Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture
Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this p...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 11; p. 61 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
17.10.2017
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network. |
---|---|
AbstractList | Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network. Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network. |
Author | Meszlényi, Regina J. Vidnyánszky, Zoltán Buza, Krisztian |
AuthorAffiliation | 3 Knowledge Discovery and Machine Learning, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany 1 Department of Cognitive Science, Budapest University of Technology and Economics , Budapest , Hungary 2 Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary |
AuthorAffiliation_xml | – name: 2 Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary – name: 3 Knowledge Discovery and Machine Learning, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany – name: 1 Department of Cognitive Science, Budapest University of Technology and Economics , Budapest , Hungary |
Author_xml | – sequence: 1 givenname: Regina J. surname: Meszlényi fullname: Meszlényi, Regina J. – sequence: 2 givenname: Krisztian surname: Buza fullname: Buza, Krisztian – sequence: 3 givenname: Zoltán surname: Vidnyánszky fullname: Vidnyánszky, Zoltán |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29089883$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v3CAQhq0qVfPR3nuqLPXSi7dgDDaXSsmqSVZKWyltzmjAsGHrhQTwVvn3Zb2bKonUE8Pwvo-GmTkuDpx3uijeYzQjpOOfjbPOzGqE2xlCiOFXxRFmrK4o5uzgSXxYHMe4yoqa0fZNcVhz1PGuI0fF_bWOybpl-TNB0qX5dr0oz0enkvUOhnLundP5srHpoTqDqPtyPkCM1lgFW015E7du2Co3fhj3vu96DNOR_vjwuzwN6tamDBqDflu8NjBE_W5_nhQ3519_zS-rqx8Xi_npVaUajlLFaS1pKyVILbnCVCNAIFXHWMNIw1kOlOEUSdR0knDZM45xDazPWaRbRU6KxY7be1iJu2DXEB6EByumhA9LASFZNWhhMGBDCDI9axrInQXW4UYiIC3oxtDM-rJj3Y1yrXulXcrfewZ9_uLsrVj6jaCMYkRQBnzaA4K_H3PLxdpGpYcBnPZjFJjTjjZ1Tbos_fhCuvJjyE2Noq55gxHjBGfVh6cV_SvlcbJZwHYCFXyMQRuhbJpGlgu0g8BIbFdITCsktiskphXKRvTC-Mj-r-UvvafLvg |
CitedBy_id | crossref_primary_10_1155_2022_5782569 crossref_primary_10_3389_fninf_2018_00037 crossref_primary_10_3390_rs10010075 crossref_primary_10_1155_2021_6626728 crossref_primary_10_1016_j_inffus_2023_102113 crossref_primary_10_1016_j_bpsc_2021_12_003 crossref_primary_10_1177_17562864221138154 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_3389_fnins_2019_01313 crossref_primary_10_1007_s10489_021_02579_w crossref_primary_10_1002_mp_15545 crossref_primary_10_1038_s41598_023_48548_w crossref_primary_10_1038_s41598_022_25851_6 crossref_primary_10_4103_ijoy_ijoy_17_22 crossref_primary_10_1016_j_neucom_2020_04_152 crossref_primary_10_1016_j_asoc_2023_111049 crossref_primary_10_1016_j_bspc_2021_102645 crossref_primary_10_1109_OJSP_2021_3100751 crossref_primary_10_1155_2023_8512461 crossref_primary_10_1016_j_neuroimage_2020_117383 crossref_primary_10_1109_JBHI_2022_3229465 crossref_primary_10_1093_cercor_bhac217 crossref_primary_10_1007_s10462_024_10948_3 crossref_primary_10_1002_hbm_24891 crossref_primary_10_1002_hbm_26396 crossref_primary_10_1109_TKDE_2019_2960240 crossref_primary_10_3389_fninf_2018_00023 crossref_primary_10_1016_j_media_2020_101752 crossref_primary_10_1038_s41386_024_01946_8 crossref_primary_10_1089_big_2021_0204 crossref_primary_10_1148_radiol_2018180547 crossref_primary_10_1016_j_bspc_2024_106580 crossref_primary_10_1109_TBME_2021_3127173 crossref_primary_10_1109_TMI_2019_2928790 crossref_primary_10_1007_s11682_021_00584_8 crossref_primary_10_1186_s13229_021_00439_5 crossref_primary_10_1016_j_patcog_2020_107570 crossref_primary_10_1093_gigascience_giy130 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1002_hbm_25817 crossref_primary_10_1109_JBHI_2024_3351177 crossref_primary_10_1177_15500594221122699 crossref_primary_10_2478_ausi_2020_0007 crossref_primary_10_1016_j_nicl_2020_102186 crossref_primary_10_1016_j_brainres_2024_148816 crossref_primary_10_1002_hbm_24841 crossref_primary_10_1016_j_jad_2023_07_077 crossref_primary_10_1016_j_neuroimage_2024_120579 crossref_primary_10_1109_JBHI_2024_3415000 crossref_primary_10_1109_TNSRE_2021_3120024 crossref_primary_10_3389_fninf_2024_1392661 crossref_primary_10_3389_fninf_2018_00058 crossref_primary_10_1109_ACCESS_2023_3276989 crossref_primary_10_3389_fnins_2022_933660 crossref_primary_10_1109_TKDE_2020_3025580 crossref_primary_10_3389_fncom_2019_00094 crossref_primary_10_3389_fnhum_2020_597864 crossref_primary_10_1371_journal_pone_0250222 crossref_primary_10_3389_fnins_2022_866666 crossref_primary_10_1007_s11432_021_3510_6 crossref_primary_10_1016_j_artmed_2021_102209 crossref_primary_10_1016_j_bionps_2024_100102 crossref_primary_10_1080_03772063_2023_2196979 crossref_primary_10_1002_hbm_25009 crossref_primary_10_1109_JBHI_2019_2941222 crossref_primary_10_3390_s23041914 crossref_primary_10_1007_s11517_023_02859_2 crossref_primary_10_3389_fpsyt_2022_912600 crossref_primary_10_1088_1741_2552_acab33 crossref_primary_10_3389_fpsyt_2024_1255370 crossref_primary_10_1007_s10916_018_1071_x crossref_primary_10_1109_TBDATA_2023_3294000 crossref_primary_10_3389_fninf_2020_00010 crossref_primary_10_1007_s10489_021_02668_w crossref_primary_10_1016_j_neuroimage_2021_118588 crossref_primary_10_1007_s40120_019_00153_8 crossref_primary_10_1016_j_compbiomed_2022_106240 crossref_primary_10_1016_j_media_2023_102841 crossref_primary_10_3389_fnsys_2022_904770 crossref_primary_10_3390_bioengineering12010082 crossref_primary_10_1109_TCBB_2020_2989315 crossref_primary_10_32628_IJSRSET2293188 |
Cites_doi | 10.1038/nature14539 10.2174/1567205012666150302155336 10.1016/j.neuroimage.2009.12.011 10.1016/j.neuroimage.2016.10.045 10.3389/fninf.2012.00028 10.1016/j.neuroimage.2010.08.063 10.1109/TPAMI.2013.50 10.1016/j.neuroimage.2012.08.010 10.1109/ENIC.2016.037 10.1016/j.neuroimage.2010.02.040 10.1073/pnas.0135058100 10.1016/j.neuroimage.2015.05.018 10.1016/j.neuroimage.2014.07.051 10.1016/j.jns.2012.02.010 10.1038/srep40268 10.1007/BF00994018 10.1016/j.neuroimage.2014.08.002 10.1016/j.neuroimage.2008.05.059 10.1016/j.neuroimage.2016.11.005 10.1002/mrm.1910340409 10.1093/cercor/bhs352 10.3389/fnins.2017.00075 10.1016/j.neuroimage.2016.09.046 10.1152/jn.90777.2008 10.1016/j.neuroimage.2015.01.057 10.1109/TBME.2009.2025866 10.1023/A:1009752403260 10.1111/j.2517-6161.1996.tb02080.x 10.1109/EUSIPCO.2016.7760247 10.3389/fnins.2014.00229 10.3389/fninf.2014.00014 10.1098/rstb.2005.1645 10.1016/j.neuroimage.2016.04.003 10.1109/5.58323 10.1016/j.neuroimage.2014.11.021 10.1016/j.neubiorev.2017.01.002 10.1016/j.neuroimage.2008.11.007 10.1038/sdata.2014.49 10.1371/journal.pone.0022153 10.3389/fnins.2013.00133 10.3233/JAD-111970 10.3389/fpsyt.2016.00177 10.1038/tp.2016.55 10.1073/pnas.0911855107 10.1126/science.1255905 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017 Meszlényi, Buza and Vidnyánszky. 2017 Meszlényi, Buza and Vidnyánszky |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017 Meszlényi, Buza and Vidnyánszky. 2017 Meszlényi, Buza and Vidnyánszky |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fninf.2017.00061 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5196 |
ExternalDocumentID | oai_doaj_org_article_f1a1f330fd644a338a6814b0a37ae4f5 PMC5651030 29089883 10_3389_fninf_2017_00061 |
Genre | Journal Article |
GeographicLocations | Hungary |
GeographicLocations_xml | – name: Hungary |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-952b57bbabeb9c15e0a0abc866463496866cf950b048b39bd69112a6dcf90e7c3 |
IEDL.DBID | M48 |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 01:16:47 EDT 2025 Thu Aug 21 14:25:45 EDT 2025 Fri Jul 11 04:15:02 EDT 2025 Fri Jul 25 11:50:03 EDT 2025 Wed Feb 19 02:43:10 EST 2025 Tue Jul 01 01:13:20 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | connectome Dynamic Time Warping classification resting state connectivity convolutional neural network functional magnetic resonance imaging |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-952b57bbabeb9c15e0a0abc866463496866cf950b048b39bd69112a6dcf90e7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Feng Liu, Tianjin Medical University General Hospital, China; Diego Vidaurre, University of Oxford, United Kingdom Edited by: Pedro Antonio Valdes-Sosa, Joint China-Cuba Laboratory for Frontier Research in Translational Neurotechnology, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2017.00061 |
PMID | 29089883 |
PQID | 2294106931 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f1a1f330fd644a338a6814b0a37ae4f5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651030 proquest_miscellaneous_1958542238 proquest_journals_2294106931 pubmed_primary_29089883 crossref_citationtrail_10_3389_fninf_2017_00061 crossref_primary_10_3389_fninf_2017_00061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-17 |
PublicationDateYYYYMMDD | 2017-10-17 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2017 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Fransson (B20) 2008; 42 Kim (B26) 2016 Smith (B49) 2014; 101 Liang (B32) 2011; 6 Pereira (B41) 2009; 45 Vieira (B55) 2017 Chang (B15) 2010; 50 Smith (B50) 2011; 54 Chen (B16) 2015; 111 Yang (B59) 2012; 316 Fox (B19) 2009; 101 Biswal (B8) 1995; 34 Blautzik (B11); 71 Bengio (B5) 2013; 35 Bengio (B6) 2005 Abraham (B1) 2017; 147 Brown (B14) 2012; 6 Krizhevsky (B28) 2012 Goodfellow (B21) 2016 Tibshirani (B53) 1996; 58 Liem (B34) 2017; 148 Liang (B33) 2015; 12 Bengio (B7) 1995 Lau (B29) 2016; 6 Montúfar (B39) 2014 Brown (B13) 2016 Greicius (B22) 2003; 100 LeCun (B30) 2015; 521 Meszlényi (B38) 2017; 11 Li (B31) 2009; 56 Tomasev (B54) 2015 Ryali (B46) 2010; 51 Srivastava (B51) 2014; 15 Allen (B3) 2014; 24 Nair (B40) 2010 Meszlényi (B36) Salvador (B47) 2005; 360 Plis (B43) 2014; 8 Jang (B23) 2017; 145 Kawahara (B25) 2017; 146 Abraham (B2) 2014; 8 Córdova-Palomera (B17) 2017; 7 Salzberg (B48) 1997; 1 Kassraian-Fard (B24) 2016; 7 Cortes (B18) 1995; 20 Zuo (B60) 2014; 1 Wager (B56) 2013 Kingma (B27) 2014 Rosa (B45) 2015; 105 Biswal (B9) 2010; 107 Xu (B58) 2014 Meszlényi (B37) Blautzik (B10); 34 Pineda-Pardo (B42) 2014; 101 Szegedy (B52) 2015 Arbabshirani (B4) 2013; 7 Marcos (B35) 2016 Richiardi (B44) 2015; 348 Bridle (B12) 1990 Widrow (B57) 1990; 78 |
References_xml | – volume: 521 start-page: 436 year: 2015 ident: B30 article-title: Deep learning. publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 255 year: 2015 ident: B33 article-title: Disrupted functional connectivity related to differential degeneration of the cingulum bundle in mild cognitive impairment patients. publication-title: Curr. Alzheimer Res. doi: 10.2174/1567205012666150302155336 – volume: 50 start-page: 81 year: 2010 ident: B15 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.011 – year: 2015 ident: B54 article-title: Hubness-aware classification, instance selection and feature construction: survey and extensions to time-series publication-title: Feature Selection for Data and Pattern Recognition – year: 1995 ident: B7 article-title: Convolutional Networks for Images, Speech, and Time-Series publication-title: The Handbook of Brain Theory and Neural Networks – volume: 147 start-page: 736 year: 2017 ident: B1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 6 year: 2012 ident: B14 article-title: The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis. publication-title: Front. Neuroinformatics doi: 10.3389/fninf.2012.00028 – volume: 54 start-page: 875 year: 2011 ident: B50 article-title: Network modelling methods for FMRI. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.08.063 – start-page: 807 year: 2010 ident: B40 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – volume: 35 start-page: 1798 year: 2013 ident: B5 article-title: Representation learning: a review and new perspectives. publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – year: 2016 ident: B21 publication-title: Deep Learning. – year: 2014 ident: B58 publication-title: Scale-Invariant Convolutional Neural Networks. – year: 2016 ident: B35 publication-title: Learning Rotation Invariant Convolutional Filters for Texture Classification. – volume: 71 start-page: 298 ident: B11 article-title: Classifying fMRI-derived resting-state connectivity patterns according to their daily rhythmicity. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.010 – start-page: 203 ident: B36 article-title: A model for classification based on the functional connectivity pattern dynamics of the brain publication-title: Proceedings of 2016 Third European Network Intelligence Conference (ENIC) doi: 10.1109/ENIC.2016.037 – volume: 51 start-page: 752 year: 2010 ident: B46 article-title: Sparse logistic regression for whole-brain classification of fMRI data. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.040 – year: 2014 ident: B27 publication-title: Adam: A Method for Stochastic Optimization. – volume: 15 start-page: 1929 year: 2014 ident: B51 article-title: Dropout: a simple way to prevent neural networks from overfitting. publication-title: J. Mach. Learn. Res. – year: 2016 ident: B13 publication-title: Machine Learning on Human Connectome Data from MRI. – volume: 100 start-page: 253 year: 2003 ident: B22 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0135058100 – start-page: 127 year: 2016 ident: B26 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.018 – volume: 101 start-page: 738 year: 2014 ident: B49 article-title: Group-PCA for very large fMRI datasets. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.051 – volume: 316 start-page: 21 year: 2012 ident: B59 article-title: Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation. publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2012.02.010 – volume: 7 year: 2017 ident: B17 article-title: Disrupted global metastability and static and dynamic brain connectivity across individuals in the Alzheimer’s disease continuum. publication-title: Sci. Rep. doi: 10.1038/srep40268 – volume: 20 start-page: 273 year: 1995 ident: B18 article-title: Support-vector networks. publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 101 start-page: 765 year: 2014 ident: B42 article-title: Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.08.002 – volume: 42 start-page: 1178 year: 2008 ident: B20 article-title: The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.059 – volume: 148 start-page: 179 year: 2017 ident: B34 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.005 – year: 2015 ident: B52 publication-title: Going Deeper With Convolutions. – volume: 34 start-page: 537 year: 1995 ident: B8 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 24 start-page: 663 year: 2014 ident: B3 article-title: Tracking whole-brain connectivity dynamics in the resting state. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs352 – volume: 11 year: 2017 ident: B38 article-title: Resting state fMRI functional connectivity analysis using dynamic time warping. publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00075 – volume: 146 start-page: 1038 year: 2017 ident: B25 article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.09.046 – volume: 101 start-page: 3270 year: 2009 ident: B19 article-title: The global signal and observed anticorrelated resting state brain networks. publication-title: J. Neurophysiol. doi: 10.1152/jn.90777.2008 – volume: 111 start-page: 476 year: 2015 ident: B16 article-title: Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.057 – volume: 56 start-page: 2439 year: 2009 ident: B31 article-title: Voxel selection in fMRI data analysis based on sparse representation. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2025866 – volume: 1 start-page: 317 year: 1997 ident: B48 article-title: On comparing classifiers: pitfalls toAvoid and a recommended approach. publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009752403260 – volume: 58 start-page: 267 year: 1996 ident: B53 article-title: Regression shrinkage and selection via the lasso. publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – start-page: 245 ident: B37 article-title: Classification of fMRI data using dynamic time warping based functional connectivity analysis publication-title: Proceedings of the 24th European Signal Processing Conference (EUSIPCO) doi: 10.1109/EUSIPCO.2016.7760247 – start-page: 351 year: 2013 ident: B56 article-title: Dropout training as adaptive regularization publication-title: Advances in Neural Information Processing Systems 26 – volume: 8 year: 2014 ident: B43 article-title: Deep learning for neuroimaging: a validation study. publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00229 – volume: 8 year: 2014 ident: B2 article-title: Machine learning for neuroimaging with scikit-learn. publication-title: Front. Neuroinformatics doi: 10.3389/fninf.2014.00014 – volume: 360 start-page: 937 year: 2005 ident: B47 article-title: Undirected graphs of frequency-dependent functional connectivity in whole brain networks. publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2005.1645 – start-page: 1097 year: 2012 ident: B28 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems 25 – start-page: 107 year: 2005 ident: B6 article-title: The curse of highly variable functions for local kernel machines publication-title: Proceedings of the 18th International Conference on Neural Information Processing Systems NIPS’05 – volume: 145 start-page: 314 year: 2017 ident: B23 article-title: Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.003 – start-page: 2924 year: 2014 ident: B39 article-title: On the number of linear regions of deep neural networks publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems NIPS’14 – volume: 78 start-page: 1415 year: 1990 ident: B57 article-title: 30 years of adaptive neural networks: perceptron, Madaline, and backpropagation. publication-title: Proc. IEEE doi: 10.1109/5.58323 – volume: 105 start-page: 493 year: 2015 ident: B45 article-title: Sparse network-based models for patient classification using fMRI. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.11.021 – start-page: 58 year: 2017 ident: B55 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.01.002 – volume: 45 start-page: S199 year: 2009 ident: B41 article-title: Machine learning classifiers and fMRI: a tutorial overview. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 1 year: 2014 ident: B60 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics. publication-title: Sci. Data doi: 10.1038/sdata.2014.49 – volume: 6 year: 2011 ident: B32 article-title: Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI. publication-title: PLOS ONE doi: 10.1371/journal.pone.0022153 – volume: 7 year: 2013 ident: B4 article-title: Classification of schizophrenia patients based on resting-state functional network connectivity. publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00133 – volume: 34 start-page: 741 ident: B10 article-title: Long-term test-retest reliability of resting-state networks in healthy elderly subjects and with amnestic mild cognitive impairment patients. publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-111970 – start-page: 227 year: 1990 ident: B12 article-title: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition publication-title: Neurocomputing NATO ASI Series – volume: 7 year: 2016 ident: B24 article-title: Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example. publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2016.00177 – volume: 6 year: 2016 ident: B29 article-title: Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis. publication-title: Transl. Psychiatry doi: 10.1038/tp.2016.55 – volume: 107 start-page: 4734 year: 2010 ident: B9 article-title: Toward discovery science of human brain function. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0911855107 – volume: 348 start-page: 1241 year: 2015 ident: B44 article-title: BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. publication-title: Science doi: 10.1126/science.1255905 |
SSID | ssj0062657 |
Score | 2.4799364 |
Snippet | Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 61 |
SubjectTerms | Artificial intelligence Brain Classification Cognitive ability connectome convolutional neural network Datasets Deep learning Design Dynamic Time Warping Functional magnetic resonance imaging Learning algorithms Machine learning Neighborhoods Neural networks Neuroscience resting state connectivity Sparsity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlwQFCgBioyEkHqINk4cJz4uVVcUCQ6oSNwsvwJIbXgtlfrvOzPOrnYrVC6cEiW24njGmW88k28YOxK2kd7JkAfAHrnU0udaW4vRx9C0oVRO4L_D5xfq9EqeXdfXC6W-MCcs0QOniRt1wooOnO4ugOW24FBZ1QrpCls1NsqO2EvB5s2cqfQNBpReNykoCT30qOtBXJjHRXyFSiwZIeLqfw1g_psnuWB4JutsbUCMfJxGusE-xP4j2xz34C3_-sOPOeVw0ub4Jnu8RNKM_oYThuTd-eV3PgHLlTb8OGW1-FQvIj8B-xU4FcXEdCGSEKcMAm6x5e9BKaEfMnjQgVLG-Xgh-LDFribffnw9zYeiCrmXupjmui5d3ThnXXTaizoWtrDOt0pJheTxcOI7XRcOlrartAsKPoelVQGuFrHx1TZb6e_7uMO4LbyPlZCdA1SFVF_o3FWlLgP-PVvYjI1ms2z8wDiOhS9-GvA8UC6G5GJQLobkkrEv8x4PiW3jP21PUHDzdsiTTRdAe8ygPeYt7cnY_kzsZli8z6YstQRPWVfwjMP5bVh2GEuxfbx_eTbI0VNLwFZtxj4lLZmPpMRYattWGWuW9GdpqMt3-rtbovYGeI1133bf49322CrOFhpa0eyzlenTS_wMCGrqDmix_AV5Wxt7 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0-uKLqPUjWmUFEXwIl002m-yT3EmPttAih4W-LfuVWtBc27sK_vfObPbOXil9Skg2YcnszPxmZ_IbgE_cNMJZ4XOP2CMXSrhcKWMo--ib1pfScvp3-PhEHpyKo7P6LG24LVNZ5domRkPtF472yMdlqQSGL6riXy-vcuoaRdnV1ELjMeygCW7bEexM90--z9e2GNF63QzJSQzF1LjrUWxUzxV5CyXfckaRs_8-oHm3XvKWA5o9g6cJObLJIOrn8Cj0L2B30mPU_Psv-8xiLWfcJN-FqzmRZ_TnLGJJ1h3PD9kMPdiw8cdidYsb-kbkU_RjnsXmmFQ2FCXFYiUBMzTyT1qc-BwxecRDLB1nk1tJiJdwOtv_8e0gT80VcidUscpVXdq6sdbYYJXjdShMYaxrpRSSSOTxxHWqLiyquK2U9RLNYmmkx6tFaFz1Ckb9og9vgJnCuVBx0VlEV0T5RUFeVarS01-0hclgvP7K2iXmcWqA8UtjBEJy0VEumuSio1wy-LJ54nJg3Xhg7JQEtxlHfNnxwuL6XCf10x03vKuqosMpCYPvMbLlwhamakwQXZ3B3lrsOinxUv9fchl83NxG9aOciunD4mapiaunFoix2gxeD6tkM5OScqptW2XQbK2fralu3-kvfkaKb4TZ1P_t7cPTegdP6DuQK-XNHoxW1zfhPWKklf2QFOEf_tMUXw priority: 102 providerName: ProQuest |
Title | Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29089883 https://www.proquest.com/docview/2294106931 https://www.proquest.com/docview/1958542238 https://pubmed.ncbi.nlm.nih.gov/PMC5651030 https://doaj.org/article/f1a1f330fd644a338a6814b0a37ae4f5 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfQ9sILAsZHYFSehJB4CLNjx4kf0NRO6wZSJ1RRqW-W7Tgb0khZ1yH233PnpGFFhZcksh3H8p1zd77z7wh5y20hvZNVWoHukUotfaq1teh9rIqyypTjeHZ4cq7OZvLzPJ__OR7dTeDNVtMO80nNllcffl3fHcGC_4gWJ8jbw7qBaozSimiEaAvtglwqMJ_BRPY-BdDcI-4nVwrML2C81mm5tQeECEaHWFmKDXkVYf236aJ_h1Tek1Hjx-RRp1zSYcsNT8iD0Dwle8MGDOvvd_QdjeGecR99j1xPEV-juaBR3aT1ZPqJjkHItXuDNAbA-Da1RDoCUVfRmD8TI4siMWkMNqAWW_7s-BfeQ7CPeIvR5XR4z0_xjMzGJ1-Pz9Iu_0LqpWarVOeZywvnrAtOe54HZpl1vlRKKsSZhwdf65w5-As4oV2l4M-ZWVVBKQuFF8_JTrNowktCLfM-CC5rBwoYooKhHSgynVV40JbZhByuZ9n4Dpwcc2RcGTBSkEQmksggiUwkUULe92_8aIE5_tN2hITr2yGkdixYLC9Mt0JNzS2vhWA1DEla6MeqkkvHrChskHWekP012c2aTU2WaQlGtRbwjYO-GlYoul1sExa3NwbhfHIJaliZkBctl_QjWXNZQooN_tkY6mZN8-0yooCDJo4p4l79s8_X5CFOAQpaXuyTndXyNrwBDWrlBmR3dHL-ZTqIOxBwPZ3zQVwsvwFDrRvr |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a3QEuCBiwwAAjARKHaI7jfPiAUAurWrZWqNqk3YztJAMJ0m3tQPun-Bt5z0nKitBuOyVKnMjy-_Z7_j2AV5HJpLOyCAv0PUKppAuVMoayj0WWFyK1EZ0dnkzT0ZH8dJwcb8Dv7iwMlVV2OtEr6mLuaI98VwglMXxRcfT-9CykrlGUXe1aaDRssV9e_sKQbfFu_BHp-1qI4d7hh1HYdhUInVR8GapE2CSz1tjSKhclJTfcWJenqUwJPR1vXKUSbpG3baxskaI-ECYt8CkvMxfjf2_BpoxTLnqwOdibfp51uh-jgyRrkqEY-qndqkY2ofoxj5OYRmvGz_cI-J9j-2995hWDN7wHd1tPlfUb1roPG2X9ALb6NUbpPy7ZG-ZrR_2m_BaczQisoz5h3ndl1WQ2ZkO0mM1GI_PVNK7pUxEO0G4WzDfjpDIlzxnMVy4wQyN_tsKA3xFyiL_4UnXWv5L0eAhHN7Lsj6BXz-tyG5jhzpVxJCuL3hxBjFFQGQslCjq1y00Au90qa9cinVPDje8aIx6ii_Z00UQX7ekSwNvVF6cNysc1YwdEuNU4wuf2D-bnJ7oVd11FJqrimFc4JWnwPybNI2m5iTNTyioJYKcju26VxkL_ZfEAXq5eo7hTDsfU5fxioQkbKJHo0-UBPG64ZDUTQTncPI8DyNb4Z22q62_qb189pDi69dRv7sn103oBt0eHkwN9MJ7uP4U7tCZkxqNsB3rL84vyGfpnS_u8FQoGX25aDv8AdIVRbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkK8IGDAMgYYCZB4iBo7zh8_INSyVStj1VQxaW_GdpKBxNJt7UD7anw67pykrAjtbU-JYjuyfHe-O9_5dwCvucmks7IIC7Q9QqmkC5UyhqKPRZYXIrWc7g4fTNK9I_npODleg9_dXRhKq-z2RL9RFzNHZ-R9IZRE90XFvF-1aRGHO6MPZ-chVZCiSGtXTqNhkf3y6he6b_P34x2k9RshRrtfPu6FbYWB0EkVLUKVCJtk1hpbWuV4UkYmMtblaSpTQlLHF1epJLLI5zZWtkhxbxAmLfBrVGYuxv_egfWMvKIerA93J4fTTg-gp5BkTWAU3UDVr2pkGcol85iJKV9RhL5ewP-M3H9zNa8pv9EDuN9arWzQsNlDWCvrR7AxqNFjP71ib5nPI_UH9BtwPiXgjvqEeTuWVQfTMRuh9mwOHZnPrHFNzYpwiDq0YL4wJ6UseS5hPouBGer5sxUMHEcoIv7h09bZ4FoA5DEc3cqyP4FePavLTWAmcq6MuawsWnYEN0YOZiyUKOgGb2QC6HerrF2Lek7FN35o9H6ILtrTRRNdtKdLAO-WI84axI8b-g6JcMt-hNXtP8wuTnQr-rrihldxHFU4JWnwPybNubSRiTNTyioJYLsju243kLn-y-4BvFo2o-hTPMfU5exyrgknKJFo3-UBPG24ZDkTQfHcPI8DyFb4Z2Wqqy31928eXhxNfKo9t3XztF7CXZQ__Xk82X8G92hJSKPzbBt6i4vL8jmaagv7opUJBl9vWwz_APJiVaM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting+State+fMRI+Functional+Connectivity-Based+Classification+Using+a+Convolutional+Neural+Network+Architecture&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Meszl%C3%A9nyi%2C+Regina+J&rft.au=Buza%2C+Krisztian&rft.au=Vidny%C3%A1nszky%2C+Zolt%C3%A1n&rft.date=2017-10-17&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=11&rft.spage=61&rft_id=info:doi/10.3389%2Ffninf.2017.00061&rft_id=info%3Apmid%2F29089883&rft.externalDocID=29089883 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |