Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture

Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this p...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 11; p. 61
Main Authors Meszlényi, Regina J., Buza, Krisztian, Vidnyánszky, Zoltán
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 17.10.2017
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.
AbstractList Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.
Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.
Author Meszlényi, Regina J.
Vidnyánszky, Zoltán
Buza, Krisztian
AuthorAffiliation 3 Knowledge Discovery and Machine Learning, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
1 Department of Cognitive Science, Budapest University of Technology and Economics , Budapest , Hungary
2 Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
AuthorAffiliation_xml – name: 2 Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
– name: 3 Knowledge Discovery and Machine Learning, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
– name: 1 Department of Cognitive Science, Budapest University of Technology and Economics , Budapest , Hungary
Author_xml – sequence: 1
  givenname: Regina J.
  surname: Meszlényi
  fullname: Meszlényi, Regina J.
– sequence: 2
  givenname: Krisztian
  surname: Buza
  fullname: Buza, Krisztian
– sequence: 3
  givenname: Zoltán
  surname: Vidnyánszky
  fullname: Vidnyánszky, Zoltán
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29089883$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v3CAQhq0qVfPR3nuqLPXSi7dgDDaXSsmqSVZKWyltzmjAsGHrhQTwVvn3Zb2bKonUE8Pwvo-GmTkuDpx3uijeYzQjpOOfjbPOzGqE2xlCiOFXxRFmrK4o5uzgSXxYHMe4yoqa0fZNcVhz1PGuI0fF_bWOybpl-TNB0qX5dr0oz0enkvUOhnLundP5srHpoTqDqPtyPkCM1lgFW015E7du2Co3fhj3vu96DNOR_vjwuzwN6tamDBqDflu8NjBE_W5_nhQ3519_zS-rqx8Xi_npVaUajlLFaS1pKyVILbnCVCNAIFXHWMNIw1kOlOEUSdR0knDZM45xDazPWaRbRU6KxY7be1iJu2DXEB6EByumhA9LASFZNWhhMGBDCDI9axrInQXW4UYiIC3oxtDM-rJj3Y1yrXulXcrfewZ9_uLsrVj6jaCMYkRQBnzaA4K_H3PLxdpGpYcBnPZjFJjTjjZ1Tbos_fhCuvJjyE2Noq55gxHjBGfVh6cV_SvlcbJZwHYCFXyMQRuhbJpGlgu0g8BIbFdITCsktiskphXKRvTC-Mj-r-UvvafLvg
CitedBy_id crossref_primary_10_1155_2022_5782569
crossref_primary_10_3389_fninf_2018_00037
crossref_primary_10_3390_rs10010075
crossref_primary_10_1155_2021_6626728
crossref_primary_10_1016_j_inffus_2023_102113
crossref_primary_10_1016_j_bpsc_2021_12_003
crossref_primary_10_1177_17562864221138154
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_3389_fnins_2019_01313
crossref_primary_10_1007_s10489_021_02579_w
crossref_primary_10_1002_mp_15545
crossref_primary_10_1038_s41598_023_48548_w
crossref_primary_10_1038_s41598_022_25851_6
crossref_primary_10_4103_ijoy_ijoy_17_22
crossref_primary_10_1016_j_neucom_2020_04_152
crossref_primary_10_1016_j_asoc_2023_111049
crossref_primary_10_1016_j_bspc_2021_102645
crossref_primary_10_1109_OJSP_2021_3100751
crossref_primary_10_1155_2023_8512461
crossref_primary_10_1016_j_neuroimage_2020_117383
crossref_primary_10_1109_JBHI_2022_3229465
crossref_primary_10_1093_cercor_bhac217
crossref_primary_10_1007_s10462_024_10948_3
crossref_primary_10_1002_hbm_24891
crossref_primary_10_1002_hbm_26396
crossref_primary_10_1109_TKDE_2019_2960240
crossref_primary_10_3389_fninf_2018_00023
crossref_primary_10_1016_j_media_2020_101752
crossref_primary_10_1038_s41386_024_01946_8
crossref_primary_10_1089_big_2021_0204
crossref_primary_10_1148_radiol_2018180547
crossref_primary_10_1016_j_bspc_2024_106580
crossref_primary_10_1109_TBME_2021_3127173
crossref_primary_10_1109_TMI_2019_2928790
crossref_primary_10_1007_s11682_021_00584_8
crossref_primary_10_1186_s13229_021_00439_5
crossref_primary_10_1016_j_patcog_2020_107570
crossref_primary_10_1093_gigascience_giy130
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1002_hbm_25817
crossref_primary_10_1109_JBHI_2024_3351177
crossref_primary_10_1177_15500594221122699
crossref_primary_10_2478_ausi_2020_0007
crossref_primary_10_1016_j_nicl_2020_102186
crossref_primary_10_1016_j_brainres_2024_148816
crossref_primary_10_1002_hbm_24841
crossref_primary_10_1016_j_jad_2023_07_077
crossref_primary_10_1016_j_neuroimage_2024_120579
crossref_primary_10_1109_JBHI_2024_3415000
crossref_primary_10_1109_TNSRE_2021_3120024
crossref_primary_10_3389_fninf_2024_1392661
crossref_primary_10_3389_fninf_2018_00058
crossref_primary_10_1109_ACCESS_2023_3276989
crossref_primary_10_3389_fnins_2022_933660
crossref_primary_10_1109_TKDE_2020_3025580
crossref_primary_10_3389_fncom_2019_00094
crossref_primary_10_3389_fnhum_2020_597864
crossref_primary_10_1371_journal_pone_0250222
crossref_primary_10_3389_fnins_2022_866666
crossref_primary_10_1007_s11432_021_3510_6
crossref_primary_10_1016_j_artmed_2021_102209
crossref_primary_10_1016_j_bionps_2024_100102
crossref_primary_10_1080_03772063_2023_2196979
crossref_primary_10_1002_hbm_25009
crossref_primary_10_1109_JBHI_2019_2941222
crossref_primary_10_3390_s23041914
crossref_primary_10_1007_s11517_023_02859_2
crossref_primary_10_3389_fpsyt_2022_912600
crossref_primary_10_1088_1741_2552_acab33
crossref_primary_10_3389_fpsyt_2024_1255370
crossref_primary_10_1007_s10916_018_1071_x
crossref_primary_10_1109_TBDATA_2023_3294000
crossref_primary_10_3389_fninf_2020_00010
crossref_primary_10_1007_s10489_021_02668_w
crossref_primary_10_1016_j_neuroimage_2021_118588
crossref_primary_10_1007_s40120_019_00153_8
crossref_primary_10_1016_j_compbiomed_2022_106240
crossref_primary_10_1016_j_media_2023_102841
crossref_primary_10_3389_fnsys_2022_904770
crossref_primary_10_3390_bioengineering12010082
crossref_primary_10_1109_TCBB_2020_2989315
crossref_primary_10_32628_IJSRSET2293188
Cites_doi 10.1038/nature14539
10.2174/1567205012666150302155336
10.1016/j.neuroimage.2009.12.011
10.1016/j.neuroimage.2016.10.045
10.3389/fninf.2012.00028
10.1016/j.neuroimage.2010.08.063
10.1109/TPAMI.2013.50
10.1016/j.neuroimage.2012.08.010
10.1109/ENIC.2016.037
10.1016/j.neuroimage.2010.02.040
10.1073/pnas.0135058100
10.1016/j.neuroimage.2015.05.018
10.1016/j.neuroimage.2014.07.051
10.1016/j.jns.2012.02.010
10.1038/srep40268
10.1007/BF00994018
10.1016/j.neuroimage.2014.08.002
10.1016/j.neuroimage.2008.05.059
10.1016/j.neuroimage.2016.11.005
10.1002/mrm.1910340409
10.1093/cercor/bhs352
10.3389/fnins.2017.00075
10.1016/j.neuroimage.2016.09.046
10.1152/jn.90777.2008
10.1016/j.neuroimage.2015.01.057
10.1109/TBME.2009.2025866
10.1023/A:1009752403260
10.1111/j.2517-6161.1996.tb02080.x
10.1109/EUSIPCO.2016.7760247
10.3389/fnins.2014.00229
10.3389/fninf.2014.00014
10.1098/rstb.2005.1645
10.1016/j.neuroimage.2016.04.003
10.1109/5.58323
10.1016/j.neuroimage.2014.11.021
10.1016/j.neubiorev.2017.01.002
10.1016/j.neuroimage.2008.11.007
10.1038/sdata.2014.49
10.1371/journal.pone.0022153
10.3389/fnins.2013.00133
10.3233/JAD-111970
10.3389/fpsyt.2016.00177
10.1038/tp.2016.55
10.1073/pnas.0911855107
10.1126/science.1255905
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Meszlényi, Buza and Vidnyánszky. 2017 Meszlényi, Buza and Vidnyánszky
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Meszlényi, Buza and Vidnyánszky. 2017 Meszlényi, Buza and Vidnyánszky
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2017.00061
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_f1a1f330fd644a338a6814b0a37ae4f5
PMC5651030
29089883
10_3389_fninf_2017_00061
Genre Journal Article
GeographicLocations Hungary
GeographicLocations_xml – name: Hungary
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-952b57bbabeb9c15e0a0abc866463496866cf950b048b39bd69112a6dcf90e7c3
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 01:16:47 EDT 2025
Thu Aug 21 14:25:45 EDT 2025
Fri Jul 11 04:15:02 EDT 2025
Fri Jul 25 11:50:03 EDT 2025
Wed Feb 19 02:43:10 EST 2025
Tue Jul 01 01:13:20 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords connectome
Dynamic Time Warping
classification
resting state connectivity
convolutional neural network
functional magnetic resonance imaging
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-952b57bbabeb9c15e0a0abc866463496866cf950b048b39bd69112a6dcf90e7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Feng Liu, Tianjin Medical University General Hospital, China; Diego Vidaurre, University of Oxford, United Kingdom
Edited by: Pedro Antonio Valdes-Sosa, Joint China-Cuba Laboratory for Frontier Research in Translational Neurotechnology, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2017.00061
PMID 29089883
PQID 2294106931
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_f1a1f330fd644a338a6814b0a37ae4f5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651030
proquest_miscellaneous_1958542238
proquest_journals_2294106931
pubmed_primary_29089883
crossref_citationtrail_10_3389_fninf_2017_00061
crossref_primary_10_3389_fninf_2017_00061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-17
PublicationDateYYYYMMDD 2017-10-17
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-17
  day: 17
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Fransson (B20) 2008; 42
Kim (B26) 2016
Smith (B49) 2014; 101
Liang (B32) 2011; 6
Pereira (B41) 2009; 45
Vieira (B55) 2017
Chang (B15) 2010; 50
Smith (B50) 2011; 54
Chen (B16) 2015; 111
Yang (B59) 2012; 316
Fox (B19) 2009; 101
Biswal (B8) 1995; 34
Blautzik (B11); 71
Bengio (B5) 2013; 35
Bengio (B6) 2005
Abraham (B1) 2017; 147
Brown (B14) 2012; 6
Krizhevsky (B28) 2012
Goodfellow (B21) 2016
Tibshirani (B53) 1996; 58
Liem (B34) 2017; 148
Liang (B33) 2015; 12
Bengio (B7) 1995
Lau (B29) 2016; 6
Montúfar (B39) 2014
Brown (B13) 2016
Greicius (B22) 2003; 100
LeCun (B30) 2015; 521
Meszlényi (B38) 2017; 11
Li (B31) 2009; 56
Tomasev (B54) 2015
Ryali (B46) 2010; 51
Srivastava (B51) 2014; 15
Allen (B3) 2014; 24
Nair (B40) 2010
Meszlényi (B36)
Salvador (B47) 2005; 360
Plis (B43) 2014; 8
Jang (B23) 2017; 145
Kawahara (B25) 2017; 146
Abraham (B2) 2014; 8
Córdova-Palomera (B17) 2017; 7
Salzberg (B48) 1997; 1
Kassraian-Fard (B24) 2016; 7
Cortes (B18) 1995; 20
Zuo (B60) 2014; 1
Wager (B56) 2013
Kingma (B27) 2014
Rosa (B45) 2015; 105
Biswal (B9) 2010; 107
Xu (B58) 2014
Meszlényi (B37)
Blautzik (B10); 34
Pineda-Pardo (B42) 2014; 101
Szegedy (B52) 2015
Arbabshirani (B4) 2013; 7
Marcos (B35) 2016
Richiardi (B44) 2015; 348
Bridle (B12) 1990
Widrow (B57) 1990; 78
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: B30
  article-title: Deep learning.
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 255
  year: 2015
  ident: B33
  article-title: Disrupted functional connectivity related to differential degeneration of the cingulum bundle in mild cognitive impairment patients.
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/1567205012666150302155336
– volume: 50
  start-page: 81
  year: 2010
  ident: B15
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.011
– year: 2015
  ident: B54
  article-title: Hubness-aware classification, instance selection and feature construction: survey and extensions to time-series
  publication-title: Feature Selection for Data and Pattern Recognition
– year: 1995
  ident: B7
  article-title: Convolutional Networks for Images, Speech, and Time-Series
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 147
  start-page: 736
  year: 2017
  ident: B1
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 6
  year: 2012
  ident: B14
  article-title: The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis.
  publication-title: Front. Neuroinformatics
  doi: 10.3389/fninf.2012.00028
– volume: 54
  start-page: 875
  year: 2011
  ident: B50
  article-title: Network modelling methods for FMRI.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.08.063
– start-page: 807
  year: 2010
  ident: B40
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
– volume: 35
  start-page: 1798
  year: 2013
  ident: B5
  article-title: Representation learning: a review and new perspectives.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– year: 2016
  ident: B21
  publication-title: Deep Learning.
– year: 2014
  ident: B58
  publication-title: Scale-Invariant Convolutional Neural Networks.
– year: 2016
  ident: B35
  publication-title: Learning Rotation Invariant Convolutional Filters for Texture Classification.
– volume: 71
  start-page: 298
  ident: B11
  article-title: Classifying fMRI-derived resting-state connectivity patterns according to their daily rhythmicity.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.010
– start-page: 203
  ident: B36
  article-title: A model for classification based on the functional connectivity pattern dynamics of the brain
  publication-title: Proceedings of 2016 Third European Network Intelligence Conference (ENIC)
  doi: 10.1109/ENIC.2016.037
– volume: 51
  start-page: 752
  year: 2010
  ident: B46
  article-title: Sparse logistic regression for whole-brain classification of fMRI data.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.040
– year: 2014
  ident: B27
  publication-title: Adam: A Method for Stochastic Optimization.
– volume: 15
  start-page: 1929
  year: 2014
  ident: B51
  article-title: Dropout: a simple way to prevent neural networks from overfitting.
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: B13
  publication-title: Machine Learning on Human Connectome Data from MRI.
– volume: 100
  start-page: 253
  year: 2003
  ident: B22
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0135058100
– start-page: 127
  year: 2016
  ident: B26
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 101
  start-page: 738
  year: 2014
  ident: B49
  article-title: Group-PCA for very large fMRI datasets.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.051
– volume: 316
  start-page: 21
  year: 2012
  ident: B59
  article-title: Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation.
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2012.02.010
– volume: 7
  year: 2017
  ident: B17
  article-title: Disrupted global metastability and static and dynamic brain connectivity across individuals in the Alzheimer’s disease continuum.
  publication-title: Sci. Rep.
  doi: 10.1038/srep40268
– volume: 20
  start-page: 273
  year: 1995
  ident: B18
  article-title: Support-vector networks.
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 101
  start-page: 765
  year: 2014
  ident: B42
  article-title: Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.08.002
– volume: 42
  start-page: 1178
  year: 2008
  ident: B20
  article-title: The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.059
– volume: 148
  start-page: 179
  year: 2017
  ident: B34
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.005
– year: 2015
  ident: B52
  publication-title: Going Deeper With Convolutions.
– volume: 34
  start-page: 537
  year: 1995
  ident: B8
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 24
  start-page: 663
  year: 2014
  ident: B3
  article-title: Tracking whole-brain connectivity dynamics in the resting state.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs352
– volume: 11
  year: 2017
  ident: B38
  article-title: Resting state fMRI functional connectivity analysis using dynamic time warping.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00075
– volume: 146
  start-page: 1038
  year: 2017
  ident: B25
  article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.09.046
– volume: 101
  start-page: 3270
  year: 2009
  ident: B19
  article-title: The global signal and observed anticorrelated resting state brain networks.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90777.2008
– volume: 111
  start-page: 476
  year: 2015
  ident: B16
  article-title: Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.057
– volume: 56
  start-page: 2439
  year: 2009
  ident: B31
  article-title: Voxel selection in fMRI data analysis based on sparse representation.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2025866
– volume: 1
  start-page: 317
  year: 1997
  ident: B48
  article-title: On comparing classifiers: pitfalls toAvoid and a recommended approach.
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009752403260
– volume: 58
  start-page: 267
  year: 1996
  ident: B53
  article-title: Regression shrinkage and selection via the lasso.
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– start-page: 245
  ident: B37
  article-title: Classification of fMRI data using dynamic time warping based functional connectivity analysis
  publication-title: Proceedings of the 24th European Signal Processing Conference (EUSIPCO)
  doi: 10.1109/EUSIPCO.2016.7760247
– start-page: 351
  year: 2013
  ident: B56
  article-title: Dropout training as adaptive regularization
  publication-title: Advances in Neural Information Processing Systems 26
– volume: 8
  year: 2014
  ident: B43
  article-title: Deep learning for neuroimaging: a validation study.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00229
– volume: 8
  year: 2014
  ident: B2
  article-title: Machine learning for neuroimaging with scikit-learn.
  publication-title: Front. Neuroinformatics
  doi: 10.3389/fninf.2014.00014
– volume: 360
  start-page: 937
  year: 2005
  ident: B47
  article-title: Undirected graphs of frequency-dependent functional connectivity in whole brain networks.
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2005.1645
– start-page: 1097
  year: 2012
  ident: B28
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems 25
– start-page: 107
  year: 2005
  ident: B6
  article-title: The curse of highly variable functions for local kernel machines
  publication-title: Proceedings of the 18th International Conference on Neural Information Processing Systems NIPS’05
– volume: 145
  start-page: 314
  year: 2017
  ident: B23
  article-title: Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.003
– start-page: 2924
  year: 2014
  ident: B39
  article-title: On the number of linear regions of deep neural networks
  publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems NIPS’14
– volume: 78
  start-page: 1415
  year: 1990
  ident: B57
  article-title: 30 years of adaptive neural networks: perceptron, Madaline, and backpropagation.
  publication-title: Proc. IEEE
  doi: 10.1109/5.58323
– volume: 105
  start-page: 493
  year: 2015
  ident: B45
  article-title: Sparse network-based models for patient classification using fMRI.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.11.021
– start-page: 58
  year: 2017
  ident: B55
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications.
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.01.002
– volume: 45
  start-page: S199
  year: 2009
  ident: B41
  article-title: Machine learning classifiers and fMRI: a tutorial overview.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 1
  year: 2014
  ident: B60
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics.
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.49
– volume: 6
  year: 2011
  ident: B32
  article-title: Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI.
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0022153
– volume: 7
  year: 2013
  ident: B4
  article-title: Classification of schizophrenia patients based on resting-state functional network connectivity.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00133
– volume: 34
  start-page: 741
  ident: B10
  article-title: Long-term test-retest reliability of resting-state networks in healthy elderly subjects and with amnestic mild cognitive impairment patients.
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-111970
– start-page: 227
  year: 1990
  ident: B12
  article-title: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
  publication-title: Neurocomputing NATO ASI Series
– volume: 7
  year: 2016
  ident: B24
  article-title: Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example.
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2016.00177
– volume: 6
  year: 2016
  ident: B29
  article-title: Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis.
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2016.55
– volume: 107
  start-page: 4734
  year: 2010
  ident: B9
  article-title: Toward discovery science of human brain function.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0911855107
– volume: 348
  start-page: 1241
  year: 2015
  ident: B44
  article-title: BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.
  publication-title: Science
  doi: 10.1126/science.1255905
SSID ssj0062657
Score 2.4799364
Snippet Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 61
SubjectTerms Artificial intelligence
Brain
Classification
Cognitive ability
connectome
convolutional neural network
Datasets
Deep learning
Design
Dynamic Time Warping
Functional magnetic resonance imaging
Learning algorithms
Machine learning
Neighborhoods
Neural networks
Neuroscience
resting state connectivity
Sparsity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlwQFCgBioyEkHqINk4cJz4uVVcUCQ6oSNwsvwJIbXgtlfrvOzPOrnYrVC6cEiW24njGmW88k28YOxK2kd7JkAfAHrnU0udaW4vRx9C0oVRO4L_D5xfq9EqeXdfXC6W-MCcs0QOniRt1wooOnO4ugOW24FBZ1QrpCls1NsqO2EvB5s2cqfQNBpReNykoCT30qOtBXJjHRXyFSiwZIeLqfw1g_psnuWB4JutsbUCMfJxGusE-xP4j2xz34C3_-sOPOeVw0ub4Jnu8RNKM_oYThuTd-eV3PgHLlTb8OGW1-FQvIj8B-xU4FcXEdCGSEKcMAm6x5e9BKaEfMnjQgVLG-Xgh-LDFribffnw9zYeiCrmXupjmui5d3ThnXXTaizoWtrDOt0pJheTxcOI7XRcOlrartAsKPoelVQGuFrHx1TZb6e_7uMO4LbyPlZCdA1SFVF_o3FWlLgP-PVvYjI1ms2z8wDiOhS9-GvA8UC6G5GJQLobkkrEv8x4PiW3jP21PUHDzdsiTTRdAe8ygPeYt7cnY_kzsZli8z6YstQRPWVfwjMP5bVh2GEuxfbx_eTbI0VNLwFZtxj4lLZmPpMRYattWGWuW9GdpqMt3-rtbovYGeI1133bf49322CrOFhpa0eyzlenTS_wMCGrqDmix_AV5Wxt7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0-uKLqPUjWmUFEXwIl002m-yT3EmPttAih4W-LfuVWtBc27sK_vfObPbOXil9Skg2YcnszPxmZ_IbgE_cNMJZ4XOP2CMXSrhcKWMo--ib1pfScvp3-PhEHpyKo7P6LG24LVNZ5domRkPtF472yMdlqQSGL6riXy-vcuoaRdnV1ELjMeygCW7bEexM90--z9e2GNF63QzJSQzF1LjrUWxUzxV5CyXfckaRs_8-oHm3XvKWA5o9g6cJObLJIOrn8Cj0L2B30mPU_Psv-8xiLWfcJN-FqzmRZ_TnLGJJ1h3PD9kMPdiw8cdidYsb-kbkU_RjnsXmmFQ2FCXFYiUBMzTyT1qc-BwxecRDLB1nk1tJiJdwOtv_8e0gT80VcidUscpVXdq6sdbYYJXjdShMYaxrpRSSSOTxxHWqLiyquK2U9RLNYmmkx6tFaFz1Ckb9og9vgJnCuVBx0VlEV0T5RUFeVarS01-0hclgvP7K2iXmcWqA8UtjBEJy0VEumuSio1wy-LJ54nJg3Xhg7JQEtxlHfNnxwuL6XCf10x03vKuqosMpCYPvMbLlwhamakwQXZ3B3lrsOinxUv9fchl83NxG9aOciunD4mapiaunFoix2gxeD6tkM5OScqptW2XQbK2fralu3-kvfkaKb4TZ1P_t7cPTegdP6DuQK-XNHoxW1zfhPWKklf2QFOEf_tMUXw
  priority: 102
  providerName: ProQuest
Title Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture
URI https://www.ncbi.nlm.nih.gov/pubmed/29089883
https://www.proquest.com/docview/2294106931
https://www.proquest.com/docview/1958542238
https://pubmed.ncbi.nlm.nih.gov/PMC5651030
https://doaj.org/article/f1a1f330fd644a338a6814b0a37ae4f5
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfQ9sILAsZHYFSehJB4CLNjx4kf0NRO6wZSJ1RRqW-W7Tgb0khZ1yH233PnpGFFhZcksh3H8p1zd77z7wh5y20hvZNVWoHukUotfaq1teh9rIqyypTjeHZ4cq7OZvLzPJ__OR7dTeDNVtMO80nNllcffl3fHcGC_4gWJ8jbw7qBaozSimiEaAvtglwqMJ_BRPY-BdDcI-4nVwrML2C81mm5tQeECEaHWFmKDXkVYf236aJ_h1Tek1Hjx-RRp1zSYcsNT8iD0Dwle8MGDOvvd_QdjeGecR99j1xPEV-juaBR3aT1ZPqJjkHItXuDNAbA-Da1RDoCUVfRmD8TI4siMWkMNqAWW_7s-BfeQ7CPeIvR5XR4z0_xjMzGJ1-Pz9Iu_0LqpWarVOeZywvnrAtOe54HZpl1vlRKKsSZhwdf65w5-As4oV2l4M-ZWVVBKQuFF8_JTrNowktCLfM-CC5rBwoYooKhHSgynVV40JbZhByuZ9n4Dpwcc2RcGTBSkEQmksggiUwkUULe92_8aIE5_tN2hITr2yGkdixYLC9Mt0JNzS2vhWA1DEla6MeqkkvHrChskHWekP012c2aTU2WaQlGtRbwjYO-GlYoul1sExa3NwbhfHIJaliZkBctl_QjWXNZQooN_tkY6mZN8-0yooCDJo4p4l79s8_X5CFOAQpaXuyTndXyNrwBDWrlBmR3dHL-ZTqIOxBwPZ3zQVwsvwFDrRvr
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a3QEuCBiwwAAjARKHaI7jfPiAUAurWrZWqNqk3YztJAMJ0m3tQPun-Bt5z0nKitBuOyVKnMjy-_Z7_j2AV5HJpLOyCAv0PUKppAuVMoayj0WWFyK1EZ0dnkzT0ZH8dJwcb8Dv7iwMlVV2OtEr6mLuaI98VwglMXxRcfT-9CykrlGUXe1aaDRssV9e_sKQbfFu_BHp-1qI4d7hh1HYdhUInVR8GapE2CSz1tjSKhclJTfcWJenqUwJPR1vXKUSbpG3baxskaI-ECYt8CkvMxfjf2_BpoxTLnqwOdibfp51uh-jgyRrkqEY-qndqkY2ofoxj5OYRmvGz_cI-J9j-2995hWDN7wHd1tPlfUb1roPG2X9ALb6NUbpPy7ZG-ZrR_2m_BaczQisoz5h3ndl1WQ2ZkO0mM1GI_PVNK7pUxEO0G4WzDfjpDIlzxnMVy4wQyN_tsKA3xFyiL_4UnXWv5L0eAhHN7Lsj6BXz-tyG5jhzpVxJCuL3hxBjFFQGQslCjq1y00Au90qa9cinVPDje8aIx6ii_Z00UQX7ekSwNvVF6cNysc1YwdEuNU4wuf2D-bnJ7oVd11FJqrimFc4JWnwPybNI2m5iTNTyioJYKcju26VxkL_ZfEAXq5eo7hTDsfU5fxioQkbKJHo0-UBPG64ZDUTQTncPI8DyNb4Z22q62_qb189pDi69dRv7sn103oBt0eHkwN9MJ7uP4U7tCZkxqNsB3rL84vyGfpnS_u8FQoGX25aDv8AdIVRbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkK8IGDAMgYYCZB4iBo7zh8_INSyVStj1VQxaW_GdpKBxNJt7UD7anw67pykrAjtbU-JYjuyfHe-O9_5dwCvucmks7IIC7Q9QqmkC5UyhqKPRZYXIrWc7g4fTNK9I_npODleg9_dXRhKq-z2RL9RFzNHZ-R9IZRE90XFvF-1aRGHO6MPZ-chVZCiSGtXTqNhkf3y6he6b_P34x2k9RshRrtfPu6FbYWB0EkVLUKVCJtk1hpbWuV4UkYmMtblaSpTQlLHF1epJLLI5zZWtkhxbxAmLfBrVGYuxv_egfWMvKIerA93J4fTTg-gp5BkTWAU3UDVr2pkGcol85iJKV9RhL5ewP-M3H9zNa8pv9EDuN9arWzQsNlDWCvrR7AxqNFjP71ib5nPI_UH9BtwPiXgjvqEeTuWVQfTMRuh9mwOHZnPrHFNzYpwiDq0YL4wJ6UseS5hPouBGer5sxUMHEcoIv7h09bZ4FoA5DEc3cqyP4FePavLTWAmcq6MuawsWnYEN0YOZiyUKOgGb2QC6HerrF2Lek7FN35o9H6ILtrTRRNdtKdLAO-WI84axI8b-g6JcMt-hNXtP8wuTnQr-rrihldxHFU4JWnwPybNubSRiTNTyioJYLsju243kLn-y-4BvFo2o-hTPMfU5exyrgknKJFo3-UBPG24ZDkTQfHcPI8DyFb4Z2Wqqy31928eXhxNfKo9t3XztF7CXZQ__Xk82X8G92hJSKPzbBt6i4vL8jmaagv7opUJBl9vWwz_APJiVaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting+State+fMRI+Functional+Connectivity-Based+Classification+Using+a+Convolutional+Neural+Network+Architecture&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Meszl%C3%A9nyi%2C+Regina+J&rft.au=Buza%2C+Krisztian&rft.au=Vidny%C3%A1nszky%2C+Zolt%C3%A1n&rft.date=2017-10-17&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=11&rft.spage=61&rft_id=info:doi/10.3389%2Ffninf.2017.00061&rft_id=info%3Apmid%2F29089883&rft.externalDocID=29089883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon