Multimodal Effects of Local Context on Target Detection: Evidence from P3b
We used the P300 component to investigate how changes in local context influenced the ability to detect target stimuli. Local context was defined as the occurrence of a short predictive series of stimuli before delivery of a target event. EEG was recorded in 12 subjects during auditory and visual se...
Saved in:
Published in | Journal of cognitive neuroscience Vol. 21; no. 9; pp. 1680 - 1692 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.09.2009
MIT Press Journals, The |
Subjects | |
Online Access | Get full text |
ISSN | 0898-929X 1530-8898 |
DOI | 10.1162/jocn.2009.21071 |
Cover
Loading…
Abstract | We used the P300 component to investigate how changes in local context influenced the ability to detect target stimuli. Local context was defined as the occurrence of a short predictive series of stimuli before delivery of a target event. EEG was recorded in 12 subjects during auditory and visual sessions. Stimuli were presented in the center of the auditory and visual field and consisted of 15% targets (1000 Hz tone or downward facing triangle) and 85% of equal amounts of three types of standards (1500, 2000, and 2500 Hz tones or triangles facing left, upward, and right). Recording blocks consisted of targets preceded by either randomized sequences of standards or by sequences including a three-standard predictive sequence signaling the occurrence of a subsequent target event. Subjects pressed a button in response to targets. Peak target P300 (P3b) amplitude and latency were evaluated for targets after predictive and nonpredictive sequences using conventional averaging and a novel single-trial analysis procedure. Reaction times were shorter for predictable targets than for nonpredicted targets. P3b latency was shorter for predicted targets than for nonpredictive targets, and there were no significant P3b amplitude differences between predicted and random targets, as determined by both conventional averaging and single-trial analysis. Comparable effects on amplitude and latency were observed in both the auditory and visual modalities. The results indicate that local context has differential effects on P3b amplitude and latency, and exerts modality-independent effects on cognitive processing. |
---|---|
AbstractList | We used the P300 component to investigate how changes in local context influenced the ability to detect target stimuli. Local context was defined as the occurrence of a short predictive series of stimuli before delivery of a target event. EEG was recorded in 12 subjects during auditory and visual sessions. Stimuli were presented in the center of the auditory and visual field and consisted of 15% targets (1000 Hz tone or downward facing triangle) and 85% of equal amounts of three types of standards (1500, 2000, and 2500 Hz tones or triangles facing left, upward, and right). Recording blocks consisted of targets preceded by either randomized sequences of standards or by sequences including a three-standard predictive sequence signaling the occurrence of a subsequent target event. Subjects pressed a button in response to targets. Peak target P300 (P3b) amplitude and latency were evaluated for targets after predictive and nonpredictive sequences using conventional averaging and a novel single-trial analysis procedure. Reaction times were shorter for predictable targets than for nonpredicted targets. P3b latency was shorter for predicted targets than for nonpredictive targets, and there were no significant P3b amplitude differences between predicted and random targets, as determined by both conventional averaging and single-trial analysis. Comparable effects on amplitude and latency were observed in both the auditory and visual modalities. The results indicate that local context has differential effects on P3b amplitude and latency, and exerts modality-independent effects on cognitive processing.We used the P300 component to investigate how changes in local context influenced the ability to detect target stimuli. Local context was defined as the occurrence of a short predictive series of stimuli before delivery of a target event. EEG was recorded in 12 subjects during auditory and visual sessions. Stimuli were presented in the center of the auditory and visual field and consisted of 15% targets (1000 Hz tone or downward facing triangle) and 85% of equal amounts of three types of standards (1500, 2000, and 2500 Hz tones or triangles facing left, upward, and right). Recording blocks consisted of targets preceded by either randomized sequences of standards or by sequences including a three-standard predictive sequence signaling the occurrence of a subsequent target event. Subjects pressed a button in response to targets. Peak target P300 (P3b) amplitude and latency were evaluated for targets after predictive and nonpredictive sequences using conventional averaging and a novel single-trial analysis procedure. Reaction times were shorter for predictable targets than for nonpredicted targets. P3b latency was shorter for predicted targets than for nonpredictive targets, and there were no significant P3b amplitude differences between predicted and random targets, as determined by both conventional averaging and single-trial analysis. Comparable effects on amplitude and latency were observed in both the auditory and visual modalities. The results indicate that local context has differential effects on P3b amplitude and latency, and exerts modality-independent effects on cognitive processing. We used the P300 component to investigate how changes in local context influenced the ability to detect target stimuli. Local context was defined as the occurrence of a short predictive series of stimuli before delivery of a target event. EEG was recorded in 12 subjects during auditory and visual sessions. Stimuli were presented in the center of the auditory and visual field and consisted of 15% targets (1000 Hz tone or downward facing triangle) and 85% of equal amounts of three types of standards (1500, 2000, and 2500 Hz tones or triangles facing left, upward, and right). Recording blocks consisted of targets preceded by either randomized sequences of standards or by sequences including a three-standard predictive sequence signaling the occurrence of a subsequent target event. Subjects pressed a button in response to targets. Peak target P300 (P3b) amplitude and latency were evaluated for targets after predictive and nonpredictive sequences using conventional averaging and a novel single-trial analysis procedure. Reaction times were shorter for predictable targets than for nonpredicted targets. P3b latency was shorter for predicted targets than for nonpredictive targets, and there were no significant P3b amplitude differences between predicted and random targets, as determined by both conventional averaging and single-trial analysis. Comparable effects on amplitude and latency were observed in both the auditory and visual modalities. The results indicate that local context has differential effects on P3b amplitude and latency, and exerts modality-independent effects on cognitive processing. [PUBLICATION ABSTRACT] We used the P300 component to investigate how changes in local context influenced the ability to detect target stimuli. Local context was defined as the occurrence of a short predictive series of stimuli before delivery of a target event. EEG was recorded in 12 subjects during auditory and visual sessions. Stimuli were presented in the center of the auditory and visual field and consisted of 15% targets (1000 Hz tone or downward facing triangle) and 85% of equal amounts of three types of standards (1500, 2000, and 2500 Hz tones or triangles facing left, upward, and right). Recording blocks consisted of targets preceded by either randomized sequences of standards or by sequences including a three-standard predictive sequence signaling the occurrence of a subsequent target event. Subjects pressed a button in response to targets. Peak target P300 (P3b) amplitude and latency were evaluated for targets after predictive and nonpredictive sequences using conventional averaging and a novel single-trial analysis procedure. Reaction times were shorter for predictable targets than for nonpredicted targets. P3b latency was shorter for predicted targets than for nonpredictive targets, and there were no significant P3b amplitude differences between predicted and random targets, as determined by both conventional averaging and single-trial analysis. Comparable effects on amplitude and latency were observed in both the auditory and visual modalities. The results indicate that local context has differential effects on P3b amplitude and latency, and exerts modality-independent effects on cognitive processing. |
Author | Wang, Xue Ding, Mingzhou Fogelson, Noa Knight, Robert T Lewis, Jeffrey B Kishiyama, Mark M |
Author_xml | – sequence: 1 givenname: Noa surname: Fogelson fullname: Fogelson, Noa organization: 1University of California, Berkeley – sequence: 2 givenname: Xue surname: Wang fullname: Wang, Xue organization: 2University of Florida – sequence: 3 givenname: Jeffrey B surname: Lewis fullname: Lewis, Jeffrey B organization: 1University of California, Berkeley – sequence: 4 givenname: Mark M surname: Kishiyama fullname: Kishiyama, Mark M organization: 1University of California, Berkeley – sequence: 5 givenname: Mingzhou surname: Ding fullname: Ding, Mingzhou organization: 2University of Florida – sequence: 6 givenname: Robert T surname: Knight fullname: Knight, Robert T organization: 1University of California, Berkeley |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18702574$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctv1DAQB2ALFdFt4cwNRRy4oGzHj8Q2t2pZXloEhz1ws7y2g7xK4sV2KuhfX4ctApXXaSzr-43smTN0MobRIfQYwxLjllzsgxmXBEAuCQaO76EFbijUQkhxghZQSi2J_HSKzlLaAwBpWvYAnWLBy5GzBXr3fuqzH4LVfbXuOmdyqkJXbYIpF6swZvc1V2Gstjp-drl66XIhPowvqvWVt240rupiGKqPdPcQ3e90n9yj23qOtq_W29WbevPh9dvV5aY2TEKuNYDF3GhGBO2EpZYKbjltZcuwawFT6wQmDdZNI4QD3u600LYIKRlrKD1Hz45tDzF8mVzKavDJuL7XowtTUi1nHGMB_4UEBGnLSAp8egfuwxTH8gdFCIWGMZAFPblF025wVh2iH3T8pn6MsoCLIzAxpBRd95OAmpel5mWpeVnq-7JKormTMD7rebo5at__I_f8mBv8L0_9u179Qc_qimAvFcWUkoKBEAVU4VZd-8NvXW4AWiS4fA |
CitedBy_id | crossref_primary_10_1016_j_ijpsycho_2020_04_023 crossref_primary_10_1016_j_jpain_2012_10_008 crossref_primary_10_1093_brain_awp230 crossref_primary_10_1523_JNEUROSCI_3109_12_2012 crossref_primary_10_1093_cercor_bhw389 crossref_primary_10_1016_j_bandc_2013_05_001 crossref_primary_10_1111_j_1460_9568_2012_08223_x crossref_primary_10_1016_j_neulet_2018_08_014 crossref_primary_10_1016_j_clinph_2013_09_001 crossref_primary_10_2147_CIA_S287619 crossref_primary_10_1093_cercor_bhy331 crossref_primary_10_1109_TBME_2010_2083660 crossref_primary_10_3389_fnins_2016_00317 crossref_primary_10_1016_j_cortex_2012_02_005 crossref_primary_10_1111_j_1469_8986_2011_01195_x crossref_primary_10_3389_fnhum_2015_00519 crossref_primary_10_1007_s00221_012_3064_1 crossref_primary_10_1111_psyp_13542 crossref_primary_10_1016_j_clinph_2019_03_031 crossref_primary_10_1016_j_clinph_2010_07_017 crossref_primary_10_1016_j_neubiorev_2015_02_016 crossref_primary_10_1017_S1461145711001647 crossref_primary_10_1111_j_1469_8986_2010_01144_x crossref_primary_10_1016_j_cortex_2009_05_007 crossref_primary_10_1371_journal_pone_0231021 crossref_primary_10_1007_s10548_010_0160_z crossref_primary_10_1016_j_clinph_2010_09_011 crossref_primary_10_1016_j_neuropsychologia_2017_12_006 crossref_primary_10_1111_desc_12402 crossref_primary_10_1371_journal_pone_0065914 crossref_primary_10_1097_WNR_0b013e3283476bdb crossref_primary_10_1016_j_neulet_2009_10_088 crossref_primary_10_1016_j_neuropsychologia_2021_107826 |
Cites_doi | 10.3758/BF03206196 10.1109/TBME.2008.2008166 10.1016/0168-5597(94)00256-E 10.1016/S1388-2457(01)00739-8 10.1126/science.172.3990.1357 10.1016/S0031-9384(96)00564-1 10.1037/0033-295X.99.1.45 10.1016/j.clinph.2006.06.755 10.1126/science.959831 10.1111/j.1469-8986.2006.00390.x 10.1016/S0006-3223(97)00478-2 10.1176/appi.ajp.162.3.475 10.1111/1469-8986.3810133 10.1111/j.1469-8986.1981.tb03020.x 10.1016/S1388-2457(99)00186-8 10.1111/j.1469-8986.1980.tb00131.x 10.1146/annurev.neuro.24.1.167 10.1126/science.288.5472.1835 10.1016/j.ijpsycho.2005.12.012 10.1146/annurev.ps.34.020183.000341 10.1016/0301-0511(82)90016-3 10.3758/BF03212388 10.1016/j.cogbrainres.2005.01.008 10.1001/archpsyc.58.3.280 10.1126/science.7444452 10.1111/j.1469-8986.1986.tb00649.x 10.1038/203380a0 10.1016/S0006-3223(98)00108-5 10.1111/j.1469-8986.1997.tb02125.x 10.1016/0013-4694(88)90212-X 10.1016/0013-4694(67)90140-X 10.1152/jn.1997.77.3.1630 10.1016/j.ijpsycho.2005.10.015 10.1126/science.150.3700.1187 10.1126/science.155.3768.1436 10.1126/science.887923 10.1063/1.2208455 10.1017/S0048577201990559 10.1016/0301-0511(84)90007-3 10.1093/cercor/bhm111 10.1038/73975 10.1007/978-1-4615-0294-4_5 10.1093/geronj/37.6.696 10.1016/S0301-0511(97)05253-8 10.1017/S0140525X00058027 10.1523/JNEUROSCI.5070-04.2005 10.1017/S0140525X00058015 |
ContentType | Journal Article |
Copyright | Copyright MIT Press Journals Sep 2009 |
Copyright_xml | – notice: Copyright MIT Press Journals Sep 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1162/jocn.2009.21071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1530-8898 |
EndPage | 1692 |
ExternalDocumentID | 1786644361 18702574 10_1162_jocn_2009_21071 jocn.2009.21071.pdf |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R56 NS021135 – fundername: NINDS NIH HHS grantid: R37 NS021135 – fundername: NIMH NIH HHS grantid: R01 MH070498 – fundername: PHS HHS grantid: P040813 – fundername: NINDS NIH HHS grantid: P01 NS040813 – fundername: NINDS NIH HHS grantid: R01 NS021135 – fundername: NINDS NIH HHS grantid: NS21135 – fundername: NIMH NIH HHS grantid: MH70498 |
GroupedDBID | - 0R 4.4 53G 5GY 5RE 6IK AAJGR ABDBF ABIVO ABPTK ACHQT ACIWK ACPRK ADYLN AEILP AENEX AETEA AFHIN AHMBA ALMA_UNASSIGNED_HOLDINGS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CAG COF CS3 DZ EAP EAS EBC EBD EBO EBS EJD EMB EMK EPL EPS ESX F5P FAC FEDTE FNEHJ HZ I-F IAO IEA IGS IHR IOF IPLJI IPY JAVBF MCG MKJ N9A O9- OCL P2P PK0 PQEST PQQKQ RMI RWL RXW S10 SV3 TAE TH9 TN5 TUS UHB UPT WH7 X ZA5 ZY4 --- -DZ -~X .DC 0R~ 36B AAYXX ABAZT ABDNZ ABVLG ACGFO ACUHS AEGXH AIAGR CITATION EMOBN HVGLF HZ~ MINIK P0W WG8 XSW YBU YQT ZWS .GJ 29K 9M8 ACYGS AI. BKOMP CGR CUY CVF D-I ECM EIF FAS FJW ITC M43 MVM NPM ROL VH1 X7L ZGI ZXP 7QR 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c490t-a00d17ca4283f8d3d387d7369641e6013de81251a5588e076ba8add739944533 |
ISSN | 0898-929X |
IngestDate | Fri Sep 05 13:36:45 EDT 2025 Fri Sep 05 03:12:47 EDT 2025 Mon Jun 30 05:56:36 EDT 2025 Fri May 30 10:49:08 EDT 2025 Tue Jul 01 01:47:45 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Wed Mar 16 12:13:53 EDT 2022 Thu Mar 17 08:20:42 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c490t-a00d17ca4283f8d3d387d7369641e6013de81251a5588e076ba8add739944533 |
Notes | September, 2009 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2823841 |
PMID | 18702574 |
PQID | 223054409 |
PQPubID | 37146 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_18702574 proquest_miscellaneous_67471180 crossref_citationtrail_10_1162_jocn_2009_21071 crossref_primary_10_1162_jocn_2009_21071 mit_journals_10_1162_jocn_2009_21071 mit_journals_jocnv21i9_313329_2022_03_16_zip_jocn_2009_21071 proquest_miscellaneous_20826002 proquest_journals_223054409 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-09-01 2009-Sep 20090901 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States – name: Cambridge |
PublicationTitle | Journal of cognitive neuroscience |
PublicationTitleAlternate | J Cogn Neurosci |
PublicationYear | 2009 |
Publisher | MIT Press MIT Press Journals, The |
Publisher_xml | – name: MIT Press – name: MIT Press Journals, The |
References | Walter (2021072818425031000_R46) 1964; 203 Sutton (2021072818425031000_R41) 1967; 155 Hillyard (2021072818425031000_R15) 1983; 34 Verleger (2021072818425031000_R44) 1988; 11 Duncan-Johnson (2021072818425031000_R9) 1981; 18 Miller (2021072818425031000_R29) 2001; 24 Barch (2021072818425031000_R4) 2001; 58 Hillyard (2021072818425031000_R16) 1971; 172 Kiehl (2021072818425031000_R21) 2001; 38 Squires (2021072818425031000_R38) 1975; 1 Johnson (2021072818425031000_R19) 1986; 23 Huettel (2021072818425031000_R18) 2005; 25 Fowler (2021072818425031000_R13) 1997; 46 Low (2021072818425031000_R24) 2006; 43 MacDonald (2021072818425031000_R26) 2000; 288 Polich (2021072818425031000_R34) 2006; 60 Polich (2021072818425031000_R33) 1997; 61 Suwazano (2021072818425031000_R42) 2000; 111 MacDonald (2021072818425031000_R25) 2005; 162 Wilikinson (2021072818425031000_R47) 1967; 23 McCarthy (2021072818425031000_R27) 1981; 211 Xu (2021072818425031000_R48) Verleger (2021072818425031000_R45) 1997; 34 Parasurman (2021072818425031000_R31) 1982; 31 Barcelo (2021072818425031000_R2) 2007; 17 Donchin (2021072818425031000_R8) 1988; 11 Holm (2021072818425031000_R17) 2006; 61 Duncan-Johnson (2021072818425031000_R10) 1982; 14 Truccolo (2021072818425031000_R43) 2002; 113 Johnson (2021072818425031000_R20) 1980; 17 Poulsen (2021072818425031000_R35) 2005; 24 Fowler (2021072818425031000_R12) 1988; 69 Frodl-Bauch (2021072818425031000_R14) 1999; 45 Squires (2021072818425031000_R37) 1973; 14 McCarthy (2021072818425031000_R28) 1997; 77 Barcelo (2021072818425031000_R3) 2000; 3 Polich (2021072818425031000_R32) 2003 Sawaki (2021072818425031000_R36) 2006; 117 Squires (2021072818425031000_R39) 1976; 193 Chao (2021072818425031000_R5) 1995; 96 Chen (2021072818425031000_R6) 2006; 16 Alain (2021072818425031000_R1) 1988; 44 Kok (2021072818425031000_R22) 2001; 38 Ford (2021072818425031000_R11) 1982; 37 Kutas (2021072818425031000_R23) 1977; 197 Sutton (2021072818425031000_R40) 1965; 150 Munson (2021072818425031000_R30) 1984; 19 Cohen (2021072818425031000_R7) 1992; 99 |
References_xml | – volume: 31 start-page: 1 year: 1982 ident: 2021072818425031000_R31 article-title: Detection and recognition: Concurrent processes in perception. publication-title: Perception & Psychophysics doi: 10.3758/BF03206196 – volume-title: IEEE Transactions on Biomedical Engineering ident: 2021072818425031000_R48 article-title: ASEO: A method for the simultaneous estimation of single-trial event-related potentials and ongoing brain activities. doi: 10.1109/TBME.2008.2008166 – volume: 96 start-page: 157 year: 1995 ident: 2021072818425031000_R5 article-title: Auditory event-related potentials dissociate early and late memory processes. publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0168-5597(94)00256-E – volume: 113 start-page: 206 year: 2002 ident: 2021072818425031000_R43 article-title: Trial-to-trial variability of cortical evoked responses: Implications for the analysis of functional connectivity. publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(01)00739-8 – volume: 172 start-page: 1357 year: 1971 ident: 2021072818425031000_R16 article-title: Evoked potential correlates of auditory signal detection. publication-title: Science doi: 10.1126/science.172.3990.1357 – volume: 61 start-page: 843 year: 1997 ident: 2021072818425031000_R33 article-title: P300 sequence effects, probability, and interstimulus interval. publication-title: Physiology & Behavior doi: 10.1016/S0031-9384(96)00564-1 – volume: 99 start-page: 45 year: 1992 ident: 2021072818425031000_R7 article-title: Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia. publication-title: Psychological Review doi: 10.1037/0033-295X.99.1.45 – volume: 117 start-page: 2532 year: 2006 ident: 2021072818425031000_R36 article-title: Stimulus context determines whether non-target stimuli are processed as task-relevant or distractor information. publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2006.06.755 – volume: 193 start-page: 1142 year: 1976 ident: 2021072818425031000_R39 article-title: The effect of stimulus sequence on the waveform of the cortical event-related potential. publication-title: Science doi: 10.1126/science.959831 – volume: 43 start-page: 127 year: 2006 ident: 2021072818425031000_R24 article-title: Fast optical imaging of frontal cortex during active and passive oddball tasks. publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2006.00390.x – volume: 44 start-page: 1151 year: 1988 ident: 2021072818425031000_R1 article-title: Processing of auditory stimuli during visual attention in patients with schizophrenia. publication-title: Biological Psychiatry doi: 10.1016/S0006-3223(97)00478-2 – volume: 162 start-page: 475 year: 2005 ident: 2021072818425031000_R25 article-title: Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. publication-title: American Journal of Psychiatry doi: 10.1176/appi.ajp.162.3.475 – volume: 38 start-page: 133 year: 2001 ident: 2021072818425031000_R21 article-title: Neural sources involved in auditory target detection and novelty processing: An event-related fMRI study. publication-title: Psychophysiology doi: 10.1111/1469-8986.3810133 – volume: 1 start-page: 268 year: 1975 ident: 2021072818425031000_R38 article-title: Decision-related cortical potentials during an auditory signal detection task with cued observation intervals. publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 18 start-page: 207 year: 1981 ident: 2021072818425031000_R9 article-title: P300 latency: A new metric of information processing. publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1981.tb03020.x – volume: 111 start-page: 29 year: 2000 ident: 2021072818425031000_R42 article-title: Predictive value of novel stimuli modifies visual event-related potentials and behavior. publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(99)00186-8 – volume: 17 start-page: 167 year: 1980 ident: 2021072818425031000_R20 article-title: P300 and stimulus categorization: Two plus one is not so different from one plus one. publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1980.tb00131.x – volume: 24 start-page: 167 year: 2001 ident: 2021072818425031000_R29 article-title: An integrative theory of prefrontal cortex function. publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.24.1.167 – volume: 288 start-page: 1835 year: 2000 ident: 2021072818425031000_R26 article-title: Dissociating the role of the dorsolateral prefrontal and anterior cingulated cortex in cognitive control. publication-title: Science doi: 10.1126/science.288.5472.1835 – volume: 60 start-page: 172 year: 2006 ident: 2021072818425031000_R34 article-title: Neuropsychological and neuropharmacology of P3a and P3b. publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2005.12.012 – volume: 34 start-page: 33 year: 1983 ident: 2021072818425031000_R15 article-title: Electrophysiology of cognitive processing. publication-title: Annual Review of Psychology doi: 10.1146/annurev.ps.34.020183.000341 – volume: 14 start-page: 1 year: 1982 ident: 2021072818425031000_R10 article-title: The P300 component of the event-related brain potential as an index of information processing. publication-title: Biological Psychology doi: 10.1016/0301-0511(82)90016-3 – volume: 14 start-page: 265 year: 1973 ident: 2021072818425031000_R37 article-title: Vertex potentials evoked during auditory signal detection: Relation to decision criteria. publication-title: Perception & Psychophysics doi: 10.3758/BF03212388 – volume: 24 start-page: 133 year: 2005 ident: 2021072818425031000_R35 article-title: Dynamics of task sets: Evidence from dense-array event-related potentials. publication-title: Cognitive Brain Research doi: 10.1016/j.cogbrainres.2005.01.008 – volume: 58 start-page: 280 year: 2001 ident: 2021072818425031000_R4 article-title: Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. publication-title: Archives of General Psychiatry doi: 10.1001/archpsyc.58.3.280 – volume: 211 start-page: 77 year: 1981 ident: 2021072818425031000_R27 article-title: A metric for thought: A comparison of P300 latency and reaction time. publication-title: Science doi: 10.1126/science.7444452 – volume: 23 start-page: 367 year: 1986 ident: 2021072818425031000_R19 article-title: A triarchic model of P300 amplitude. publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1986.tb00649.x – volume: 203 start-page: 380 year: 1964 ident: 2021072818425031000_R46 article-title: Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. publication-title: Nature doi: 10.1038/203380a0 – volume: 45 start-page: 116 year: 1999 ident: 2021072818425031000_R14 article-title: P300 subcomponents reflect different aspects of psychopathology in schizophrenia. publication-title: Biological Psychiatry doi: 10.1016/S0006-3223(98)00108-5 – volume: 34 start-page: 131 year: 1997 ident: 2021072818425031000_R45 article-title: On the utility of P3 latency as an index of mental chronometry. publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1997.tb02125.x – volume: 69 start-page: 171 year: 1988 ident: 2021072818425031000_R12 article-title: The effects of nitrous oxide on P300 and reaction time. publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(88)90212-X – volume: 23 start-page: 50 year: 1967 ident: 2021072818425031000_R47 article-title: Auditory evoked response and reaction time. publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(67)90140-X – volume: 77 start-page: 1630 year: 1997 ident: 2021072818425031000_R28 article-title: Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. publication-title: Journal of Neurophysiology doi: 10.1152/jn.1997.77.3.1630 – volume: 61 start-page: 244 year: 2006 ident: 2021072818425031000_R17 article-title: Relationship of P300 single-trial responses with reaction time and preceding stimulus sequence. publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2005.10.015 – volume: 150 start-page: 1187 year: 1965 ident: 2021072818425031000_R40 article-title: Evoked-potential correlates of stimulus uncertainty. publication-title: Science doi: 10.1126/science.150.3700.1187 – volume: 155 start-page: 1436 year: 1967 ident: 2021072818425031000_R41 article-title: Information delivery and the sensory evoked potential. publication-title: Science doi: 10.1126/science.155.3768.1436 – volume: 197 start-page: 792 year: 1977 ident: 2021072818425031000_R23 article-title: Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. publication-title: Science doi: 10.1126/science.887923 – volume: 16 start-page: 026113 year: 2006 ident: 2021072818425031000_R6 article-title: Stochastic modeling of neurobiological time series: Power, coherence, Granger causality, and separation of evoked responses from ongoing activity. publication-title: Chaos doi: 10.1063/1.2208455 – volume: 38 start-page: 557 year: 2001 ident: 2021072818425031000_R22 article-title: On the utility of P3 amplitude as a measure of processing capacity. publication-title: Psychophysiology doi: 10.1017/S0048577201990559 – volume: 19 start-page: 1 year: 1984 ident: 2021072818425031000_R30 article-title: The relation of P3b to prior events and future behavior. publication-title: Biological Psychology doi: 10.1016/0301-0511(84)90007-3 – volume: 17 start-page: i51 year: 2007 ident: 2021072818425031000_R2 article-title: An information-theoretical approach to contextual processing in the human brain: Evidence from prefrontal lesions. publication-title: Cerebral Cortex doi: 10.1093/cercor/bhm111 – volume: 3 start-page: 399 year: 2000 ident: 2021072818425031000_R3 article-title: Prefrontal modulation of visual processing in humans. publication-title: Nature Neuroscience doi: 10.1038/73975 – start-page: 83 volume-title: Detection of change: Event-related potential and fMRI findings year: 2003 ident: 2021072818425031000_R32 article-title: Overview of P3a and P3b. doi: 10.1007/978-1-4615-0294-4_5 – volume: 37 start-page: 696 year: 1982 ident: 2021072818425031000_R11 article-title: Expectancy for events in old age: Stimulus sequence effects on P300 and reaction time. publication-title: Journal of Gerontology doi: 10.1093/geronj/37.6.696 – volume: 46 start-page: 113 year: 1997 ident: 2021072818425031000_R13 article-title: Biological determinants of P300: The effects of a barbiturate on latency and amplitude. publication-title: Biological Psychology doi: 10.1016/S0301-0511(97)05253-8 – volume: 11 start-page: 357 year: 1988 ident: 2021072818425031000_R8 article-title: Is the P300 component a manifestation of context updating? publication-title: Behavioral and Brain Sciences doi: 10.1017/S0140525X00058027 – volume: 25 start-page: 3304 year: 2005 ident: 2021072818425031000_R18 article-title: Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices. publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5070-04.2005 – volume: 11 start-page: 343 year: 1988 ident: 2021072818425031000_R44 article-title: Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. publication-title: Behavioral and Brain Sciences doi: 10.1017/S0140525X00058015 |
SSID | ssj0002564 |
Score | 2.1267884 |
Snippet | We used the P300 component to investigate how changes in local context influenced the ability to detect target stimuli. Local context was defined as the... |
SourceID | proquest pubmed crossref mit |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1680 |
SubjectTerms | Acoustic Stimulation - methods Adult Auditory Perception - physiology Brain Mapping Cognition & reasoning Contingent Negative Variation - physiology Effects Electroencephalography Event-Related Potentials, P300 - physiology Female Humans Information processing Male Neurosciences Photic Stimulation - methods Predictive Value of Tests Psychoacoustics Reaction Time - physiology Signal Detection, Psychological - physiology Visual Perception - physiology |
Title | Multimodal Effects of Local Context on Target Detection: Evidence from P3b |
URI | https://direct.mit.edu/jocn/article/doi/10.1162/jocn.2009.21071 https://www.ncbi.nlm.nih.gov/pubmed/18702574 https://www.proquest.com/docview/223054409 https://www.proquest.com/docview/20826002 https://www.proquest.com/docview/67471180 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67mUvaGxcyrj4YUJIVUqcOI6DeGmBaZq2iYci9S1KHGcE0WTaUqD7A_xtju3cuhFp8BJVyYnV5Hw5F_v4OwgdkkQmKg62pJMyi6YitgLmU0ukfuqJxPcizcB3ds6Ov9CThbcYDH53qpZWZTwRN3_dV_I_WoVzoFe1S_YfNNsMCifgN-gXjqBhON5Lx3r37LJIFDdwW5dxqtzTWNNO_SrVYsBcV3uDaSl13ZWu5ai7iZr9JZ_duCdKbcuLOsyXsvVdF7KmezwvWgtfTUIvVo3kqfyZdbeOjWeTdvn_-mu2jpZRvXdofDbZmIxoq60amxWA_TTdccG91DbVtjg3zaZro-uQDriCjgUlzHR2qrwxYaZV3l1LzxRz7LdC5IZ0FFJX08tlk1P7lq9rKhB17sOcUA2gWnEGoR5gC207kG_YQ7Q9nX2cHTVOHSJDzURWP1_FEgVDvL31HzYCnK1lVvbnLjqGme-iB5Va8dQg6SEayHwP7U_zqCyWa_wa63Jgvc6yh3Ya17jeRyct0nCFNFykWCMNV0jDRY4N0nCDtHe4xhlWOMOAs0dofvRp_uHYqrpwWIIGdmlFtp0QX0SKmS_liZu43E981QaSEgnpvJtIrqLkyPM4l7bP4oiD0_Qh8qUUkonHaJgXuXyKMCcpgYCXCTvxaew5MRM8ECmLiVSL63SEJvWbC0XFUK8apXwPe7Q1Qm-aGy4NOUu_6CGoIqw-3ut-sfcbYuryD4dkQegS13VACmLe0HZDwsKb7PLu7Qe1qtsxIACHvIjawQi9aq6CEVcrc1EuixWIQCCuFsj7JZiaPCLcHqEnBkHtA4PHBb9Ln93_ZRygnfbjfY6G5dVKvoDYuoxfVrj_Axoux6g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Effects+of+Local+Context+on+Target+Detection%3A+Evidence+from+P3b&rft.jtitle=Journal+of+cognitive+neuroscience&rft.au=Fogelson%2C+Noa&rft.au=Wang%2C+Xue&rft.au=Lewis%2C+Jeffrey+B.&rft.au=Kishiyama%2C+Mark+M.&rft.date=2009-09-01&rft.issn=0898-929X&rft.eissn=1530-8898&rft.volume=21&rft.issue=9&rft.spage=1680&rft.epage=1692&rft_id=info:doi/10.1162%2Fjocn.2009.21071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_jocn_2009_21071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-929X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-929X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-929X&client=summon |