Unbiased Analysis of Item-Specific Multi-Voxel Activation Patterns Across Learning

Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD ac...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 12; p. 723
Main Authors Ruge, Hannes, Legler, Eric, Schäfer, Theo A. J., Zwosta, Katharina, Wolfensteller, Uta, Mohr, Holger
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 04.10.2018
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2018.00723

Cover

Abstract Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias - but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage.
AbstractList Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias – but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage.
Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias - but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage.
Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias – but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage.
Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias - but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage.Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias - but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage.
Author Mohr, Holger
Zwosta, Katharina
Wolfensteller, Uta
Schäfer, Theo A. J.
Ruge, Hannes
Legler, Eric
AuthorAffiliation Department of Psychology, Technische Universität Dresden , Dresden , Germany
AuthorAffiliation_xml – name: Department of Psychology, Technische Universität Dresden , Dresden , Germany
Author_xml – sequence: 1
  givenname: Hannes
  surname: Ruge
  fullname: Ruge, Hannes
– sequence: 2
  givenname: Eric
  surname: Legler
  fullname: Legler, Eric
– sequence: 3
  givenname: Theo A. J.
  surname: Schäfer
  fullname: Schäfer, Theo A. J.
– sequence: 4
  givenname: Katharina
  surname: Zwosta
  fullname: Zwosta, Katharina
– sequence: 5
  givenname: Uta
  surname: Wolfensteller
  fullname: Wolfensteller, Uta
– sequence: 6
  givenname: Holger
  surname: Mohr
  fullname: Mohr, Holger
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30337852$$D View this record in MEDLINE/PubMed
BookMark eNp1kttrFDEUxoNU7EXffZIBX3yZNbfJTF6EpXhZWFHUim8hkzlZs8wm2yRT7H9vOltLW_Aph5Pf-TiX7xQd-eABoZcELxjr5FvrnU8Likm3wLil7Ak6IULQmjfs19G9-BidprTFWNCO02fomGHG2q6hJ-jbhe-dTjBUS6_H6-RSFWy1yrCrv-_BOOtM9Xkas6t_hj8wVkuT3ZXOLvjqq84Zok8lF0NK1Rp0LP1snqOnVo8JXty-Z-jiw_sf55_q9ZePq_PlujZc4lzLDizj0Pa9tayh0PRWDEIwaTnjRAtKiR2gbztCBmYEEGq4KIEUjRGsEewMrQ66Q9BbtY9up-O1CtqpORHiRumYnRlByV5zITVvCHBOh0ZjLrnlLe5Y2Yhoi9a7g9Z-6ncwGPA56vGB6MMf736rTbhSgnSYCFYE3twKxHA5Qcpq55KBcdQewpQUJZS1hPNOFvT1I3Qbpli2XyhWTiQbTnmhXt3v6K6Vf6crAD4A8_Yj2DuEYHXjDjW7Q924Q83uKCXiUYlxeT5mmcmN_y_8C06lvtY
CitedBy_id crossref_primary_10_1177_17470218241238164
crossref_primary_10_7554_eLife_48293
crossref_primary_10_1162_imag_a_00274
Cites_doi 10.1006/nimg.2000.0710
10.3389/fninf.2016.00027
10.1126/science.1193125
10.1016/j.neuroimage.2014.10.025
10.1016/j.neuroimage.2003.12.021
10.1111/psyp.12665
10.1016/j.neuroimage.2017.04.025
10.1016/j.neuroimage.2011.08.076
10.1371/journal.pone.0126255
10.1126/science.1063736
10.1016/B978-012372560-8/50014-0
10.1016/j.neuroimage.2012.05.057
10.1016/j.neuron.2015.05.025
10.1155/2015/804385
10.1016/j.neuron.2009.03.016
10.1016/j.neuroimage.2014.09.026
10.1016/j.neuroimage.2009.04.075
10.3389/neuro.06.004.2008
10.1016/j.neuroimage.2015.11.009
10.1073/pnas.0600244103
10.1523/JNEUROSCI.3412-11.2011
10.1146/annurev-neuro-062012-170325
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Ruge, Legler, Schäfer, Zwosta, Wolfensteller and Mohr. 2018 Ruge, Legler, Schäfer, Zwosta, Wolfensteller and Mohr
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Ruge, Legler, Schäfer, Zwosta, Wolfensteller and Mohr. 2018 Ruge, Legler, Schäfer, Zwosta, Wolfensteller and Mohr
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2018.00723
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_9ba469a451e442d5a0494f4708328467
PMC6180163
30337852
10_3389_fnins_2018_00723
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-98ef34e7bbff352e5bf6d6639f4341a6221fdeb7811d3c6e12c463c6965c63563
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:27:32 EDT 2025
Thu Aug 21 18:31:23 EDT 2025
Thu Sep 04 23:43:09 EDT 2025
Fri Jul 25 11:51:09 EDT 2025
Wed Feb 19 02:44:11 EST 2025
Tue Jul 01 01:01:28 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords classifier
RITL
instruction-based learning
rapid learning
pattern similarity
MVPA
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-98ef34e7bbff352e5bf6d6639f4341a6221fdeb7811d3c6e12c463c6965c63563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Hunar Abdulrahman, Erbil Health Directorate, Iraq; Tyler Davis, Texas Tech University, United States
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: John Ashburner, University College London, United Kingdom
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2018.00723
PMID 30337852
PQID 2306295424
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_9ba469a451e442d5a0494f4708328467
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6180163
proquest_miscellaneous_2123714489
proquest_journals_2306295424
pubmed_primary_30337852
crossref_primary_10_3389_fnins_2018_00723
crossref_citationtrail_10_3389_fnins_2018_00723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-04
PublicationDateYYYYMMDD 2018-10-04
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-04
  day: 04
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Haynes (B5) 2015; 87
Ruge (B18) 2009; 47
Kriegeskorte (B8) 2008; 2
Henson (B6) 2007
Mumford (B14) 2015; 10
Oosterhof (B17) 2016; 10
Li (B10) 2009; 62
Kriegeskorte (B7) 2006; 103
Haxby (B3) 2014; 37
Atir-Sharon (B2) 2015; 2015
Serences (B19) 2004; 21
Mumford (B15) 2012; 59
Xue (B22) 2010; 330
Abdulrahman (B1) 2016; 125
Mohr (B12) 2014
Turner (B20) 2012; 62
Kahnt (B9) 2011; 31
Ollinger (B16) 2001; 13
Mumford (B13) 2014; 103
Mohr (B11) 2015; 104
Visser (B21) 2016; 53
Zeithamova (B23) 2017; 153
Haxby (B4) 2001; 293
26182413 - Neuron. 2015 Jul 15;87(2):257-70
25467302 - Neuroimage. 2015 Jan 1;104:163-76
19104670 - Front Syst Neurosci. 2008 Nov 24;2:4
22659443 - Neuroimage. 2012 Sep;62(3):1429-38
28411155 - Neuroimage. 2017 Jun;153:221-231
26549299 - Neuroimage. 2016 Jan 15;125:756-766
19422920 - Neuroimage. 2009 Aug 15;47(2):501-13
25919488 - PLoS One. 2015 Apr 28;10(4):e0126255
26257961 - Neural Plast. 2015;2015:804385
27499741 - Front Neuroinform. 2016 Jul 22;10:27
16537458 - Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8
27153295 - Psychophysiology. 2016 Aug;53(8):1117-27
21924359 - Neuroimage. 2012 Feb 1;59(3):2636-43
25002277 - Annu Rev Neurosci. 2014;37:435-56
19447098 - Neuron. 2009 May 14;62(3):441-52
11133323 - Neuroimage. 2001 Jan;13(1):210-7
11577229 - Science. 2001 Sep 28;293(5539):2425-30
20829453 - Science. 2010 Oct 1;330(6000):97-101
15050591 - Neuroimage. 2004 Apr;21(4):1690-700
25241907 - Neuroimage. 2014 Dec;103:130-138
21994378 - J Neurosci. 2011 Oct 12;31(41):14624-30
References_xml – volume: 13
  start-page: 210
  year: 2001
  ident: B16
  article-title: Separating processes within a trial in event-related functional MRI I.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0710
– volume: 10
  year: 2016
  ident: B17
  article-title: CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in matlab/GNU octave.
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2016.00027
– volume: 330
  start-page: 97
  year: 2010
  ident: B22
  article-title: Greater neural pattern similarity across repetitions is associated with better memory.
  publication-title: Science
  doi: 10.1126/science.1193125
– volume: 104
  start-page: 163
  year: 2015
  ident: B11
  article-title: Sparse regularization techniques provide novel insights into outcome integration processes.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.025
– volume: 21
  start-page: 1690
  year: 2004
  ident: B19
  article-title: A comparison of methods for characterizing the event-related BOLD timeseries in rapid fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.021
– volume: 53
  start-page: 1117
  year: 2016
  ident: B21
  article-title: Quantifying learning-dependent changes in the brain: single-trial multivoxel pattern analysis requires slow event-related fMRI.
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12665
– year: 2014
  ident: B12
  article-title: Single trial choices may have large impact on pattern similarity outcomes.
  publication-title: Paper Presented at the 21st Annual Meeting of the Organization of Human Brain Mapping
– volume: 153
  start-page: 221
  year: 2017
  ident: B23
  article-title: Trial timing and pattern-information analyses of fMRI data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.025
– volume: 59
  start-page: 2636
  year: 2012
  ident: B15
  article-title: Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.076
– volume: 10
  year: 2015
  ident: B14
  article-title: Orthogonalization of regressors in FMRI models.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126255
– volume: 293
  start-page: 2425
  year: 2001
  ident: B4
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex.
  publication-title: Science
  doi: 10.1126/science.1063736
– start-page: 178
  year: 2007
  ident: B6
  article-title: “Convolution models for fMRI,” in
  publication-title: Statistical Parametric Mapping: the Analysis of Functional Brain Images
  doi: 10.1016/B978-012372560-8/50014-0
– volume: 62
  start-page: 1429
  year: 2012
  ident: B20
  article-title: Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.057
– volume: 87
  start-page: 257
  year: 2015
  ident: B5
  article-title: A primer on pattern-based approaches to fMRI: principles. Pitfalls, and Perspectives.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.025
– volume: 2015
  year: 2015
  ident: B2
  article-title: Decoding the formation of new semantics: MVPA investigation of rapid neocortical plasticity during associative encoding through fast mapping.
  publication-title: Neural Plast.
  doi: 10.1155/2015/804385
– volume: 62
  start-page: 441
  year: 2009
  ident: B10
  article-title: Learning shapes the representation of behavioral choice in the human brain.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.016
– volume: 103
  start-page: 130
  year: 2014
  ident: B13
  article-title: The impact of study design on pattern estimation for single-trial multivariate pattern analysis.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.026
– volume: 47
  start-page: 501
  year: 2009
  ident: B18
  article-title: Separating event-related BOLD components within trials: the partial-trial design revisited.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.075
– volume: 2
  year: 2008
  ident: B8
  article-title: Representational similarity analysis - connecting the branches of systems neuroscience.
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/neuro.06.004.2008
– volume: 125
  start-page: 756
  year: 2016
  ident: B1
  article-title: Effect of trial-to-trial variability on optimal event-related fMRI design: implications for Beta-series correlation and multi-voxel pattern analysis.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.009
– volume: 103
  start-page: 3863
  year: 2006
  ident: B7
  article-title: Information-based functional brain mapping.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0600244103
– volume: 31
  start-page: 14624
  year: 2011
  ident: B9
  article-title: Decoding the formation of reward predictions across learning.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3412-11.2011
– volume: 37
  start-page: 435
  year: 2014
  ident: B3
  article-title: Decoding neural representational spaces using multivariate pattern analysis.
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062012-170325
– reference: 26257961 - Neural Plast. 2015;2015:804385
– reference: 11133323 - Neuroimage. 2001 Jan;13(1):210-7
– reference: 25002277 - Annu Rev Neurosci. 2014;37:435-56
– reference: 27499741 - Front Neuroinform. 2016 Jul 22;10:27
– reference: 25467302 - Neuroimage. 2015 Jan 1;104:163-76
– reference: 21994378 - J Neurosci. 2011 Oct 12;31(41):14624-30
– reference: 16537458 - Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8
– reference: 19447098 - Neuron. 2009 May 14;62(3):441-52
– reference: 27153295 - Psychophysiology. 2016 Aug;53(8):1117-27
– reference: 28411155 - Neuroimage. 2017 Jun;153:221-231
– reference: 25919488 - PLoS One. 2015 Apr 28;10(4):e0126255
– reference: 22659443 - Neuroimage. 2012 Sep;62(3):1429-38
– reference: 26549299 - Neuroimage. 2016 Jan 15;125:756-766
– reference: 15050591 - Neuroimage. 2004 Apr;21(4):1690-700
– reference: 26182413 - Neuron. 2015 Jul 15;87(2):257-70
– reference: 25241907 - Neuroimage. 2014 Dec;103:130-138
– reference: 19104670 - Front Syst Neurosci. 2008 Nov 24;2:4
– reference: 11577229 - Science. 2001 Sep 28;293(5539):2425-30
– reference: 19422920 - Neuroimage. 2009 Aug 15;47(2):501-13
– reference: 21924359 - Neuroimage. 2012 Feb 1;59(3):2636-43
– reference: 20829453 - Science. 2010 Oct 1;330(6000):97-101
SSID ssj0062842
Score 2.1832821
Snippet Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 723
SubjectTerms Bias
Brain
classifier
Early childhood education
instruction-based learning
Learning
MVPA
Neuroscience
pattern similarity
rapid learning
RITL
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_knnwRvfOjekoEEXwIu00mafN4ischKCKu3Ftp0kQXNHvoHuh_fzNpu9yK6ItvJUnbZDLJbyYfvwF4htEPPaogrTdGImGcdM3QSB9S6IPRXpc4ZG_f2bMVvjk359dCffGZsJEeeBTcwvmePLgeTR0R1WB6JjRJ2JDpoBg7efZduuXsTI1zsKUsNW5KkgvmFimvM3Nz122hytZ7IFS4-v9kYP5-TvIa8JzehluTxShOxpregRsxH8LRSSZv-dsv8VyUM5xlcfwIPqyyXxMuDWImGxGbJHg5XpZA82kdRLlyKz9tfkb6aJijm4n3hWgz_6A0rrOYiFc_34XV6euPr87kFDVBBnTLrXRtTBpj431KZF1F45MdyK5wCQmxeqtUnYbo-YbpoIONtQpo6cFZE5isTt-Dg7zJ8QEI5XVD8N_G6CJGtB6XDGhakw-Ipg8VLGYxdmGiFOfIFl87ci1Y8F0RfMeC74rgK3ixe-NipNP4S9mX3DO7ckyEXRJIPbpJPbp_qUcFx3O_dtPopH-Qn8T7mworeLrLpnHFmyV9jptLKkPtbMjbbF0F90c12NWEYF83rVEVNHsKslfV_Zy8_lK4u21NErT64f9o2yO4ydIqRwvxGA623y_jYzKRtv5JGQ1XESoNLw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA7avvgi2vpjtZUIIvgQrruZZDdP0paWIlhK8aRvyyab1IOare0V9L93JpddPCl9O3aze9nJZOabTPINYx_A276DygltlRKAPk6Yuq-FdcF1TkkrUx2yr6f6ZA5fLtRFXnC7zdsqR5uYDHU_OFojnxFUppxUBZ-vfwmqGkXZ1VxC4zHbRBPcoJ5vHhydnp2Ptlij8U35Tk1ngxCcrxKVGJaZWYiLSHzdZZPos-WaY0r8_feBzv_3Tv7jjI6fsacZRfL91bA_Z4983GLb-xEj6J9_-Eee9nWmBfNtdj6PdoG-qucjAQkfAqclepGKz4eF4-kYrvg-_Pb4UjdWPONniXwz3uI16jPPZKyXL9j8-Ojb4YnIlRSEA7O3FKbxQYKvrQ0BEZdXNugesYYJgF6s01VVht5bOnXaS6d9WTnQ-MNo5YjATr5kG3GI_jXjlZU1QoLGe-PBg7awR05OSowLQXWuYLNRjK3LNONU7eKqxXCDBN8mwbck-DYJvmCfpieuVxQbD7Q9oJGZ2hE5drow3Fy2ea61xnYY9HegSg9Q9aojDpwANaLNiuBWwXbGcW3zjMX_mPSrYO-n2zjXKIHSRT_cYRv8zhoj0MYU7NVKDaaeIBSQdaOqgtVrCrLW1fU7cfEj8XnrEiWo5ZuHu_WWPSE5pI2EsMM2ljd3fhcB0dK-y1r_F8UhCZ0
  priority: 102
  providerName: ProQuest
Title Unbiased Analysis of Item-Specific Multi-Voxel Activation Patterns Across Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/30337852
https://www.proquest.com/docview/2306295424
https://www.proquest.com/docview/2123714489
https://pubmed.ncbi.nlm.nih.gov/PMC6180163
https://doaj.org/article/9ba469a451e442d5a0494f4708328467
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1Be-GCgPIRKCsjISQOoU08dpIDQi1qqZBaVRWL9hbFjl1WKk673Urtv2fGmywsWiEuUWQ7jjO2M2889huAt-hM22BuU22USpF0XFoVbZEa621jlTQyxiE7PtFHY_w6UZPfx6N7AV6vNe04ntR4dvHh9uruE034j2xxkr7d8WEamHk7KyMRtrwPm6SXNJtix7j0KWj6EUffp-ZzQgTUF07LtTWsKKnI5b8OgP69j_IPxXT4CB72iFLsLYbAY7jnwhPY2gtkTf-8E-9E3OMZF8-34GwczJT0VisGMhLRecHL9WkMRO-nVsQjuen37tZRpXaIfiZOIxFnuKY0brPoiVnPn8L48ODb56O0j6qQWqx252lVOi_RFcZ4T-jLKeN1S7ij8kgardF5nvnWGT6B2kqrXZZb1HRTaWWZzE4-g43QBfcCRG5kQfCgdK5y6FAb3GWFJyXZiKgam8DOIMba9pTjHPnioibTgwVfR8HXLPg6Cj6B98snLhd0G_8ou889syzHRNkxoZud1_28qyvToK4aVJlDzFvVMB-Ox4KQZ87QK4HtoV_rYfDVbJax_zPHBN4ss2nesTOlCa67oTL0nQVZo2WVwPPFMFi2hGCBLEqVJ1CsDJCVpq7mhOmPyO2tM5Kgli__472v4AELI-4sxG3YmM9u3GtCSHMzgs39g5PTs1FcYaDrl0k2ipPhF5rkEX4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFeEDB-ZAwwEiDxEHWxHSd-QGiDTR3bqmla0d6y2LFHJZaMrRPsn-Jv5M5JKorQ3vZWJW7qns933-V83wG8kc5UpeQ2ViZNY4k-LtZZlcXGelvaVBgR-pDtj9VoIr8cp8dL8LuvhaFjlb1NDIa6aiy9Ix8SVKacFJcfz3_E1DWKsqt9C41WLXbd9U8M2S4_7HzG9X3L-fbW0adR3HUViK3U67NY584L6TJjvEf04VLjVYV-V3uJFr1UnCe-coYqMCthlUu4lQo_aJVaInMT-Nw7sCyponUAy5tb44PD3vYrNPYhv6qoFgmDgTYximGgHvp6WhM_eJIHum6x4AhDv4D_gdx_z2r-5fy2H8D9DrWyjVbNHsKSqx_BykaNEfvZNXvHwjnS8IJ-BQ4ntZmib6xYT3jCGs8oJRCHZvd-alko-42_Nr8cPtT2HdbYQSD7rC_xGs2ZdeSvp49hcisyfgKDuqndM2DciAwhSO6cdtJJZeQ6OVUhMA6VaWkjGPZiLGxHa07dNb4XGN6Q4Isg-IIEXwTBR_B-_o3zltLjhrGbtDLzcUTGHS40F6dFt7cLbUqpdCnTxEnJq7Qkzh0vM0S3nOBdBGv9uhadhcDfmOtzBK_nt3FvU8KmrF1zhWPwf2YY8eY6gqetGsxngtBDZHnKI8gWFGRhqot36um3wB-uEpSgEqs3T-sV3B0d7e8Vezvj3edwj2QSDjHKNRjMLq7cCwRjM_Oy2wEMTm570_0BhLdGGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8UgoYCZA4RNvYjrM-INTSrloKq1XFot7S2LHLSjQp7VbQv8avY8Z5iEWot96ixEmc8Twz428AXklnykJyGyuTprFEGxfrrMxiY70tbCqMCH3IPk_U3kx-PEqPVuB3txeGyio7nRgUdVlb-kc-JFeZclJcDn1bFjHdGb8_-xFTBynKtHbtNBoWOXBXPzF8u3i3v4Nr_Zrz8e6XD3tx22EgtlJvLmI9cl5IlxnjPXoiLjVelWiDtZeo3QvFeeJLZ2g3Zimscgm3UuGBVqklYDeBz70FqxlaRTmA1e3dyfSwswMKFX_ItSral4SBQZMkxZBQD301rwgrPBkF6G6xZBRD74D_Obz_1m3-ZQjH9-Bu68GyrYbl7sOKqx7A2laF0fvpFXvDQk1p-Fm_BoezyszRTpasAz9htWeUHohD43s_tyxsAY6_1r8cPtR23dbYNAB_Vhd4jubMWiDYk4cwuxEaP4JBVVfuCTBuRIbuyMg57aSTyshNMrBCYEwq08JGMOzImNsW4pw6bXzPMdQhwueB8DkRPg-Ej-Btf8dZA-9xzdhtWpl-HAFzhxP1-UneynmuTSGVLmSaOCl5mRaEv-Nlhp4uJ1cvgo1uXfNWW-A7et6O4GV_GeWckjdF5epLHIPfmWH0O9IRPG7YoJ8JuiEiG6U8gmyJQZamunylmn8LWOIqQQoqsX79tF7AbRS2_NP-5OAp3CGShHpGuQGDxfmle4Z-2cI8bwWAwfFNy9wfnLBKRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unbiased+Analysis+of+Item-Specific+Multi-Voxel+Activation+Patterns+Across+Learning&rft.jtitle=Frontiers+in+neuroscience&rft.au=Ruge%2C+Hannes&rft.au=Legler%2C+Eric&rft.au=Sch%C3%A4fer%2C+Theo+A+J&rft.au=Zwosta%2C+Katharina&rft.date=2018-10-04&rft.issn=1662-4548&rft.volume=12&rft.spage=723&rft_id=info:doi/10.3389%2Ffnins.2018.00723&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon