Unbiased Analysis of Item-Specific Multi-Voxel Activation Patterns Across Learning
Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD ac...
Saved in:
Published in | Frontiers in neuroscience Vol. 12; p. 723 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
04.10.2018
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2018.00723 |
Cover
Abstract | Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over
item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias - but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage. |
---|---|
AbstractList | Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias – but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage. Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias - but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage. Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias – but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage. Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias - but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage.Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias - but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage. |
Author | Mohr, Holger Zwosta, Katharina Wolfensteller, Uta Schäfer, Theo A. J. Ruge, Hannes Legler, Eric |
AuthorAffiliation | Department of Psychology, Technische Universität Dresden , Dresden , Germany |
AuthorAffiliation_xml | – name: Department of Psychology, Technische Universität Dresden , Dresden , Germany |
Author_xml | – sequence: 1 givenname: Hannes surname: Ruge fullname: Ruge, Hannes – sequence: 2 givenname: Eric surname: Legler fullname: Legler, Eric – sequence: 3 givenname: Theo A. J. surname: Schäfer fullname: Schäfer, Theo A. J. – sequence: 4 givenname: Katharina surname: Zwosta fullname: Zwosta, Katharina – sequence: 5 givenname: Uta surname: Wolfensteller fullname: Wolfensteller, Uta – sequence: 6 givenname: Holger surname: Mohr fullname: Mohr, Holger |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30337852$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kttrFDEUxoNU7EXffZIBX3yZNbfJTF6EpXhZWFHUim8hkzlZs8wm2yRT7H9vOltLW_Aph5Pf-TiX7xQd-eABoZcELxjr5FvrnU8Likm3wLil7Ak6IULQmjfs19G9-BidprTFWNCO02fomGHG2q6hJ-jbhe-dTjBUS6_H6-RSFWy1yrCrv-_BOOtM9Xkas6t_hj8wVkuT3ZXOLvjqq84Zok8lF0NK1Rp0LP1snqOnVo8JXty-Z-jiw_sf55_q9ZePq_PlujZc4lzLDizj0Pa9tayh0PRWDEIwaTnjRAtKiR2gbztCBmYEEGq4KIEUjRGsEewMrQ66Q9BbtY9up-O1CtqpORHiRumYnRlByV5zITVvCHBOh0ZjLrnlLe5Y2Yhoi9a7g9Z-6ncwGPA56vGB6MMf736rTbhSgnSYCFYE3twKxHA5Qcpq55KBcdQewpQUJZS1hPNOFvT1I3Qbpli2XyhWTiQbTnmhXt3v6K6Vf6crAD4A8_Yj2DuEYHXjDjW7Q924Q83uKCXiUYlxeT5mmcmN_y_8C06lvtY |
CitedBy_id | crossref_primary_10_1177_17470218241238164 crossref_primary_10_7554_eLife_48293 crossref_primary_10_1162_imag_a_00274 |
Cites_doi | 10.1006/nimg.2000.0710 10.3389/fninf.2016.00027 10.1126/science.1193125 10.1016/j.neuroimage.2014.10.025 10.1016/j.neuroimage.2003.12.021 10.1111/psyp.12665 10.1016/j.neuroimage.2017.04.025 10.1016/j.neuroimage.2011.08.076 10.1371/journal.pone.0126255 10.1126/science.1063736 10.1016/B978-012372560-8/50014-0 10.1016/j.neuroimage.2012.05.057 10.1016/j.neuron.2015.05.025 10.1155/2015/804385 10.1016/j.neuron.2009.03.016 10.1016/j.neuroimage.2014.09.026 10.1016/j.neuroimage.2009.04.075 10.3389/neuro.06.004.2008 10.1016/j.neuroimage.2015.11.009 10.1073/pnas.0600244103 10.1523/JNEUROSCI.3412-11.2011 10.1146/annurev-neuro-062012-170325 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2018 Ruge, Legler, Schäfer, Zwosta, Wolfensteller and Mohr. 2018 Ruge, Legler, Schäfer, Zwosta, Wolfensteller and Mohr |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2018 Ruge, Legler, Schäfer, Zwosta, Wolfensteller and Mohr. 2018 Ruge, Legler, Schäfer, Zwosta, Wolfensteller and Mohr |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2018.00723 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_9ba469a451e442d5a0494f4708328467 PMC6180163 30337852 10_3389_fnins_2018_00723 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c490t-98ef34e7bbff352e5bf6d6639f4341a6221fdeb7811d3c6e12c463c6965c63563 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:27:32 EDT 2025 Thu Aug 21 18:31:23 EDT 2025 Thu Sep 04 23:43:09 EDT 2025 Fri Jul 25 11:51:09 EDT 2025 Wed Feb 19 02:44:11 EST 2025 Tue Jul 01 01:01:28 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | classifier RITL instruction-based learning rapid learning pattern similarity MVPA |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-98ef34e7bbff352e5bf6d6639f4341a6221fdeb7811d3c6e12c463c6965c63563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Hunar Abdulrahman, Erbil Health Directorate, Iraq; Tyler Davis, Texas Tech University, United States This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: John Ashburner, University College London, United Kingdom |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2018.00723 |
PMID | 30337852 |
PQID | 2306295424 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9ba469a451e442d5a0494f4708328467 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6180163 proquest_miscellaneous_2123714489 proquest_journals_2306295424 pubmed_primary_30337852 crossref_primary_10_3389_fnins_2018_00723 crossref_citationtrail_10_3389_fnins_2018_00723 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-04 |
PublicationDateYYYYMMDD | 2018-10-04 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2018 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Haynes (B5) 2015; 87 Ruge (B18) 2009; 47 Kriegeskorte (B8) 2008; 2 Henson (B6) 2007 Mumford (B14) 2015; 10 Oosterhof (B17) 2016; 10 Li (B10) 2009; 62 Kriegeskorte (B7) 2006; 103 Haxby (B3) 2014; 37 Atir-Sharon (B2) 2015; 2015 Serences (B19) 2004; 21 Mumford (B15) 2012; 59 Xue (B22) 2010; 330 Abdulrahman (B1) 2016; 125 Mohr (B12) 2014 Turner (B20) 2012; 62 Kahnt (B9) 2011; 31 Ollinger (B16) 2001; 13 Mumford (B13) 2014; 103 Mohr (B11) 2015; 104 Visser (B21) 2016; 53 Zeithamova (B23) 2017; 153 Haxby (B4) 2001; 293 26182413 - Neuron. 2015 Jul 15;87(2):257-70 25467302 - Neuroimage. 2015 Jan 1;104:163-76 19104670 - Front Syst Neurosci. 2008 Nov 24;2:4 22659443 - Neuroimage. 2012 Sep;62(3):1429-38 28411155 - Neuroimage. 2017 Jun;153:221-231 26549299 - Neuroimage. 2016 Jan 15;125:756-766 19422920 - Neuroimage. 2009 Aug 15;47(2):501-13 25919488 - PLoS One. 2015 Apr 28;10(4):e0126255 26257961 - Neural Plast. 2015;2015:804385 27499741 - Front Neuroinform. 2016 Jul 22;10:27 16537458 - Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 27153295 - Psychophysiology. 2016 Aug;53(8):1117-27 21924359 - Neuroimage. 2012 Feb 1;59(3):2636-43 25002277 - Annu Rev Neurosci. 2014;37:435-56 19447098 - Neuron. 2009 May 14;62(3):441-52 11133323 - Neuroimage. 2001 Jan;13(1):210-7 11577229 - Science. 2001 Sep 28;293(5539):2425-30 20829453 - Science. 2010 Oct 1;330(6000):97-101 15050591 - Neuroimage. 2004 Apr;21(4):1690-700 25241907 - Neuroimage. 2014 Dec;103:130-138 21994378 - J Neurosci. 2011 Oct 12;31(41):14624-30 |
References_xml | – volume: 13 start-page: 210 year: 2001 ident: B16 article-title: Separating processes within a trial in event-related functional MRI I. publication-title: Neuroimage doi: 10.1006/nimg.2000.0710 – volume: 10 year: 2016 ident: B17 article-title: CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in matlab/GNU octave. publication-title: Front. Neuroinform. doi: 10.3389/fninf.2016.00027 – volume: 330 start-page: 97 year: 2010 ident: B22 article-title: Greater neural pattern similarity across repetitions is associated with better memory. publication-title: Science doi: 10.1126/science.1193125 – volume: 104 start-page: 163 year: 2015 ident: B11 article-title: Sparse regularization techniques provide novel insights into outcome integration processes. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.025 – volume: 21 start-page: 1690 year: 2004 ident: B19 article-title: A comparison of methods for characterizing the event-related BOLD timeseries in rapid fMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.021 – volume: 53 start-page: 1117 year: 2016 ident: B21 article-title: Quantifying learning-dependent changes in the brain: single-trial multivoxel pattern analysis requires slow event-related fMRI. publication-title: Psychophysiology doi: 10.1111/psyp.12665 – year: 2014 ident: B12 article-title: Single trial choices may have large impact on pattern similarity outcomes. publication-title: Paper Presented at the 21st Annual Meeting of the Organization of Human Brain Mapping – volume: 153 start-page: 221 year: 2017 ident: B23 article-title: Trial timing and pattern-information analyses of fMRI data. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.025 – volume: 59 start-page: 2636 year: 2012 ident: B15 article-title: Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.076 – volume: 10 year: 2015 ident: B14 article-title: Orthogonalization of regressors in FMRI models. publication-title: PLoS One doi: 10.1371/journal.pone.0126255 – volume: 293 start-page: 2425 year: 2001 ident: B4 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex. publication-title: Science doi: 10.1126/science.1063736 – start-page: 178 year: 2007 ident: B6 article-title: “Convolution models for fMRI,” in publication-title: Statistical Parametric Mapping: the Analysis of Functional Brain Images doi: 10.1016/B978-012372560-8/50014-0 – volume: 62 start-page: 1429 year: 2012 ident: B20 article-title: Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.057 – volume: 87 start-page: 257 year: 2015 ident: B5 article-title: A primer on pattern-based approaches to fMRI: principles. Pitfalls, and Perspectives. publication-title: Neuron doi: 10.1016/j.neuron.2015.05.025 – volume: 2015 year: 2015 ident: B2 article-title: Decoding the formation of new semantics: MVPA investigation of rapid neocortical plasticity during associative encoding through fast mapping. publication-title: Neural Plast. doi: 10.1155/2015/804385 – volume: 62 start-page: 441 year: 2009 ident: B10 article-title: Learning shapes the representation of behavioral choice in the human brain. publication-title: Neuron doi: 10.1016/j.neuron.2009.03.016 – volume: 103 start-page: 130 year: 2014 ident: B13 article-title: The impact of study design on pattern estimation for single-trial multivariate pattern analysis. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.026 – volume: 47 start-page: 501 year: 2009 ident: B18 article-title: Separating event-related BOLD components within trials: the partial-trial design revisited. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.075 – volume: 2 year: 2008 ident: B8 article-title: Representational similarity analysis - connecting the branches of systems neuroscience. publication-title: Front. Syst. Neurosci. doi: 10.3389/neuro.06.004.2008 – volume: 125 start-page: 756 year: 2016 ident: B1 article-title: Effect of trial-to-trial variability on optimal event-related fMRI design: implications for Beta-series correlation and multi-voxel pattern analysis. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.009 – volume: 103 start-page: 3863 year: 2006 ident: B7 article-title: Information-based functional brain mapping. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0600244103 – volume: 31 start-page: 14624 year: 2011 ident: B9 article-title: Decoding the formation of reward predictions across learning. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3412-11.2011 – volume: 37 start-page: 435 year: 2014 ident: B3 article-title: Decoding neural representational spaces using multivariate pattern analysis. publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062012-170325 – reference: 26257961 - Neural Plast. 2015;2015:804385 – reference: 11133323 - Neuroimage. 2001 Jan;13(1):210-7 – reference: 25002277 - Annu Rev Neurosci. 2014;37:435-56 – reference: 27499741 - Front Neuroinform. 2016 Jul 22;10:27 – reference: 25467302 - Neuroimage. 2015 Jan 1;104:163-76 – reference: 21994378 - J Neurosci. 2011 Oct 12;31(41):14624-30 – reference: 16537458 - Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 – reference: 19447098 - Neuron. 2009 May 14;62(3):441-52 – reference: 27153295 - Psychophysiology. 2016 Aug;53(8):1117-27 – reference: 28411155 - Neuroimage. 2017 Jun;153:221-231 – reference: 25919488 - PLoS One. 2015 Apr 28;10(4):e0126255 – reference: 22659443 - Neuroimage. 2012 Sep;62(3):1429-38 – reference: 26549299 - Neuroimage. 2016 Jan 15;125:756-766 – reference: 15050591 - Neuroimage. 2004 Apr;21(4):1690-700 – reference: 26182413 - Neuron. 2015 Jul 15;87(2):257-70 – reference: 25241907 - Neuroimage. 2014 Dec;103:130-138 – reference: 19104670 - Front Syst Neurosci. 2008 Nov 24;2:4 – reference: 11577229 - Science. 2001 Sep 28;293(5539):2425-30 – reference: 19422920 - Neuroimage. 2009 Aug 15;47(2):501-13 – reference: 21924359 - Neuroimage. 2012 Feb 1;59(3):2636-43 – reference: 20829453 - Science. 2010 Oct 1;330(6000):97-101 |
SSID | ssj0062842 |
Score | 2.1832821 |
Snippet | Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 723 |
SubjectTerms | Bias Brain classifier Early childhood education instruction-based learning Learning MVPA Neuroscience pattern similarity rapid learning RITL |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_knnwRvfOjekoEEXwIu00mafN4ischKCKu3Ftp0kQXNHvoHuh_fzNpu9yK6ItvJUnbZDLJbyYfvwF4htEPPaogrTdGImGcdM3QSB9S6IPRXpc4ZG_f2bMVvjk359dCffGZsJEeeBTcwvmePLgeTR0R1WB6JjRJ2JDpoBg7efZduuXsTI1zsKUsNW5KkgvmFimvM3Nz122hytZ7IFS4-v9kYP5-TvIa8JzehluTxShOxpregRsxH8LRSSZv-dsv8VyUM5xlcfwIPqyyXxMuDWImGxGbJHg5XpZA82kdRLlyKz9tfkb6aJijm4n3hWgz_6A0rrOYiFc_34XV6euPr87kFDVBBnTLrXRtTBpj431KZF1F45MdyK5wCQmxeqtUnYbo-YbpoIONtQpo6cFZE5isTt-Dg7zJ8QEI5XVD8N_G6CJGtB6XDGhakw-Ipg8VLGYxdmGiFOfIFl87ci1Y8F0RfMeC74rgK3ixe-NipNP4S9mX3DO7ckyEXRJIPbpJPbp_qUcFx3O_dtPopH-Qn8T7mworeLrLpnHFmyV9jptLKkPtbMjbbF0F90c12NWEYF83rVEVNHsKslfV_Zy8_lK4u21NErT64f9o2yO4ydIqRwvxGA623y_jYzKRtv5JGQ1XESoNLw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA7avvgi2vpjtZUIIvgQrruZZDdP0paWIlhK8aRvyyab1IOare0V9L93JpddPCl9O3aze9nJZOabTPINYx_A276DygltlRKAPk6Yuq-FdcF1TkkrUx2yr6f6ZA5fLtRFXnC7zdsqR5uYDHU_OFojnxFUppxUBZ-vfwmqGkXZ1VxC4zHbRBPcoJ5vHhydnp2Ptlij8U35Tk1ngxCcrxKVGJaZWYiLSHzdZZPos-WaY0r8_feBzv_3Tv7jjI6fsacZRfL91bA_Z4983GLb-xEj6J9_-Eee9nWmBfNtdj6PdoG-qucjAQkfAqclepGKz4eF4-kYrvg-_Pb4UjdWPONniXwz3uI16jPPZKyXL9j8-Ojb4YnIlRSEA7O3FKbxQYKvrQ0BEZdXNugesYYJgF6s01VVht5bOnXaS6d9WTnQ-MNo5YjATr5kG3GI_jXjlZU1QoLGe-PBg7awR05OSowLQXWuYLNRjK3LNONU7eKqxXCDBN8mwbck-DYJvmCfpieuVxQbD7Q9oJGZ2hE5drow3Fy2ea61xnYY9HegSg9Q9aojDpwANaLNiuBWwXbGcW3zjMX_mPSrYO-n2zjXKIHSRT_cYRv8zhoj0MYU7NVKDaaeIBSQdaOqgtVrCrLW1fU7cfEj8XnrEiWo5ZuHu_WWPSE5pI2EsMM2ljd3fhcB0dK-y1r_F8UhCZ0 priority: 102 providerName: ProQuest |
Title | Unbiased Analysis of Item-Specific Multi-Voxel Activation Patterns Across Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30337852 https://www.proquest.com/docview/2306295424 https://www.proquest.com/docview/2123714489 https://pubmed.ncbi.nlm.nih.gov/PMC6180163 https://doaj.org/article/9ba469a451e442d5a0494f4708328467 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1Be-GCgPIRKCsjISQOoU08dpIDQi1qqZBaVRWL9hbFjl1WKk673Urtv2fGmywsWiEuUWQ7jjO2M2889huAt-hM22BuU22USpF0XFoVbZEa621jlTQyxiE7PtFHY_w6UZPfx6N7AV6vNe04ntR4dvHh9uruE034j2xxkr7d8WEamHk7KyMRtrwPm6SXNJtix7j0KWj6EUffp-ZzQgTUF07LtTWsKKnI5b8OgP69j_IPxXT4CB72iFLsLYbAY7jnwhPY2gtkTf-8E-9E3OMZF8-34GwczJT0VisGMhLRecHL9WkMRO-nVsQjuen37tZRpXaIfiZOIxFnuKY0brPoiVnPn8L48ODb56O0j6qQWqx252lVOi_RFcZ4T-jLKeN1S7ij8kgardF5nvnWGT6B2kqrXZZb1HRTaWWZzE4-g43QBfcCRG5kQfCgdK5y6FAb3GWFJyXZiKgam8DOIMba9pTjHPnioibTgwVfR8HXLPg6Cj6B98snLhd0G_8ou889syzHRNkxoZud1_28qyvToK4aVJlDzFvVMB-Ox4KQZ87QK4HtoV_rYfDVbJax_zPHBN4ss2nesTOlCa67oTL0nQVZo2WVwPPFMFi2hGCBLEqVJ1CsDJCVpq7mhOmPyO2tM5Kgli__472v4AELI-4sxG3YmM9u3GtCSHMzgs39g5PTs1FcYaDrl0k2ipPhF5rkEX4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFeEDB-ZAwwEiDxEHWxHSd-QGiDTR3bqmla0d6y2LFHJZaMrRPsn-Jv5M5JKorQ3vZWJW7qns933-V83wG8kc5UpeQ2ViZNY4k-LtZZlcXGelvaVBgR-pDtj9VoIr8cp8dL8LuvhaFjlb1NDIa6aiy9Ix8SVKacFJcfz3_E1DWKsqt9C41WLXbd9U8M2S4_7HzG9X3L-fbW0adR3HUViK3U67NY584L6TJjvEf04VLjVYV-V3uJFr1UnCe-coYqMCthlUu4lQo_aJVaInMT-Nw7sCyponUAy5tb44PD3vYrNPYhv6qoFgmDgTYximGgHvp6WhM_eJIHum6x4AhDv4D_gdx_z2r-5fy2H8D9DrWyjVbNHsKSqx_BykaNEfvZNXvHwjnS8IJ-BQ4ntZmib6xYT3jCGs8oJRCHZvd-alko-42_Nr8cPtT2HdbYQSD7rC_xGs2ZdeSvp49hcisyfgKDuqndM2DciAwhSO6cdtJJZeQ6OVUhMA6VaWkjGPZiLGxHa07dNb4XGN6Q4Isg-IIEXwTBR_B-_o3zltLjhrGbtDLzcUTGHS40F6dFt7cLbUqpdCnTxEnJq7Qkzh0vM0S3nOBdBGv9uhadhcDfmOtzBK_nt3FvU8KmrF1zhWPwf2YY8eY6gqetGsxngtBDZHnKI8gWFGRhqot36um3wB-uEpSgEqs3T-sV3B0d7e8Vezvj3edwj2QSDjHKNRjMLq7cCwRjM_Oy2wEMTm570_0BhLdGGg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8UgoYCZA4RNvYjrM-INTSrloKq1XFot7S2LHLSjQp7VbQv8avY8Z5iEWot96ixEmc8Twz428AXklnykJyGyuTprFEGxfrrMxiY70tbCqMCH3IPk_U3kx-PEqPVuB3txeGyio7nRgUdVlb-kc-JFeZclJcDn1bFjHdGb8_-xFTBynKtHbtNBoWOXBXPzF8u3i3v4Nr_Zrz8e6XD3tx22EgtlJvLmI9cl5IlxnjPXoiLjVelWiDtZeo3QvFeeJLZ2g3Zimscgm3UuGBVqklYDeBz70FqxlaRTmA1e3dyfSwswMKFX_ItSral4SBQZMkxZBQD301rwgrPBkF6G6xZBRD74D_Obz_1m3-ZQjH9-Bu68GyrYbl7sOKqx7A2laF0fvpFXvDQk1p-Fm_BoezyszRTpasAz9htWeUHohD43s_tyxsAY6_1r8cPtR23dbYNAB_Vhd4jubMWiDYk4cwuxEaP4JBVVfuCTBuRIbuyMg57aSTyshNMrBCYEwq08JGMOzImNsW4pw6bXzPMdQhwueB8DkRPg-Ej-Btf8dZA-9xzdhtWpl-HAFzhxP1-UneynmuTSGVLmSaOCl5mRaEv-Nlhp4uJ1cvgo1uXfNWW-A7et6O4GV_GeWckjdF5epLHIPfmWH0O9IRPG7YoJ8JuiEiG6U8gmyJQZamunylmn8LWOIqQQoqsX79tF7AbRS2_NP-5OAp3CGShHpGuQGDxfmle4Z-2cI8bwWAwfFNy9wfnLBKRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unbiased+Analysis+of+Item-Specific+Multi-Voxel+Activation+Patterns+Across+Learning&rft.jtitle=Frontiers+in+neuroscience&rft.au=Ruge%2C+Hannes&rft.au=Legler%2C+Eric&rft.au=Sch%C3%A4fer%2C+Theo+A+J&rft.au=Zwosta%2C+Katharina&rft.date=2018-10-04&rft.issn=1662-4548&rft.volume=12&rft.spage=723&rft_id=info:doi/10.3389%2Ffnins.2018.00723&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |