Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions

Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CA...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 126; no. 5; pp. 2413 - 2424
Main Authors Deeter, Ryan, Abel, Rebekah, Calandruccio, Lauren, Dhar, Sumitrajit
Format Journal Article
LanguageEnglish
Published Melville, NY Acoustical Society of America 01.11.2009
American Institute of Physics
Subjects
Online AccessGet full text
ISSN0001-4966
1520-8524
1520-8524
DOI10.1121/1.3224716

Cover

Loading…
Abstract Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2 f 1 - f 2 DPOAE was recorded ( f 2 / f 1 = 1.22 , L 1 = 55   dB , and L 2 = 40   dB ) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
AbstractList Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f(1)-f(2) DPOAE was recorded (f(2)/f(1)=1.22, L(1)=55 dB, and L(2)=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f(1)-f(2) DPOAE was recorded (f(2)/f(1)=1.22, L(1)=55 dB, and L(2)=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f sub(1)-f sub(2) DPOAE was recorded (f sub(2)/f sub(1)=1.22, L sub(1)=55 dB, and L sub(2)=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f1-f2 DPOAE was recorded (f2/f1=1.22, L1=55 dB, and L2=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f(1)-f(2) DPOAE was recorded (f(2)/f(1)=1.22, L(1)=55 dB, and L(2)=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2 f 1 - f 2 DPOAE was recorded ( f 2 ∕ f 1 =1.22, L 1 =55 dB, and L 2 =40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2 f 1 - f 2 DPOAE was recorded ( f 2 / f 1 = 1.22 , L 1 = 55   dB , and L 2 = 40   dB ) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
Author Abel, Rebekah
Calandruccio, Lauren
Deeter, Ryan
Dhar, Sumitrajit
Author_xml – sequence: 1
  givenname: Ryan
  surname: Deeter
  fullname: Deeter, Ryan
  organization: Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208
– sequence: 2
  givenname: Rebekah
  surname: Abel
  fullname: Abel, Rebekah
  organization: Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208
– sequence: 3
  givenname: Lauren
  surname: Calandruccio
  fullname: Calandruccio, Lauren
  organization: Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208; Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois 60208; and Department of Linguistics, Northwestern University, Evanston, Illinois 60208
– sequence: 4
  givenname: Sumitrajit
  surname: Dhar
  fullname: Dhar, Sumitrajit
  email: s-dhar@northwestern.edu
  organization: Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208 and Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois 60208
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22136709$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19894823$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAQx1GVqNmkPfQLVFyaqgcnvMzjUqlapQ8pUi7pGWGMs1Q2bAFH6rcv2XVWTdWGAwjmN_-ZYeYUHIUYHABvMLrAmOBLfEEJYQLzF2CFW4Ia2RJ2BFYIIdwwxfkJOM35R722kqqX4AQrqZgkdAWmdQwlmdEUV3dobJxz8RbWbZrrq48BmrEaMywbBydzF3yZewdN6OF2Y7KDcYC9zyWmHbxNsZ9tgbHEg5ibfM7VmF-B48GM2b1ezjPw_fPV7fprc33z5dv603VjmUKlkZ2lrpXcKsQZJ6ZtmRWE4qHjckB9J6iQQ2esVZZbqhgXrOUSS-ewYYRaegY-7nW3cze53rpdjXqb_GTSLx2N108twW_0XbzXREiBuKoC7xeBFH_OLhddS7BuHE1wtSgtKMOkBmaVPH-WJLguinAF3_6Z0yGZx15U4N0CmGzNOCQTrM8HjhBMuUAPuV3uOZtizskN2vqy61QtxY8aI_0wFRrrZSqqx4e_PA7B_8EuX5cfVf8PP5kdvW83_Q1CBc5l
CODEN JASMAN
CitedBy_id crossref_primary_10_1007_s10162_018_0680_x
crossref_primary_10_3109_14992027_2011_626202
crossref_primary_10_1080_14992027_2017_1305516
crossref_primary_10_1044_2018_JSLHR_H_18_0025
crossref_primary_10_1371_journal_pone_0085756
crossref_primary_10_1121_1_5022793
crossref_primary_10_1044_2022_AJA_22_00119
crossref_primary_10_3389_fnsys_2015_00168
crossref_primary_10_1121_1_4861841
crossref_primary_10_1097_MOO_0b013e32833e05d6
crossref_primary_10_3389_fnins_2018_00378
crossref_primary_10_1097_MAO_0b013e31822f1548
crossref_primary_10_1007_s10162_014_0485_5
crossref_primary_10_1044_1059_0889_2012_12_0059
crossref_primary_10_1159_000356174
crossref_primary_10_1121_1_3473693
crossref_primary_10_1121_1_4773265
crossref_primary_10_1016_j_heares_2011_08_007
crossref_primary_10_1097_AUD_0000000000001302
crossref_primary_10_1121_1_4962666
crossref_primary_10_12659_MSM_881981
crossref_primary_10_1007_s10162_012_0319_2
crossref_primary_10_3389_fnhum_2014_00860
crossref_primary_10_7874_jao_2018_00038
crossref_primary_10_1152_jn_00549_2011
crossref_primary_10_12693_APhysPolA_123_1001
crossref_primary_10_17430_882057
crossref_primary_10_1121_1_3543945
crossref_primary_10_1177_2331216519870942
crossref_primary_10_1121_10_0021187
crossref_primary_10_1044_2014_JSLHR_H_14_0013
crossref_primary_10_1002_lary_23623
crossref_primary_10_1121_1_4996859
crossref_primary_10_3389_fnins_2021_640127
crossref_primary_10_1097_MOO_0b013e32833f3865
crossref_primary_10_1121_1_4883361
crossref_primary_10_3109_14992027_2011_582167
crossref_primary_10_1007_s12070_022_03448_9
crossref_primary_10_1007_s10162_018_0664_x
crossref_primary_10_1016_j_heares_2021_108207
crossref_primary_10_4236_oja_2017_73007
crossref_primary_10_1016_j_ijporl_2013_03_014
crossref_primary_10_1007_s10162_025_00974_5
crossref_primary_10_1093_hmg_dds217
crossref_primary_10_1007_s10162_017_0621_0
crossref_primary_10_1016_j_heares_2017_10_009
Cites_doi 10.1121/1.2912434
10.1121/1.2973192
10.1121/1.2770544
10.1121/1.3068442
10.1121/1.1903846
10.1121/1.414956
10.1121/1.1575750
10.1097/00003446-199712000-00003
10.1016/j.heares.2006.10.001
10.1121/1.382104
10.1121/1.2205130
10.1016/S0378-5955(03)00190-4
10.1097/00003446-200412000-00006
10.3766/jaaa.17.4.6
10.1080/14992020601164162
10.1121/1.420339
10.1016/0378-5955(89)90068-3
10.1121/1.2109127
10.1121/1.1516757
10.1121/1.400324
10.1126/science.7414321
10.1016/j.heares.2007.12.004
10.1007/s10162-006-0028-9
10.1016/0378-5955(88)90075-5
10.1121/1.407349
10.1007/s10162-004-5047-9
10.1121/1.2949505
10.1007/s10162-002-3037-3
10.1121/1.421290
10.1016/0378-5955(82)90052-1
10.1121/1.424584
10.1016/0006-8993(95)01091-2
10.1121/1.1334597
10.1097/01.aud.0000240507.83072.e7
10.1016/j.conb.2008.08.016
10.1121/1.414630
10.1080/000164802320396286
10.1121/1.414508
10.1152/jn.1993.70.6.2533
10.1523/JNEUROSCI.16-01-00325.1996
10.3109/00206099909073032
10.1523/JNEUROSCI.20-12-04701.2000
10.1007/s101620010066
ContentType Journal Article
Copyright 2009 Acoustical Society of America
2009 INIST-CNRS
Copyright © 2009 Acoustical Society of America 2009 Acoustical Society of America
Copyright_xml – notice: 2009 Acoustical Society of America
– notice: 2009 INIST-CNRS
– notice: Copyright © 2009 Acoustical Society of America 2009 Acoustical Society of America
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1121/1.3224716
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
EndPage 2424
ExternalDocumentID PMC2787069
19894823
22136709
10_1121_1_3224716
jasa
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: UNSPECIFIED
  grantid: R01DC003552
– fundername: UNSPECIFIED
– fundername: UNSPECIFIED
  grantid: R01DC008420
– fundername: NIDCD NIH HHS
  grantid: R01 DC003552
– fundername: NIDCD NIH HHS
  grantid: R01 DC008420
– fundername: NIDCD NIH HHS
  grantid: R01DC003552
– fundername: NIDCD NIH HHS
  grantid: R01DC008420
GroupedDBID ---
--Z
-~X
.DC
.GJ
123
186
29L
3O-
4.4
41~
5-Q
53G
5RE
5VS
6TJ
85S
AAAAW
AAEUA
AAPUP
AAYIH
ABDNZ
ABEFF
ABEFU
ABJNI
ABNAN
ABPPZ
ABTAH
ABZEH
ACBNA
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ACXMS
ACYGS
ADCTM
AEGXH
AENEX
AETEA
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHPGS
AHSDT
AI.
AIAGR
AIDUJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CS3
D0L
DU5
EBS
EJD
ESX
F5P
G8K
H~9
M71
M73
MVM
NEJ
NHB
OHT
OK1
P2P
RAZ
RIP
RNS
ROL
RQS
S10
SC5
SJN
TN5
TWZ
UCJ
UHB
UPT
UQL
VH1
VOH
VQA
WH7
XFK
XJT
XOL
XSW
YQT
ZCG
ZXP
ZY4
~02
~G0
AAGWI
AAYXX
ABJGX
ADMLS
AEILP
CITATION
ABDPE
IQODW
ADXHL
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c490t-8bc3e586c906462a554c7231fb68f0db7378fbacc9c6c39467456818ee1a423c3
ISSN 0001-4966
1520-8524
IngestDate Thu Aug 21 18:34:03 EDT 2025
Fri Jul 11 16:15:27 EDT 2025
Thu Jul 10 19:01:18 EDT 2025
Mon Jul 21 05:48:54 EDT 2025
Wed Apr 02 07:24:47 EDT 2025
Tue Jul 01 00:57:59 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Fri Jun 21 00:19:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Auditory disorder
Acoustics
Otoacoustic emission
Phase distortion
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c490t-8bc3e586c906462a554c7231fb68f0db7378fbacc9c6c39467456818ee1a423c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author to whom correspondence should be addressed. Electronic mail: s-dhar@northwestern.edu
OpenAccessLink https://pubs.aip.org/asa/jasa/article-pdf/126/5/2413/13228089/2413_1_online.pdf
PMID 19894823
PQID 21111301
PQPubID 23462
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2787069
proquest_miscellaneous_734129464
proquest_miscellaneous_21111301
pubmed_primary_19894823
pascalfrancis_primary_22136709
crossref_citationtrail_10_1121_1_3224716
crossref_primary_10_1121_1_3224716
scitation_primary_10_1121_1_3224716Contralateral_acoust
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Melville, NY
PublicationPlace_xml – name: Melville, NY
– name: United States
PublicationTitle The Journal of the Acoustical Society of America
PublicationTitleAlternate J Acoust Soc Am
PublicationYear 2009
Publisher Acoustical Society of America
American Institute of Physics
Publisher_xml – name: Acoustical Society of America
– name: American Institute of Physics
References Kim, D.; Dorn, P.; Neely, S.; Gorga, M. 2001; 2
Lisowska, G.; Smurzynski, J.; Morawski, K.; Namyslowski, G.; Probst, R. 2002; 122
Talmadge, C.; Long, G.; Tubis, A.; Dhar, S. 1999; 105
Relkin, E.; Sterns, A.; Azeredo, W.; Prieve, B.; Woods, C. 2005; 6
Puria, S.; Guinan, J.; Liberman, M. 1996; 99
Lutman, M.; Deeks, J. 1999; 38
Heitmann, J.; Waldmann, B.; Schnitzler, H.; Plinkert, P.; Zenner, H. 1998; 103
Zwicker, E. 1990; 88
Sun, X. 2008a; 237
Long, G.; Talmadge, C.; Lee, J. 2008; 124
Siegel, J.; Kim, D. 1982; 6
Shera, C. 2003; 114
Mott, J.; Norton, S.; Neely, S.; Warr, W. 1989; 38
Dhar, S.; Shaffer, L. 2004; 25
Guinan, J. 2006; 27
Dhar, S.; Talmadge, C.; Long, G.; Tubis, A. 2002; 112
Maison, S.; Liberman, M. 2000; 20
Bassim, M.; Miller, R.; Buss, E.; Smith, D. 2003; 182
Wagner, W.; Heppelmann, G.; Muller, J.; Janssen, T.; Zenner, H. 2007; 223
Abdala, C.; Mishra, S.; Williams, T. 2009; 125
Giraud, A.; Collet, L.; Chery-Croze, S.; Magnan, J.; Chays, A. 1995; 705
Goodman, S.; Keefe, D. 2006; 7
Dhar, S.; Abdala, C. 2007; 122
Guinan, J.; Backus, B.; Lilaonitkul, W.; Aharonson, V. 2003; 4
Mountain, D. 1980; 210
Zhang, F.; Boettcher, F.; Sun, X. 2007; 46
Liberman, M.; Puria, S.; Guinan, J. 1996; 99
Stover, L.; Neely, S.; Gorga, M. 1996; 99
Guinan, J.; Gifford, M. 1988; 37
Müller, J.; Janssen, T.; Heppelmann, G.; Wagner, W. 2005; 118
Purcell, D.; Butler, B.; Saunders, T.; Allen, P. 2008; 124
Dallos, P. 2008; 18
Long, G.; Talmadge, C. 1997; 102
Gorga, M.; Neely, S.; Ohlrich, B.; Hoover, B.; Redner, J.; Peters, J. 1997; 18
Kalluri, R.; Shera, C. 2001; 109
Harrison, W.; Burns, E. 1993; 94
Dhar, S.; Long, G.; Talmadge, C.; Tubis, A. 2005; 117
Kawase, T.; Delgutte, B.; Liberman, M. 1993; 70
Kemp, D. 1978; 64
Sun, X. 2008b; 123
Reuter, K.; Hammershoi, D. 2006; 120
Shaffer, L.; Dhar, S. 2006; 17
Murugasu, E.; Russell, I. 1996; 16
(2023073021452046800_c3) 2003; 182
(2023073021452046800_c39) 1996; 99
(2023073021452046800_c25) 1999; 38
(2023073021452046800_c36) 2006; 17
(2023073021452046800_c11) 1997; 18
(2023073021452046800_c16) 1998; 103
(2023073021452046800_c10) 2006; 7
(2023073021452046800_c23) 1997; 102
(2023073021452046800_c28) 1980; 210
(2023073021452046800_c32) 1996; 99
(2023073021452046800_c20) 2001; 2
(2023073021452046800_c31) 2008; 124
(2023073021452046800_c5) 2007; 122
(2023073021452046800_c41) 2008; 123
(2023073021452046800_c19) 1978; 64
(2023073021452046800_c12) 2006; 27
(2023073021452046800_c42) 1999; 105
(2023073021452046800_c6) 2005; 117
(2023073021452046800_c38) 1982; 6
(2023073021452046800_c40) 2008; 237
(2023073021452046800_c14) 1988; 37
(2023073021452046800_c22) 2002; 122
(2023073021452046800_c30) 1996; 16
(2023073021452046800_c44) 2007; 46
(2023073021452046800_c43) 2007; 223
(2023073021452046800_c13) 2003; 4
(2023073021452046800_c26) 2000; 20
American Speech-Language-Hearing Association (ASHA) (2023073021452046800_c2) 2005
(2023073021452046800_c33) 2005; 6
(2023073021452046800_c34) 2006; 120
(2023073021452046800_c17) 2001; 109
(2023073021452046800_c18) 1993; 70
(2023073021452046800_c9) 1995; 705
(2023073021452046800_c4) 2008; 18
(2023073021452046800_c37) 2003; 114
SAS (2023073021452046800_c35) 2008
(2023073021452046800_c45) 1990; 88
(2023073021452046800_c7) 2004; 25
(2023073021452046800_c21) 1996; 99
(2023073021452046800_c27) 1989; 38
(2023073021452046800_c15) 1993; 94
(2023073021452046800_c1) 2009; 125
(2023073021452046800_c29) 2005; 118
(2023073021452046800_c24) 2008; 124
(2023073021452046800_c8) 2002; 112
19275316 - J Acoust Soc Am. 2009 Mar;125(3):1584-94
12403123 - Acta Otolaryngol. 2002 Sep;122(6):613-9
7061350 - Hear Res. 1982 Feb;6(2):171-82
8655789 - J Acoust Soc Am. 1996 Jun;99(6):3572-84
12799992 - J Assoc Res Otolaryngol. 2003 Dec;4(4):521-40
8613799 - J Neurosci. 1996 Jan;16(1):325-32
11545148 - J Assoc Res Otolaryngol. 2001 Mar;2(1):31-40
15604918 - Ear Hear. 2004 Dec;25(6):573-85
9921655 - J Acoust Soc Am. 1999 Jan;105(1):275-92
17902855 - J Acoust Soc Am. 2007 Oct;122(4):2191-202
16568366 - J Assoc Res Otolaryngol. 2006 Jun;7(2):125-39
19045653 - J Acoust Soc Am. 2008 Sep;124(3):1613-26
19062854 - J Acoust Soc Am. 2008 Oct;124(4):2133-48
9373971 - J Acoust Soc Am. 1997 Nov;102(5 Pt 1):2831-48
7414321 - Science. 1980 Oct 3;210(4465):71-2
12948609 - Hear Res. 2003 Aug;182(1-2):140-52
18258398 - Hear Res. 2008 Mar;237(1-2):66-75
18809494 - Curr Opin Neurobiol. 2008 Aug;18(4):370-6
2229680 - J Acoust Soc Am. 1990 Sep;88(3):1639-41
744838 - J Acoust Soc Am. 1978 Nov;64(5):1386-91
17086072 - Ear Hear. 2006 Dec;27(6):589-607
17137736 - Hear Res. 2007 Jan;223(1-2):83-92
18537382 - J Acoust Soc Am. 2008 Jun;123(6):4310-20
8270741 - J Acoust Soc Am. 1993 Nov;94(5):2649-58
16761702 - J Am Acad Audiol. 2006 Apr;17(4):279-92
12509010 - J Acoust Soc Am. 2002 Dec;112(6):2882-97
16018480 - J Acoust Soc Am. 2005 Jun;117(6):3766-76
8821728 - Brain Res. 1995 Dec 24;705(1-2):15-23
15952049 - J Assoc Res Otolaryngol. 2005 Jun;6(2):119-35
3225230 - Hear Res. 1988 Dec;37(1):29-45
16419819 - J Acoust Soc Am. 2005 Dec;118(6):3747-56
8568037 - J Acoust Soc Am. 1996 Jan;99(1):500-7
16875224 - J Acoust Soc Am. 2006 Jul;120(1):270-9
8120597 - J Neurophysiol. 1993 Dec;70(6):2533-49
17454232 - Int J Audiol. 2007 Apr;46(4):187-95
12880039 - J Acoust Soc Am. 2003 Jul;114(1):244-62
11248969 - J Acoust Soc Am. 2001 Feb;109(2):622-37
9416447 - Ear Hear. 1997 Dec;18(6):440-55
2708165 - Hear Res. 1989 Apr;38(3):229-42
8609284 - J Acoust Soc Am. 1996 Feb;99(2):1016-24
10548373 - Audiology. 1999 Sep-Oct;38(5):263-6
10844039 - J Neurosci. 2000 Jun 15;20(12):4701-7
References_xml – volume: 123
  start-page: 4310-4320
  year: 2008b
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2912434
– volume: 124
  start-page: 2133-2148
  year: 2008
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2973192
– volume: 70
  start-page: 2533-2549
  year: 1993
  publication-title: J. Neurophysiol.
– volume: 122
  start-page: 2191-2202
  year: 2007
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2770544
– volume: 125
  start-page: 1584-1594
  year: 2009
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3068442
– volume: 117
  start-page: 3766-3776
  year: 2005
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1903846
– volume: 99
  start-page: 3572-3584
  year: 1996
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414956
– volume: 114
  start-page: 244-262
  year: 2003
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1575750
– volume: 18
  start-page: 440-455
  year: 1997
  publication-title: Ear Hear.
  doi: 10.1097/00003446-199712000-00003
– volume: 223
  start-page: 83-92
  year: 2007
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2006.10.001
– volume: 64
  start-page: 1386-1391
  year: 1978
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.382104
– volume: 120
  start-page: 270-279
  year: 2006
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2205130
– volume: 182
  start-page: 140-152
  year: 2003
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(03)00190-4
– volume: 25
  start-page: 573-585
  year: 2004
  publication-title: Ear Hear.
  doi: 10.1097/00003446-200412000-00006
– volume: 17
  start-page: 279-292
  year: 2006
  publication-title: J. Am. Acad. Audiol.
  doi: 10.3766/jaaa.17.4.6
– volume: 46
  start-page: 187-195
  year: 2007
  publication-title: Int. J. Audiol.
  doi: 10.1080/14992020601164162
– volume: 102
  start-page: 2831-2848
  year: 1997
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.420339
– volume: 38
  start-page: 229-242
  year: 1989
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(89)90068-3
– volume: 16
  start-page: 325-332
  year: 1996
  publication-title: J. Neurosci.
– volume: 118
  start-page: 3747-3756
  year: 2005
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2109127
– volume: 112
  start-page: 2882-2897
  year: 2002
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1516757
– volume: 88
  start-page: 1639-1641
  year: 1990
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400324
– volume: 210
  start-page: 71-72
  year: 1980
  publication-title: Science
  doi: 10.1126/science.7414321
– volume: 237
  start-page: 66-75
  year: 2008a
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2007.12.004
– volume: 7
  start-page: 125-139
  year: 2006
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-006-0028-9
– volume: 37
  start-page: 29-45
  year: 1988
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(88)90075-5
– volume: 94
  start-page: 2649-2658
  year: 1993
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.407349
– volume: 6
  start-page: 119-135
  year: 2005
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-004-5047-9
– volume: 124
  start-page: 1613-1626
  year: 2008
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2949505
– volume: 4
  start-page: 521-540
  year: 2003
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-002-3037-3
– volume: 103
  start-page: 1527-1531
  year: 1998
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.421290
– volume: 2
  start-page: 31-40
  year: 2001
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 20
  start-page: 4701-4707
  year: 2000
  publication-title: J. Neurosci.
– volume: 6
  start-page: 171-182
  year: 1982
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(82)90052-1
– volume: 105
  start-page: 275-292
  year: 1999
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.424584
– volume: 705
  start-page: 15-23
  year: 1995
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(95)01091-2
– volume: 109
  start-page: 622-637
  year: 2001
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1334597
– volume: 27
  start-page: 589-607
  year: 2006
  publication-title: Ear Hear.
  doi: 10.1097/01.aud.0000240507.83072.e7
– volume: 18
  start-page: 370-376
  year: 2008
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2008.08.016
– volume: 99
  start-page: 1016-1024
  year: 1996
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414630
– volume: 122
  start-page: 613-619
  year: 2002
  publication-title: Acta Oto-Laryngol.
  doi: 10.1080/000164802320396286
– volume: 38
  start-page: 263-266
  year: 1999
  publication-title: Audiology
– volume: 99
  start-page: 500-507
  year: 1996
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414508
– volume: 99
  start-page: 500
  year: 1996
  ident: 2023073021452046800_c32
  article-title: Olivocochlear reflex assays: Effects of contralateral sound on compound action potentials versus ear-canal distortion products
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414508
– volume: 105
  start-page: 275
  year: 1999
  ident: 2023073021452046800_c42
  article-title: Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.424584
– volume: 70
  start-page: 2533
  year: 1993
  ident: 2023073021452046800_c18
  article-title: Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1993.70.6.2533
– volume: 114
  start-page: 244
  year: 2003
  ident: 2023073021452046800_c37
  article-title: Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1575750
– volume: 64
  start-page: 1386
  year: 1978
  ident: 2023073021452046800_c19
  article-title: Stimulated acoustic emissions from within the human auditory system
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.382104
– volume: 16
  start-page: 325
  year: 1996
  ident: 2023073021452046800_c30
  article-title: The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-01-00325.1996
– volume: 25
  start-page: 573
  year: 2004
  ident: 2023073021452046800_c7
  article-title: Effects of a suppressor tone on distortion product otoacoustic emissions fine structure: Why a universal suppressor level is not a practical solution to obtaining single-generator DP-grams
  publication-title: Ear Hear.
  doi: 10.1097/00003446-200412000-00006
– volume: 102
  start-page: 2831
  year: 1997
  ident: 2023073021452046800_c23
  article-title: Spontaneous otoacoustic emission frequency is modulated by heartbeat
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.420339
– volume: 122
  start-page: 613
  year: 2002
  ident: 2023073021452046800_c22
  article-title: Influence of contralateral stimulation by two-tone complexes, narrow-band and broad-band noise signals on the 2f1-f2 distortion product otoacoustic emission levels in humans
  publication-title: Acta Oto-Laryngol.
  doi: 10.1080/000164802320396286
– year: 2008
  ident: 2023073021452046800_c35
  article-title: SPSS for Mac OS X
– volume: 182
  start-page: 140
  year: 2003
  ident: 2023073021452046800_c3
  article-title: Rapid adaptation of the 2f1-f2 DPOAE in humans: Binaural and contralateral stimulation effects
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(03)00190-4
– volume: 120
  start-page: 270
  year: 2006
  ident: 2023073021452046800_c34
  article-title: Distortion product otoacoustic emission fine structure analysis of 50 normal-hearing humans
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2205130
– volume: 4
  start-page: 521
  year: 2003
  ident: 2023073021452046800_c13
  article-title: Medial olivocochlear efferent reflex in humans: Otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-002-3037-3
– volume: 123
  start-page: 4310
  year: 2008
  ident: 2023073021452046800_c41
  article-title: Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2912434
– volume: 37
  start-page: 29
  year: 1988
  ident: 2023073021452046800_c14
  article-title: Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(88)90075-5
– volume: 109
  start-page: 622
  year: 2001
  ident: 2023073021452046800_c17
  article-title: Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1334597
– volume: 210
  start-page: 71
  year: 1980
  ident: 2023073021452046800_c28
  article-title: Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics
  publication-title: Science
  doi: 10.1126/science.7414321
– volume: 99
  start-page: 1016
  year: 1996
  ident: 2023073021452046800_c39
  article-title: Latency and multiple sources of distortion product otoacoustic emissions
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414630
– volume: 27
  start-page: 589
  year: 2006
  ident: 2023073021452046800_c12
  article-title: Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans
  publication-title: Ear Hear.
  doi: 10.1097/01.aud.0000240507.83072.e7
– volume: 125
  start-page: 1584
  year: 2009
  ident: 2023073021452046800_c1
  article-title: Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3068442
– volume: 705
  start-page: 15
  year: 1995
  ident: 2023073021452046800_c9
  article-title: Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(95)01091-2
– volume: 17
  start-page: 279
  year: 2006
  ident: 2023073021452046800_c36
  article-title: DPOAE component estimates and their relationship to hearing thresholds
  publication-title: J. Am. Acad. Audiol.
  doi: 10.3766/jaaa.17.4.6
– volume: 112
  start-page: 2882
  year: 2002
  ident: 2023073021452046800_c8
  article-title: Multiple internal reflections in the cochlea and their effect on DPOAE fine structure
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1516757
– volume: 124
  start-page: 1613
  year: 2008
  ident: 2023073021452046800_c24
  article-title: Measuring distortion product otoacoustic emissions using continuously sweeping primaries
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2949505
– volume: 237
  start-page: 66
  year: 2008
  ident: 2023073021452046800_c40
  article-title: Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2007.12.004
– volume: 103
  start-page: 1527
  year: 1998
  ident: 2023073021452046800_c16
  article-title: Suppression of distortion product otoacoustic emissions (DPOAE) near f1-f2 removes DP-gram fine structure—Evidence for a secondary generator
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.421290
– volume: 99
  start-page: 3572
  year: 1996
  ident: 2023073021452046800_c21
  article-title: The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414956
– volume: 88
  start-page: 1639
  year: 1990
  ident: 2023073021452046800_c45
  article-title: On the frequency separation of simultaneously evoked otoacoustic emissions’ consecutive extrema and its relation to cochlear traveling waves
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400324
– volume: 38
  start-page: 263
  year: 1999
  ident: 2023073021452046800_c25
  article-title: Correspondence amongst microstructure patterns observed in otoacoustic emissions and Bekesy audiometry
  publication-title: Audiology
  doi: 10.3109/00206099909073032
– volume: 20
  start-page: 4701
  year: 2000
  ident: 2023073021452046800_c26
  article-title: Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-12-04701.2000
– volume: 18
  start-page: 440
  year: 1997
  ident: 2023073021452046800_c11
  article-title: From laboratory to clinic: A large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss
  publication-title: Ear Hear.
  doi: 10.1097/00003446-199712000-00003
– volume: 46
  start-page: 187
  year: 2007
  ident: 2023073021452046800_c44
  article-title: Contralateral suppression of distortion product otoacoustic emissions: Effect of the primary frequency in Dpgrams
  publication-title: Int. J. Audiol.
  doi: 10.1080/14992020601164162
– volume-title: Guidelines for Manual Pure-Tone Threshold Audiometry
  year: 2005
  ident: 2023073021452046800_c2
– volume: 117
  start-page: 3766
  year: 2005
  ident: 2023073021452046800_c6
  article-title: The effect of stimulus-frequency ratio on distortion product otoacoustic emission components
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1903846
– volume: 7
  start-page: 125
  year: 2006
  ident: 2023073021452046800_c10
  article-title: Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-006-0028-9
– volume: 223
  start-page: 83
  year: 2007
  ident: 2023073021452046800_c43
  article-title: Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2006.10.001
– volume: 2
  start-page: 31
  year: 2001
  ident: 2023073021452046800_c20
  article-title: Adaptation of distortion product otoacoustic emission in humans
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s101620010066
– volume: 38
  start-page: 229
  year: 1989
  ident: 2023073021452046800_c27
  article-title: Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(89)90068-3
– volume: 118
  start-page: 3747
  year: 2005
  ident: 2023073021452046800_c29
  article-title: Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2109127
– volume: 122
  start-page: 2191
  year: 2007
  ident: 2023073021452046800_c5
  article-title: A comparative study of distortion-product-otoacoustic-emission fine structure in human newborns and adults with normal hearing
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2770544
– volume: 6
  start-page: 119
  year: 2005
  ident: 2023073021452046800_c33
  article-title: Physiological mechanisms of onset adaptation and contralateral suppression of DPOAEs in the rat
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-004-5047-9
– volume: 94
  start-page: 2649
  year: 1993
  ident: 2023073021452046800_c15
  article-title: Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.407349
– volume: 6
  start-page: 171
  year: 1982
  ident: 2023073021452046800_c38
  article-title: Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(82)90052-1
– volume: 124
  start-page: 2133
  year: 2008
  ident: 2023073021452046800_c31
  article-title: Distortion product otoacoustic emission contralateral suppression functions obtained with ramped stimuli
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2973192
– volume: 18
  start-page: 370
  year: 2008
  ident: 2023073021452046800_c4
  article-title: Cochlear amplification, outer hair cells and prestin
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2008.08.016
– reference: 8613799 - J Neurosci. 1996 Jan;16(1):325-32
– reference: 744838 - J Acoust Soc Am. 1978 Nov;64(5):1386-91
– reference: 12799992 - J Assoc Res Otolaryngol. 2003 Dec;4(4):521-40
– reference: 17454232 - Int J Audiol. 2007 Apr;46(4):187-95
– reference: 17137736 - Hear Res. 2007 Jan;223(1-2):83-92
– reference: 9921655 - J Acoust Soc Am. 1999 Jan;105(1):275-92
– reference: 2708165 - Hear Res. 1989 Apr;38(3):229-42
– reference: 18809494 - Curr Opin Neurobiol. 2008 Aug;18(4):370-6
– reference: 8568037 - J Acoust Soc Am. 1996 Jan;99(1):500-7
– reference: 17902855 - J Acoust Soc Am. 2007 Oct;122(4):2191-202
– reference: 7061350 - Hear Res. 1982 Feb;6(2):171-82
– reference: 16875224 - J Acoust Soc Am. 2006 Jul;120(1):270-9
– reference: 16018480 - J Acoust Soc Am. 2005 Jun;117(6):3766-76
– reference: 12948609 - Hear Res. 2003 Aug;182(1-2):140-52
– reference: 8270741 - J Acoust Soc Am. 1993 Nov;94(5):2649-58
– reference: 9373971 - J Acoust Soc Am. 1997 Nov;102(5 Pt 1):2831-48
– reference: 16568366 - J Assoc Res Otolaryngol. 2006 Jun;7(2):125-39
– reference: 18537382 - J Acoust Soc Am. 2008 Jun;123(6):4310-20
– reference: 19062854 - J Acoust Soc Am. 2008 Oct;124(4):2133-48
– reference: 10548373 - Audiology. 1999 Sep-Oct;38(5):263-6
– reference: 12880039 - J Acoust Soc Am. 2003 Jul;114(1):244-62
– reference: 8609284 - J Acoust Soc Am. 1996 Feb;99(2):1016-24
– reference: 19045653 - J Acoust Soc Am. 2008 Sep;124(3):1613-26
– reference: 11248969 - J Acoust Soc Am. 2001 Feb;109(2):622-37
– reference: 11545148 - J Assoc Res Otolaryngol. 2001 Mar;2(1):31-40
– reference: 15604918 - Ear Hear. 2004 Dec;25(6):573-85
– reference: 17086072 - Ear Hear. 2006 Dec;27(6):589-607
– reference: 18258398 - Hear Res. 2008 Mar;237(1-2):66-75
– reference: 12509010 - J Acoust Soc Am. 2002 Dec;112(6):2882-97
– reference: 8120597 - J Neurophysiol. 1993 Dec;70(6):2533-49
– reference: 16761702 - J Am Acad Audiol. 2006 Apr;17(4):279-92
– reference: 10844039 - J Neurosci. 2000 Jun 15;20(12):4701-7
– reference: 16419819 - J Acoust Soc Am. 2005 Dec;118(6):3747-56
– reference: 2229680 - J Acoust Soc Am. 1990 Sep;88(3):1639-41
– reference: 8821728 - Brain Res. 1995 Dec 24;705(1-2):15-23
– reference: 12403123 - Acta Otolaryngol. 2002 Sep;122(6):613-9
– reference: 7414321 - Science. 1980 Oct 3;210(4465):71-2
– reference: 9416447 - Ear Hear. 1997 Dec;18(6):440-55
– reference: 8655789 - J Acoust Soc Am. 1996 Jun;99(6):3572-84
– reference: 3225230 - Hear Res. 1988 Dec;37(1):29-45
– reference: 19275316 - J Acoust Soc Am. 2009 Mar;125(3):1584-94
– reference: 15952049 - J Assoc Res Otolaryngol. 2005 Jun;6(2):119-35
SSID ssj0005839
Score 2.1658776
Snippet Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2413
SubjectTerms Acoustic Stimulation - methods
Audition
Auditory Pathways - physiology
Auditory Threshold - physiology
Biological and medical sciences
Cochlea - physiology
Cochlear Nucleus - physiology
Female
Functional Laterality - physiology
Fundamental and applied biological sciences. Psychology
Humans
Noise
Olivary Nucleus - physiology
Otoacoustic Emissions, Spontaneous - physiology
Perception
Physiological Acoustics
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Young Adult
Title Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions
URI http://dx.doi.org/10.1121/1.3224716
https://www.ncbi.nlm.nih.gov/pubmed/19894823
https://www.proquest.com/docview/21111301
https://www.proquest.com/docview/734129464
https://pubmed.ncbi.nlm.nih.gov/PMC2787069
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJgQSQtwJl2EhHpCqjMZJHOex2kATYjywTdpbFDuO2rEmFU0f4FfxEzm-xElYJg1erCp1bv6--JxjnwtC72jKi2JWcr8ES82PQGX3WR7P_JgVJIllnqc6xcbxV3p0Fn0-j88nk989r6Vtw_fFr9G4kv9BFY4BripK9h-QdReFA_Ab8IUWEIb2Rhir1FIqEFJFEV9OYW7Tpbmm0KxsVa6p3g3faPVylStPoW1hNgzWi9ws4xc6UYjuvDbpX6d1U7uLqXpwG7eod9GRq6fK6vAUe4LKLmI9QZWSazaEnLospS0E8u1nR8s5N64CCurv3fr0gfa6BO6JZd2GcHeBa4cL4xp-sl0tYRAuls1gASO1kXz9SRnM2JTajNh2HgarlsUmvNpN1Ca23jIy7k-7kQlotSJchbyMiweixEOwD7MYCOWRFNx_iUbnsKhNJRJkQWZPvYV2CRgmIAp254fHX046tyIWWpPLvJTNZgUnf3D3HehA99b5BrApTR2VMUPnqr_uHVCPjKdGTxk6fYDuW-jx3FDyIZrI6hG6rb2JxeYxWg2IiVsu4R4xsSEmBupgR0wMeGNNTFyXuCMmtsTEPWJiR8wn6OzTx9ODI9_W9fBFlM4an3ERyphRkYI-TEkOGq1IwM4oOWXlrOBJmLCS50KkgoowVfVwVJo8JmWQg_Yvwqdop6or-RxhWaYRL6IiUUmlojLmVCZMRExQIkCMMw-9b0c6a4dM1V65zK4g6qG3ruvaZHoZ67Q3gMv1JCTQqRA99KbFL4NhULtveSVhYDKilBMQpx7C1_RIQKMk8LqRh54ZwLsHUXUSGAk9lAyo4DqoLPHDf6rlQmeLJ0okU3iwxJHm-vcb0CMziL64ycC8RHe7b_sV2ml-bOVrUNcbvme_kD8DS_Kf
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contralateral+acoustic+stimulation+alters+the+magnitude+and+phase+of+distortion+product+otoacoustic+emissions&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Deeter%2C+Ryan&rft.au=Abel%2C+Rebekah&rft.au=Calandruccio%2C+Lauren&rft.au=Dhar%2C+Sumitrajit&rft.date=2009-11-01&rft.issn=0001-4966&rft.eissn=1520-8524&rft.volume=126&rft.issue=5&rft.spage=2413&rft.epage=2424&rft_id=info:doi/10.1121%2F1.3224716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1121_1_3224716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon