Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation

Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data or is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 13; p. 11
Main Authors Ma, Da, Holmes, Holly E., Cardoso, Manuel J., Modat, Marc, Harrison, Ian F., Powell, Nick M., O’Callaghan, James M., Ismail, Ozama, Johnson, Ross A., O’Neill, Michael J., Collins, Emily C., Beg, Mirza F., Popuri, Karteek, Lythgoe, Mark F., Ourselin, Sebastien
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 24.01.2019
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data or is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal and single-time-point MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from to , while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of data compared to the data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the data can be improved by incorporating longitudinal information, which is not possible for data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the and structural MRI data. Our results emphasize the importance of longitudinal analysis for data analysis.
AbstractList Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo , while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.
Brain volume measurements extracted from structural MRI data sets are a widely-accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyse data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most grey matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasise the importance of longitudinal analysis for in vivo data analysis.
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data or is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal and single-time-point MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from to , while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of data compared to the data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the data can be improved by incorporating longitudinal information, which is not possible for data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the and structural MRI data. Our results emphasize the importance of longitudinal analysis for data analysis.
Author Holmes, Holly E.
Johnson, Ross A.
Beg, Mirza F.
O’Callaghan, James M.
Powell, Nick M.
Ourselin, Sebastien
Cardoso, Manuel J.
Modat, Marc
Popuri, Karteek
Collins, Emily C.
Lythgoe, Mark F.
Ma, Da
Ismail, Ozama
Harrison, Ian F.
O’Neill, Michael J.
AuthorAffiliation 1 Translational Imaging Group, Centre for Medical Image Computing, University College London , London , United Kingdom
3 School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada
5 Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center , Indianapolis, IN , United States
4 School of Biomedical Engineering and Imaging Sciences, King’s College London , London , United Kingdom
2 Centre for Advanced Biomedical Imaging, University College London , London , United Kingdom
6 Eli Lilly & Co. Ltd., Erl Wood Manor , Windlesham , United Kingdom
AuthorAffiliation_xml – name: 1 Translational Imaging Group, Centre for Medical Image Computing, University College London , London , United Kingdom
– name: 4 School of Biomedical Engineering and Imaging Sciences, King’s College London , London , United Kingdom
– name: 2 Centre for Advanced Biomedical Imaging, University College London , London , United Kingdom
– name: 6 Eli Lilly & Co. Ltd., Erl Wood Manor , Windlesham , United Kingdom
– name: 5 Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center , Indianapolis, IN , United States
– name: 3 School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada
Author_xml – sequence: 1
  givenname: Da
  surname: Ma
  fullname: Ma, Da
– sequence: 2
  givenname: Holly E.
  surname: Holmes
  fullname: Holmes, Holly E.
– sequence: 3
  givenname: Manuel J.
  surname: Cardoso
  fullname: Cardoso, Manuel J.
– sequence: 4
  givenname: Marc
  surname: Modat
  fullname: Modat, Marc
– sequence: 5
  givenname: Ian F.
  surname: Harrison
  fullname: Harrison, Ian F.
– sequence: 6
  givenname: Nick M.
  surname: Powell
  fullname: Powell, Nick M.
– sequence: 7
  givenname: James M.
  surname: O’Callaghan
  fullname: O’Callaghan, James M.
– sequence: 8
  givenname: Ozama
  surname: Ismail
  fullname: Ismail, Ozama
– sequence: 9
  givenname: Ross A.
  surname: Johnson
  fullname: Johnson, Ross A.
– sequence: 10
  givenname: Michael J.
  surname: O’Neill
  fullname: O’Neill, Michael J.
– sequence: 11
  givenname: Emily C.
  surname: Collins
  fullname: Collins, Emily C.
– sequence: 12
  givenname: Mirza F.
  surname: Beg
  fullname: Beg, Mirza F.
– sequence: 13
  givenname: Karteek
  surname: Popuri
  fullname: Popuri, Karteek
– sequence: 14
  givenname: Mark F.
  surname: Lythgoe
  fullname: Lythgoe, Mark F.
– sequence: 15
  givenname: Sebastien
  surname: Ourselin
  fullname: Ourselin, Sebastien
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30733665$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vEzEQhleoiH7AnROyxIVLir_WWV-QSilQqRUVSRE3y2uPU1cbO9jeiv5C_hZOUqq2Eid7PM-8Gs-8-81OiAGa5jXBh4x18r0LPuRDiok8xBgT8qzZI0LQCW_Zz50H991mP-drjAXtOH3R7DI8ZUyIdq_5MyujvUXlCtBZDAtfIx_0gHxAN_4mIh0sOk4x58kMTPFxnYPf29zHpCv2Iw7jEtAn7xwkCAaQi6mGGXQGdJHiIkHOtXKjNU-gyxJCQSeVNwXV9_M4VvI8WhhQdGiux7jS5eoWXWYfFuhoLHGpC1h0_v0UzUoaTRlT7eNCJwPDoNdtvWyeOz1keHV3HjSXn0_mx18nZ9--nB4fnU0Ml7hMpOaGaGmEI5Zjx2nLyXRKueWOWjLVrusNoUYAlUz2WEiJMTedw5JZ6KllB83pVtdGfa1WyS91ulVRe7V5iGmhdCreDKBk33EQpJNtnTr0VhosQVjSS9pjR3jV-rDVWo39EqypU6nfeiT6OBP8lVrEGyVYy7EQVeDdnUCKv0bIRS193owkQJ2popRKPG3pVFb07RP0Oo6pbrNSDIuWcdyxSr152NF9K__8UgG8BczaEwncPUKwWltSbSyp1pZUG0vWEvGkxPiy2Vn9kx_-X_gXL1_qog
CitedBy_id crossref_primary_10_1016_j_brainresbull_2024_111161
crossref_primary_10_1002_hbm_25115
crossref_primary_10_1002_mrm_30264
crossref_primary_10_1002_mrm_30298
crossref_primary_10_1038_s41380_022_01535_5
crossref_primary_10_1159_000515754
crossref_primary_10_1177_2398212819883086
crossref_primary_10_1007_s13139_022_00746_6
crossref_primary_10_3389_fnins_2020_567222
crossref_primary_10_1002_nbm_5033
crossref_primary_10_3389_fncel_2024_1498133
crossref_primary_10_1016_j_brainres_2023_148562
crossref_primary_10_1038_s41398_021_01274_1
crossref_primary_10_1089_neu_2019_6944
crossref_primary_10_1038_s41598_020_75720_3
crossref_primary_10_1093_brain_awac458
crossref_primary_10_3389_fnagi_2021_791679
crossref_primary_10_1016_j_neuroimage_2024_120734
crossref_primary_10_3389_fnagi_2022_825996
crossref_primary_10_1016_j_neuroimage_2020_117271
Cites_doi 10.1093/cercor/11.1.1
10.1159/000106632
10.1097/YCO.0000000000000401
10.1371/journal.pone.0086576
10.1093/bja/aem214
10.1093/schbul/sbx137
10.1007/978-3-540-75757-3_64
10.1007/978-3-642-15705-9_38
10.1016/j.neurobiolaging.2015.12.001
10.1083/jcb.12.2.385
10.1023/A:1007607513941
10.1371/journal.pone.0071027
10.3389/fnana.2014.00047
10.1016/j.jneumeth.2011.08.031
10.1016/j.neuroscience.2005.07.014
10.1093/brain/awn146
10.1016/j.neuroimage.2004.03.037
10.1002/jmri.22381
10.2353/ajpath.2006.050840
10.1016/j.media.2013.02.006
10.1038/s41582-018-0032-9
10.1002/mrm.24661
10.1016/j.mri.2013.06.001
10.1016/S0730-725X(99)00118-6
10.1586/ern.10.162
10.1177/026119291204000603
10.1038/s41598-017-00148-1
10.3389/fninf.2017.00020
10.1523/JNEUROSCI.2170-12.2012
10.1016/j.mri.2012.02.010
10.1186/1472-6947-12-8
10.2307/2987937
10.1016/0040-8166(80)90052-X
10.1371/journal.pone.0162974
10.1016/j.neuroimage.2007.08.028
10.1109/42.796284
10.1259/bjr/25329214
10.1148/radiol.2016152703
10.1002/hbm.24463
10.1016/j.neuroimage.2008.05.021
10.1016/S1474-4422(16)00067-3
10.1093/brain/awx194
10.1117/12.2043652
10.1016/j.neuroimage.2009.10.027
10.1002/mrm.21487
10.1016/j.neurobiolaging.2009.04.006
10.1007/978-3-540-40899-4_57
10.1109/TMI.2010.2046908
10.1109/TMI.2004.828354
10.1016/j.neuroimage.2011.06.025
10.1242/jeb.146712
10.1097/01.sap.0000250653.77090.97
10.1002/cne.21906
10.1212/01.wnl.0000304743.72127.cc
10.1042/bj0820113
10.1212/WNL.45.1.17
10.1198/016214507000000941
10.1016/j.neuroimage.2017.03.057
10.1016/j.neuroimage.2003.11.010
10.3389/fninf.2012.00006
10.2147/CLEP.S37929
10.1016/j.neuroimage.2017.08.047
10.3389/neuro.05.001.2008
10.1016/j.neuroimage.2004.03.040
10.1038/jcbfm.2014.224
10.1111/j.1558-5646.1996.tb03628.x
10.1126/science.1113694
10.1016/j.neuroimage.2011.01.082
10.3354/dao02259
10.1177/000456329202900512
10.1371/journal.pone.0096568
10.1016/S0140-6736(86)90837-8
10.1016/j.aca.2012.11.007
10.1002/mrm.10436
10.1016/j.jalz.2011.05.099
10.1016/j.yexmp.2015.05.009
10.1080/19466315.2016.1142889
10.1016/J.NEUROIMAGE.2018.09.062
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Ma, Holmes, Cardoso, Modat, Harrison, Powell, O’Callaghan, Ismail, Johnson, O’Neill, Collins, Beg, Popuri, Lythgoe and Ourselin. 2019 Ma, Holmes, Cardoso, Modat, Harrison, Powell, O’Callaghan, Ismail, Johnson, O’Neill, Collins, Beg, Popuri, Lythgoe and Ourselin
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Ma, Holmes, Cardoso, Modat, Harrison, Powell, O’Callaghan, Ismail, Johnson, O’Neill, Collins, Beg, Popuri, Lythgoe and Ourselin. 2019 Ma, Holmes, Cardoso, Modat, Harrison, Powell, O’Callaghan, Ismail, Johnson, O’Neill, Collins, Beg, Popuri, Lythgoe and Ourselin
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2019.00011
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_9b84e61895284ebd9c09e6d1b92b0f14
PMC6354066
30733665
10_3389_fnins_2019_00011
Genre Journal Article
GeographicLocations United Kingdom--UK
United States--US
GeographicLocations_xml – name: United Kingdom--UK
– name: United States--US
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/K026739/1
– fundername: NIA NIH HHS
  grantid: R01 AG055121
– fundername: Medical Research Council
  grantid: MR/J013110/1
– fundername: National Centre for the Replacement, Refinement and Reduction of Animals in Research
  grantid: NC/K500276/1
– fundername: Medical Research Council
  grantid: MR/J01107X/1
– fundername: National Institute for Health Research
  grantid: BW.mn.BRC10269
– fundername: University College London
  grantid: PR/ylr/18575
– fundername: Medical Research Council
  grantid: MR/J500422/1; MR/G0900207-3/1; MR/J01107X/1; MR/K026739/1
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/H046410/1; EP/H046410/1; EP/J020990/1; EP/K005278; 000012287
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
NPM
PQGLB
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-9a4c1a9c6f1d40f425417724d4f2d17af8bc12c6e2939b0699004c8f093deb2d3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:17:48 EDT 2025
Thu Aug 21 18:23:26 EDT 2025
Fri Jul 11 07:22:53 EDT 2025
Fri Jul 25 12:00:26 EDT 2025
Mon Jul 21 05:36:15 EDT 2025
Tue Jul 01 01:01:31 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords atlas-based segmentation
treatment effect
volumetric
in vivo
disease progression
ex vivo
longitudinal
structural parcellation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-9a4c1a9c6f1d40f425417724d4f2d17af8bc12c6e2939b0699004c8f093deb2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Peixin Zhu, Harvard University, United States; Helene Benveniste, Yale University, United States
Joint senior authors
Edited by: Dongdong Lin, Mind Research Network (MRN), United States
Joint first authors
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2019.00011
PMID 30733665
PQID 2306534083
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_9b84e61895284ebd9c09e6d1b92b0f14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6354066
proquest_miscellaneous_2229075279
proquest_journals_2306534083
pubmed_primary_30733665
crossref_primary_10_3389_fnins_2019_00011
crossref_citationtrail_10_3389_fnins_2019_00011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-24
PublicationDateYYYYMMDD 2019-01-24
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-24
  day: 24
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Lerch (B35) 2012; 6
Ma (B39) 2008; 2
Ridgway (B57) 2011; 7
Powell (B54) 2016; 11
Sun (B71) 2015; 99
Davison (B14) 1962; 82
Ito (B24) 2012
Ma (B36) 2014; 9
Spires (B69) 2006; 168
Pollock (B53) 1992; 29
Calmon (B7) 2000; 18
Lavenex (B31) 2009; 512
Schmierer (B65) 2010; 32
Chumbley (B9) 2009; 44
Larner (B30) 1997; 8
Roche (B58) 2016; 219
Tustison (B74) 2010; 29
Mielke (B43) 2014; 6
Thompson (B72) 2004; 22
Gunn (B19) 2012; 40
Santacruz (B63) 2005; 309
Martin Bland (B40) 1986; 327
Klingenberg (B27) 1996; 50
Oguz (B50) 2013; 8
Palay (B52) 1962; 12
Ferretti (B16) 2018; 14
Yue (B80) 2011; 32
Storey (B70) 2010
Von Halbach und Bohlen (B75) 2014; 8
Xie (B79) 2010
Sawiak (B64) 2013; 31
Cragg (B12) 1980; 12
La Joie (B29) 2012; 32
Modat (B44) 2014
Ourselin (B51) 2000
Almhdie-Imjabber (B3) 2010; 2010
Beleites (B6) 2013; 760
Lee (B33) 2018; 184
McEvoy (B42) 2010; 10
O’brien (B48) 1995; 45
Sharief (B68) 2008; 39
Mazure (B41) 2016; 15
Montie (B45) 2010; 91
Ma (B38) 2005; 135
Sanfilipo (B62) 2004; 22
Zhang (B81) 2010; 49
Schmierer (B66) 2008; 59
Crum (B13) 2004; 77
Altman (B4) 1983; 32
Rathore (B55) 2017; 155
Fortin (B18) 2017; 161
O’Callaghan (B49) 2014; 9
Collij (B11) 2016; 281
Wells (B78) 2015; 35
Cleary (B10) 2011; 56
Kotrotsou (B28) 2014; 71
Weiner (B77) 2008; 70
Jacobs (B25) 2018; 41
Lemieux (B34) 2003; 49
Myles (B46) 2007; 99
Rozycki (B60) 2017; 44
(B23) 2014
Warfield (B76) 2004; 23
Figueroa (B17) 2012; 12
Hikishima (B20) 2017; 7
Nestor (B47) 2008; 131
Rohlfing (B59) 2004; 21
Schulz (B67) 2011; 202
Bai (B5) 2012; 30
Acer (B1) 2007; 58
Holmes (B22) 2017; 11
Laws (B32) 2018; 31
Cardoso (B8) 2013; 17
Holmes (B21) 2016; 39
Richards (B56) 2011; 58
Aljabar (B2) 2007
Ma (B37) 2018
Kim (B26) 2016; 8
Dietterich (B15) 2000; 40
Rueckert (B61) 1999; 18
Thompson (B73) 2001; 11
References_xml – volume: 11
  start-page: 1
  year: 2001
  ident: B73
  article-title: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/11.1.1
– year: 2012
  ident: B24
  publication-title: The Cerebellum: Brain for An Implicit Self.
– volume: 8
  start-page: 203
  year: 1997
  ident: B30
  article-title: The cerebellum in Alzheimer’s disease.
  publication-title: Dement. Geriatr. Cogn. Disord.
  doi: 10.1159/000106632
– volume: 31
  start-page: 133
  year: 2018
  ident: B32
  article-title: Sex differences in Alzheimer’s disease.
  publication-title: Curr. Opin. Psychiatry
  doi: 10.1097/YCO.0000000000000401
– volume: 9
  year: 2014
  ident: B36
  article-title: Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086576
– volume: 99
  start-page: 309
  year: 2007
  ident: B46
  article-title: I. Using the Bland–Altman method to measure agreement with repeated measures.
  publication-title: Br. J. Anaesth.
  doi: 10.1093/bja/aem214
– volume: 44
  start-page: 1035
  year: 2017
  ident: B60
  article-title: Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals.
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbx137
– start-page: 523
  year: 2007
  ident: B2
  article-title: Classifier selection strategies for label fusion using large atlas databases
  publication-title: Proceddings of MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI’07
  doi: 10.1007/978-3-540-75757-3_64
– year: 2010
  ident: B79
  article-title: Characterizing the regional structural difference of the brain between tau transgenic (rTg4510) and wild-type mice using MRI
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  doi: 10.1007/978-3-642-15705-9_38
– volume: 39
  start-page: 184
  year: 2016
  ident: B21
  article-title: Imaging the accumulation and suppression of tau pathology using multiparametric MRI.
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2015.12.001
– volume: 2010
  start-page: 3
  year: 2010
  ident: B3
  article-title: Atlas-assisted segmentation of cerebral structures of mice.
  publication-title: IWSSIP
– volume: 12
  start-page: 385
  year: 1962
  ident: B52
  article-title: Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.12.2.385
– volume: 40
  start-page: 139
  year: 2000
  ident: B15
  article-title: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization.
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007607513941
– volume: 8
  year: 2013
  ident: B50
  article-title: Comparison of magnetic resonance imaging in live vs. Post mortem rat brains.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071027
– volume: 8
  year: 2014
  ident: B75
  article-title: Post-mortem magnetic resonance microscopy (MRM) of the murine brain at 7 Tesla results in a gain of resolution as compared to in-vivo MRM.
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2014.00047
– volume: 202
  start-page: 17
  year: 2011
  ident: B67
  article-title: Three-dimensional strain fields in human brain resulting from formalin fixation.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.08.031
– volume: 135
  start-page: 1203
  year: 2005
  ident: B38
  article-title: A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.07.014
– volume: 131
  start-page: 2443
  year: 2008
  ident: B47
  article-title: Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database.
  publication-title: Brain
  doi: 10.1093/brain/awn146
– volume: 22
  start-page: 1732
  year: 2004
  ident: B62
  article-title: Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.037
– volume: 32
  start-page: 1054
  year: 2010
  ident: B65
  article-title: Effects of formalin fixation on magnetic resonance indices in multiple sclerosis cortical gray matter.
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22381
– volume: 168
  start-page: 1598
  year: 2006
  ident: B69
  article-title: Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy.
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2006.050840
– volume: 17
  start-page: 671
  year: 2013
  ident: B8
  article-title: STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.02.006
– year: 2014
  ident: B23
  publication-title: Guidance on the Operation of the Animals (Scientific Procedures) Act 1986.
– volume: 14
  start-page: 457
  year: 2018
  ident: B16
  article-title: Sex differences in Alzheimer disease — the gateway to precision medicine.
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-018-0032-9
– volume: 71
  start-page: 364
  year: 2014
  ident: B28
  article-title: Ex vivo MR volumetry of human brain hemispheres.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24661
– volume: 31
  start-page: 1522
  year: 2013
  ident: B64
  article-title: Voxel-based morphometry with templates and validation in a mouse model of Huntington’s disease.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2013.06.001
– volume: 18
  start-page: 439
  year: 2000
  ident: B7
  article-title: Automatic measurement of changes in brain volume on consecutive 3D MR images by segmentation propagation.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(99)00118-6
– volume: 10
  start-page: 1675
  year: 2010
  ident: B42
  article-title: Quantitative structural MRI for early detection of Alzheimer’s disease.
  publication-title: Exp. Rev. Neurother.
  doi: 10.1586/ern.10.162
– volume: 40
  start-page: 307
  year: 2012
  ident: B19
  article-title: The rational use of animals in drug development: contribution of the innovative medicines initiative.
  publication-title: Altern. Lab. Anim.
  doi: 10.1177/026119291204000603
– volume: 7
  year: 2017
  ident: B20
  article-title: In vivo microscopic voxel-based morphometry with a brain template to characterize strainspecific structures in the mouse brain.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00148-1
– volume: 11
  year: 2017
  ident: B22
  article-title: Comparison of in vivo and ex vivo MRI for the detection of structural abnormalities in a mouse model of tauopathy.
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2017.00020
– volume: 32
  start-page: 16265
  year: 2012
  ident: B29
  article-title: Region-specific hierarchy between atrophy, hypometabolism, and -amyloid (a) load in Alzheimer’s disease dementia.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2170-12.2012
– volume: 30
  start-page: 789
  year: 2012
  ident: B5
  article-title: Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.02.010
– volume: 12
  year: 2012
  ident: B17
  article-title: Predicting sample size required for classification performance.
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/1472-6947-12-8
– volume: 32
  start-page: 307
  year: 1983
  ident: B4
  article-title: Measurement in medicine: the analysis of method comparison studies.
  publication-title: J. R. Stat. Soc. Ser. D (Stat.)
  doi: 10.2307/2987937
– volume: 12
  start-page: 63
  year: 1980
  ident: B12
  article-title: Preservation of extracellular space during fixation of the brain for electron microscopy.
  publication-title: Tissue Cell
  doi: 10.1016/0040-8166(80)90052-X
– volume: 11
  year: 2016
  ident: B54
  article-title: Fully-automated μMRI morphometric phenotyping of the Tc1 mouse model of down syndrome.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162974
– volume: 39
  start-page: 136
  year: 2008
  ident: B68
  article-title: Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.028
– volume: 18
  start-page: 712
  year: 1999
  ident: B61
  article-title: Nonrigid registration using free-form deformations: application to breast MR images.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– volume: 77
  start-page: S140
  year: 2004
  ident: B13
  article-title: Non-rigid image registration: theory and practice.
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr/25329214
– volume: 281
  start-page: 865
  year: 2016
  ident: B11
  article-title: Application of machine learning to arterial spin labeling in mild cognitive impairment and alzheimer disease.
  publication-title: Radiology
  doi: 10.1148/radiol.2016152703
– year: 2018
  ident: B37
  article-title: Quantitative assessment of field strength, total intracranial volume, sex, and age effects on the goodness of harmonization for volumetric analysis on the ADNI database.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24463
– volume: 44
  start-page: 62
  year: 2009
  ident: B9
  article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.021
– volume: 15
  start-page: 451
  year: 2016
  ident: B41
  article-title: Sex differences in Alzheimer’s disease and other dementias.
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(16)00067-3
– volume: 41
  start-page: 37
  year: 2018
  ident: B25
  article-title: The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline.
  publication-title: Brain
  doi: 10.1093/brain/awx194
– year: 2014
  ident: B44
  article-title: A symmetric block-matching framework for global registration
  publication-title: SPIE Medical Imaging
  doi: 10.1117/12.2043652
– volume: 49
  start-page: 2340
  year: 2010
  ident: B81
  article-title: Longitudinal characterization of brain atrophy of a Huntington’s disease mouse model by automated morphological analyses of magnetic resonance images.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.027
– volume: 59
  start-page: 268
  year: 2008
  ident: B66
  article-title: Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21487
– volume: 32
  start-page: 590
  year: 2011
  ident: B80
  article-title: Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy.
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2009.04.006
– start-page: 557
  year: 2000
  ident: B51
  article-title: Block matching: a general framework to improve robustness of rigid registration of medical images
  publication-title: Proceedings of MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-40899-4_57
– volume: 29
  start-page: 1310
  year: 2010
  ident: B74
  article-title: N4ITK: improved N3 bias correction.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 23
  start-page: 903
  year: 2004
  ident: B76
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.828354
– volume: 58
  start-page: 732
  year: 2011
  ident: B56
  article-title: Segmentation of the mouse hippocampal formation in magnetic resonance images.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.025
– volume: 219
  start-page: 3832
  year: 2016
  ident: B58
  article-title: Demystifying animal ‘personality’ (or not): why individual variation matters to experimental biologists.
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.146712
– volume: 58
  start-page: 48
  year: 2007
  ident: B1
  article-title: Comparison of three methods for the estimation of total intracranial volume: stereologic, planimetric, and anthropometric approaches.
  publication-title: Ann. Plast. Surg.
  doi: 10.1097/01.sap.0000250653.77090.97
– volume: 512
  start-page: 27
  year: 2009
  ident: B31
  article-title: Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.21906
– volume: 70
  start-page: 824
  year: 2008
  ident: B77
  article-title: Expanding ventricles may detect preclinical Alzheimer disease.
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000304743.72127.cc
– volume: 82
  year: 1962
  ident: B14
  article-title: Analysis of lipids from fresh and preserved adult human brains.
  publication-title: Biochem. J.
  doi: 10.1042/bj0820113
– volume: 45
  start-page: 17
  year: 1995
  ident: B48
  article-title: Procedures for setting normal values.
  publication-title: Neurology
  doi: 10.1212/WNL.45.1.17
– start-page: 1
  year: 2010
  ident: B70
  publication-title: False Discovery Rates.
  doi: 10.1198/016214507000000941
– volume: 155
  start-page: 530
  year: 2017
  ident: B55
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 21
  start-page: 1428
  year: 2004
  ident: B59
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.11.010
– volume: 6
  year: 2012
  ident: B35
  article-title: Wanted dead or alive? The tradeoff between in-vivo versus ex-vivo MR brain imaging in the mouse.
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2012.00006
– volume: 6
  start-page: 37
  year: 2014
  ident: B43
  article-title: Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences.
  publication-title: Clin. Epidemiol.
  doi: 10.2147/CLEP.S37929
– volume: 161
  start-page: 149
  year: 2017
  ident: B18
  article-title: Harmonization of multi-site diffusion tensor imaging data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.047
– volume: 2
  year: 2008
  ident: B39
  article-title: In Vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy.
  publication-title: Front. Neuroanat.
  doi: 10.3389/neuro.05.001.2008
– volume: 22
  start-page: 1754
  year: 2004
  ident: B72
  article-title: Mapping hippocampal and ventricular change in Alzheimer disease.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.040
– volume: 35
  start-page: 359
  year: 2015
  ident: B78
  article-title: Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer’s disease.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2014.224
– volume: 50
  start-page: 2412
  year: 1996
  ident: B27
  article-title: Individual variation of ontogenies: a longitudinal study of growth and timing.
  publication-title: Evolution (N. Y.)
  doi: 10.1111/j.1558-5646.1996.tb03628.x
– volume: 309
  start-page: 476
  year: 2005
  ident: B63
  article-title: Tau suppression in a neurodegenerative mouse model improves memory function.
  publication-title: Science
  doi: 10.1126/science.1113694
– volume: 56
  start-page: 974
  year: 2011
  ident: B10
  article-title: Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.082
– volume: 91
  start-page: 243
  year: 2010
  ident: B45
  article-title: Magnetic resonance imaging quality and volumes of brain structures from live and postmortem imaging of California sea lions with clinical signs of domoic acid.
  publication-title: Dis. Aquat. Organ.
  doi: 10.3354/dao02259
– volume: 29
  start-page: 556
  year: 1992
  ident: B53
  article-title: Method comparison—a different approach.
  publication-title: Ann. Clin. Biochem. Int. J. Biochem. Med.
  doi: 10.1177/000456329202900512
– volume: 9
  year: 2014
  ident: B49
  article-title: Is your system calibrated? MRI gradient system calibration for pre-clinical, high-resolution imaging.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096568
– volume: 327
  start-page: 307
  year: 1986
  ident: B40
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 760
  start-page: 25
  year: 2013
  ident: B6
  article-title: Sample size planning for classification models.
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.11.007
– volume: 49
  start-page: 872
  year: 2003
  ident: B34
  article-title: Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10436
– volume: 7
  start-page: S62
  year: 2011
  ident: B57
  article-title: Estimation of total intracranial volume: a comparison of methods.
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2011.05.099
– volume: 99
  start-page: 86
  year: 2015
  ident: B71
  article-title: A 10-minute prototype assay for tissue degradation monitoring in clinical specimens.
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2015.05.009
– volume: 8
  start-page: 171
  year: 2016
  ident: B26
  article-title: Improving classification accuracy by combining longitudinal biomarker measurements subject to detection limits.
  publication-title: Stat. Biopharm. Res.
  doi: 10.1080/19466315.2016.1142889
– volume: 184
  start-page: 555
  year: 2018
  ident: B33
  article-title: Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements.
  publication-title: Neuroimage
  doi: 10.1016/J.NEUROIMAGE.2018.09.062
SSID ssj0062842
Score 2.312777
Snippet Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration....
Brain volume measurements extracted from structural MRI data sets are a widely-accepted neuroimaging biomarker to study mouse models of neurodegeneration....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 11
SubjectTerms Animal models
Atrophy
Automation
Brain
Classification
Datasets
Disease
disease progression
ex vivo
in vivo
longitudinal
Magnetic resonance imaging
Morphology
Neurodegeneration
Neurodegenerative diseases
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Pathology
Rodents
Statistics
structural parcellation
Studies
Substantia alba
Substantia grisea
Tau protein
treatment effect
University colleges
Volumetric analysis
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BggYJIXGINna8jn3cFqqCWFTRLeot8lOs1CYcuhX7C_lbzDjZVRchuHBM7GxmPZPxjGf0fYy9xl0vWlWlUnDnqMzoSl3Hukw6aKsdJiCODvTnn9XJufx4Mb24RfVFPWEDPPCwcBPjtIyKazNFRxpdML4yUQXujHBVyhTWAve8TTI1-GCFc8VQlMQUzExSt-wIm5sTOGXF-c4mlLH6_xRg_t4neWvjOb7P7o0RI8wGSR-wO7F7yPZnHWbLV2t4A7mHMx-O77Of1Ba4Bgzq4FNPTESrQKxXsOzgZnnTg-0CHJFI5VluwaKx-GMYOySyCPiavRW8G3lTfASMavEyl3HglLq5BiSP_FuLTZs6DCjIgPfn_QpnEsfaJfQJFnbVE-3xGnJ3AsxWKDcGuAHmXz7AWYavJegPOLW5ipAt5RE7P36_ODopR6qG0ktTXZfGSs-t8SrxIKuEjkByjNtlkEkE3tiknefCq4jRhXGVwj2wkl6nytQBc_tQP2Z7Xd_FpwyUSqkxPKEXxrRdB2e5iN5O8eHGC50KNtnorvUjjjnRaVy2mM-Qttus7Za0nUvrvGBvt098HzA8_jL3kMxhO4_Qt_MNtMl2tMn2XzZZsIONMbWjS8B31AQDLDHkLdir7TB-zHltu4jKaYlcHWM40ZiCPRlsbysJOeNaqWnBmh2r3BF1d6RbfsuA4YoO95R69j_-23N2l1aLTqGEPGB7aCbxBcZl1-5l_gR_AYsLOyA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be-kFQcvDUNAgISQOVrz2Zr17QklpVRCpojZFvVneV4lU7AJNRX4hf4uZtRMRhHqMd52sPbOz3zzyDWNv8NTztcxCmnNjKM1oUlX4Ig3KqVoZdEAMBfQnJ_L4XHy6GF70AbeffVnlyiZGQ-1aSzHyQWxxXghEDO-vv6fUNYqyq30LjftsG02wQudre3x4Mj1d2WKJxjfmOyX9NwjBeZeoRLdMD0Izb4ivmxNhZcb5xsEU-fv_Bzr_rZ386zA6esge9CgSRp3YH7F7vtlle6MGPehvS3gLsa4zBsx32Q7hyY6OeY_9prrBJSDqg88ttSpaOGqLBfMGbue3LdSNgwNaX3oWa7RozP_qxsbUTQK-RHMGH_rGKtYDwl78GPM8MKVyr47qI37XbFXHDh1NMuD1SbvAmdSE7QraALN60VJf5CXE8gUYLfAhEAE7mJx-hLPIb0vcIDCtY5ohqtJjdn50ODs4TvteDqkVOrtJdS0sr7WVgTuRBbQUgiOwF06E3PGyDspYnlvpEX5ok0k8JDNhVch04dD5d8UTttW0jX_GQMoQSs0Dmmn065UzNc-9rYd4c2lzFRI2WAmysj3ROfXbuKrQ4SHRV1H0FYk-5t55wt6t77juSD7umDsm3VjPI3rueKH9cVn1u73SRgkvudJDVEBvnLaZ9tJxo3OTBS4Str_SrKq3Gfgbaw1P2Ov1MO72-G4bj8KpqPs6gry81Al72inieiVkrQsphwkrN1R0Y6mbI838a2QUlxT9k_L53ct6wXboPVAAKhf7bAsVwL9ESHZjXvX77g_FNjpH
  priority: 102
  providerName: ProQuest
Title Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
URI https://www.ncbi.nlm.nih.gov/pubmed/30733665
https://www.proquest.com/docview/2306534083
https://www.proquest.com/docview/2229075279
https://pubmed.ncbi.nlm.nih.gov/PMC6354066
https://doaj.org/article/9b84e61895284ebd9c09e6d1b92b0f14
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfQJqG9IGB8BEZ1SAiJh7A4cZ34AaF2bAxEp2prUd-iOLahUkm2sU7rX8i_xZ2TlhUVXiIldizLd_Z9-neMvUKpZwsZuTDmWlOYUYdZYpPQZSYrMo0GiCaH_uBEHo_F50l38ud6dLuAPzeadlRPanw5e3tzsXiPG_4dWZwob_ddNa0IeZsT9GREF323US6ltE0HYhVTkHgQ-9inpHtCqKg3QcuNI-ywu8T7iSSZc0teeVj_Tbro3ymVt2TU0X12r1UuoddwwwN2x1YP2W6vQsP6xwJeg0_39H70XfaLMggXgPoffKmpaNHcUIEsmFZwPb2uoagMHNCUwjOfrUVt9qZp61NdCfjqDzb40JZYKS2gAoyvPuIDQ0r8akA__FijZUY7NIDJgN8H9Rx7Ujm2GdQORsW8pgrJC_CJDNCb47xRFzYwOP0EZx7pllBCYFj4gINnqkdsfHQ4OjgO26oOYSlUdBWqQpS8UKV03IjI4ZmBtEpjYYSLDU8Ll-mSx6W0qIgoHUkUl5EoMxepxFgdm-Qx26rqyj5lIKVzqeIOD2y08DOjCx7bsujiz2kZZy5g-0va5WULeU6VN2Y5mj5E-NwTPifC-yg8D9ib1R_nDdzHf_r2iR1W_Qio23-oL7_l7b7Plc6ElTxTXWQ_q40qI2Wl4VrFOnJcBGxvyUz5kvlzMgu7iUDtOGAvV8247_3aVhaJk1MddlT34lQF7EnDe6uZLHk3YOkaV65Ndb2lmn732OKS_IBSPvvnmM_ZDi0BeaFisce2kPb2BeplV7rDtvuHJ8PTjvdr4PPjhHf8FvwNqP47nw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9EAvCFoehgKLBEgcrHjtzcZ7QCjpQwlNoqhNUW_G-4JIxS7QFPKn-Bv8LWbWdkQQ6q3HeNfO2jOex874-wh5CV7P5iJyYcyUwjKjCtPEJqFLTZqnChIQhRv644kYnPL3Z52zDfKr-RYG2yobm-gNtSk17pG3PcV5wiFieHfxNUTWKKyuNhQalVoc2eUPSNm-vx3ug3xfxfHhwWxvENasAqHmMroMZc41y6UWjhkeOdBZziDE5Ia72LBu7lKlWayFBUcoVSTAXEdcpw5SfwNpqEngurfIJk8glWmRzf7BZHrc2H4Bxt7XVwV-iwTJQFUYhTRQtl0xLxAfnCFAZsTYmiP0fAH_C3L_7dX8y_kd3iV36qiV9io1u0c2bLFNdnoFZOxflvQ19X2kfoN-m2xh_FrBP--Q39inuKQQZdJRidRIC4M0XHRe0Kv5VUnzwtA9XF944nvCcMz-rMb6yF5BP3jzSfdrIhdtKYTZ8NPXlegU28sqaBF_rVnTN08rWGYKx8flAmYi6ds5LR2d5YsSeZiX1LdL0N4CbgIibkPHx0N64vF0EYuETnNf1vCqe5-c3oiUH5BWURb2EaFCONeVzIFb6EKyZlTOYqvzDpzc1XHqAtJuBJnpGlgd-T3OM0iwUPSZF32Gove1fhaQN6szLipQkWvm9lE3VvMQDtwfKL99ymrrkkmVcitYKjuggFYZqSNphWFKxipyjAdkt9GsrLZR8B-rNyogL1bDYF38sy0sCCdDtncIKuOuDMjDShFXK0HvkAjRCUh3TUXXlro-Usw_ewRzgbuNQjy-flnPye3BbDzKRsPJ0ROyhc8EN79ivktaoAz2KYSDl-pZ_Q5S8vGmX_s_0Lx2hg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEK9IGh5BAosEiBxsOK1N2vvAaGkadTQJoraFPVmvC-IVOwCTSF_jT_A32JmbUcEod56jNd21p7ZeeyMv4-Ql-D1bC5CF0RMKSwzqiCNbRy41KR5qiABUbihP56Ig1P-_qx7tkF-Nd_CYFtlYxO9oTalxj3yjqc4jzlEDB1Xt0VMB8N3F18DZJDCSmtDp1GpyKFd_oD07fvb0QBk_SqKhvuzvYOgZhgINJfhZSBzrlkutXDM8NCB_nIG4SY33EWGJblLlWaRFhacolShANMdcp26UMYGUlITw31vkc0EsqKwRTb7-5PpceMHBBh-X2sV-F0SJAZVkRRSQtlxxbxArHCGYJkhY2tO0XMH_C_g_bdv8y9HOLxL7tQRLO1VKnePbNhim-z0Csjevyzpa-p7Sv1m_TbZwli2goLeIb-xZ3FJIeKkRyXSJC0MUnLReUGv5lclzQtD93B-wYnvD8Mx-7Ma6yOTBf3gTSkd1KQu2lIIueGnrzHRKbaaVTAj_l6zpoeeVhDNFI6PywWciQRw57R0dJYvSuRkXlLfOkF7C3gIiL4NHR-P6InH1kVcEjrNfYnDq_F9cnojUn5AWkVZ2EeECuFcIpkDF5FA4mZUziKr8y5cnOgodW3SaQSZ6RpkHbk-zjNItlD0mRd9hqL3dX_WJm9WV1xUACPXnNtH3Vidh9Dg_kD57VNWW5pMqpRbwVLZBQW0ykgdSisMUzJSoWO8TXYbzcpqewX_sVpdbfJiNQyWxr_bwoJwMmR-hwAzSmSbPKwUcTUT9BSxEN02SdZUdG2q6yPF_LNHMxe48yjE4-un9ZzchuWeHY0mh0_IFr4S3AeL-C5pgS7YpxAZXqpn9RKk5ONNr_o_I8V6uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+the+Longitudinal+in+vivo+and+Cross-Sectional+ex+vivo+Brain+Volume+Difference+for+Disease+Progression+and+Treatment+Effect+on+Mouse+Model+of+Tauopathy+Using+Automated+MRI+Structural+Parcellation&rft.jtitle=Frontiers+in+neuroscience&rft.au=Ma%2C+Da&rft.au=Holmes%2C+Holly+E&rft.au=Cardoso%2C+Manuel+J&rft.au=Modat%2C+Marc&rft.date=2019-01-24&rft.issn=1662-4548&rft.volume=13&rft.spage=11&rft_id=info:doi/10.3389%2Ffnins.2019.00011&rft_id=info%3Apmid%2F30733665&rft.externalDocID=30733665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon