/j.clinbiomech.2023.106025_bb0020) 2008; 130 Hellwig (10.1016/j.clinbiomech.2023.106025_bb0160) 2015; 5842 Beck (10.1016/j.clinbiomech.2023.106025_bb0045) 2005; 87 Ohtani (10.1016/j.clinbiomech.2023.106025_bb0260) 2000; 17 Bland (10.1016/j.clinbiomech.2023.106025_bb0065) 2015; 350 Anderson (10.1016/j.clinbiomech.2023.106025_bb0015) 2005; 127 Assassi (10.1016/j.clinbiomech.2023.106025_bb0035) 2016; 11 Nepple (10.1016/j.clinbiomech.2023.106025_bb0225) 2013; 95 Wagner (10.1016/j.clinbiomech.2023.106025_bb0320) 2003; 11 Bouma (10.1016/j.clinbiomech.2023.106025_bb0075) 2015; 473 Griffin (10.1016/j.clinbiomech.2023.106025_bb0145) 2016; 50 Ng (10.1016/j.clinbiomech.2023.106025_bb0235) 2012; 8 Lerch (10.1016/j.clinbiomech.2023.106025_bb0190) 2018; 46 Kemp (10.1016/j.clinbiomech.2023.106025_bb0175) 2020; 36 Anderson (10.1016/j.clinbiomech.2023.106025_bb0025) 2012; 470 Rakhra (10.1016/j.clinbiomech.2023.106025_bb0285) 2009; 467 Bergmann (10.1016/j.clinbiomech.2023.106025_bb0055) 2001; 34 Chegini (10.1016/j.clinbiomech.2023.106025_bb0080) 2009; 27 Ng (10.1016/j.clinbiomech.2023.106025_bb0245) 2019; 477 van Klij (10.1016/j.clinbiomech.2023.106025_bb0315) 2020; 8 Dwyer (10.1016/j.clinbiomech.2023.106025_bb0105) 2020; 36 Boone (10.1016/j.clinbiomech.2023.106025_bb0070) 2012; 470 Peters (10.1016/j.clinbiomech.2023.106025_bb0265) 2017; 51 Ejnisman (10.1016/j.clinbiomech.2023.106025_bb0110) 2013; 36 R Core Team (10.1016/j.clinbiomech.2023.106025_bb0280) 2021 Ross (10.1016/j.clinbiomech.2023.106025_bb0295) 2015; 473 Agricola (10.1016/j.clinbiomech.2023.106025_bb0010) 2014; 22 Lerch (10.1016/j.clinbiomech.2023.106025_bb0195) 2020; 48 Fedorov (10.1016/j.clinbiomech.2023.106025_bb0120) 2012; 30 Harris (10.1016/j.clinbiomech.2023.106025_bb0155) 2012; 30 Kuhns (10.1016/j.clinbiomech.2023.106025_bb0185) 2015; 2 |
References_xml | – volume: 4 start-page: 479 year: 2012 end-page: 487 ident: bb0165 article-title: Clinical outcomes analysis of conservative and surgical treatment of patients with clinical indications of prearthritic, intra-articular hip disorders publication-title: PM R – volume: 1–9 year: 2018 ident: bb0140 article-title: Acetabular and spino-pelvic morphologies are different in subjects with symptomatic cam femoro-acetabular impingement publication-title: J. Orthop. Res. – volume: 46 start-page: 2607 year: 2018 end-page: 2614 ident: bb0310 article-title: Patient-reported outcomes within the first year after hip arthroscopy and rehabilitation for femoroacetabular impingement and/or labral injury: the difference between getting better and getting back to normal publication-title: Am. J. Sports Med. – volume: 36 start-page: 263 year: 2020 end-page: 273 ident: bb0105 article-title: Operative versus nonoperative treatment of femoroacetabular impingement syndrome: a meta-analysis of short-term outcomes publication-title: Arthrosc. J. Arthrosc. Relat. Surg. – volume: 470 start-page: 3375 year: 2012 end-page: 3382 ident: bb0025 article-title: Coxa profunda: is the deep acetabulum overcovered? publication-title: Clin. Orthop. Relat. Res. – volume: 46 start-page: 122 year: 2018 end-page: 134 ident: bb0190 article-title: Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: a controlled study of 538 hips publication-title: Am. J. Sports Med. – volume: 39 start-page: 83 year: 2015 end-page: 85 ident: bb0300 article-title: Three-dimensional measurement of femoral neck anteversion and neck shaft angle publication-title: J. Comput. Assist. Tomogr. – volume: 477 start-page: 1053 year: 2019 end-page: 1063 ident: bb0245 article-title: Cam FAI and smaller neck angles increase subchondral bone stresses during squatting: a finite element analysis publication-title: Clin. Orthop. Relat. Res. – volume: 467 start-page: 660 year: 2009 end-page: 665 ident: bb0285 article-title: Comparison of MRI alpha angle measurement planes in femoroacetabular impingement publication-title: Clin. Orthop. Relat. Res. – volume: 95 start-page: 417 year: 2013 end-page: 423 ident: bb0225 article-title: Coxa profunda is not a useful radiographic parameter for diagnosing pincer-type femoroacetabular impingement publication-title: J. Bone Joint Surg. A – volume: 85 start-page: 278 year: 2003 end-page: 286 ident: bb0305 article-title: Anterior femoro-acetabular impingement due to acetabular retroversion: treatment with periacetabular osteotomy publication-title: J. Bone Joint Surg. Am. – volume: 391 start-page: 2225 year: 2018 end-page: 2235 ident: bb0150 article-title: Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHIoN): a multicentre randomised controlled trial publication-title: Lancet – volume: 417 start-page: 112 year: 2003 end-page: 120 ident: bb0130 article-title: Femoroacetabular impingement: a cause for osteoarthritis of the hip publication-title: Clin. Orthop. Relat. Res. – volume: 8 start-page: 1 year: 2020 end-page: 10 ident: bb0315 article-title: Classifying cam morphology by the alpha angle: a systematic review on threshold values publication-title: Orthop. J. Sports Med. – volume: 14 start-page: 514 year: 2019 end-page: 524 ident: bb0215 article-title: Short-term outcomes of conservative treatment for femoroacetabular impingement: a systematic review and meta-analysis publication-title: Int. J. Sports Phys. Ther. – volume: 72 start-page: 918 year: 2013 end-page: 923 ident: bb0005 article-title: Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK) publication-title: Ann. Rheum. Dis. – volume: 5 start-page: 449 year: 2010 end-page: 454 ident: bb0210 article-title: Acetabular orientation variability and symmetry based on CT scans of adults publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 473 start-page: 1267 year: 2015 end-page: 1273 ident: bb0295 article-title: Functional acetabular orientation varies between supine and standing radiographs: implications for treatment of femoroacetabular impingement publication-title: Clin. Orthop. Relat. Res. – volume: 40 start-page: 877 year: 2011 end-page: 883 ident: bb0095 article-title: Analysis of acetabular version in the native hip: comparison between 2D axial CT and 3D CT measurements publication-title: Skelet. Radiol. – volume: 11 start-page: 508 year: 2003 end-page: 518 ident: bb0320 article-title: Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement publication-title: Osteoarthr. Cartil. – volume: 22 start-page: 218 year: 2014 end-page: 225 ident: bb0010 article-title: Cam impingement: defining the presence of a cam deformity by the alpha angle: data from the CHECK cohort and Chingford cohort publication-title: Osteoarthr. Cartil. – volume: 11 start-page: 745 year: 2016 end-page: 756 ident: bb0035 article-title: Assessment of cartilage contact pressure and loading in the hip joint during split posture publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 50 start-page: 1169 year: 2016 end-page: 1176 ident: bb0145 article-title: The Warwick agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement publication-title: Br. J. Sports Med. – volume: 39 start-page: 43S year: 2011 end-page: 49S ident: bb0050 article-title: Surgical treatment of femoroacetabular impingement improves hip kinematics publication-title: Am. J. Sports Med. – volume: 30 start-page: 1133 year: 2012 end-page: 1139 ident: bb0155 article-title: Finite element prediction of cartilage contact stresses in normal human hips publication-title: J. Orthop. Res. – volume: 8 start-page: 1 year: 2020 end-page: 6 ident: bb0135 article-title: Hip stability may influence the development of greater trochanteric pain syndrome: a case-control study of consecutive patients publication-title: Orthop. J. Sports Med. – volume: 27 start-page: 2011 year: 2017 end-page: 2023 ident: bb0220 article-title: Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects publication-title: Eur. Radiol. – volume: 100 start-page: 205 year: 2018 end-page: 210 ident: bb0180 article-title: Femoral version abnormalities significantly outweigh effect of cam impingement on hip internal rotation publication-title: J. Bone Joint Surg. Am. – volume: 45 start-page: 612 year: 2017 end-page: 619 ident: bb0255 article-title: Preoperative outcome scores are predictive of achieving the minimal clinically important difference after arthroscopic treatment of femoroacetabular impingement publication-title: Am. J. Sports Med. – volume: 51 start-page: 1605 year: 2017 end-page: 1610 ident: bb0265 article-title: Surgical criteria for femoroacetabular impingement syndrome: a scoping review publication-title: Br. J. Sports Med. – volume: 33 start-page: 1797 year: 2017 end-page: 1803 ident: bb0040 article-title: The influence of squat kinematics and cam morphology on acetabular stress publication-title: Arthrosc. J. Arthrosc. Relat. Surg. – volume: 2 year: 2015 ident: bb0185 article-title: The natural history of femoroacetabular impingement publication-title: Front. Surg. – volume: 117 start-page: 272 year: 1995 end-page: 278 ident: bb0090 article-title: Development and validation of a three-dimensional finite element model of the pelvic bone publication-title: J. Biomech. Eng. – volume: 470 start-page: 3368 year: 2012 end-page: 3374 ident: bb0070 article-title: Radiographic features associated with differing impinging hip morphologies with special attention to coxa profunda publication-title: Clin. Orthop. Relat. Res. – volume: 87 start-page: 1012 year: 2005 end-page: 1018 ident: bb0045 article-title: Hip morphology influences the pattern of damage to the acetabular cartilage. Femoroacetabular impingement as a cause of early osteoarthritis of the hip publication-title: J. Bone Joint Surg. (Br.) – volume: 11 start-page: 1 year: 2016 end-page: 12 ident: bb0200 article-title: Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy publication-title: PLoS One – year: 2021 ident: bb0280 article-title: R: A Language and Environment for Statistical Computing – volume: 47 start-page: 1 year: 2021 end-page: 38 ident: bb0060 article-title: How to build a dinosaur: musculoskeletal modeling and simulation of locomotor biomechanics in extinct animals publication-title: Paleobiology – volume: 240 start-page: 778 year: 2006 end-page: 785 ident: bb0270 article-title: Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients publication-title: Radiology – volume: 36 start-page: 293 year: 2013 end-page: 300 ident: bb0110 article-title: Relationship between femoral anteversion and findings in hips with femoroacetabular impingement publication-title: Orthopedics – volume: 36 start-page: 274 year: 2020 end-page: 276 ident: bb0175 article-title: Editorial commentary: a commentary on a meta-analysis of short-term outcomes publication-title: Arthrosc. J. Arthrosc. Relat. Surg. – volume: 97-B start-page: 478 year: 2015 end-page: 483 ident: bb0100 article-title: Coxa profunda in the diagnosis of pincertype femoroacetabular impingement and its prevalence in asymptomatic subjects publication-title: Bone Joint J. – volume: 53 start-page: 2346 year: 2021 end-page: 2353 ident: bb0205 article-title: Hip adduction during running: influence of sex, hip abductor strength and activation, and pelvis and femur morphology publication-title: Med. Sci. Sports Exerc. – volume: 5842 start-page: 1 year: 2015 end-page: 8 ident: bb0160 article-title: Hip joint degeneration due to cam impingement: a finite element analysis publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 5 year: 2017 ident: bb0290 article-title: Radiographic diagnosis of pincer-type femoroacetabular impingement: a systematic review publication-title: Orthop. J. Sports Med. – volume: 30 start-page: 13223 year: 2012 end-page: 13241 ident: bb0120 article-title: 3D slicer as an image computing platform for the quantitative imaging network publication-title: Magn. Reson. Imaging – volume: 130 start-page: 1 year: 2008 end-page: 10 ident: bb0020 article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint publication-title: J. Biomech. Eng. – volume: 473 start-page: 1396 year: 2015 end-page: 1403 ident: bb0075 article-title: Can combining femoral and acetabular morphology parameters improve the characterization of femoroacetabular impingement? publication-title: Clin. Orthop. Relat. Res. – volume: 34 start-page: 859 year: 2001 end-page: 871 ident: bb0055 article-title: Hip contact forces and gait patterns from routine activities publication-title: J. Biomech. – volume: 473 start-page: 1289 year: 2015 end-page: 1296 ident: bb0240 article-title: Patient-specific anatomical and functional parameters provide new insights into the pathomechanism of cam FAI publication-title: Clin. Orthop. Relat. Res. – volume: 127 year: 2005 ident: bb0015 article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies publication-title: J. Biomech. Eng. – volume: 350 start-page: 2 year: 2015 end-page: 3 ident: bb0065 article-title: Statistics notes: bootstrap resampling methods publication-title: BMJ – volume: 84-B start-page: 556 year: 2002 end-page: 560 ident: bb0250 article-title: The contour of the femoral head-neck junction as a predictor for the risk of anterior impingment: commentary publication-title: J. Bone Joint Surg. – volume: 96 start-page: 1683 year: 2014 end-page: 1689 ident: bb0230 article-title: Clinical presentation and disease characteristics of femoroacetabular impingement are sex-dependent publication-title: J. Bone Joint Surg. Am. – volume: 8 start-page: 206 year: 2012 end-page: 212 ident: bb0235 article-title: Finite element analysis examining the effects of cam FAI on hip joint mechanical loading using subject-specific geometries during standing and maximum squat publication-title: HSS J. – volume: 473 start-page: 2056 year: 2015 end-page: 2066 ident: bb0125 article-title: Does radiographic coxa profunda indicate increased acetabular coverage or depth in hip dysplasia? publication-title: Clin. Orthop. Relat. Res. – year: 2014 ident: bb0170 article-title: Finite element simulations of a hip joint with femoroacetabular impingement publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 27 start-page: 195 year: 2009 end-page: 201 ident: bb0080 article-title: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis publication-title: J. Orthop. Res. – volume: 48 start-page: 661 year: 2020 end-page: 672 ident: bb0195 article-title: Location of intra- and extra-articular hip impingement is different in patients with pincer-type and mixed-type femoroacetabular impingement due to acetabular retroversion or protrusio acetabuli on 3D CT–based impingement simulation publication-title: Am. J. Sports Med. – volume: 19 start-page: 41 year: 2011 end-page: 45 ident: bb0115 article-title: Conservative treatment for mild femoroacetabular impingement publication-title: J. Orthop. Surg. – volume: 41 start-page: 1348 year: 2013 end-page: 1356 ident: bb0085 article-title: Descriptive epidemiology of femoroacetabular impingement publication-title: Am. J. Sports Med. – volume: 17 start-page: 473 year: 2000 end-page: 483 ident: bb0260 article-title: Bootstrapping R2 and adjusted R2 in regression analysis publication-title: Econ. Model. – volume: 91 start-page: 16 year: 2009 end-page: 23 ident: bb0275 article-title: Outcomes following hip arthroscopy for femoroacetabular impingement with associated chondrolabral dysfunction MINIMUM TWO-YEAR FOLLOW-UP publication-title: J. Bone Joint Surg. (Br.) – year: 2021 ident: 10.1016/j.clinbiomech.2023.106025_bb0280 – volume: 47 start-page: 1 year: 2021 ident: 10.1016/j.clinbiomech.2023.106025_bb0060 article-title: How to build a dinosaur: musculoskeletal modeling and simulation of locomotor biomechanics in extinct animals publication-title: Paleobiology doi: 10.1017/pab.2020.46 – volume: 91 start-page: 16 year: 2009 ident: 10.1016/j.clinbiomech.2023.106025_bb0275 article-title: Outcomes following hip arthroscopy for femoroacetabular impingement with associated chondrolabral dysfunction MINIMUM TWO-YEAR FOLLOW-UP publication-title: J. Bone Joint Surg. (Br.) doi: 10.1302/0301-620X.91B1.21329 – volume: 36 start-page: 263 year: 2020 ident: 10.1016/j.clinbiomech.2023.106025_bb0105 article-title: Operative versus nonoperative treatment of femoroacetabular impingement syndrome: a meta-analysis of short-term outcomes publication-title: Arthrosc. J. Arthrosc. Relat. Surg. doi: 10.1016/j.arthro.2019.07.025 – volume: 33 start-page: 1797 year: 2017 ident: 10.1016/j.clinbiomech.2023.106025_bb0040 article-title: The influence of squat kinematics and cam morphology on acetabular stress publication-title: Arthrosc. J. Arthrosc. Relat. Surg. doi: 10.1016/j.arthro.2017.03.018 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.clinbiomech.2023.106025_bb0200 article-title: Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy publication-title: PLoS One – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.clinbiomech.2023.106025_bb0315 article-title: Classifying cam morphology by the alpha angle: a systematic review on threshold values publication-title: Orthop. J. Sports Med. doi: 10.1177/2325967120938312 – volume: 17 start-page: 473 year: 2000 ident: 10.1016/j.clinbiomech.2023.106025_bb0260 article-title: Bootstrapping R2 and adjusted R2 in regression analysis publication-title: Econ. Model. doi: 10.1016/S0264-9993(99)00034-6 – volume: 27 start-page: 195 year: 2009 ident: 10.1016/j.clinbiomech.2023.106025_bb0080 article-title: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis publication-title: J. Orthop. Res. doi: 10.1002/jor.20747 – volume: 45 start-page: 612 year: 2017 ident: 10.1016/j.clinbiomech.2023.106025_bb0255 article-title: Preoperative outcome scores are predictive of achieving the minimal clinically important difference after arthroscopic treatment of femoroacetabular impingement publication-title: Am. J. Sports Med. doi: 10.1177/0363546516669325 – volume: 473 start-page: 2056 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0125 article-title: Does radiographic coxa profunda indicate increased acetabular coverage or depth in hip dysplasia? publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-014-4084-x – volume: 11 start-page: 745 year: 2016 ident: 10.1016/j.clinbiomech.2023.106025_bb0035 article-title: Assessment of cartilage contact pressure and loading in the hip joint during split posture publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-015-1303-1 – volume: 417 start-page: 112 year: 2003 ident: 10.1016/j.clinbiomech.2023.106025_bb0130 article-title: Femoroacetabular impingement: a cause for osteoarthritis of the hip publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/01.blo.0000096804.78689.c2 – volume: 470 start-page: 3368 year: 2012 ident: 10.1016/j.clinbiomech.2023.106025_bb0070 article-title: Radiographic features associated with differing impinging hip morphologies with special attention to coxa profunda publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-012-2539-5 – volume: 46 start-page: 122 year: 2018 ident: 10.1016/j.clinbiomech.2023.106025_bb0190 article-title: Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: a controlled study of 538 hips publication-title: Am. J. Sports Med. doi: 10.1177/0363546517726983 – volume: 22 start-page: 218 year: 2014 ident: 10.1016/j.clinbiomech.2023.106025_bb0010 article-title: Cam impingement: defining the presence of a cam deformity by the alpha angle: data from the CHECK cohort and Chingford cohort publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2013.11.007 – volume: 34 start-page: 859 year: 2001 ident: 10.1016/j.clinbiomech.2023.106025_bb0055 article-title: Hip contact forces and gait patterns from routine activities publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00040-9 – year: 2014 ident: 10.1016/j.clinbiomech.2023.106025_bb0170 article-title: Finite element simulations of a hip joint with femoroacetabular impingement publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2012.744398 – volume: 391 start-page: 2225 year: 2018 ident: 10.1016/j.clinbiomech.2023.106025_bb0150 article-title: Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHIoN): a multicentre randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(18)31202-9 – volume: 72 start-page: 918 year: 2013 ident: 10.1016/j.clinbiomech.2023.106025_bb0005 article-title: Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK) publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2012-201643 – volume: 48 start-page: 661 year: 2020 ident: 10.1016/j.clinbiomech.2023.106025_bb0195 article-title: Location of intra- and extra-articular hip impingement is different in patients with pincer-type and mixed-type femoroacetabular impingement due to acetabular retroversion or protrusio acetabuli on 3D CT–based impingement simulation publication-title: Am. J. Sports Med. doi: 10.1177/0363546519897273 – volume: 87 start-page: 1012 year: 2005 ident: 10.1016/j.clinbiomech.2023.106025_bb0045 article-title: Hip morphology influences the pattern of damage to the acetabular cartilage. Femoroacetabular impingement as a cause of early osteoarthritis of the hip publication-title: J. Bone Joint Surg. (Br.) doi: 10.1302/0301-620X.87B7.15203 – volume: 41 start-page: 1348 year: 2013 ident: 10.1016/j.clinbiomech.2023.106025_bb0085 article-title: Descriptive epidemiology of femoroacetabular impingement publication-title: Am. J. Sports Med. doi: 10.1177/0363546513488861 – volume: 50 start-page: 1169 year: 2016 ident: 10.1016/j.clinbiomech.2023.106025_bb0145 article-title: The Warwick agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement publication-title: Br. J. Sports Med. doi: 10.1136/bjsports-2016-096743 – volume: 14 start-page: 514 year: 2019 ident: 10.1016/j.clinbiomech.2023.106025_bb0215 article-title: Short-term outcomes of conservative treatment for femoroacetabular impingement: a systematic review and meta-analysis publication-title: Int. J. Sports Phys. Ther. doi: 10.26603/ijspt20190514 – volume: 240 start-page: 778 year: 2006 ident: 10.1016/j.clinbiomech.2023.106025_bb0270 article-title: Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients publication-title: Radiology doi: 10.1148/radiol.2403050767 – volume: 130 start-page: 1 year: 2008 ident: 10.1016/j.clinbiomech.2023.106025_bb0020 article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint publication-title: J. Biomech. Eng. doi: 10.1115/1.2953472 – volume: 11 start-page: 508 year: 2003 ident: 10.1016/j.clinbiomech.2023.106025_bb0320 article-title: Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement publication-title: Osteoarthr. Cartil. doi: 10.1016/S1063-4584(03)00075-X – volume: 36 start-page: 274 year: 2020 ident: 10.1016/j.clinbiomech.2023.106025_bb0175 article-title: Editorial commentary: a commentary on a meta-analysis of short-term outcomes publication-title: Arthrosc. J. Arthrosc. Relat. Surg. doi: 10.1016/j.arthro.2019.09.035 – volume: 5 start-page: 449 year: 2010 ident: 10.1016/j.clinbiomech.2023.106025_bb0210 article-title: Acetabular orientation variability and symmetry based on CT scans of adults publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-010-0521-9 – volume: 4 start-page: 479 year: 2012 ident: 10.1016/j.clinbiomech.2023.106025_bb0165 article-title: Clinical outcomes analysis of conservative and surgical treatment of patients with clinical indications of prearthritic, intra-articular hip disorders publication-title: PM R doi: 10.1016/j.pmrj.2012.03.012 – volume: 40 start-page: 877 year: 2011 ident: 10.1016/j.clinbiomech.2023.106025_bb0095 article-title: Analysis of acetabular version in the native hip: comparison between 2D axial CT and 3D CT measurements publication-title: Skelet. Radiol. doi: 10.1007/s00256-010-1065-3 – volume: 117 start-page: 272 year: 1995 ident: 10.1016/j.clinbiomech.2023.106025_bb0090 article-title: Development and validation of a three-dimensional finite element model of the pelvic bone publication-title: J. Biomech. Eng. doi: 10.1115/1.2794181 – volume: 2 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0185 article-title: The natural history of femoroacetabular impingement publication-title: Front. Surg. doi: 10.3389/fsurg.2015.00058 – volume: 8 start-page: 206 year: 2012 ident: 10.1016/j.clinbiomech.2023.106025_bb0235 article-title: Finite element analysis examining the effects of cam FAI on hip joint mechanical loading using subject-specific geometries during standing and maximum squat publication-title: HSS J. doi: 10.1007/s11420-012-9292-x – volume: 95 start-page: 417 year: 2013 ident: 10.1016/j.clinbiomech.2023.106025_bb0225 article-title: Coxa profunda is not a useful radiographic parameter for diagnosing pincer-type femoroacetabular impingement publication-title: J. Bone Joint Surg. A doi: 10.2106/JBJS.K.01664 – volume: 27 start-page: 2011 year: 2017 ident: 10.1016/j.clinbiomech.2023.106025_bb0220 article-title: Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects publication-title: Eur. Radiol. doi: 10.1007/s00330-016-4530-0 – volume: 51 start-page: 1605 year: 2017 ident: 10.1016/j.clinbiomech.2023.106025_bb0265 article-title: Surgical criteria for femoroacetabular impingement syndrome: a scoping review publication-title: Br. J. Sports Med. doi: 10.1136/bjsports-2016-096936 – volume: 84-B start-page: 556 year: 2002 ident: 10.1016/j.clinbiomech.2023.106025_bb0250 article-title: The contour of the femoral head-neck junction as a predictor for the risk of anterior impingment: commentary publication-title: J. Bone Joint Surg. doi: 10.1302/0301-620X.84B4.0840556 – volume: 39 start-page: 83 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0300 article-title: Three-dimensional measurement of femoral neck anteversion and neck shaft angle publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/RCT.0000000000000161 – volume: 350 start-page: 2 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0065 article-title: Statistics notes: bootstrap resampling methods publication-title: BMJ doi: 10.1136/bmj.h2622 – volume: 46 start-page: 2607 year: 2018 ident: 10.1016/j.clinbiomech.2023.106025_bb0310 article-title: Patient-reported outcomes within the first year after hip arthroscopy and rehabilitation for femoroacetabular impingement and/or labral injury: the difference between getting better and getting back to normal publication-title: Am. J. Sports Med. doi: 10.1177/0363546518786971 – volume: 5 year: 2017 ident: 10.1016/j.clinbiomech.2023.106025_bb0290 article-title: Radiographic diagnosis of pincer-type femoroacetabular impingement: a systematic review publication-title: Orthop. J. Sports Med. doi: 10.1177/2325967117708307 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.clinbiomech.2023.106025_bb0135 article-title: Hip stability may influence the development of greater trochanteric pain syndrome: a case-control study of consecutive patients publication-title: Orthop. J. Sports Med. doi: 10.1177/2325967120958699 – volume: 477 start-page: 1053 year: 2019 ident: 10.1016/j.clinbiomech.2023.106025_bb0245 article-title: Cam FAI and smaller neck angles increase subchondral bone stresses during squatting: a finite element analysis publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/CORR.0000000000000528 – volume: 96 start-page: 1683 year: 2014 ident: 10.1016/j.clinbiomech.2023.106025_bb0230 article-title: Clinical presentation and disease characteristics of femoroacetabular impingement are sex-dependent publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.M.01320 – volume: 39 start-page: 43S year: 2011 ident: 10.1016/j.clinbiomech.2023.106025_bb0050 article-title: Surgical treatment of femoroacetabular impingement improves hip kinematics publication-title: Am. J. Sports Med. doi: 10.1177/0363546511414635 – volume: 100 start-page: 205 year: 2018 ident: 10.1016/j.clinbiomech.2023.106025_bb0180 article-title: Femoral version abnormalities significantly outweigh effect of cam impingement on hip internal rotation publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.17.00376 – volume: 85 start-page: 278 year: 2003 ident: 10.1016/j.clinbiomech.2023.106025_bb0305 article-title: Anterior femoro-acetabular impingement due to acetabular retroversion: treatment with periacetabular osteotomy publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-200302000-00015 – volume: 19 start-page: 41 year: 2011 ident: 10.1016/j.clinbiomech.2023.106025_bb0115 article-title: Conservative treatment for mild femoroacetabular impingement publication-title: J. Orthop. Surg. doi: 10.1177/230949901101900109 – volume: 5842 start-page: 1 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0160 article-title: Hip joint degeneration due to cam impingement: a finite element analysis publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 127 year: 2005 ident: 10.1016/j.clinbiomech.2023.106025_bb0015 article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies publication-title: J. Biomech. Eng. doi: 10.1115/1.1894148 – volume: 473 start-page: 1267 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0295 article-title: Functional acetabular orientation varies between supine and standing radiographs: implications for treatment of femoroacetabular impingement publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-014-4104-x – volume: 53 start-page: 2346 year: 2021 ident: 10.1016/j.clinbiomech.2023.106025_bb0205 article-title: Hip adduction during running: influence of sex, hip abductor strength and activation, and pelvis and femur morphology publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000002721 – volume: 1–9 year: 2018 ident: 10.1016/j.clinbiomech.2023.106025_bb0140 article-title: Acetabular and spino-pelvic morphologies are different in subjects with symptomatic cam femoro-acetabular impingement publication-title: J. Orthop. Res. – volume: 97-B start-page: 478 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0100 article-title: Coxa profunda in the diagnosis of pincertype femoroacetabular impingement and its prevalence in asymptomatic subjects publication-title: Bone Joint J. doi: 10.1302/0301-620X.97B4.34577 – volume: 36 start-page: 293 year: 2013 ident: 10.1016/j.clinbiomech.2023.106025_bb0110 article-title: Relationship between femoral anteversion and findings in hips with femoroacetabular impingement publication-title: Orthopedics doi: 10.3928/01477447-20130222-17 – volume: 473 start-page: 1396 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0075 article-title: Can combining femoral and acetabular morphology parameters improve the characterization of femoroacetabular impingement? publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-014-4037-4 – volume: 30 start-page: 13223 year: 2012 ident: 10.1016/j.clinbiomech.2023.106025_bb0120 article-title: 3D slicer as an image computing platform for the quantitative imaging network publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 473 start-page: 1289 year: 2015 ident: 10.1016/j.clinbiomech.2023.106025_bb0240 article-title: Patient-specific anatomical and functional parameters provide new insights into the pathomechanism of cam FAI publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-014-3797-1 – volume: 470 start-page: 3375 year: 2012 ident: 10.1016/j.clinbiomech.2023.106025_bb0025 article-title: Coxa profunda: is the deep acetabulum overcovered? publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-012-2509-y – volume: 467 start-page: 660 year: 2009 ident: 10.1016/j.clinbiomech.2023.106025_bb0285 article-title: Comparison of MRI alpha angle measurement planes in femoroacetabular impingement publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-008-0627-3 – volume: 30 start-page: 1133 year: 2012 ident: 10.1016/j.clinbiomech.2023.106025_bb0155 article-title: Finite element prediction of cartilage contact stresses in normal human hips publication-title: J. Orthop. Res. doi: 10.1002/jor.22040 |
SSID | ssj0004257 |
Score | 2.408414 |
Snippet | Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity... AbstractBackgroundFemoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106025 |
SubjectTerms | Acetabulum - diagnostic imaging Cam morphology Female Femoracetabular Impingement - diagnostic imaging Femoral and acetabular morphology Femoroacetabular impingement Femur - diagnostic imaging Finite Element Analysis Hip internal rotation Hip Joint - diagnostic imaging Humans Male Physical Medicine and Rehabilitation Range of Motion, Articular |
Title | Femoral and acetabular features explain acetabular contact pressure sensitivity to hip internal rotation in persons with cam morphology: A finite element analysis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0268003323001560 https://www.clinicalkey.es/playcontent/1-s2.0-S0268003323001560 https://dx.doi.org/10.1016/j.clinbiomech.2023.106025 https://www.ncbi.nlm.nih.gov/pubmed/37302302 https://www.proquest.com/docview/2825159198 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqGX0iZ9bB9hAqU3d71-yFLoZQldti3JpQ3kJmStRB02XhM70FzyY_JLO5LsTUpTWOjNljVIeKTRjOabGYD3XGWMm4mNcqGTiE4IG3HLRGRyS8_WisI72o9P2Pw0-3qWn23B0RAL42CVvewPMt1L675l3P_NcVNV4-9kPXBXioyUaB8P7CLYs8Kt8o83dzCPrM_2SZ0j13sHDu4wXi760Ie5e79EklI7i13V7IfPqH_poP4smj2FJ70SidMwz2ewZepd2JvWZEBfXOMH9LBOf1--CzvHvfd8D25nDlZLhKpeoNKmU6UDoaI1Prtni-ZXs1RVff-bg7Ir3aHHy1InbB3iPZScwG6FP6sGq3CruMTLVXDsUws2XpVv0V30olYXSEM3XtReH-IUbeWUXTQBvU4zCrlRnsPp7POPo3nU12iIdCbiLlKWWWbI6LC0k9NFyo0t87QUqWaClSxXzjFYJiohC14VKSsVz21s9YLIbM5E-gK261VtXgFmRltO9o1IClLrFC-VJc0_0SYtyeosihHwgStS9wnMXR2NpRyQaufyHkOlY6gMDB1BsiZtQhaPTYgOB9bLIUyVBKuks2YT4uIhYtP2IqKVE9kmMpZ_LeMRfFpT_rETNh34YFilkiSFc_-o2qyuWumjlHMxEXwEL8PyXf-MtHDFo-Lk9f8N_gYeu7cAZ34L293llXlHSltX7vtduQ-Ppl--zU9-A4zsRa0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FLq9jK3dR_apwtibiWPHslT2EspCujZ5WQt9E7IiUY_UMbUL7b_Tv3SnD6cd6yCwNyPrkNBJpzvd7-4AvjA5okwPTZRxlUR4Q5iIGcojnRn8NobnztE-m9Pp2ejHeXa-BYddLIyFVQbZ72W6k9ahZRBWc1CX5eAnWg_MliJDJdrFAz-BbZudKuvB9vjoeDq_D48MCT-xf2QJdmD_HuZlAxBdpLtzTSQpttPYFs5-_Jr6lxrqrqPJC3ge9Egy9lN9CVu62oW9cYU29OUt-UocstM9me_Cziw40PfgbmKRtUgoqwWRSreysDhUYrRL8NkQfVMvZVk9_GfR7FK1xEFmsRNpLOjdV50g7YpclDUp_cPiklytvG8fW0jttPmG2LdeouQlwaFrJ21vD8iYmNLqu0R7ADvOyKdHeQVnk--nh9MolGmI1IjHbSQNNVSj3WHwMKeLlGlTZGnBU0U5LWgmrW-wSGSCRrzMU1pIlpnYqAWSmYzy9DX0qlWl3wIZaWUYmjg8yVGzk6yQBpX_ROm0QMMzz_vAOq4IFXKY21IaS9GB1X6JBwwVlqHCM7QPyZq09ok8NiE66FgvukhVlK0Cr5tNiPPHiHUTpEQjhqJJRCz-2sl9-Lam_OMwbDrwfrdLBQoL6wGSlV5dN8IFKmd8yFkf3vjtu16MNLf1o-Lk3f8N_hmeTk9nJ-LkaH78Hp7ZPx7d_AF67dW1_og6XFt8Cmf0N4V7SF4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Femoral+and+acetabular+features+explain+acetabular+contact+pressure+sensitivity+to+hip+internal+rotation+in+persons+with+cam+morphology%3A+A+finite+element+analysis&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Cannon%2C+Jordan&rft.au=Rankin%2C+Jeffery+W&rft.au=Lewton%2C+Kristi+L&rft.au=Liu%2C+Jia&rft.date=2023-07-01&rft.issn=1879-1271&rft.eissn=1879-1271&rft.volume=107&rft.spage=106025&rft_id=info:doi/10.1016%2Fj.clinbiomech.2023.106025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-0033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-0033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-0033&client=summon |