Phylogenetic incongruence arising from fragmented speciation in enteric bacteria

Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incon...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 25; pp. 11453 - 11458
Main Authors Retchless, Adam C., Lawrence, Jeffrey G., Doolittle, W. Ford
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.06.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa.
AbstractList Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa.
Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa. [PUBLICATION ABSTRACT]
Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa.Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa.
Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia , Salmonella , and Citrobacter , or E. coli , E. fergusonii , and E. albertii . The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa.
Author Retchless, Adam C.
Lawrence, Jeffrey G.
Doolittle, W. Ford
Author_xml – sequence: 1
  givenname: Adam C.
  surname: Retchless
  fullname: Retchless, Adam C.
– sequence: 2
  givenname: Jeffrey G.
  surname: Lawrence
  fullname: Lawrence, Jeffrey G.
– sequence: 3
  givenname: W. Ford
  surname: Doolittle
  fullname: Doolittle, W. Ford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20534528$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFv1TAMxyM0xN4GZ06gigu7dHPSpE0uk9AEA2nSdoBzlJemXZ7a5JG0SPv2uLw3NiYBl8Syf7bsv31EDkIMjpDXFE4pNNXZNpiMFlCmKDqekRUFRcuaKzggKwDWlJIzfkiOct4AgBISXpBDBqLigskVubm5vRti74KbvC18sDH0aXbBusIkn33oiy7FER_Tjy5Mri3y1llvJh8D8sXiS5i6NnYxzEvyvDNDdq_2_zH59unj14vP5dX15ZeLD1elxd6mUjV1QysDVq4lM6azVCoQRlbCcuBtbahkVlKrDGsVB9cqYevOClqDahvhqmNyvqu7ndejay32kcygt8mPJt3paLz-MxL8re7jD82kErQCLPB-XyDF77PLkx59tm4YTHBxzroRHEWSUv2frCoOqDtH8uSfJA4lOJUNZYi-e4Ju4pwCSqYFowxXJwVCbx8P-Xu6-_0hIHaATTHn5Dpt_fRrNzizHzQFvdyJXu5EP9wJ5p09ybsv_feMYt_KEnigG82EphS1QuTNDtnkKaZHzTaMA-r4E6Np05I
CitedBy_id crossref_primary_10_1371_journal_pone_0074120
crossref_primary_10_1186_s12864_015_2011_5
crossref_primary_10_1093_bioinformatics_btz799
crossref_primary_10_1111_mec_12162
crossref_primary_10_1016_j_shpsc_2012_10_003
crossref_primary_10_1038_ismej_2013_3
crossref_primary_10_1111_j_1574_6976_2011_00292_x
crossref_primary_10_1186_1471_2148_11_183
crossref_primary_10_1093_gbe_evq071
crossref_primary_10_1093_molbev_mss171
crossref_primary_10_1016_j_nmni_2015_07_003
crossref_primary_10_14202_vetworld_2013_703_708
crossref_primary_10_1016_j_ympev_2024_108197
crossref_primary_10_1186_1471_2148_11_305
crossref_primary_10_7717_peerj_6698
crossref_primary_10_1371_journal_pbio_1001265
crossref_primary_10_3390_pathogens9090674
crossref_primary_10_1073_pnas_2319389122
crossref_primary_10_1128_IAI_02697_14
crossref_primary_10_1128_mbio_00581_24
crossref_primary_10_1093_molbev_msq323
crossref_primary_10_3390_life5021405
crossref_primary_10_3389_fmicb_2015_01540
crossref_primary_10_1073_pnas_1015622108
crossref_primary_10_3389_fmicb_2020_01569
crossref_primary_10_1111_mec_12812
crossref_primary_10_1016_j_simyco_2020_02_001
crossref_primary_10_1128_mBio_00644_17
crossref_primary_10_1534_genetics_111_130773
crossref_primary_10_1128_msphere_00115_22
crossref_primary_10_1371_journal_pone_0016751
crossref_primary_10_1371_journal_pgen_1005860
crossref_primary_10_1080_2159256X_2015_1137380
crossref_primary_10_1093_gbe_evs113
crossref_primary_10_1093_gbe_evac035
crossref_primary_10_1111_jeb_12401
crossref_primary_10_1371_journal_pcbi_1005640
crossref_primary_10_1371_journal_pone_0033971
crossref_primary_10_3390_foods10092177
crossref_primary_10_1016_j_resmic_2015_06_008
crossref_primary_10_1186_s12864_020_06780_y
crossref_primary_10_1186_1471_2180_12_220
crossref_primary_10_1186_s13059_022_02809_5
crossref_primary_10_18006_2023_11_4__640_649
Cites_doi 10.1128/jb.173.22.7257-7268.1991
10.1038/nature04402
10.1046/j.1420-9101.2003.00612.x
10.1186/1741-7007-3-6
10.1093/molbev/msh156
10.1128/JB.184.17.4891-4905.2002
10.1016/S0966-842X(00)01783-2
10.1126/science.1127573
10.1006/tpbi.2002.1587
10.1093/molbev/msm088
10.1126/science.1144876
10.1007/s10539-010-9215-5
10.1007/BF00182388
10.1534/genetics.109.103127
10.1371/journal.pgen.1000344
10.1126/science.1155532
10.1093/genetics/112.3.441
10.1093/bioinformatics/btg180
10.1093/oxfordjournals.molbev.a026201
10.1038/hdy.2008.73
10.1128/AEM.01262-09
10.1007/978-1-60327-853-9_4
10.1093/molbev/msh018
10.1093/sysbio/42.2.182
10.1073/pnas.0610699104
10.1101/gr.086645.108
10.1098/rstb.2006.1925
10.1023/A:1000665216662
10.1080/10635150590945368
10.1080/10635150500354688
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 22, 2010
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 22, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
7T7
5PM
DOI 10.1073/pnas.1001291107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
DatabaseTitleList MEDLINE

Virology and AIDS Abstracts

AGRICOLA
MEDLINE - Academic

CrossRef
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11458
ExternalDocumentID PMC2895130
2067082291
20534528
10_1073_pnas_1001291107
107_25_11453
20724089
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM078092
– fundername: NIGMS NIH HHS
  grantid: R01 GM078092
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
7T7
5PM
ID FETCH-LOGICAL-c490t-976713a0c8b82aafc18905a835c404d6a182c81c9a2d940ed95c6fc51609d75e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:25:23 EDT 2025
Fri Jul 11 15:19:30 EDT 2025
Fri Jul 11 00:06:34 EDT 2025
Fri Jul 11 11:08:42 EDT 2025
Mon Jun 30 08:43:14 EDT 2025
Mon Jul 21 06:04:15 EDT 2025
Tue Jul 01 00:46:55 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Wed Nov 11 00:30:47 EST 2020
Thu May 29 08:40:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c490t-976713a0c8b82aafc18905a835c404d6a182c81c9a2d940ed95c6fc51609d75e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Author contributions: A.C.R. and J.G.L. designed research; A.C.R. performed research; A.C.R. and J.G.L. contributed new reagents/analytic tools; A.C.R. and J.G.L. analyzed data; and A.C.R. and J.G.L. wrote the paper.
Edited* by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved May 17, 2010 (received for review February 2, 2010)
PMID 20534528
PQID 521200285
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2895130
crossref_citationtrail_10_1073_pnas_1001291107
proquest_miscellaneous_754534889
pnas_primary_107_25_11453
proquest_miscellaneous_733401094
crossref_primary_10_1073_pnas_1001291107
proquest_miscellaneous_1825418712
jstor_primary_20724089
pubmed_primary_20534528
proquest_journals_521200285
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-22
PublicationDateYYYYMMDD 2010-06-22
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_13_2
Mayr E (e_1_3_3_2_2) 1942
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
Pamilo P (e_1_3_3_19_2) 1988; 5
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
17717188 - Science. 2007 Aug 24;317(5841):1093-6
14660700 - Mol Biol Evol. 2004 Feb;21(2):255-65
9602276 - Antonie Van Leeuwenhoek. 1998 Jan;73(1):25-33
1556747 - J Mol Evol. 1992 Feb;34(2):115-25
19700542 - Appl Environ Microbiol. 2009 Oct;75(20):6534-44
16554818 - Nature. 2006 Mar 23;440(7083):524-7
19271179 - Methods Mol Biol. 2009;532:55-72
17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
12167364 - Theor Popul Biol. 2002 Jun;61(4):449-60
10878759 - Trends Microbiol. 2000 Jul;8(7):296-8
15140947 - Mol Biol Evol. 2004 Aug;21(8):1534-7
17062419 - Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):2045-53
18648383 - Heredity (Edinb). 2009 Jan;102(1):39-44
19411599 - Genome Res. 2009 May;19(5):744-56
12169615 - J Bacteriol. 2002 Sep;184(17):4891-905
19474200 - Genetics. 2009 Aug;182(4):1165-81
15752428 - BMC Biol. 2005;3:6
3193878 - Mol Biol Evol. 1988 Sep;5(5):568-83
19165319 - PLoS Genet. 2009 Jan;5(1):e1000344
18403712 - Science. 2008 Apr 11;320(5873):237-9
17255503 - Science. 2007 Jan 26;315(5811):476-80
16243764 - Syst Biol. 2005 Oct;54(5):808-18
14640415 - J Evol Biol. 2003 Nov;16(6):1236-48
3007275 - Genetics. 1986 Mar;112(3):441-57
17261804 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2043-9
1938920 - J Bacteriol. 1991 Nov;173(22):7257-68
16012113 - Syst Biol. 2005 Jun;54(3):483-92
References_xml – ident: e_1_3_3_1_2
  doi: 10.1128/jb.173.22.7257-7268.1991
– ident: e_1_3_3_4_2
  doi: 10.1038/nature04402
– ident: e_1_3_3_3_2
  doi: 10.1046/j.1420-9101.2003.00612.x
– ident: e_1_3_3_10_2
  doi: 10.1186/1741-7007-3-6
– ident: e_1_3_3_20_2
  doi: 10.1093/molbev/msh156
– ident: e_1_3_3_28_2
  doi: 10.1128/JB.184.17.4891-4905.2002
– ident: e_1_3_3_15_2
  doi: 10.1016/S0966-842X(00)01783-2
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1127573
– ident: e_1_3_3_8_2
  doi: 10.1006/tpbi.2002.1587
– ident: e_1_3_3_30_2
  doi: 10.1093/molbev/msm088
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1144876
– ident: e_1_3_3_17_2
  doi: 10.1007/s10539-010-9215-5
– ident: e_1_3_3_9_2
  doi: 10.1007/BF00182388
– ident: e_1_3_3_7_2
  doi: 10.1534/genetics.109.103127
– ident: e_1_3_3_13_2
  doi: 10.1371/journal.pgen.1000344
– ident: e_1_3_3_25_2
  doi: 10.1126/science.1155532
– ident: e_1_3_3_6_2
  doi: 10.1093/genetics/112.3.441
– ident: e_1_3_3_29_2
  doi: 10.1093/bioinformatics/btg180
– volume: 5
  start-page: 568
  year: 1988
  ident: e_1_3_3_19_2
  article-title: Relationships between gene trees and species trees
  publication-title: Mol Biol Evol
– ident: e_1_3_3_31_2
  doi: 10.1093/oxfordjournals.molbev.a026201
– ident: e_1_3_3_5_2
  doi: 10.1038/hdy.2008.73
– ident: e_1_3_3_18_2
  doi: 10.1128/AEM.01262-09
– volume-title: Systematics and the Origin of Species
  year: 1942
  ident: e_1_3_3_2_2
– ident: e_1_3_3_27_2
  doi: 10.1007/978-1-60327-853-9_4
– ident: e_1_3_3_16_2
  doi: 10.1093/molbev/msh018
– ident: e_1_3_3_21_2
  doi: 10.1093/sysbio/42.2.182
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.0610699104
– ident: e_1_3_3_26_2
  doi: 10.1101/gr.086645.108
– ident: e_1_3_3_14_2
  doi: 10.1098/rstb.2006.1925
– ident: e_1_3_3_23_2
  doi: 10.1023/A:1000665216662
– ident: e_1_3_3_22_2
  doi: 10.1080/10635150590945368
– ident: e_1_3_3_32_2
  doi: 10.1080/10635150500354688
– reference: 9602276 - Antonie Van Leeuwenhoek. 1998 Jan;73(1):25-33
– reference: 1556747 - J Mol Evol. 1992 Feb;34(2):115-25
– reference: 16012113 - Syst Biol. 2005 Jun;54(3):483-92
– reference: 17255503 - Science. 2007 Jan 26;315(5811):476-80
– reference: 17717188 - Science. 2007 Aug 24;317(5841):1093-6
– reference: 19474200 - Genetics. 2009 Aug;182(4):1165-81
– reference: 14660700 - Mol Biol Evol. 2004 Feb;21(2):255-65
– reference: 17261804 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2043-9
– reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
– reference: 18403712 - Science. 2008 Apr 11;320(5873):237-9
– reference: 19700542 - Appl Environ Microbiol. 2009 Oct;75(20):6534-44
– reference: 3193878 - Mol Biol Evol. 1988 Sep;5(5):568-83
– reference: 1938920 - J Bacteriol. 1991 Nov;173(22):7257-68
– reference: 12169615 - J Bacteriol. 2002 Sep;184(17):4891-905
– reference: 12167364 - Theor Popul Biol. 2002 Jun;61(4):449-60
– reference: 19165319 - PLoS Genet. 2009 Jan;5(1):e1000344
– reference: 19411599 - Genome Res. 2009 May;19(5):744-56
– reference: 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
– reference: 17062419 - Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):2045-53
– reference: 19271179 - Methods Mol Biol. 2009;532:55-72
– reference: 18648383 - Heredity (Edinb). 2009 Jan;102(1):39-44
– reference: 15140947 - Mol Biol Evol. 2004 Aug;21(8):1534-7
– reference: 3007275 - Genetics. 1986 Mar;112(3):441-57
– reference: 10878759 - Trends Microbiol. 2000 Jul;8(7):296-8
– reference: 14640415 - J Evol Biol. 2003 Nov;16(6):1236-48
– reference: 15752428 - BMC Biol. 2005;3:6
– reference: 16554818 - Nature. 2006 Mar 23;440(7083):524-7
– reference: 16243764 - Syst Biol. 2005 Oct;54(5):808-18
SSID ssj0009580
Score 2.215165
Snippet Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11453
SubjectTerms ancestry
Bacteria
Bacteria - genetics
Biological Sciences
Biological taxonomies
Cell Lineage
Citrobacter
Codon
Data processing
DNA, Bacterial - genetics
E coli
Enterobacteriaceae - genetics
Escherichia
Escherichia coli
Escherichia coli - genetics
Evolution
Evolution, Molecular
Evolutionary genetics
Genes
Genetic Variation
Genome
Genomes
Genomics
homoplasy
intestinal microorganisms
loci
Models, Genetic
Multigene Family
Phylogenetics
Phylogeny
Polymorphism
Polymorphism, Genetic
Population genetics
Recombination
Recombination, Genetic
Salmonella
Salmonella enterica - genetics
Speciation
Stochasticity
Taxa
Topology
Title Phylogenetic incongruence arising from fragmented speciation in enteric bacteria
URI https://www.jstor.org/stable/20724089
http://www.pnas.org/content/107/25/11453.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20534528
https://www.proquest.com/docview/521200285
https://www.proquest.com/docview/1825418712
https://www.proquest.com/docview/733401094
https://www.proquest.com/docview/754534889
https://pubmed.ncbi.nlm.nih.gov/PMC2895130
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0vvgiVq2mVVnBh0rIudlsdjePhyhF8Dikhb6FzSZphTYtvRPBv96Z3c3H1Z6o9xCO3ckHmV8mM5uZ3xDyVomilY2s4RFvFAQorE0q29oEhgrFbcWaCquRvyzk0Yn4fJqfjj1bXXXJuprZn3fWlfyPVmEM9IpVsv-g2eGgMAD_Qb-wBQ3D9q90vDyHcBtmsRAxRpqF7uzGJUbH2FrQ5Uhi9Uh7Y84c92Ydr1y7-T7BEccwk77ylM1m6qkuhzfbqs8jWPQLh_OxDCXYhlWcxMvF2NT4K6LhovEd2ee1uYwnFI8_XIXhpI4sNPgKiw_43Vwmvo541niDCf5GIoVv-TlYVN_INkCH5xMDCeGXJwf-zXSDrcF-w51ZOV4oXqThMBNFXl86TXKwHCIPReWbbNn91H3ygEPgwPv1m4GGWbOe4Ell72-dDZmhw_4bborPVEX6W5C_KxS5nVE7cVGOH5NHIbagcw-UXXKv6Z6Q3V5D9DBQjL97SpZT5NApcmhADkXk0BE5dEQOyNOAHNoj5xk5-fTx-MNREnprJBaUtU7AC1VpZpjVlebGtDbVBcsN-ONWMFFLA3Gn1aktDK8LwZq6yK1sbZ5KVtQqb7I9stNddc0LQsEFrQRn3IK7B7_amIzXurVGalkIqSMy629laQPxPPY_uShdAoTKSryt5aiGiBwOO1x7zpXtontON4McZwpJ-4qIRE503F-VPC8d_CJy0GuwDE_zqsQadlyAyCPyZpgFU4vfz0zXXH2H0-JqSqpVyiNCt8ioLBP4tVn8QQSClgzem3CNzz1qJlfv0RcRtYGnQQDJ4Ddnum_njhSea4iVMra_9ZgH5OH4BL8kO2uA1StwqNfVa_eM_AJWdMsq
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenetic+incongruence+arising+from+fragmented+speciation+in+enteric+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Retchless%2C+Adam+C&rft.au=Lawrence%2C+Jeffrey+G&rft.date=2010-06-22&rft.eissn=1091-6490&rft.volume=107&rft.issue=25&rft.spage=11453&rft_id=info:doi/10.1073%2Fpnas.1001291107&rft_id=info%3Apmid%2F20534528&rft.externalDocID=20534528
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F25.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F25.cover.gif