Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data or is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we...
Saved in:
Published in | Frontiers in neuroscience Vol. 13; p. 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
24.01.2019
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data
or
is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal
and single-time-point
MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from
to
, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of
data compared to the
data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the
data can be improved by incorporating longitudinal information, which is not possible for
data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the
and
structural MRI data. Our results emphasize the importance of longitudinal analysis for
data analysis. |
---|---|
AbstractList | Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis. Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis. Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo , while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis. Brain volume measurements extracted from structural MRI data sets are a widely-accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyse data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most grey matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasise the importance of longitudinal analysis for in vivo data analysis. Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data or is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal and single-time-point MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from to , while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of data compared to the data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the data can be improved by incorporating longitudinal information, which is not possible for data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the and structural MRI data. Our results emphasize the importance of longitudinal analysis for data analysis. |
Author | Holmes, Holly E. Johnson, Ross A. Beg, Mirza F. O’Callaghan, James M. Powell, Nick M. Ourselin, Sebastien Cardoso, Manuel J. Modat, Marc Popuri, Karteek Collins, Emily C. Lythgoe, Mark F. Ma, Da Ismail, Ozama Harrison, Ian F. O’Neill, Michael J. |
AuthorAffiliation | 1 Translational Imaging Group, Centre for Medical Image Computing, University College London , London , United Kingdom 3 School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada 5 Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center , Indianapolis, IN , United States 4 School of Biomedical Engineering and Imaging Sciences, King’s College London , London , United Kingdom 2 Centre for Advanced Biomedical Imaging, University College London , London , United Kingdom 6 Eli Lilly & Co. Ltd., Erl Wood Manor , Windlesham , United Kingdom |
AuthorAffiliation_xml | – name: 1 Translational Imaging Group, Centre for Medical Image Computing, University College London , London , United Kingdom – name: 4 School of Biomedical Engineering and Imaging Sciences, King’s College London , London , United Kingdom – name: 2 Centre for Advanced Biomedical Imaging, University College London , London , United Kingdom – name: 6 Eli Lilly & Co. Ltd., Erl Wood Manor , Windlesham , United Kingdom – name: 5 Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center , Indianapolis, IN , United States – name: 3 School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada |
Author_xml | – sequence: 1 givenname: Da surname: Ma fullname: Ma, Da – sequence: 2 givenname: Holly E. surname: Holmes fullname: Holmes, Holly E. – sequence: 3 givenname: Manuel J. surname: Cardoso fullname: Cardoso, Manuel J. – sequence: 4 givenname: Marc surname: Modat fullname: Modat, Marc – sequence: 5 givenname: Ian F. surname: Harrison fullname: Harrison, Ian F. – sequence: 6 givenname: Nick M. surname: Powell fullname: Powell, Nick M. – sequence: 7 givenname: James M. surname: O’Callaghan fullname: O’Callaghan, James M. – sequence: 8 givenname: Ozama surname: Ismail fullname: Ismail, Ozama – sequence: 9 givenname: Ross A. surname: Johnson fullname: Johnson, Ross A. – sequence: 10 givenname: Michael J. surname: O’Neill fullname: O’Neill, Michael J. – sequence: 11 givenname: Emily C. surname: Collins fullname: Collins, Emily C. – sequence: 12 givenname: Mirza F. surname: Beg fullname: Beg, Mirza F. – sequence: 13 givenname: Karteek surname: Popuri fullname: Popuri, Karteek – sequence: 14 givenname: Mark F. surname: Lythgoe fullname: Lythgoe, Mark F. – sequence: 15 givenname: Sebastien surname: Ourselin fullname: Ourselin, Sebastien |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30733665$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1vEzEQhleoiH7AnROyxIVLir_WWV-QSilQqRUVSRE3y2uPU1cbO9jeiv5C_hZOUqq2Eid7PM-8Gs-8-81OiAGa5jXBh4x18r0LPuRDiok8xBgT8qzZI0LQCW_Zz50H991mP-drjAXtOH3R7DI8ZUyIdq_5MyujvUXlCtBZDAtfIx_0gHxAN_4mIh0sOk4x58kMTPFxnYPf29zHpCv2Iw7jEtAn7xwkCAaQi6mGGXQGdJHiIkHOtXKjNU-gyxJCQSeVNwXV9_M4VvI8WhhQdGiux7jS5eoWXWYfFuhoLHGpC1h0_v0UzUoaTRlT7eNCJwPDoNdtvWyeOz1keHV3HjSXn0_mx18nZ9--nB4fnU0Ml7hMpOaGaGmEI5Zjx2nLyXRKueWOWjLVrusNoUYAlUz2WEiJMTedw5JZ6KllB83pVtdGfa1WyS91ulVRe7V5iGmhdCreDKBk33EQpJNtnTr0VhosQVjSS9pjR3jV-rDVWo39EqypU6nfeiT6OBP8lVrEGyVYy7EQVeDdnUCKv0bIRS193owkQJ2popRKPG3pVFb07RP0Oo6pbrNSDIuWcdyxSr152NF9K__8UgG8BczaEwncPUKwWltSbSyp1pZUG0vWEvGkxPiy2Vn9kx_-X_gXL1_qog |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2024_111161 crossref_primary_10_1002_hbm_25115 crossref_primary_10_1002_mrm_30264 crossref_primary_10_1002_mrm_30298 crossref_primary_10_1038_s41380_022_01535_5 crossref_primary_10_1159_000515754 crossref_primary_10_1177_2398212819883086 crossref_primary_10_1007_s13139_022_00746_6 crossref_primary_10_3389_fnins_2020_567222 crossref_primary_10_1002_nbm_5033 crossref_primary_10_3389_fncel_2024_1498133 crossref_primary_10_1016_j_brainres_2023_148562 crossref_primary_10_1038_s41398_021_01274_1 crossref_primary_10_1089_neu_2019_6944 crossref_primary_10_1038_s41598_020_75720_3 crossref_primary_10_1093_brain_awac458 crossref_primary_10_3389_fnagi_2021_791679 crossref_primary_10_1016_j_neuroimage_2024_120734 crossref_primary_10_3389_fnagi_2022_825996 crossref_primary_10_1016_j_neuroimage_2020_117271 |
Cites_doi | 10.1093/cercor/11.1.1 10.1159/000106632 10.1097/YCO.0000000000000401 10.1371/journal.pone.0086576 10.1093/bja/aem214 10.1093/schbul/sbx137 10.1007/978-3-540-75757-3_64 10.1007/978-3-642-15705-9_38 10.1016/j.neurobiolaging.2015.12.001 10.1083/jcb.12.2.385 10.1023/A:1007607513941 10.1371/journal.pone.0071027 10.3389/fnana.2014.00047 10.1016/j.jneumeth.2011.08.031 10.1016/j.neuroscience.2005.07.014 10.1093/brain/awn146 10.1016/j.neuroimage.2004.03.037 10.1002/jmri.22381 10.2353/ajpath.2006.050840 10.1016/j.media.2013.02.006 10.1038/s41582-018-0032-9 10.1002/mrm.24661 10.1016/j.mri.2013.06.001 10.1016/S0730-725X(99)00118-6 10.1586/ern.10.162 10.1177/026119291204000603 10.1038/s41598-017-00148-1 10.3389/fninf.2017.00020 10.1523/JNEUROSCI.2170-12.2012 10.1016/j.mri.2012.02.010 10.1186/1472-6947-12-8 10.2307/2987937 10.1016/0040-8166(80)90052-X 10.1371/journal.pone.0162974 10.1016/j.neuroimage.2007.08.028 10.1109/42.796284 10.1259/bjr/25329214 10.1148/radiol.2016152703 10.1002/hbm.24463 10.1016/j.neuroimage.2008.05.021 10.1016/S1474-4422(16)00067-3 10.1093/brain/awx194 10.1117/12.2043652 10.1016/j.neuroimage.2009.10.027 10.1002/mrm.21487 10.1016/j.neurobiolaging.2009.04.006 10.1007/978-3-540-40899-4_57 10.1109/TMI.2010.2046908 10.1109/TMI.2004.828354 10.1016/j.neuroimage.2011.06.025 10.1242/jeb.146712 10.1097/01.sap.0000250653.77090.97 10.1002/cne.21906 10.1212/01.wnl.0000304743.72127.cc 10.1042/bj0820113 10.1212/WNL.45.1.17 10.1198/016214507000000941 10.1016/j.neuroimage.2017.03.057 10.1016/j.neuroimage.2003.11.010 10.3389/fninf.2012.00006 10.2147/CLEP.S37929 10.1016/j.neuroimage.2017.08.047 10.3389/neuro.05.001.2008 10.1016/j.neuroimage.2004.03.040 10.1038/jcbfm.2014.224 10.1111/j.1558-5646.1996.tb03628.x 10.1126/science.1113694 10.1016/j.neuroimage.2011.01.082 10.3354/dao02259 10.1177/000456329202900512 10.1371/journal.pone.0096568 10.1016/S0140-6736(86)90837-8 10.1016/j.aca.2012.11.007 10.1002/mrm.10436 10.1016/j.jalz.2011.05.099 10.1016/j.yexmp.2015.05.009 10.1080/19466315.2016.1142889 10.1016/J.NEUROIMAGE.2018.09.062 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2019 Ma, Holmes, Cardoso, Modat, Harrison, Powell, O’Callaghan, Ismail, Johnson, O’Neill, Collins, Beg, Popuri, Lythgoe and Ourselin. 2019 Ma, Holmes, Cardoso, Modat, Harrison, Powell, O’Callaghan, Ismail, Johnson, O’Neill, Collins, Beg, Popuri, Lythgoe and Ourselin |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2019 Ma, Holmes, Cardoso, Modat, Harrison, Powell, O’Callaghan, Ismail, Johnson, O’Neill, Collins, Beg, Popuri, Lythgoe and Ourselin. 2019 Ma, Holmes, Cardoso, Modat, Harrison, Powell, O’Callaghan, Ismail, Johnson, O’Neill, Collins, Beg, Popuri, Lythgoe and Ourselin |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2019.00011 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Statistics |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_9b84e61895284ebd9c09e6d1b92b0f14 PMC6354066 30733665 10_3389_fnins_2019_00011 |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK United States--US |
GeographicLocations_xml | – name: United Kingdom--UK – name: United States--US |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/K026739/1 – fundername: NIA NIH HHS grantid: R01 AG055121 – fundername: Medical Research Council grantid: MR/J013110/1 – fundername: National Centre for the Replacement, Refinement and Reduction of Animals in Research grantid: NC/K500276/1 – fundername: Medical Research Council grantid: MR/J01107X/1 – fundername: National Institute for Health Research grantid: BW.mn.BRC10269 – fundername: University College London grantid: PR/ylr/18575 – fundername: Medical Research Council grantid: MR/J500422/1; MR/G0900207-3/1; MR/J01107X/1; MR/K026739/1 – fundername: Engineering and Physical Sciences Research Council grantid: EP/H046410/1; EP/H046410/1; EP/J020990/1; EP/K005278; 000012287 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A NPM PQGLB 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-9a4c1a9c6f1d40f425417724d4f2d17af8bc12c6e2939b0699004c8f093deb2d3 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:17:48 EDT 2025 Thu Aug 21 18:23:26 EDT 2025 Fri Jul 11 07:22:53 EDT 2025 Fri Jul 25 12:00:26 EDT 2025 Mon Jul 21 05:36:15 EDT 2025 Tue Jul 01 01:01:31 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | atlas-based segmentation treatment effect volumetric in vivo disease progression ex vivo longitudinal structural parcellation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-9a4c1a9c6f1d40f425417724d4f2d17af8bc12c6e2939b0699004c8f093deb2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Reviewed by: Peixin Zhu, Harvard University, United States; Helene Benveniste, Yale University, United States Joint senior authors Edited by: Dongdong Lin, Mind Research Network (MRN), United States Joint first authors |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2019.00011 |
PMID | 30733665 |
PQID | 2306534083 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9b84e61895284ebd9c09e6d1b92b0f14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6354066 proquest_miscellaneous_2229075279 proquest_journals_2306534083 pubmed_primary_30733665 crossref_primary_10_3389_fnins_2019_00011 crossref_citationtrail_10_3389_fnins_2019_00011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-24 |
PublicationDateYYYYMMDD | 2019-01-24 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2019 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Lerch (B35) 2012; 6 Ma (B39) 2008; 2 Ridgway (B57) 2011; 7 Powell (B54) 2016; 11 Sun (B71) 2015; 99 Davison (B14) 1962; 82 Ito (B24) 2012 Ma (B36) 2014; 9 Spires (B69) 2006; 168 Pollock (B53) 1992; 29 Calmon (B7) 2000; 18 Lavenex (B31) 2009; 512 Schmierer (B65) 2010; 32 Chumbley (B9) 2009; 44 Larner (B30) 1997; 8 Roche (B58) 2016; 219 Tustison (B74) 2010; 29 Mielke (B43) 2014; 6 Thompson (B72) 2004; 22 Gunn (B19) 2012; 40 Santacruz (B63) 2005; 309 Martin Bland (B40) 1986; 327 Klingenberg (B27) 1996; 50 Oguz (B50) 2013; 8 Palay (B52) 1962; 12 Ferretti (B16) 2018; 14 Yue (B80) 2011; 32 Storey (B70) 2010 Von Halbach und Bohlen (B75) 2014; 8 Xie (B79) 2010 Sawiak (B64) 2013; 31 Cragg (B12) 1980; 12 La Joie (B29) 2012; 32 Modat (B44) 2014 Ourselin (B51) 2000 Almhdie-Imjabber (B3) 2010; 2010 Beleites (B6) 2013; 760 Lee (B33) 2018; 184 McEvoy (B42) 2010; 10 O’brien (B48) 1995; 45 Sharief (B68) 2008; 39 Mazure (B41) 2016; 15 Montie (B45) 2010; 91 Ma (B38) 2005; 135 Sanfilipo (B62) 2004; 22 Zhang (B81) 2010; 49 Schmierer (B66) 2008; 59 Crum (B13) 2004; 77 Altman (B4) 1983; 32 Rathore (B55) 2017; 155 Fortin (B18) 2017; 161 O’Callaghan (B49) 2014; 9 Collij (B11) 2016; 281 Wells (B78) 2015; 35 Cleary (B10) 2011; 56 Kotrotsou (B28) 2014; 71 Weiner (B77) 2008; 70 Jacobs (B25) 2018; 41 Lemieux (B34) 2003; 49 Myles (B46) 2007; 99 Rozycki (B60) 2017; 44 (B23) 2014 Warfield (B76) 2004; 23 Figueroa (B17) 2012; 12 Hikishima (B20) 2017; 7 Nestor (B47) 2008; 131 Rohlfing (B59) 2004; 21 Schulz (B67) 2011; 202 Bai (B5) 2012; 30 Acer (B1) 2007; 58 Holmes (B22) 2017; 11 Laws (B32) 2018; 31 Cardoso (B8) 2013; 17 Holmes (B21) 2016; 39 Richards (B56) 2011; 58 Aljabar (B2) 2007 Ma (B37) 2018 Kim (B26) 2016; 8 Dietterich (B15) 2000; 40 Rueckert (B61) 1999; 18 Thompson (B73) 2001; 11 |
References_xml | – volume: 11 start-page: 1 year: 2001 ident: B73 article-title: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. publication-title: Cereb. Cortex doi: 10.1093/cercor/11.1.1 – year: 2012 ident: B24 publication-title: The Cerebellum: Brain for An Implicit Self. – volume: 8 start-page: 203 year: 1997 ident: B30 article-title: The cerebellum in Alzheimer’s disease. publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000106632 – volume: 31 start-page: 133 year: 2018 ident: B32 article-title: Sex differences in Alzheimer’s disease. publication-title: Curr. Opin. Psychiatry doi: 10.1097/YCO.0000000000000401 – volume: 9 year: 2014 ident: B36 article-title: Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion. publication-title: PLoS One doi: 10.1371/journal.pone.0086576 – volume: 99 start-page: 309 year: 2007 ident: B46 article-title: I. Using the Bland–Altman method to measure agreement with repeated measures. publication-title: Br. J. Anaesth. doi: 10.1093/bja/aem214 – volume: 44 start-page: 1035 year: 2017 ident: B60 article-title: Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals. publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbx137 – start-page: 523 year: 2007 ident: B2 article-title: Classifier selection strategies for label fusion using large atlas databases publication-title: Proceddings of MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI’07 doi: 10.1007/978-3-540-75757-3_64 – year: 2010 ident: B79 article-title: Characterizing the regional structural difference of the brain between tau transgenic (rTg4510) and wild-type mice using MRI publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) doi: 10.1007/978-3-642-15705-9_38 – volume: 39 start-page: 184 year: 2016 ident: B21 article-title: Imaging the accumulation and suppression of tau pathology using multiparametric MRI. publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2015.12.001 – volume: 2010 start-page: 3 year: 2010 ident: B3 article-title: Atlas-assisted segmentation of cerebral structures of mice. publication-title: IWSSIP – volume: 12 start-page: 385 year: 1962 ident: B52 article-title: Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. publication-title: J. Cell Biol. doi: 10.1083/jcb.12.2.385 – volume: 40 start-page: 139 year: 2000 ident: B15 article-title: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. publication-title: Mach. Learn. doi: 10.1023/A:1007607513941 – volume: 8 year: 2013 ident: B50 article-title: Comparison of magnetic resonance imaging in live vs. Post mortem rat brains. publication-title: PLoS One doi: 10.1371/journal.pone.0071027 – volume: 8 year: 2014 ident: B75 article-title: Post-mortem magnetic resonance microscopy (MRM) of the murine brain at 7 Tesla results in a gain of resolution as compared to in-vivo MRM. publication-title: Front. Neuroanat. doi: 10.3389/fnana.2014.00047 – volume: 202 start-page: 17 year: 2011 ident: B67 article-title: Three-dimensional strain fields in human brain resulting from formalin fixation. publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.08.031 – volume: 135 start-page: 1203 year: 2005 ident: B38 article-title: A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.07.014 – volume: 131 start-page: 2443 year: 2008 ident: B47 article-title: Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. publication-title: Brain doi: 10.1093/brain/awn146 – volume: 22 start-page: 1732 year: 2004 ident: B62 article-title: Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.037 – volume: 32 start-page: 1054 year: 2010 ident: B65 article-title: Effects of formalin fixation on magnetic resonance indices in multiple sclerosis cortical gray matter. publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22381 – volume: 168 start-page: 1598 year: 2006 ident: B69 article-title: Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2006.050840 – volume: 17 start-page: 671 year: 2013 ident: B8 article-title: STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.02.006 – year: 2014 ident: B23 publication-title: Guidance on the Operation of the Animals (Scientific Procedures) Act 1986. – volume: 14 start-page: 457 year: 2018 ident: B16 article-title: Sex differences in Alzheimer disease — the gateway to precision medicine. publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-018-0032-9 – volume: 71 start-page: 364 year: 2014 ident: B28 article-title: Ex vivo MR volumetry of human brain hemispheres. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24661 – volume: 31 start-page: 1522 year: 2013 ident: B64 article-title: Voxel-based morphometry with templates and validation in a mouse model of Huntington’s disease. publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2013.06.001 – volume: 18 start-page: 439 year: 2000 ident: B7 article-title: Automatic measurement of changes in brain volume on consecutive 3D MR images by segmentation propagation. publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(99)00118-6 – volume: 10 start-page: 1675 year: 2010 ident: B42 article-title: Quantitative structural MRI for early detection of Alzheimer’s disease. publication-title: Exp. Rev. Neurother. doi: 10.1586/ern.10.162 – volume: 40 start-page: 307 year: 2012 ident: B19 article-title: The rational use of animals in drug development: contribution of the innovative medicines initiative. publication-title: Altern. Lab. Anim. doi: 10.1177/026119291204000603 – volume: 7 year: 2017 ident: B20 article-title: In vivo microscopic voxel-based morphometry with a brain template to characterize strainspecific structures in the mouse brain. publication-title: Sci. Rep. doi: 10.1038/s41598-017-00148-1 – volume: 11 year: 2017 ident: B22 article-title: Comparison of in vivo and ex vivo MRI for the detection of structural abnormalities in a mouse model of tauopathy. publication-title: Front. Neuroinform. doi: 10.3389/fninf.2017.00020 – volume: 32 start-page: 16265 year: 2012 ident: B29 article-title: Region-specific hierarchy between atrophy, hypometabolism, and -amyloid (a) load in Alzheimer’s disease dementia. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2170-12.2012 – volume: 30 start-page: 789 year: 2012 ident: B5 article-title: Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration. publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.02.010 – volume: 12 year: 2012 ident: B17 article-title: Predicting sample size required for classification performance. publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/1472-6947-12-8 – volume: 32 start-page: 307 year: 1983 ident: B4 article-title: Measurement in medicine: the analysis of method comparison studies. publication-title: J. R. Stat. Soc. Ser. D (Stat.) doi: 10.2307/2987937 – volume: 12 start-page: 63 year: 1980 ident: B12 article-title: Preservation of extracellular space during fixation of the brain for electron microscopy. publication-title: Tissue Cell doi: 10.1016/0040-8166(80)90052-X – volume: 11 year: 2016 ident: B54 article-title: Fully-automated μMRI morphometric phenotyping of the Tc1 mouse model of down syndrome. publication-title: PLoS One doi: 10.1371/journal.pone.0162974 – volume: 39 start-page: 136 year: 2008 ident: B68 article-title: Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.08.028 – volume: 18 start-page: 712 year: 1999 ident: B61 article-title: Nonrigid registration using free-form deformations: application to breast MR images. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 – volume: 77 start-page: S140 year: 2004 ident: B13 article-title: Non-rigid image registration: theory and practice. publication-title: Br. J. Radiol. doi: 10.1259/bjr/25329214 – volume: 281 start-page: 865 year: 2016 ident: B11 article-title: Application of machine learning to arterial spin labeling in mild cognitive impairment and alzheimer disease. publication-title: Radiology doi: 10.1148/radiol.2016152703 – year: 2018 ident: B37 article-title: Quantitative assessment of field strength, total intracranial volume, sex, and age effects on the goodness of harmonization for volumetric analysis on the ADNI database. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24463 – volume: 44 start-page: 62 year: 2009 ident: B9 article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.021 – volume: 15 start-page: 451 year: 2016 ident: B41 article-title: Sex differences in Alzheimer’s disease and other dementias. publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(16)00067-3 – volume: 41 start-page: 37 year: 2018 ident: B25 article-title: The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline. publication-title: Brain doi: 10.1093/brain/awx194 – year: 2014 ident: B44 article-title: A symmetric block-matching framework for global registration publication-title: SPIE Medical Imaging doi: 10.1117/12.2043652 – volume: 49 start-page: 2340 year: 2010 ident: B81 article-title: Longitudinal characterization of brain atrophy of a Huntington’s disease mouse model by automated morphological analyses of magnetic resonance images. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.027 – volume: 59 start-page: 268 year: 2008 ident: B66 article-title: Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21487 – volume: 32 start-page: 590 year: 2011 ident: B80 article-title: Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy. publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.04.006 – start-page: 557 year: 2000 ident: B51 article-title: Block matching: a general framework to improve robustness of rigid registration of medical images publication-title: Proceedings of MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science doi: 10.1007/978-3-540-40899-4_57 – volume: 29 start-page: 1310 year: 2010 ident: B74 article-title: N4ITK: improved N3 bias correction. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 23 start-page: 903 year: 2004 ident: B76 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.828354 – volume: 58 start-page: 732 year: 2011 ident: B56 article-title: Segmentation of the mouse hippocampal formation in magnetic resonance images. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.025 – volume: 219 start-page: 3832 year: 2016 ident: B58 article-title: Demystifying animal ‘personality’ (or not): why individual variation matters to experimental biologists. publication-title: J. Exp. Biol. doi: 10.1242/jeb.146712 – volume: 58 start-page: 48 year: 2007 ident: B1 article-title: Comparison of three methods for the estimation of total intracranial volume: stereologic, planimetric, and anthropometric approaches. publication-title: Ann. Plast. Surg. doi: 10.1097/01.sap.0000250653.77090.97 – volume: 512 start-page: 27 year: 2009 ident: B31 article-title: Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. publication-title: J. Comp. Neurol. doi: 10.1002/cne.21906 – volume: 70 start-page: 824 year: 2008 ident: B77 article-title: Expanding ventricles may detect preclinical Alzheimer disease. publication-title: Neurology doi: 10.1212/01.wnl.0000304743.72127.cc – volume: 82 year: 1962 ident: B14 article-title: Analysis of lipids from fresh and preserved adult human brains. publication-title: Biochem. J. doi: 10.1042/bj0820113 – volume: 45 start-page: 17 year: 1995 ident: B48 article-title: Procedures for setting normal values. publication-title: Neurology doi: 10.1212/WNL.45.1.17 – start-page: 1 year: 2010 ident: B70 publication-title: False Discovery Rates. doi: 10.1198/016214507000000941 – volume: 155 start-page: 530 year: 2017 ident: B55 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 21 start-page: 1428 year: 2004 ident: B59 article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.11.010 – volume: 6 year: 2012 ident: B35 article-title: Wanted dead or alive? The tradeoff between in-vivo versus ex-vivo MR brain imaging in the mouse. publication-title: Front. Neuroinform. doi: 10.3389/fninf.2012.00006 – volume: 6 start-page: 37 year: 2014 ident: B43 article-title: Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. publication-title: Clin. Epidemiol. doi: 10.2147/CLEP.S37929 – volume: 161 start-page: 149 year: 2017 ident: B18 article-title: Harmonization of multi-site diffusion tensor imaging data. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.047 – volume: 2 year: 2008 ident: B39 article-title: In Vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. publication-title: Front. Neuroanat. doi: 10.3389/neuro.05.001.2008 – volume: 22 start-page: 1754 year: 2004 ident: B72 article-title: Mapping hippocampal and ventricular change in Alzheimer disease. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.040 – volume: 35 start-page: 359 year: 2015 ident: B78 article-title: Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer’s disease. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.224 – volume: 50 start-page: 2412 year: 1996 ident: B27 article-title: Individual variation of ontogenies: a longitudinal study of growth and timing. publication-title: Evolution (N. Y.) doi: 10.1111/j.1558-5646.1996.tb03628.x – volume: 309 start-page: 476 year: 2005 ident: B63 article-title: Tau suppression in a neurodegenerative mouse model improves memory function. publication-title: Science doi: 10.1126/science.1113694 – volume: 56 start-page: 974 year: 2011 ident: B10 article-title: Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.082 – volume: 91 start-page: 243 year: 2010 ident: B45 article-title: Magnetic resonance imaging quality and volumes of brain structures from live and postmortem imaging of California sea lions with clinical signs of domoic acid. publication-title: Dis. Aquat. Organ. doi: 10.3354/dao02259 – volume: 29 start-page: 556 year: 1992 ident: B53 article-title: Method comparison—a different approach. publication-title: Ann. Clin. Biochem. Int. J. Biochem. Med. doi: 10.1177/000456329202900512 – volume: 9 year: 2014 ident: B49 article-title: Is your system calibrated? MRI gradient system calibration for pre-clinical, high-resolution imaging. publication-title: PLoS One doi: 10.1371/journal.pone.0096568 – volume: 327 start-page: 307 year: 1986 ident: B40 article-title: Statistical methods for assessing agreement between two methods of clinical measurement. publication-title: Lancet doi: 10.1016/S0140-6736(86)90837-8 – volume: 760 start-page: 25 year: 2013 ident: B6 article-title: Sample size planning for classification models. publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.11.007 – volume: 49 start-page: 872 year: 2003 ident: B34 article-title: Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10436 – volume: 7 start-page: S62 year: 2011 ident: B57 article-title: Estimation of total intracranial volume: a comparison of methods. publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2011.05.099 – volume: 99 start-page: 86 year: 2015 ident: B71 article-title: A 10-minute prototype assay for tissue degradation monitoring in clinical specimens. publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2015.05.009 – volume: 8 start-page: 171 year: 2016 ident: B26 article-title: Improving classification accuracy by combining longitudinal biomarker measurements subject to detection limits. publication-title: Stat. Biopharm. Res. doi: 10.1080/19466315.2016.1142889 – volume: 184 start-page: 555 year: 2018 ident: B33 article-title: Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements. publication-title: Neuroimage doi: 10.1016/J.NEUROIMAGE.2018.09.062 |
SSID | ssj0062842 |
Score | 2.312777 |
Snippet | Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration.... Brain volume measurements extracted from structural MRI data sets are a widely-accepted neuroimaging biomarker to study mouse models of neurodegeneration.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 11 |
SubjectTerms | Animal models Atrophy Automation Brain Classification Datasets Disease disease progression ex vivo in vivo longitudinal Magnetic resonance imaging Morphology Neurodegeneration Neurodegenerative diseases Neuroimaging Neuroscience NMR Nuclear magnetic resonance Pathology Rodents Statistics structural parcellation Studies Substantia alba Substantia grisea Tau protein treatment effect University colleges Volumetric analysis |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BggYJIXGINna8jn3cFqqCWFTRLeot8lOs1CYcuhX7C_lbzDjZVRchuHBM7GxmPZPxjGf0fYy9xl0vWlWlUnDnqMzoSl3Hukw6aKsdJiCODvTnn9XJufx4Mb24RfVFPWEDPPCwcBPjtIyKazNFRxpdML4yUQXujHBVyhTWAve8TTI1-GCFc8VQlMQUzExSt-wIm5sTOGXF-c4mlLH6_xRg_t4neWvjOb7P7o0RI8wGSR-wO7F7yPZnHWbLV2t4A7mHMx-O77Of1Ba4Bgzq4FNPTESrQKxXsOzgZnnTg-0CHJFI5VluwaKx-GMYOySyCPiavRW8G3lTfASMavEyl3HglLq5BiSP_FuLTZs6DCjIgPfn_QpnEsfaJfQJFnbVE-3xGnJ3AsxWKDcGuAHmXz7AWYavJegPOLW5ipAt5RE7P36_ODopR6qG0ktTXZfGSs-t8SrxIKuEjkByjNtlkEkE3tiknefCq4jRhXGVwj2wkl6nytQBc_tQP2Z7Xd_FpwyUSqkxPKEXxrRdB2e5iN5O8eHGC50KNtnorvUjjjnRaVy2mM-Qttus7Za0nUvrvGBvt098HzA8_jL3kMxhO4_Qt_MNtMl2tMn2XzZZsIONMbWjS8B31AQDLDHkLdir7TB-zHltu4jKaYlcHWM40ZiCPRlsbysJOeNaqWnBmh2r3BF1d6RbfsuA4YoO95R69j_-23N2l1aLTqGEPGB7aCbxBcZl1-5l_gR_AYsLOyA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be-kFQcvDUNAgISQOVrz2Zr17QklpVRCpojZFvVneV4lU7AJNRX4hf4uZtRMRhHqMd52sPbOz3zzyDWNv8NTztcxCmnNjKM1oUlX4Ig3KqVoZdEAMBfQnJ_L4XHy6GF70AbeffVnlyiZGQ-1aSzHyQWxxXghEDO-vv6fUNYqyq30LjftsG02wQudre3x4Mj1d2WKJxjfmOyX9NwjBeZeoRLdMD0Izb4ivmxNhZcb5xsEU-fv_Bzr_rZ386zA6esge9CgSRp3YH7F7vtlle6MGPehvS3gLsa4zBsx32Q7hyY6OeY_9prrBJSDqg88ttSpaOGqLBfMGbue3LdSNgwNaX3oWa7RozP_qxsbUTQK-RHMGH_rGKtYDwl78GPM8MKVyr47qI37XbFXHDh1NMuD1SbvAmdSE7QraALN60VJf5CXE8gUYLfAhEAE7mJx-hLPIb0vcIDCtY5ohqtJjdn50ODs4TvteDqkVOrtJdS0sr7WVgTuRBbQUgiOwF06E3PGyDspYnlvpEX5ok0k8JDNhVch04dD5d8UTttW0jX_GQMoQSs0Dmmn065UzNc-9rYd4c2lzFRI2WAmysj3ROfXbuKrQ4SHRV1H0FYk-5t55wt6t77juSD7umDsm3VjPI3rueKH9cVn1u73SRgkvudJDVEBvnLaZ9tJxo3OTBS4Str_SrKq3Gfgbaw1P2Ov1MO72-G4bj8KpqPs6gry81Al72inieiVkrQsphwkrN1R0Y6mbI838a2QUlxT9k_L53ct6wXboPVAAKhf7bAsVwL9ESHZjXvX77g_FNjpH priority: 102 providerName: ProQuest |
Title | Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30733665 https://www.proquest.com/docview/2306534083 https://www.proquest.com/docview/2229075279 https://pubmed.ncbi.nlm.nih.gov/PMC6354066 https://doaj.org/article/9b84e61895284ebd9c09e6d1b92b0f14 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfQJqG9IGB8BEZ1SAiJh7A4cZ34AaF2bAxEp2prUd-iOLahUkm2sU7rX8i_xZ2TlhUVXiIldizLd_Z9-neMvUKpZwsZuTDmWlOYUYdZYpPQZSYrMo0GiCaH_uBEHo_F50l38ud6dLuAPzeadlRPanw5e3tzsXiPG_4dWZwob_ddNa0IeZsT9GREF323US6ltE0HYhVTkHgQ-9inpHtCqKg3QcuNI-ywu8T7iSSZc0teeVj_Tbro3ymVt2TU0X12r1UuoddwwwN2x1YP2W6vQsP6xwJeg0_39H70XfaLMggXgPoffKmpaNHcUIEsmFZwPb2uoagMHNCUwjOfrUVt9qZp61NdCfjqDzb40JZYKS2gAoyvPuIDQ0r8akA__FijZUY7NIDJgN8H9Rx7Ujm2GdQORsW8pgrJC_CJDNCb47xRFzYwOP0EZx7pllBCYFj4gINnqkdsfHQ4OjgO26oOYSlUdBWqQpS8UKV03IjI4ZmBtEpjYYSLDU8Ll-mSx6W0qIgoHUkUl5EoMxepxFgdm-Qx26rqyj5lIKVzqeIOD2y08DOjCx7bsujiz2kZZy5g-0va5WULeU6VN2Y5mj5E-NwTPifC-yg8D9ib1R_nDdzHf_r2iR1W_Qio23-oL7_l7b7Plc6ElTxTXWQ_q40qI2Wl4VrFOnJcBGxvyUz5kvlzMgu7iUDtOGAvV8247_3aVhaJk1MddlT34lQF7EnDe6uZLHk3YOkaV65Ndb2lmn732OKS_IBSPvvnmM_ZDi0BeaFisce2kPb2BeplV7rDtvuHJ8PTjvdr4PPjhHf8FvwNqP47nw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9EAvCFoehgKLBEgcrHjtzcZ7QCjpQwlNoqhNUW_G-4JIxS7QFPKn-Bv8LWbWdkQQ6q3HeNfO2jOex874-wh5CV7P5iJyYcyUwjKjCtPEJqFLTZqnChIQhRv644kYnPL3Z52zDfKr-RYG2yobm-gNtSk17pG3PcV5wiFieHfxNUTWKKyuNhQalVoc2eUPSNm-vx3ug3xfxfHhwWxvENasAqHmMroMZc41y6UWjhkeOdBZziDE5Ia72LBu7lKlWayFBUcoVSTAXEdcpw5SfwNpqEngurfIJk8glWmRzf7BZHrc2H4Bxt7XVwV-iwTJQFUYhTRQtl0xLxAfnCFAZsTYmiP0fAH_C3L_7dX8y_kd3iV36qiV9io1u0c2bLFNdnoFZOxflvQ19X2kfoN-m2xh_FrBP--Q39inuKQQZdJRidRIC4M0XHRe0Kv5VUnzwtA9XF944nvCcMz-rMb6yF5BP3jzSfdrIhdtKYTZ8NPXlegU28sqaBF_rVnTN08rWGYKx8flAmYi6ds5LR2d5YsSeZiX1LdL0N4CbgIibkPHx0N64vF0EYuETnNf1vCqe5-c3oiUH5BWURb2EaFCONeVzIFb6EKyZlTOYqvzDpzc1XHqAtJuBJnpGlgd-T3OM0iwUPSZF32Gove1fhaQN6szLipQkWvm9lE3VvMQDtwfKL99ymrrkkmVcitYKjuggFYZqSNphWFKxipyjAdkt9GsrLZR8B-rNyogL1bDYF38sy0sCCdDtncIKuOuDMjDShFXK0HvkAjRCUh3TUXXlro-Usw_ewRzgbuNQjy-flnPye3BbDzKRsPJ0ROyhc8EN79ivktaoAz2KYSDl-pZ_Q5S8vGmX_s_0Lx2hg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEK9IGh5BAosEiBxsOK1N2vvAaGkadTQJoraFPVmvC-IVOwCTSF_jT_A32JmbUcEod56jNd21p7ZeeyMv4-Ql-D1bC5CF0RMKSwzqiCNbRy41KR5qiABUbihP56Ig1P-_qx7tkF-Nd_CYFtlYxO9oTalxj3yjqc4jzlEDB1Xt0VMB8N3F18DZJDCSmtDp1GpyKFd_oD07fvb0QBk_SqKhvuzvYOgZhgINJfhZSBzrlkutXDM8NCB_nIG4SY33EWGJblLlWaRFhacolShANMdcp26UMYGUlITw31vkc0EsqKwRTb7-5PpceMHBBh-X2sV-F0SJAZVkRRSQtlxxbxArHCGYJkhY2tO0XMH_C_g_bdv8y9HOLxL7tQRLO1VKnePbNhim-z0Csjevyzpa-p7Sv1m_TbZwli2goLeIb-xZ3FJIeKkRyXSJC0MUnLReUGv5lclzQtD93B-wYnvD8Mx-7Ma6yOTBf3gTSkd1KQu2lIIueGnrzHRKbaaVTAj_l6zpoeeVhDNFI6PywWciQRw57R0dJYvSuRkXlLfOkF7C3gIiL4NHR-P6InH1kVcEjrNfYnDq_F9cnojUn5AWkVZ2EeECuFcIpkDF5FA4mZUziKr8y5cnOgodW3SaQSZ6RpkHbk-zjNItlD0mRd9hqL3dX_WJm9WV1xUACPXnNtH3Vidh9Dg_kD57VNWW5pMqpRbwVLZBQW0ykgdSisMUzJSoWO8TXYbzcpqewX_sVpdbfJiNQyWxr_bwoJwMmR-hwAzSmSbPKwUcTUT9BSxEN02SdZUdG2q6yPF_LNHMxe48yjE4-un9ZzchuWeHY0mh0_IFr4S3AeL-C5pgS7YpxAZXqpn9RKk5ONNr_o_I8V6uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+the+Longitudinal+in+vivo+and+Cross-Sectional+ex+vivo+Brain+Volume+Difference+for+Disease+Progression+and+Treatment+Effect+on+Mouse+Model+of+Tauopathy+Using+Automated+MRI+Structural+Parcellation&rft.jtitle=Frontiers+in+neuroscience&rft.au=Ma%2C+Da&rft.au=Holmes%2C+Holly+E&rft.au=Cardoso%2C+Manuel+J&rft.au=Modat%2C+Marc&rft.date=2019-01-24&rft.issn=1662-4548&rft.volume=13&rft.spage=11&rft_id=info:doi/10.3389%2Ffnins.2019.00011&rft_id=info%3Apmid%2F30733665&rft.externalDocID=30733665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |