EEG Microstates Analysis in Young Adults With Autism Spectrum Disorder During Resting-State

Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state and allows to characterize spontaneous brain activity that is not detected when a subject is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG, it is possible to perform fast...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 13; p. 173
Main Authors D’Croz-Baron, David F., Baker, Mary, Michel, Christoph M., Karp, Tanja
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 12.06.2019
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2019.00173

Cover

Loading…
Abstract Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state and allows to characterize spontaneous brain activity that is not detected when a subject is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG, it is possible to perform fast topographical reference-free analysis, since different scalp potential fields correspond to changes in the underlying sources within the brain. In this study, the spontaneous EEG resting state (eyes closed) was compared between 10 young adults ages 18-30 years with autism spectrum disorder (ASD) and 13 neurotypical controls. A microstate analysis was applied, focusing on four temporal parameters: mean duration, the frequency of occurrence, the ratio of time coverage, and the global explained variance (GEV). Using data that were acquired from a 65-channel EEG system, six resting-state topographies that best describe the dataset across all subjects were identified by running a two-step cluster analysis labeled as microstate classes A-F. The results indicated that microstates B and E displayed statistically significant differences between both groups among the temporal parameters evaluated. Classes B, D, E, and F were consistently more present in ASD, and class C in controls. The combination of these findings with the putative functional significance of the different classes suggests that during resting state, the ASD group was more focused on visual scene reconstruction, while the control group was more engaged with self-memory retrieval. Furthermore, from a connectivity perspective, the resting-state networks that have been previously associated with each microstate class overlap the brain regions implicated in impaired social communication and repetitive behaviors that characterize ASD.
AbstractList Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state and allows to characterize spontaneous brain activity that is not detected when a subject is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG, it is possible to perform fast topographical reference-free analysis, since different scalp potential fields correspond to changes in the underlying sources within the brain. In this study, the spontaneous EEG resting state (eyes closed) was compared between 10 young adults ages 18-30 years with autism spectrum disorder (ASD) and 13 neurotypical controls. A microstate analysis was applied, focusing on four temporal parameters: mean duration, the frequency of occurrence, the ratio of time coverage, and the global explained variance (GEV). Using data that were acquired from a 65-channel EEG system, six resting-state topographies that best describe the dataset across all subjects were identified by running a two-step cluster analysis labeled as microstate classes A-F. The results indicated that microstates B and E displayed statistically significant differences between both groups among the temporal parameters evaluated. Classes B, D, E, and F were consistently more present in ASD, and class C in controls. The combination of these findings with the putative functional significance of the different classes suggests that during resting state, the ASD group was more focused on visual scene reconstruction, while the control group was more engaged with self-memory retrieval. Furthermore, from a connectivity perspective, the resting-state networks that have been previously associated with each microstate class overlap the brain regions implicated in impaired social communication and repetitive behaviors that characterize ASD.
Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state and allows to characterize spontaneous brain activity that is not detected when a subject is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG, it is possible to perform fast topographical reference-free analysis, since different scalp potential fields correspond to changes in the underlying sources within the brain. In this study, the spontaneous EEG resting state (eyes closed) was compared between 10 young adults ages 18-30 years with autism spectrum disorder (ASD) and 13 neurotypical controls. A microstate analysis was applied, focusing on four temporal parameters: mean duration, the frequency of occurrence, the ratio of time coverage, and the global explained variance (GEV). Using data that were acquired from a 65-channel EEG system, six resting-state topographies that best describe the dataset across all subjects were identified by running a two-step cluster analysis labeled as microstate classes A-F. The results indicated that microstates B and E displayed statistically significant differences between both groups among the temporal parameters evaluated. Classes B, D, E, and F were consistently more present in ASD, and class C in controls. The combination of these findings with the putative functional significance of the different classes suggests that during resting state, the ASD group was more focused on visual scene reconstruction, while the control group was more engaged with self-memory retrieval. Furthermore, from a connectivity perspective, the resting-state networks that have been previously associated with each microstate class overlap the brain regions implicated in impaired social communication and repetitive behaviors that characterize ASD.Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state and allows to characterize spontaneous brain activity that is not detected when a subject is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG, it is possible to perform fast topographical reference-free analysis, since different scalp potential fields correspond to changes in the underlying sources within the brain. In this study, the spontaneous EEG resting state (eyes closed) was compared between 10 young adults ages 18-30 years with autism spectrum disorder (ASD) and 13 neurotypical controls. A microstate analysis was applied, focusing on four temporal parameters: mean duration, the frequency of occurrence, the ratio of time coverage, and the global explained variance (GEV). Using data that were acquired from a 65-channel EEG system, six resting-state topographies that best describe the dataset across all subjects were identified by running a two-step cluster analysis labeled as microstate classes A-F. The results indicated that microstates B and E displayed statistically significant differences between both groups among the temporal parameters evaluated. Classes B, D, E, and F were consistently more present in ASD, and class C in controls. The combination of these findings with the putative functional significance of the different classes suggests that during resting state, the ASD group was more focused on visual scene reconstruction, while the control group was more engaged with self-memory retrieval. Furthermore, from a connectivity perspective, the resting-state networks that have been previously associated with each microstate class overlap the brain regions implicated in impaired social communication and repetitive behaviors that characterize ASD.
Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting-state and allows to characterize spontaneous brain activity that is not detected when a subject is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG, it is possible to perform fast topographical reference-free analysis, since different scalp potential fields correspond to changes in the underlying sources within the brain. In this study, the spontaneous EEG resting-state (eyes closed) was compared between ten young adults ages 18-30 years with Autism Spectrum Disorder (ASD) and thirteen neurotypical controls. A microstate analysis was applied, focusing on four temporal parameters: mean duration, the frequency of occurrence, the ratio of time coverage, and the Global Explained Variance (GEV). Using data that were acquired from a 65 channel EEG system, six resting-state topographies that best describe the dataset across all subjects were identified by running a two-step cluster analysis, labeled as microstate classes A-F. The results indicated that microstates B and E displayed a statistically significant differences between both groups among the temporal parameters evaluated. Classes B, D, E, and F were consistently more present in ASD, and class C in controls. The combination of these findings with the putative functional significance of the different classes suggests that during resting-state, the ASD group was more focused on visual scene-reconstruction, while the control group was more engaged with self-memory retrieval. Furthermore, from a connectivity perspective, the resting-state networks that have been previously associated with each microstate class overlap the brain regions implicated in impaired social communication and repetitive behaviors that characterize ASD.
Author Michel, Christoph M.
Karp, Tanja
Baker, Mary
D’Croz-Baron, David F.
AuthorAffiliation 1 Autumn’s Dawn Neuroimaging, Cognition, and Engineering Laboratory, Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, TX , United States
2 Functional Brain Mapping Laboratory, Department of Basic Neuroscience, Faculty of Medicine, University of Geneva , Geneva , Switzerland
3 Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, TX , United States
AuthorAffiliation_xml – name: 2 Functional Brain Mapping Laboratory, Department of Basic Neuroscience, Faculty of Medicine, University of Geneva , Geneva , Switzerland
– name: 1 Autumn’s Dawn Neuroimaging, Cognition, and Engineering Laboratory, Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, TX , United States
– name: 3 Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, TX , United States
Author_xml – sequence: 1
  givenname: David F.
  surname: D’Croz-Baron
  fullname: D’Croz-Baron, David F.
– sequence: 2
  givenname: Mary
  surname: Baker
  fullname: Baker, Mary
– sequence: 3
  givenname: Christoph M.
  surname: Michel
  fullname: Michel, Christoph M.
– sequence: 4
  givenname: Tanja
  surname: Karp
  fullname: Karp, Tanja
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31244624$$D View this record in MEDLINE/PubMed
BookMark eNp1kttrFDEUxoNUbLv67pMEfPFl1lwml3kRlnZtCxXBKiI-hGwms5tlZrLmIvS_b2a3lrbg0wnJ73w5l-8UHI1-tAC8xWhOqWw-duMmD3OCcDNHCAv6ApxgzknFMMdHj87H4DTGLUKccIZfgWOKSV1zUp-A38vlBfziTPAx6WQjXIy6v40uQjfCXz6Pa7hoc58i_OnSBi5ycnGANztrUsgDPHfRh9YGeJ6DK-w3G1OJ1c0k9hq87HQf7Zv7OAM_Pi-_n11W118vrs4W15WpG5Sqhra2a2QreFdbbJBltMXWCNRRViMpuZGm01gWjFq7MkJIQ1osG8NYJ7GhM3B10G293qpdcIMOt8prp_YXPqyVDsmZ3iqJijjRRhBja2pws6KadZ2Uxq5aVv6YgU8HrV1eDbY1dkxB909En76MbqPW_q_iTGKBJoEP9wLB_8llHGpw0di-16P1OSpCakmFQKWQGXj_DN36HMr8J0oyjEVptVDvHlf0UMq_HRYAHYBpiTHY7gHBSE02UXubqMkmam-TksKfpRhXNub81JPr_594B2Lqw6o
CitedBy_id crossref_primary_10_1038_s42003_021_02494_3
crossref_primary_10_3389_fpsyg_2022_1065196
crossref_primary_10_1007_s12311_023_01534_4
crossref_primary_10_1016_j_compbiomed_2024_108266
crossref_primary_10_3389_fncom_2019_00091
crossref_primary_10_1007_s10548_023_00971_y
crossref_primary_10_1007_s41252_023_00374_x
crossref_primary_10_1016_j_neuroimage_2022_119348
crossref_primary_10_1007_s10548_020_00802_4
crossref_primary_10_1111_psyp_14268
crossref_primary_10_1016_j_neuroimage_2022_119669
crossref_primary_10_1111_cns_14421
crossref_primary_10_1111_cns_14641
crossref_primary_10_1007_s10548_020_00777_2
crossref_primary_10_1007_s10548_023_01010_6
crossref_primary_10_1016_j_neuroimage_2021_118850
crossref_primary_10_1016_j_bandc_2020_105677
crossref_primary_10_1016_j_pnpbp_2024_110958
crossref_primary_10_3389_fpsyt_2022_898716
crossref_primary_10_1007_s10548_024_01038_2
crossref_primary_10_1016_j_cortex_2024_05_019
crossref_primary_10_1089_brain_2020_0848
crossref_primary_10_3389_fnins_2021_689791
crossref_primary_10_1007_s10548_021_00835_3
crossref_primary_10_3389_fpsyt_2022_988939
crossref_primary_10_3389_fnint_2023_1234471
crossref_primary_10_1007_s10548_023_00982_9
crossref_primary_10_1162_jocn_a_02022
crossref_primary_10_1192_j_eurpsy_2023_2414
crossref_primary_10_1186_s10194_022_01414_y
crossref_primary_10_1371_journal_pone_0251842
crossref_primary_10_3389_fnhum_2021_636252
crossref_primary_10_1007_s12311_024_01770_2
crossref_primary_10_1007_s10548_023_01001_7
crossref_primary_10_1007_s10548_023_01004_4
crossref_primary_10_1111_head_14622
crossref_primary_10_1097_j_pain_0000000000003546
crossref_primary_10_3389_fnhum_2020_00288
crossref_primary_10_1002_hbm_25834
crossref_primary_10_1002_hbm_26525
crossref_primary_10_1016_j_dcn_2022_101134
crossref_primary_10_1093_cercor_bhac229
crossref_primary_10_1007_s10548_023_01009_z
crossref_primary_10_1007_s11571_024_10095_z
crossref_primary_10_1088_1741_2552_ac4595
crossref_primary_10_1111_desc_13231
Cites_doi 10.1007/s10548-018-0685-0
10.1007/s10548-007-0026-1
10.1016/j.nicl.2016.08.008
10.1016/j.neuroimage.2019.03.029
10.3389/fnsys.2010.00019
10.1006/nimg.2002.1070
10.1017/CBO9780511596889
10.1016/j.jneumeth.2003.10.009
10.1016/j.neuroimage.2010.02.052
10.1111/1469-8986.3720163
10.1109/10.391164
10.1016/j.neubiorev.2014.12.010
10.1016/0013-4694(87)90025-3
10.1146/annurev-neuro-071013-014030
10.3389/fphys.2018.00475
10.1016/j.neuroimage.2012.01.090
10.1109/ICOSP.2002.1180091
10.1016/0013-4694(80)90419-8
10.3389/fnhum.2013.00442
10.1155/2011/813870
10.1016/j.schres.2014.05.036
10.1016/j.tins.2007.12.005
10.3389/fnhum.2016.00463
10.1007/s10548-008-0054-5
10.1016/j.neuroimage.2017.11.062
10.1016/j.dcn.2018.04.011
10.1016/j.neuroimage.2017.06.062
10.1007/s10548-019-00697-w
10.3389/fpsyt.2018.00395
10.1073/pnas.98.2.676
10.1016/j.neuroimage.2015.08.023
10.3389/fnins.2018.00714
10.1186/1866-1955-5-24
10.3389/fncom.2018.00070
10.1016/j.biopsych.2012.12.013
10.1002/dneu.22570
10.1089/brain.2016.0476
10.1016/j.neuroimage.2010.05.067
10.3389/fnhum.2016.00167
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 D’Croz-Baron, Baker, Michel and Karp. 2019 D’Croz-Baron, Baker, Michel and Karp
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 D’Croz-Baron, Baker, Michel and Karp. 2019 D’Croz-Baron, Baker, Michel and Karp
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2019.00173
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_8053d2ac72ce43c19b3a5ff88cebd518
PMC6581708
31244624
10_3389_fnhum_2019_00173
Genre Journal Article
GeographicLocations Lubbock Texas
United States--US
Texas
GeographicLocations_xml – name: Texas
– name: United States--US
– name: Lubbock Texas
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IHW
IPNFZ
IPY
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-93def98d76f4e1c0e53d1ec70f3540886c8cfa183de3eebc778c2d189c55f81c3
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:22:24 EDT 2025
Thu Aug 21 18:03:19 EDT 2025
Thu Sep 04 21:16:12 EDT 2025
Fri Jul 25 11:38:29 EDT 2025
Thu Jan 02 23:02:12 EST 2025
Tue Jul 01 03:44:24 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords electroencephalography
EEG microstates
resting state
autism spectrum disorder
topographical analysis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-93def98d76f4e1c0e53d1ec70f3540886c8cfa183de3eebc778c2d189c55f81c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Filippo Brighina, University of Palermo, Italy
Reviewed by: Stavros I. Dimitriadis, Cardiff University School of Medicine, United Kingdom; Antonio Ivano Triggiani, University of Foggia, Italy
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2019.00173
PMID 31244624
PQID 2285117778
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_8053d2ac72ce43c19b3a5ff88cebd518
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581708
proquest_miscellaneous_2248377005
proquest_journals_2285117778
pubmed_primary_31244624
crossref_primary_10_3389_fnhum_2019_00173
crossref_citationtrail_10_3389_fnhum_2019_00173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-12
PublicationDateYYYYMMDD 2019-06-12
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Britz (B8) 2010; 52
Hames (B15) 2016; 10
Michel (B26) 2009
(B10) 2018
Lehmann (B20) 1987; 67
Bi (B4) 2018; 9
Jung (B17) 2000; 37
Pascual-Marqui (B30) 1995; 42
Wei (B42) 2018; 9
Makeig (B23) 1996; 8
(B2) 2013
Murray (B29) 2008; 20
Von Wegner (B40) 2017; 158
Lehmann (B21) 1980; 48
Yao (B43) 2016; 10
Morgan (B28) 2019; 32
Custo (B11) 2017; 7
Gschwind (B14) 2016; 12
Michel (B25) 2018; 180
Jia (B16) 2019; 32
Fox (B13) 2010; 4
Brunet (B9) 2011; 2011
Billeci (B5) 2013; 7
Lynch (B22) 2013; 74
Tomescu (B37) 2014; 157
(B36) 2017
Amaral (B1) 2008; 31
Delorme (B12) 2004; 134
Tomescu (B38) 2018; 31
Khanna (B18) 2015; 49
Mash (B24) 2018; 78
Raichle (B32) 2015; 38
Wang (B41) 2013; 5
Milz (B27) 2016; 125
Serrano (B34) 2018; 12
Skrandies (B35) 2007; 20
Biswal (B6) 2012; 62
Assaf (B3) 2010; 53
Bréchet (B7) 2019; 194
Poulsen (B31) 2018
Raichle (B33) 2001; 98
Koenig (B19) 2002; 16
Von Wegner (B39) 2018; 12
References_xml – volume: 32
  start-page: 295
  year: 2019
  ident: B16
  article-title: Aberrant intrinsic brain activity in patients with autism spectrum disorder: insights from EEG microstates.
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-018-0685-0
– volume: 20
  start-page: 15
  year: 2007
  ident: B35
  article-title: The effect of stimulation frequency and retinal stimulus location on visual evoked potential topography.
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-007-0026-1
– volume: 12
  start-page: 466
  year: 2016
  ident: B14
  article-title: Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis.
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2016.08.008
– volume: 194
  start-page: 82
  year: 2019
  ident: B7
  article-title: NeuroImage capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.029
– volume: 4
  year: 2010
  ident: B13
  article-title: Clinical applications of resting state functional connectivity.
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2010.00019
– volume: 16
  start-page: 41
  year: 2002
  ident: B19
  article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1070
– year: 2009
  ident: B26
  publication-title: Electrical Neuroimaging.
  doi: 10.1017/CBO9780511596889
– volume: 134
  start-page: 9
  year: 2004
  ident: B12
  article-title: EEGLAB: an open sorce toolbox for analysis of single-trail EEG dynamics including independent component anlaysis.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 52
  start-page: 1162
  year: 2010
  ident: B8
  article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.052
– volume: 37
  start-page: 163
  year: 2000
  ident: B17
  article-title: Removing electroencephalographic aretfacts by blind source seperation.
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– volume: 42
  start-page: 658
  year: 1995
  ident: B30
  article-title: Segmentation of brain electrical activity into microstates: model estimation and validation.
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/10.391164
– year: 2013
  ident: B2
  publication-title: Diagnostic and Statistical Manual of Mental Disorders
– volume: 49
  start-page: 105
  year: 2015
  ident: B18
  article-title: Microstates in resting-state EEG: current status and future directions.
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.12.010
– volume: 67
  start-page: 271
  year: 1987
  ident: B20
  article-title: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation.
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90025-3
– volume: 38
  start-page: 433
  year: 2015
  ident: B32
  article-title: The Brain’s default mode network.
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071013-014030
– volume: 9
  year: 2018
  ident: B4
  article-title: Abnormal functional connectivity of resting state network detection based on linear ICA analysis in autism spectrum disorder.
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00475
– volume: 62
  start-page: 938
  year: 2012
  ident: B6
  article-title: Resting state fMRI: a personal history.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.090
– volume: 8
  start-page: 145
  year: 1996
  ident: B23
  article-title: Independent component analysis of electroencephalographic data.
  publication-title: Adv. Neural Inf. Process. Syst.
  doi: 10.1109/ICOSP.2002.1180091
– volume: 48
  start-page: 609
  year: 1980
  ident: B21
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields.
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(80)90419-8
– volume: 7
  year: 2013
  ident: B5
  article-title: On the application of quantitative eeg for characterizing autistic brain: a systematic review.
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00442
– volume: 2011
  year: 2011
  ident: B9
  article-title: Spatiotemporal analysis of multichannel EEG: CARTOOL.
  publication-title: Comput. Intel. Neurosci.
  doi: 10.1155/2011/813870
– year: 2018
  ident: B10
  publication-title: Data & Statistics on Autism Spectrum Disorder.
– volume: 157
  start-page: 175
  year: 2014
  ident: B37
  article-title: Deviant dynamics of EEG resting state pattern in 22q11. 2 deletion syndrome adolescents: a vulnerability marker of schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2014.05.036
– volume: 31
  start-page: 137
  year: 2008
  ident: B1
  article-title: Neuroanatomy of autism.
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.12.005
– volume: 10
  year: 2016
  ident: B43
  article-title: Resting-state time-varying analysis reveals aberrant variations of functional connectivity in autism.
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00463
– volume: 20
  start-page: 249
  year: 2008
  ident: B29
  article-title: Topographic ERP analyses: a step-by-step tutorial review.
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-008-0054-5
– volume: 180
  start-page: 577
  year: 2018
  ident: B25
  article-title: EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.062
– volume: 31
  start-page: 58
  year: 2018
  ident: B38
  article-title: From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging.
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2018.04.011
– volume: 158
  start-page: 99
  year: 2017
  ident: B40
  article-title: NeuroImage Information-theoretical analysis of resting state EEG microstate sequences - non-Markovianity, non-stationarity and periodicities.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.062
– volume: 32
  start-page: 461
  year: 2019
  ident: B28
  article-title: Characterization of autism spectrum disorder across the age span by intrinsic network patterns.
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-019-00697-w
– volume: 9
  year: 2018
  ident: B42
  article-title: EEG Microstates indicate heightened somatic awareness in insomnia: toward objective assessment of subjective mental content.
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2018.00395
– volume: 98
  start-page: 676
  year: 2001
  ident: B33
  article-title: A default mode of brain function.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.98.2.676
– volume: 125
  start-page: 643
  year: 2016
  ident: B27
  article-title: The functional significance of EEG microstates-associations with modalities of thinking.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.023
– volume: 12
  year: 2018
  ident: B34
  article-title: EEG microstates change in response to increase in dopaminergic stimulation in typical parkinson’s disease patients.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00714
– volume: 5
  year: 2013
  ident: B41
  article-title: Resting state EEG abnormalities in autism spectrum disorders.
  publication-title: J. Neurodev. Disord.
  doi: 10.1186/1866-1955-5-24
– volume: 12
  year: 2018
  ident: B39
  article-title: EEG microstate sequences from different clustering algorithms are information-theoretically invariant.
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2018.00070
– volume: 74
  start-page: 212
  year: 2013
  ident: B22
  article-title: Default mode network in childhood autism: Posteromedial cortex heterogeneity and relationship with social deficits.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.12.013
– volume: 78
  start-page: 456
  year: 2018
  ident: B24
  article-title: Multimodal approaches to functional connectivity in autism spectrum disorders: an integrative perspective.
  publication-title: Dev. Neurobiol.
  doi: 10.1002/dneu.22570
– year: 2017
  ident: B36
  publication-title: The R Foundation for Statistical Computing
– volume: 7
  start-page: 671
  year: 2017
  ident: B11
  article-title: Electroencephalographic resting-state networks.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2016.0476
– volume: 53
  start-page: 247
  year: 2010
  ident: B3
  article-title: NeuroImage abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.067
– volume: 10
  year: 2016
  ident: B15
  article-title: Visual, auditory, and cross modal sensory processing in adults with autism: an EEG power and BOLD fMRI investigation.
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00167
– year: 2018
  ident: B31
  article-title: Microstate EEGlab toolbox: an introductory guide.
  publication-title: bioRxiv
SSID ssj0062651
Score 2.4728138
Snippet Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state and allows to characterize spontaneous brain activity that is not...
Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting-state and allows to characterize spontaneous brain activity that is not...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 173
SubjectTerms Autism
autism spectrum disorder
Computer engineering
Disease control
EEG
EEG microstates
Electrodes
Electroencephalography
Laboratories
Neural networks
Neuroscience
resting state
Statistical analysis
Studies
topographical analysis
Topography
Young adults
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJy-iro_WVSKI4CFMJ-nuJMdRZ12E9SAuLngInZczsJMVZ-bgv7cq3T3siOjFayeBdKoq-Sqp-oqQlx1YWCd7xVQrHGucdMw1fc9SI5wK3hhR7nTPP3ZnF82Hy_byRqkvjAkb6IGHhZtp0JIgeq-Ej4303DjZtylp7aMLLS9pvrWpJ2dq2IMBpbd8eJQEF8zMUl7uMO2cF3JKJQ8OocLV_yeA-Xuc5I2D5_QuuTMiRjofZnqP3Ir5PjmeZ_CW1z_pK1piOMvl-DH5uli8p-cYY1cShTZ04hyhq0yLYdM5Em5s6JfVdknnoHWbNcUa9NsfuzWdqDjpu5K8SD8hBUf-xgoifUAuThef356xsXwC842pt8zIEJPRQXWpidzXERaSR6_qhHc9Wnde-9SDSYcoY3ReKe1F4Nr4tk2ae_mQHOXrHB8T6mBQ8uBcBQ9HugeM4wK-4Klep9iqVJHZtJ7Wj9ziWOLiyoKPgRKwRQIWJWCLBCryej_i-8Cr8Ze-b1BE-37IiF0-gJ7YUU_sv_SkIieTgO1ophsrBAJOBX9ekRf7ZjAwfDXpc7zeYR8k3VewW1Xk0aAP-5lIREedaCqiDjTlYKqHLXm1LCTegPy4qvWT__FvT8ltXC1WSiqdkCNQmfgMsNLWPS9m8Qv0zRVo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_avvgiav1YrRJBBB_C3W42m-yTXPVqEVqkWCz4EDaTpHfg7dXu3YP_vTO53dMT6etuAiHzkd9MJr9h7E2FFlbJRgutCidKJ51wZdOIWBZOe6jrIuV0T8-qk4vy86W67BNuXV9WOfjE5Kj9EihHPioKwgZaa_P--qegrlF0u9q30LjL9tEFG9Tz_aPp2ZfzwRcjWlf55nISQ7F6FNvZmp6f54mkUsudwyhx9v8PaP5bL_nXAXT8gN3vkSOfbET9kN0J7SN2MGkxal784m95quVMSfID9n06_cRPqdYuPRjq-MA9wuctTwbOJ0S80fFv89WMT1D7ugWnXvSrm_WCD5Sc_GN6xMjPiYqjvRIJmT5mF8fTrx9ORN9GQUBZj1eilj7E2nhdxTLkMA5K-jyAHkfK-RhTgYHYoGn7IENwgFsMhc9NDUpFk4N8wvbaZRueMe5wUgQMsjzg0Q6IdZynmzzdmBiUjhkbDftpoecYp1YXPyzGGiQBmyRgSQI2SSBj77Yzrjf8GreMPSIRbccRM3b6sLy5sr2hWYNexRcN6AJCKSGvnWxUjMZAcF7lJmOHg4Btb66d_aNcGXu9_Y2GRrcnTRuWaxpD5PsavVbGnm70YbsSSSipKsqM6R1N2Vnq7p92Pktk3ogAcz02z29f1gt2j_ZBpKZJh2wPlSG8RDS0cq96lf8No98Nfg
  priority: 102
  providerName: ProQuest
Title EEG Microstates Analysis in Young Adults With Autism Spectrum Disorder During Resting-State
URI https://www.ncbi.nlm.nih.gov/pubmed/31244624
https://www.proquest.com/docview/2285117778
https://www.proquest.com/docview/2248377005
https://pubmed.ncbi.nlm.nih.gov/PMC6581708
https://doaj.org/article/8053d2ac72ce43c19b3a5ff88cebd518
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJqG9IGDAAqMyEkLiIayOk9h5QKiDbhNSJzRRUYmHKP5aK60p9ENi_z13blIoKrzkIbEtx3fn-50_fgfwKkcLy0UlY5klOk610LFOqyr2aaKlNUWRhDXdwWV-MUw_jbLR7-vRzQAudoZ2lE9qOL95-_PH7Xs0-HcUcaK_PfH1eEWXynmgnpTiLuyjX8opFBukmz0FRO4hGSPPcwy_EOisNy13tnAA9wQ5vjxJt_xVoPXfhUX_PlL5h486ewD3G3DJemtteAh3XP0IDns1BtbTW_aaheOeYR39EL71--dsQMfxwp2iBWvpSdikZmEOYD3i5liwr5PlmPVQQRdTRunql_PVlLWsnexjuOfIroito76OA3h9DMOz_pcPF3GTaSE2adFdxoWwzhfKytynjpuuy4Tlzsiup2UhpXKjjK_Q-q0TzmkjpTKJ5aowWeYVN-IJ7NWz2h0B01jJG4zDrEHvbxAOaUubfbJS3mXSR3DSjmdpGhpyyoZxU2I4QsIogzBKEkYZhBHBm02N72sKjv-UPSURbcoReXZ4MZtfl40tlgonHptURibGpcLwQosq814p47TNuIrguBVw2SpkmSSETSX-eQQvN5_RFmmDpardbEVliJ9f4sQWwdO1Pmx60upTBHJLU7a6uv2lnowD3zeCRC676tk_23wOBzQEcUipdAx7qAfuBWKlpe7A_mn_8vNVJ6w14PN8xDvBLH4B06oU3g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXBJSHocAiARIHK_H6sesDQilNSWkTodKKShyM99VEIk5pEqH-KX4jMxs7EIR669Ve26udb8ff7O58A_AywxmWxaUIRcpVmKhYhSopy9AlXAmj85z7Nd3BMOufJB9P09MN-NXkwtCxysYnekdtpprWyNucEzcQQsh35z9CqhpFu6tNCY0lLA7s5U8M2WZv93fRvq843-sdv--HdVWBUCd5Zx7msbEul0ZkLrGR7tg0NpHVouNoCUTKTEvtSkS6sbG1SuMXNTeRzHWaOhnpGN97AzYTymhtweZOb_jpqPH9GB2k0XIzFEO_vO2q0YLS3SMviinitZ-frxHwP2L77_nMv354e3fgds1UWXcJrbuwYat7sNWtMEqfXLLXzJ8d9YvyW_C11_vABnS2zycozVijdcLGFfMOhXVJ6GPGvoznI9ZFtM8m7DNleV4sJqyRAGW7PmmSHZH0R3UWeiZ8H06uZYAfQKuaVvYRMIUPOY1BndFIJTRyK2Vo51CU0tlUuADazXgWutY0p9Ia3wuMbcgChbdAQRYovAUCeLN64nyp53FF2x0y0aodKXH7C9OLs6Ke2IVEL2Z4qQXXNol1lKu4TJ2TUltl0kgGsN0YuKjdw6z4A-YAXqxu48Sm3ZqystMFtSGxf4FeMoCHSzysehITK8t4EoBYQ8paV9fvVOORFw9HxhmJjnx8dbeew83-8eCwONwfHjyBWzQmoS_YtA0tBIZ9ikxsrp7V8Gfw7bpn3G9LNUuT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEFAehgKLBEgcrMTrx64PCKUkoaU0qgoVlXow3lcTiTilSYT61_h1zGzsQBDqrdd47ax2HvvN7sw3AC8ztLAsLkUoUq7CRMUqVElZhi7hShid59yf6R4Ms93j5ONJerIBv5paGEqrbHyid9RmqumMvM05YQMhhGy7Oi3isDd4d_4jpA5SdNPatNNYqsi-vfyJ4dvs7V4PZf2K80H_y_vdsO4wEOok78zDPDbW5dKIzCU20h2bxiayWnQcHYdImWmpXYlab2xsrdL475qbSOY6TZ2MdIzfvQGbAnfFpAWbO_3h4VGzD2CkkEbLi1EMA_O2q0YLKn2PPEGmiNc2Qt8v4H8g999czb82v8EduF2jVtZdqtld2LDVPdjqVhixTy7Za-bzSP0B_Rac9vsf2AHl-flipRlreE_YuGLeubAukX7M2NfxfMS6qPmzCftMFZ8Xiwlr6EBZzxdQsiOiAanOQo-K78PxtSzwA2hV08o-AqbwJacxwDMaYYVGnKUM3SKKUjqbChdAu1nPQtf85tRm43uBcQ5JoPASKEgChZdAAG9Wb5wvuT2uGLtDIlqNI1Zu_8P04qyojbyQ6NEML7Xg2iaxjnIVl6lzUmqrTBrJALYbARe1q5gVfxQ7gBerx2jkdHNTVna6oDFE_C_QYwbwcKkPq5nEhNAyngQg1jRlbarrT6rxyBOJI_qMREc-vnpaz-EmWlrxaW-4_wRu0ZKEvnfTNrRQL-xTBGVz9azWfgbfrtvgfgNKyk-_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Microstates+Analysis+in+Young+Adults+With+Autism+Spectrum+Disorder+During+Resting-State&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=D%27Croz-Baron%2C+David+F&rft.au=Baker%2C+Mary&rft.au=Michel%2C+Christoph+M&rft.au=Karp%2C+Tanja&rft.date=2019-06-12&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=13&rft.spage=173&rft_id=info:doi/10.3389%2Ffnhum.2019.00173&rft_id=info%3Apmid%2F31244624&rft.externalDocID=31244624
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon