Phylogenetic incongruence arising from fragmented speciation in enteric bacteria
Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incon...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 25; pp. 11453 - 11458 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.06.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa. |
---|---|
AbstractList | Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa. Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa. [PUBLICATION ABSTRACT] Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa.Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa. Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia , Salmonella , and Citrobacter , or E. coli , E. fergusonii , and E. albertii . The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa. |
Author | Retchless, Adam C. Lawrence, Jeffrey G. Doolittle, W. Ford |
Author_xml | – sequence: 1 givenname: Adam C. surname: Retchless fullname: Retchless, Adam C. – sequence: 2 givenname: Jeffrey G. surname: Lawrence fullname: Lawrence, Jeffrey G. – sequence: 3 givenname: W. Ford surname: Doolittle fullname: Doolittle, W. Ford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20534528$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFv1TAMxyM0xN4GZ06gigu7dHPSpE0uk9AEA2nSdoBzlJemXZ7a5JG0SPv2uLw3NiYBl8Syf7bsv31EDkIMjpDXFE4pNNXZNpiMFlCmKDqekRUFRcuaKzggKwDWlJIzfkiOct4AgBISXpBDBqLigskVubm5vRti74KbvC18sDH0aXbBusIkn33oiy7FER_Tjy5Mri3y1llvJh8D8sXiS5i6NnYxzEvyvDNDdq_2_zH59unj14vP5dX15ZeLD1elxd6mUjV1QysDVq4lM6azVCoQRlbCcuBtbahkVlKrDGsVB9cqYevOClqDahvhqmNyvqu7ndejay32kcygt8mPJt3paLz-MxL8re7jD82kErQCLPB-XyDF77PLkx59tm4YTHBxzroRHEWSUv2frCoOqDtH8uSfJA4lOJUNZYi-e4Ju4pwCSqYFowxXJwVCbx8P-Xu6-_0hIHaATTHn5Dpt_fRrNzizHzQFvdyJXu5EP9wJ5p09ybsv_feMYt_KEnigG82EphS1QuTNDtnkKaZHzTaMA-r4E6Np05I |
CitedBy_id | crossref_primary_10_1371_journal_pone_0074120 crossref_primary_10_1186_s12864_015_2011_5 crossref_primary_10_1093_bioinformatics_btz799 crossref_primary_10_1111_mec_12162 crossref_primary_10_1016_j_shpsc_2012_10_003 crossref_primary_10_1038_ismej_2013_3 crossref_primary_10_1111_j_1574_6976_2011_00292_x crossref_primary_10_1186_1471_2148_11_183 crossref_primary_10_1093_gbe_evq071 crossref_primary_10_1093_molbev_mss171 crossref_primary_10_1016_j_nmni_2015_07_003 crossref_primary_10_14202_vetworld_2013_703_708 crossref_primary_10_1016_j_ympev_2024_108197 crossref_primary_10_1186_1471_2148_11_305 crossref_primary_10_7717_peerj_6698 crossref_primary_10_1371_journal_pbio_1001265 crossref_primary_10_3390_pathogens9090674 crossref_primary_10_1073_pnas_2319389122 crossref_primary_10_1128_IAI_02697_14 crossref_primary_10_1128_mbio_00581_24 crossref_primary_10_1093_molbev_msq323 crossref_primary_10_3390_life5021405 crossref_primary_10_3389_fmicb_2015_01540 crossref_primary_10_1073_pnas_1015622108 crossref_primary_10_3389_fmicb_2020_01569 crossref_primary_10_1111_mec_12812 crossref_primary_10_1016_j_simyco_2020_02_001 crossref_primary_10_1128_mBio_00644_17 crossref_primary_10_1534_genetics_111_130773 crossref_primary_10_1128_msphere_00115_22 crossref_primary_10_1371_journal_pone_0016751 crossref_primary_10_1371_journal_pgen_1005860 crossref_primary_10_1080_2159256X_2015_1137380 crossref_primary_10_1093_gbe_evs113 crossref_primary_10_1093_gbe_evac035 crossref_primary_10_1111_jeb_12401 crossref_primary_10_1371_journal_pcbi_1005640 crossref_primary_10_1371_journal_pone_0033971 crossref_primary_10_3390_foods10092177 crossref_primary_10_1016_j_resmic_2015_06_008 crossref_primary_10_1186_s12864_020_06780_y crossref_primary_10_1186_1471_2180_12_220 crossref_primary_10_1186_s13059_022_02809_5 crossref_primary_10_18006_2023_11_4__640_649 |
Cites_doi | 10.1128/jb.173.22.7257-7268.1991 10.1038/nature04402 10.1046/j.1420-9101.2003.00612.x 10.1186/1741-7007-3-6 10.1093/molbev/msh156 10.1128/JB.184.17.4891-4905.2002 10.1016/S0966-842X(00)01783-2 10.1126/science.1127573 10.1006/tpbi.2002.1587 10.1093/molbev/msm088 10.1126/science.1144876 10.1007/s10539-010-9215-5 10.1007/BF00182388 10.1534/genetics.109.103127 10.1371/journal.pgen.1000344 10.1126/science.1155532 10.1093/genetics/112.3.441 10.1093/bioinformatics/btg180 10.1093/oxfordjournals.molbev.a026201 10.1038/hdy.2008.73 10.1128/AEM.01262-09 10.1007/978-1-60327-853-9_4 10.1093/molbev/msh018 10.1093/sysbio/42.2.182 10.1073/pnas.0610699104 10.1101/gr.086645.108 10.1098/rstb.2006.1925 10.1023/A:1000665216662 10.1080/10635150590945368 10.1080/10635150500354688 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 22, 2010 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 22, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 7T7 5PM |
DOI | 10.1073/pnas.1001291107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11458 |
ExternalDocumentID | PMC2895130 2067082291 20534528 10_1073_pnas_1001291107 107_25_11453 20724089 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM078092 – fundername: NIGMS NIH HHS grantid: R01 GM078092 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 7T7 5PM |
ID | FETCH-LOGICAL-c490t-976713a0c8b82aafc18905a835c404d6a182c81c9a2d940ed95c6fc51609d75e3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:25:23 EDT 2025 Fri Jul 11 15:19:30 EDT 2025 Fri Jul 11 00:06:34 EDT 2025 Fri Jul 11 11:08:42 EDT 2025 Mon Jun 30 08:43:14 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Tue Jul 01 00:46:55 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Wed Nov 11 00:30:47 EST 2020 Thu May 29 08:40:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c490t-976713a0c8b82aafc18905a835c404d6a182c81c9a2d940ed95c6fc51609d75e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Author contributions: A.C.R. and J.G.L. designed research; A.C.R. performed research; A.C.R. and J.G.L. contributed new reagents/analytic tools; A.C.R. and J.G.L. analyzed data; and A.C.R. and J.G.L. wrote the paper. Edited* by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved May 17, 2010 (received for review February 2, 2010) |
PMID | 20534528 |
PQID | 521200285 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2895130 crossref_citationtrail_10_1073_pnas_1001291107 proquest_miscellaneous_754534889 pnas_primary_107_25_11453 proquest_miscellaneous_733401094 crossref_primary_10_1073_pnas_1001291107 proquest_miscellaneous_1825418712 jstor_primary_20724089 pubmed_primary_20534528 proquest_journals_521200285 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-22 |
PublicationDateYYYYMMDD | 2010-06-22 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_13_2 Mayr E (e_1_3_3_2_2) 1942 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 Pamilo P (e_1_3_3_19_2) 1988; 5 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4 17717188 - Science. 2007 Aug 24;317(5841):1093-6 14660700 - Mol Biol Evol. 2004 Feb;21(2):255-65 9602276 - Antonie Van Leeuwenhoek. 1998 Jan;73(1):25-33 1556747 - J Mol Evol. 1992 Feb;34(2):115-25 19700542 - Appl Environ Microbiol. 2009 Oct;75(20):6534-44 16554818 - Nature. 2006 Mar 23;440(7083):524-7 19271179 - Methods Mol Biol. 2009;532:55-72 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 12167364 - Theor Popul Biol. 2002 Jun;61(4):449-60 10878759 - Trends Microbiol. 2000 Jul;8(7):296-8 15140947 - Mol Biol Evol. 2004 Aug;21(8):1534-7 17062419 - Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):2045-53 18648383 - Heredity (Edinb). 2009 Jan;102(1):39-44 19411599 - Genome Res. 2009 May;19(5):744-56 12169615 - J Bacteriol. 2002 Sep;184(17):4891-905 19474200 - Genetics. 2009 Aug;182(4):1165-81 15752428 - BMC Biol. 2005;3:6 3193878 - Mol Biol Evol. 1988 Sep;5(5):568-83 19165319 - PLoS Genet. 2009 Jan;5(1):e1000344 18403712 - Science. 2008 Apr 11;320(5873):237-9 17255503 - Science. 2007 Jan 26;315(5811):476-80 16243764 - Syst Biol. 2005 Oct;54(5):808-18 14640415 - J Evol Biol. 2003 Nov;16(6):1236-48 3007275 - Genetics. 1986 Mar;112(3):441-57 17261804 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2043-9 1938920 - J Bacteriol. 1991 Nov;173(22):7257-68 16012113 - Syst Biol. 2005 Jun;54(3):483-92 |
References_xml | – ident: e_1_3_3_1_2 doi: 10.1128/jb.173.22.7257-7268.1991 – ident: e_1_3_3_4_2 doi: 10.1038/nature04402 – ident: e_1_3_3_3_2 doi: 10.1046/j.1420-9101.2003.00612.x – ident: e_1_3_3_10_2 doi: 10.1186/1741-7007-3-6 – ident: e_1_3_3_20_2 doi: 10.1093/molbev/msh156 – ident: e_1_3_3_28_2 doi: 10.1128/JB.184.17.4891-4905.2002 – ident: e_1_3_3_15_2 doi: 10.1016/S0966-842X(00)01783-2 – ident: e_1_3_3_12_2 doi: 10.1126/science.1127573 – ident: e_1_3_3_8_2 doi: 10.1006/tpbi.2002.1587 – ident: e_1_3_3_30_2 doi: 10.1093/molbev/msm088 – ident: e_1_3_3_11_2 doi: 10.1126/science.1144876 – ident: e_1_3_3_17_2 doi: 10.1007/s10539-010-9215-5 – ident: e_1_3_3_9_2 doi: 10.1007/BF00182388 – ident: e_1_3_3_7_2 doi: 10.1534/genetics.109.103127 – ident: e_1_3_3_13_2 doi: 10.1371/journal.pgen.1000344 – ident: e_1_3_3_25_2 doi: 10.1126/science.1155532 – ident: e_1_3_3_6_2 doi: 10.1093/genetics/112.3.441 – ident: e_1_3_3_29_2 doi: 10.1093/bioinformatics/btg180 – volume: 5 start-page: 568 year: 1988 ident: e_1_3_3_19_2 article-title: Relationships between gene trees and species trees publication-title: Mol Biol Evol – ident: e_1_3_3_31_2 doi: 10.1093/oxfordjournals.molbev.a026201 – ident: e_1_3_3_5_2 doi: 10.1038/hdy.2008.73 – ident: e_1_3_3_18_2 doi: 10.1128/AEM.01262-09 – volume-title: Systematics and the Origin of Species year: 1942 ident: e_1_3_3_2_2 – ident: e_1_3_3_27_2 doi: 10.1007/978-1-60327-853-9_4 – ident: e_1_3_3_16_2 doi: 10.1093/molbev/msh018 – ident: e_1_3_3_21_2 doi: 10.1093/sysbio/42.2.182 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.0610699104 – ident: e_1_3_3_26_2 doi: 10.1101/gr.086645.108 – ident: e_1_3_3_14_2 doi: 10.1098/rstb.2006.1925 – ident: e_1_3_3_23_2 doi: 10.1023/A:1000665216662 – ident: e_1_3_3_22_2 doi: 10.1080/10635150590945368 – ident: e_1_3_3_32_2 doi: 10.1080/10635150500354688 – reference: 9602276 - Antonie Van Leeuwenhoek. 1998 Jan;73(1):25-33 – reference: 1556747 - J Mol Evol. 1992 Feb;34(2):115-25 – reference: 16012113 - Syst Biol. 2005 Jun;54(3):483-92 – reference: 17255503 - Science. 2007 Jan 26;315(5811):476-80 – reference: 17717188 - Science. 2007 Aug 24;317(5841):1093-6 – reference: 19474200 - Genetics. 2009 Aug;182(4):1165-81 – reference: 14660700 - Mol Biol Evol. 2004 Feb;21(2):255-65 – reference: 17261804 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2043-9 – reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 – reference: 18403712 - Science. 2008 Apr 11;320(5873):237-9 – reference: 19700542 - Appl Environ Microbiol. 2009 Oct;75(20):6534-44 – reference: 3193878 - Mol Biol Evol. 1988 Sep;5(5):568-83 – reference: 1938920 - J Bacteriol. 1991 Nov;173(22):7257-68 – reference: 12169615 - J Bacteriol. 2002 Sep;184(17):4891-905 – reference: 12167364 - Theor Popul Biol. 2002 Jun;61(4):449-60 – reference: 19165319 - PLoS Genet. 2009 Jan;5(1):e1000344 – reference: 19411599 - Genome Res. 2009 May;19(5):744-56 – reference: 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4 – reference: 17062419 - Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):2045-53 – reference: 19271179 - Methods Mol Biol. 2009;532:55-72 – reference: 18648383 - Heredity (Edinb). 2009 Jan;102(1):39-44 – reference: 15140947 - Mol Biol Evol. 2004 Aug;21(8):1534-7 – reference: 3007275 - Genetics. 1986 Mar;112(3):441-57 – reference: 10878759 - Trends Microbiol. 2000 Jul;8(7):296-8 – reference: 14640415 - J Evol Biol. 2003 Nov;16(6):1236-48 – reference: 15752428 - BMC Biol. 2005;3:6 – reference: 16554818 - Nature. 2006 Mar 23;440(7083):524-7 – reference: 16243764 - Syst Biol. 2005 Oct;54(5):808-18 |
SSID | ssj0009580 |
Score | 2.215165 |
Snippet | Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11453 |
SubjectTerms | ancestry Bacteria Bacteria - genetics Biological Sciences Biological taxonomies Cell Lineage Citrobacter Codon Data processing DNA, Bacterial - genetics E coli Enterobacteriaceae - genetics Escherichia Escherichia coli Escherichia coli - genetics Evolution Evolution, Molecular Evolutionary genetics Genes Genetic Variation Genome Genomes Genomics homoplasy intestinal microorganisms loci Models, Genetic Multigene Family Phylogenetics Phylogeny Polymorphism Polymorphism, Genetic Population genetics Recombination Recombination, Genetic Salmonella Salmonella enterica - genetics Speciation Stochasticity Taxa Topology |
Title | Phylogenetic incongruence arising from fragmented speciation in enteric bacteria |
URI | https://www.jstor.org/stable/20724089 http://www.pnas.org/content/107/25/11453.abstract https://www.ncbi.nlm.nih.gov/pubmed/20534528 https://www.proquest.com/docview/521200285 https://www.proquest.com/docview/1825418712 https://www.proquest.com/docview/733401094 https://www.proquest.com/docview/754534889 https://pubmed.ncbi.nlm.nih.gov/PMC2895130 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0vvgiVq2mVVnBh0rIudlsdjePhyhF8Dikhb6FzSZphTYtvRPBv96Z3c3H1Z6o9xCO3ckHmV8mM5uZ3xDyVomilY2s4RFvFAQorE0q29oEhgrFbcWaCquRvyzk0Yn4fJqfjj1bXXXJuprZn3fWlfyPVmEM9IpVsv-g2eGgMAD_Qb-wBQ3D9q90vDyHcBtmsRAxRpqF7uzGJUbH2FrQ5Uhi9Uh7Y84c92Ydr1y7-T7BEccwk77ylM1m6qkuhzfbqs8jWPQLh_OxDCXYhlWcxMvF2NT4K6LhovEd2ee1uYwnFI8_XIXhpI4sNPgKiw_43Vwmvo541niDCf5GIoVv-TlYVN_INkCH5xMDCeGXJwf-zXSDrcF-w51ZOV4oXqThMBNFXl86TXKwHCIPReWbbNn91H3ygEPgwPv1m4GGWbOe4Ell72-dDZmhw_4bborPVEX6W5C_KxS5nVE7cVGOH5NHIbagcw-UXXKv6Z6Q3V5D9DBQjL97SpZT5NApcmhADkXk0BE5dEQOyNOAHNoj5xk5-fTx-MNREnprJBaUtU7AC1VpZpjVlebGtDbVBcsN-ONWMFFLA3Gn1aktDK8LwZq6yK1sbZ5KVtQqb7I9stNddc0LQsEFrQRn3IK7B7_amIzXurVGalkIqSMy629laQPxPPY_uShdAoTKSryt5aiGiBwOO1x7zpXtontON4McZwpJ-4qIRE503F-VPC8d_CJy0GuwDE_zqsQadlyAyCPyZpgFU4vfz0zXXH2H0-JqSqpVyiNCt8ioLBP4tVn8QQSClgzem3CNzz1qJlfv0RcRtYGnQQDJ4Ddnum_njhSea4iVMra_9ZgH5OH4BL8kO2uA1StwqNfVa_eM_AJWdMsq |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenetic+incongruence+arising+from+fragmented+speciation+in+enteric+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Retchless%2C+Adam+C&rft.au=Lawrence%2C+Jeffrey+G&rft.date=2010-06-22&rft.eissn=1091-6490&rft.volume=107&rft.issue=25&rft.spage=11453&rft_id=info:doi/10.1073%2Fpnas.1001291107&rft_id=info%3Apmid%2F20534528&rft.externalDocID=20534528 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F25.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F25.cover.gif |