Similar Distribution between EPA-containing Phosphatidylcholine and Mesenchymal Stem Marker Positive Cells in the Aortic Wall of Abdominal Aortic Aneurysm Model Rat Fed a Low-EPA Content Diet
Abdominal aortic aneurysm (AAA) is a vascular disease characterized by progressive dilation of the abdominal aorta. Previous studies have suggested that dietary components are closely associated with AAA. Among those dietary components, eicosapentaenoic acid (EPA) is considered to have suppressive e...
Saved in:
Published in | Journal of Oleo Science Vol. 73; no. 6; pp. 895 - 903 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Japan
Japan Oil Chemists' Society
01.01.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abdominal aortic aneurysm (AAA) is a vascular disease characterized by progressive dilation of the abdominal aorta. Previous studies have suggested that dietary components are closely associated with AAA. Among those dietary components, eicosapentaenoic acid (EPA) is considered to have suppressive effects on AAA. In the AAA wall of AAA model animals bred under EPA-rich condition, the distribution of EPA-containing phosphatidylcholine (EPA-PC) has been reported to be similar to that of the markers of mesenchymal stem cells (MSCs) and M2 macrophages. These data suggest that the suppressive effects of EPA on AAA are related to preferential distribution of specific cells in the aortic wall. However, the distribution of EPA-PC in the AAA wall of AAA model animals fed a diet containing small amounts of EPA, which has not been reported to inhibit AAA, has not yet been explored. In the present study, we visualized the distribution of EPA-PCs in the AAA wall of AAA model animals fed a diet containing small amounts of EPA (1.5% EPA in the fatty acid composition) to elucidate the vasoprotective effects of EPA. Positive areas for markers of MSCs were significantly higher in the region where EPA-PC was abundant compared to the regions where EPA-PC was weakly detected, but not for markers of M2 macrophages, matrix metalloproteinase (MMP)-2, and MMP-9. The distribution of MSC markers was similar to that of EPA-PC but not that of M2 macrophages and MMPs. These data suggest preferential incorporation of EPA into MSCs under the conditions used in this study. The incorporation of EPA into certain cells may differ according to dietary conditions, which affect the development of AAA. |
---|---|
ISSN: | 1345-8957 1347-3352 |
DOI: | 10.5650/jos.ess23269 |