Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O 2 ) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO 2 − ) is a marker of vascular N...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 110; no. 6; pp. 1582 - 1591 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Physiological Society
01.06.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O
2
) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO
2
−
) is a marker of vascular NO production but may also be a protected circulating “source” that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO
2
−
concentration, increase exercise tolerance, and decrease gastrocnemius fractional O
2
extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects ( n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO
2
−
] (152 ± 72 nM) following PL. BR increased plasma [NO
2
−
] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O
2
extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing ( P ≤ 0.05). These findings support the hypothesis that NO
2
−
-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. |
---|---|
AbstractList | Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O
2
) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO
2
−
) is a marker of vascular NO production but may also be a protected circulating “source” that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO
2
−
concentration, increase exercise tolerance, and decrease gastrocnemius fractional O
2
extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects ( n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO
2
−
] (152 ± 72 nM) following PL. BR increased plasma [NO
2
−
] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O
2
extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing ( P ≤ 0.05). These findings support the hypothesis that NO
2
−
-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O...) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (...) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma ... concentration, increase exercise tolerance, and decrease gastrocnemius fractional O... extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [...] (152 ± 72 nM) following PL. BR increased plasma [...] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O... extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that ...-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. (ProQuest: ... denotes formulae/symbols omitted.) Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O 2 ) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO 2 − ) is a marker of vascular NO production but may also be a protected circulating “source” that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO 2 − concentration, increase exercise tolerance, and decrease gastrocnemius fractional O 2 extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects ( n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO 2 − ] (152 ± 72 nM) following PL. BR increased plasma [NO 2 − ] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O 2 extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing ( P ≤ 0.05). These findings support the hypothesis that NO 2 − -related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. |
Author | Kraus, William E. Ham, Katherine L. Robbins, Jennifer L. Privette, Grayson Yim, Eunji Stabler, Thomas Allen, Jason D. VanBruggen, Mitch Kenjale, Aarti A. Johnson, Johanna L. |
Author_xml | – sequence: 1 givenname: Aarti A. surname: Kenjale fullname: Kenjale, Aarti A. organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 2 givenname: Katherine L. surname: Ham fullname: Ham, Katherine L. organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 3 givenname: Thomas surname: Stabler fullname: Stabler, Thomas organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 4 givenname: Jennifer L. surname: Robbins fullname: Robbins, Jennifer L. organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 5 givenname: Johanna L. surname: Johnson fullname: Johnson, Johanna L. organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 6 givenname: Mitch surname: VanBruggen fullname: VanBruggen, Mitch organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 7 givenname: Grayson surname: Privette fullname: Privette, Grayson organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 8 givenname: Eunji surname: Yim fullname: Yim, Eunji organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 9 givenname: William E. surname: Kraus fullname: Kraus, William E. organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and – sequence: 10 givenname: Jason D. surname: Allen fullname: Allen, Jason D. organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and, Wake Forest University Translational Science Center, Winston-Salem, North Carolina |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24235708$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21454745$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFvwAREuKUZRzbcfYAEiqfUiUucEOyHGfCepXYwU5Q--87yy6l9MLJHs8zr94Zzxk7CTEgY884rDlX1audnaZh2l5nH4c1AGi-roDzB2xF2arkNfATtmq0glKrRp-ys5x3AFxKxR-x04pLJbVUK_b9ncfZpusi-DnZGYu8kDKOGGY7-xgKDFsbHOYCrzA5n7GYMPUxjfvXwod96KctJjsUNs0U0KUjzmZ8zB72dsj45Hies28f3n-9-FRefvn4-eLtZenkBuayaXirO6XaijdAgeh7FAAbkD1Yhy3XWjpVq1bIRiLoFvqur6mBppNW6o04Z28OutPSjtg5Mk92zJT8SK2ZaL35NxP81vyIv4zgfMNFTQIvjwIp_lwwz2b02eEw2IBxyabRlRIcaknk83vkLi4pUHcEaVlXQiuCnt71c2vkz9gJeHEEbHZ26BMN0-e_nKyE0tAQpw-cSzHnhP0twsHsF8HcXQTzexHMfhGo8vW9SucPP0oD8MN_628AxHrAlQ |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1007_s00421_020_04368_8 crossref_primary_10_1007_s00520_022_07520_6 crossref_primary_10_1017_S0954422413000188 crossref_primary_10_3390_nu13072143 crossref_primary_10_1016_j_niox_2012_03_006 crossref_primary_10_1089_ars_2011_4196 crossref_primary_10_1016_j_healun_2016_01_018 crossref_primary_10_1007_s00421_013_2589_8 crossref_primary_10_3389_fnut_2024_1398108 crossref_primary_10_1016_j_niox_2012_03_003 crossref_primary_10_1016_j_niox_2015_01_002 crossref_primary_10_18632_aging_101984 crossref_primary_10_1016_j_yjmcc_2014_01_012 crossref_primary_10_1139_apnm_2020_0498 crossref_primary_10_1080_17461391_2018_1445298 crossref_primary_10_1249_MSS_0b013e3182640f48 crossref_primary_10_1038_nrd4623 crossref_primary_10_1016_j_clnu_2021_11_005 crossref_primary_10_1007_s40279_017_0744_9 crossref_primary_10_1080_09637486_2017_1328666 crossref_primary_10_1080_10408398_2013_811212 crossref_primary_10_1152_japplphysiol_00772_2017 crossref_primary_10_3390_nu9111171 crossref_primary_10_1016_j_niox_2015_05_004 crossref_primary_10_1016_j_niox_2015_05_005 crossref_primary_10_1016_j_niox_2017_05_005 crossref_primary_10_1152_japplphysiol_00559_2023 crossref_primary_10_2196_resprot_7596 crossref_primary_10_1113_jphysiol_2011_216341 crossref_primary_10_3390_nu11071683 crossref_primary_10_3390_nu16081136 crossref_primary_10_1152_japplphysiol_01253_2011 crossref_primary_10_3390_nu11050954 crossref_primary_10_1152_japplphysiol_00292_2019 crossref_primary_10_3390_biomedicines11071859 crossref_primary_10_1152_japplphysiol_01053_2018 crossref_primary_10_3389_fphar_2021_666334 crossref_primary_10_1093_nutrit_nuu014 crossref_primary_10_1161_CIRCULATIONAHA_112_112912 crossref_primary_10_1152_ajpregu_00068_2014 crossref_primary_10_1161_JAHA_114_001072 crossref_primary_10_1152_ajpheart_00414_2017 crossref_primary_10_1002_mnfr_201500153 crossref_primary_10_1016_j_freeradbiomed_2013_01_024 crossref_primary_10_1007_s11883_018_0723_0 crossref_primary_10_3390_nu16223832 crossref_primary_10_1080_20002297_2024_2322228 crossref_primary_10_1177_0260106018790428 crossref_primary_10_1007_s00421_018_3835_x crossref_primary_10_1016_j_mvr_2022_104469 crossref_primary_10_1016_j_niox_2018_03_009 crossref_primary_10_1016_j_nutres_2012_02_002 crossref_primary_10_1152_ajpheart_00421_2015 crossref_primary_10_14814_phy2_12089 crossref_primary_10_1152_ajpheart_00235_2020 crossref_primary_10_1016_j_niox_2025_03_003 crossref_primary_10_1007_s00421_022_05056_5 crossref_primary_10_1016_j_freeradbiomed_2014_09_021 crossref_primary_10_1155_2016_8139861 crossref_primary_10_1016_j_niox_2016_10_002 crossref_primary_10_1016_j_nutres_2016_11_004 crossref_primary_10_1007_s00421_018_3843_x crossref_primary_10_1152_ajpregu_00121_2021 crossref_primary_10_1016_j_nutres_2015_05_017 crossref_primary_10_1111_cpf_12478 crossref_primary_10_1152_japplphysiol_00096_2014 crossref_primary_10_15171_jcvtr_2018_01 crossref_primary_10_1111_bcp_12918 crossref_primary_10_3390_nu7042801 crossref_primary_10_1519_JSC_0b013e318236d081 crossref_primary_10_52547_ajcm_28_3_176 crossref_primary_10_1152_ajpheart_00138_2014 crossref_primary_10_1016_j_niox_2014_10_007 crossref_primary_10_1152_japplphysiol_00747_2017 crossref_primary_10_1038_s41430_018_0140_z crossref_primary_10_1016_j_niox_2019_10_009 crossref_primary_10_1152_japplphysiol_00323_2024 crossref_primary_10_1139_apnm_2014_0036 crossref_primary_10_1152_japplphysiol_00220_2023 crossref_primary_10_1152_ajpregu_00263_2016 crossref_primary_10_1016_j_clinthera_2023_09_005 crossref_primary_10_1080_09637486_2018_1492521 crossref_primary_10_1152_ajpregu_00183_2014 crossref_primary_10_1016_j_conctc_2020_100693 crossref_primary_10_1152_japplphysiol_00367_2016 crossref_primary_10_1017_S0954422420000049 crossref_primary_10_1089_dia_2011_0291 crossref_primary_10_1016_j_rmed_2024_107745 crossref_primary_10_1123_ijsnem_2021_0054 crossref_primary_10_3389_fphys_2019_00404 crossref_primary_10_1113_JP271252 crossref_primary_10_1152_japplphysiol_00614_2011 crossref_primary_10_1016_j_freeradbiomed_2011_05_037 crossref_primary_10_1016_j_nfs_2020_08_001 crossref_primary_10_1152_ajpregu_00406_2012 crossref_primary_10_1146_annurev_nutr_082117_051622 crossref_primary_10_3390_genes15010135 crossref_primary_10_2196_resprot_8865 crossref_primary_10_1016_j_niox_2023_01_003 crossref_primary_10_15430_JCP_2021_26_1_1 crossref_primary_10_1016_j_niox_2022_10_004 crossref_primary_10_1155_2015_715859 crossref_primary_10_1152_japplphysiol_01036_2016 crossref_primary_10_1161_CIRCRESAHA_118_313667 crossref_primary_10_1177_1358863X14568444 crossref_primary_10_14814_phy2_70076 crossref_primary_10_1152_ajpheart_00451_2016 crossref_primary_10_1248_bpb_b17_00316 crossref_primary_10_3390_nu11123003 crossref_primary_10_1016_j_cell_2022_06_010 crossref_primary_10_1371_journal_pone_0144504 crossref_primary_10_1007_s00217_012_1792_x crossref_primary_10_3233_CH_189009 crossref_primary_10_1255_jnirs_963 crossref_primary_10_1016_j_niox_2017_09_005 crossref_primary_10_1186_s12970_018_0242_y crossref_primary_10_1080_17461391_2011_635705 crossref_primary_10_1016_j_niox_2014_04_007 crossref_primary_10_1152_japplphysiol_00629_2011 crossref_primary_10_1016_j_coph_2018_02_009 crossref_primary_10_1152_japplphysiol_00122_2020 crossref_primary_10_1016_j_jdiacomp_2013_08_002 crossref_primary_10_3390_nu6115224 crossref_primary_10_1139_apnm_2014_0228 crossref_primary_10_1002_rco2_105 crossref_primary_10_1016_j_niox_2013_11_002 crossref_primary_10_1016_j_niox_2016_01_001 crossref_primary_10_1016_j_cmet_2018_06_007 crossref_primary_10_1186_s13023_017_0652_y crossref_primary_10_1016_j_niox_2016_01_002 crossref_primary_10_1016_j_freeradbiomed_2016_12_015 crossref_primary_10_14814_phy2_13572 crossref_primary_10_1017_S0007114522001337 crossref_primary_10_1016_j_niox_2022_06_002 crossref_primary_10_1155_2013_435629 crossref_primary_10_1152_japplphysiol_01110_2016 crossref_primary_10_1152_ajpendo_00122_2016 crossref_primary_10_1249_MSS_0000000000001857 crossref_primary_10_1007_BF03262311 crossref_primary_10_1016_j_resp_2013_04_001 crossref_primary_10_1002_mnfr_201400286 crossref_primary_10_1093_nutrit_nuab074 crossref_primary_10_1113_jphysiol_2012_234906 crossref_primary_10_3389_fnhum_2023_1115355 crossref_primary_10_1038_s41569_021_00663_9 crossref_primary_10_3390_nu14173560 crossref_primary_10_1016_j_tiv_2020_105048 crossref_primary_10_15406_mojgg_2017_01_00003 crossref_primary_10_1371_journal_pone_0235047 crossref_primary_10_1097_ACO_0b013e3283521230 crossref_primary_10_1152_japplphysiol_00014_2016 crossref_primary_10_1007_s13311_016_0494_7 crossref_primary_10_1016_j_niox_2018_08_007 crossref_primary_10_1155_2014_676235 crossref_primary_10_1007_s40279_014_0149_y crossref_primary_10_1016_j_resp_2013_12_015 crossref_primary_10_1016_j_niox_2020_03_007 crossref_primary_10_1152_japplphysiol_00662_2014 crossref_primary_10_1016_j_niox_2022_02_004 crossref_primary_10_3390_nu13061986 crossref_primary_10_1016_j_mvr_2024_104713 crossref_primary_10_14814_phy2_15531 crossref_primary_10_1080_02640414_2019_1580130 crossref_primary_10_1016_j_amjcard_2018_11_034 crossref_primary_10_1016_j_niox_2020_10_002 crossref_primary_10_1113_jphysiol_2011_220673 crossref_primary_10_3390_ijms21082703 crossref_primary_10_3390_sports5040080 crossref_primary_10_1152_ajpheart_00015_2018 crossref_primary_10_1080_09637486_2019_1580683 crossref_primary_10_3390_foods13050691 crossref_primary_10_1152_japplphysiol_00952_2016 crossref_primary_10_1016_j_resp_2012_09_008 crossref_primary_10_1139_apnm_2014_0137 crossref_primary_10_1152_japplphysiol_00521_2011 crossref_primary_10_1177_1074248415599061 crossref_primary_10_1016_j_ijcard_2013_12_014 crossref_primary_10_1007_s11694_015_9257_0 crossref_primary_10_1111_joim_12441 crossref_primary_10_1152_japplphysiol_00221_2023 crossref_primary_10_1111_sms_12684 crossref_primary_10_1007_s40279_022_01701_3 crossref_primary_10_1113_EP085061 crossref_primary_10_1161_CIRCRESAHA_118_313131 crossref_primary_10_1016_j_niox_2014_12_010 crossref_primary_10_1253_circj_CJ_18_0283 crossref_primary_10_14814_phy2_13004 crossref_primary_10_1016_j_niox_2014_03_162 crossref_primary_10_1016_j_jand_2020_02_014 crossref_primary_10_1152_ajpregu_00017_2018 crossref_primary_10_1016_j_freeradbiomed_2015_05_014 crossref_primary_10_1124_pr_120_019240 crossref_primary_10_1080_17461391_2015_1053418 crossref_primary_10_1016_j_freeradbiomed_2011_04_042 crossref_primary_10_1016_j_phanu_2020_100239 crossref_primary_10_1016_j_mvr_2014_12_002 crossref_primary_10_1139_apnm_2013_0263 crossref_primary_10_1152_japplphysiol_00321_2024 crossref_primary_10_1016_j_resp_2012_05_007 crossref_primary_10_1016_j_niox_2015_04_006 crossref_primary_10_1152_japplphysiol_00953_2016 crossref_primary_10_1136_bmjresp_2021_000948 crossref_primary_10_1016_j_niox_2016_12_008 crossref_primary_10_2174_1871525719666210427130511 crossref_primary_10_1113_jphysiol_2012_243121 crossref_primary_10_1007_s11906_015_0623_4 crossref_primary_10_1080_13813455_2020_1733025 crossref_primary_10_3390_nu11061327 crossref_primary_10_3945_jn_113_175778 crossref_primary_10_1016_j_jvs_2013_10_084 crossref_primary_10_1177_1535370214558024 crossref_primary_10_1152_japplphysiol_01004_2018 crossref_primary_10_1152_ajpgi_00203_2016 crossref_primary_10_1016_j_niox_2022_01_005 crossref_primary_10_1152_ajpregu_00275_2017 crossref_primary_10_1136_thoraxjnl_2019_214278 crossref_primary_10_1155_2015_613860 crossref_primary_10_1016_j_jff_2024_106435 crossref_primary_10_2217_fca_2016_0026 crossref_primary_10_1017_S0029665118000058 crossref_primary_10_1093_cdn_nzz113 crossref_primary_10_1007_s00394_015_0872_7 crossref_primary_10_1146_annurev_nutr_071812_161159 crossref_primary_10_1152_ajpendo_00667_2011 crossref_primary_10_1016_j_freeradbiomed_2012_08_580 crossref_primary_10_1016_j_nutres_2015_06_001 crossref_primary_10_1152_japplphysiol_00453_2020 crossref_primary_10_33689_spormetre_576675 crossref_primary_10_1136_bjsports_2011_090669 crossref_primary_10_1016_j_jchf_2015_12_013 crossref_primary_10_1249_MSS_0b013e3182687e5c crossref_primary_10_1111_j_1365_2125_2012_04420_x crossref_primary_10_1186_s12970_020_00358_5 crossref_primary_10_1152_japplphysiol_00850_2019 |
Cites_doi | 10.1152/japplphysiol.00046.2010 10.1016/S0735-1097(01)01746-6 10.1172/JCI24650 10.1152/japplphysiol.01061.2006 10.1038/380221a0 10.1007/BF00377698 10.1172/JCI200112761 10.1016/j.freeradbiomed.2004.12.018 10.1152/japplphysiol.00722.2009 10.1161/HYPERTENSIONAHA.110.153536 10.1038/nm0895-804 10.1016/j.niox.2008.08.003 10.1177/000331979304400101 10.1161/HYPERTENSIONAHA.107.103523 10.1111/j.1748-1716.2007.01713.x 10.1038/nm954 10.1016/j.jacc.2008.08.074 10.1038/nm1109 10.1056/NEJM199704173361601 10.1161/01.CIR.0000089191.72957.ED 10.1001/jama.289.19.2560 10.1152/japplphysiol.01070.2010 10.1016/j.freeradbiomed.2009.11.006 10.1152/japplphysiol.00695.2002 10.1097/00005768-200206000-00009 10.1073/pnas.0402927101 10.1038/nrd2466 10.1038/nrmicro929 10.1002/med.20151 10.1016/S0968-0004(01)02035-7 10.3945/ajcn.2008.27131 10.1111/j.1476-5381.2009.00340.x 10.1001/archinte.163.8.884 10.1073/pnas.221381098 10.1161/01.CIR.88.5.2149 10.1073/pnas.98.1.355 10.1016/j.freeradbiomed.2010.06.033 10.1161/CIRCULATIONAHA.106.174526 10.1152/japplphysiol.00381.2003 10.1016/j.freeradbiomed.2004.04.027 10.1016/S0034-5687(00)00096-7 10.1152/ajpregu.00206.2010 10.1152/japplphysiol.01414.2006 10.1016/S0891-5849(03)00406-4 10.1172/JCI20664 10.1161/01.CIR.91.7.1981 10.1161/01.ATV.0000204350.44226.9a 10.1016/0735-1097(94)90305-0 10.1378/chest.128.4.2025 10.1093/geronj/49.3.B128 10.1161/01.RES.0000260171.52224.6b 10.1249/00005768-199104000-00003 10.18388/abp.2000_3946 10.1016/j.niox.2009.01.002 10.1161/01.RES.75.6.1086 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Physiological Society Jun 2011 Copyright © 2011 the American Physiological Society 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Physiological Society Jun 2011 – notice: Copyright © 2011 the American Physiological Society 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1152/japplphysiol.00071.2011 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1591 |
ExternalDocumentID | PMC3119136 2400953581 21454745 24235708 10_1152_japplphysiol_00071_2011 |
Genre | Randomized Controlled Trial Journal Article Research Support, N.I.H., Extramural Feature |
GeographicLocations | North Carolina |
GeographicLocations_xml | – name: North Carolina |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG0287 |
GroupedDBID | --- -~X .55 .GJ 18M 1CY 29J 2WC 39C 3O- 4.4 53G 5VS 85S 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACKIV ACPRK ACYGS ADBBV ADFNX ADXHL AEILP AENEX AETEA AFOSN AFRAH AGCDD AGNAY AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A C2- CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX J5H KQ8 L7B MVM NEJ OHT OK1 P-O P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7M XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c490t-881b7d55b21808813ffe300904f0aceb1774c565b3484e07b0fdf65478d4a4793 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Thu Aug 21 18:19:13 EDT 2025 Fri Jul 11 12:32:55 EDT 2025 Mon Jun 30 08:47:20 EDT 2025 Mon Jul 21 06:07:42 EDT 2025 Mon Jul 21 09:14:18 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Tue Jul 01 01:13:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Physical exercise Cardiovascular disease exercise Nitrates peripheral arterial disease Arterial disease Vascular disease Vertebrata Mammalia nitrite Nitric oxide Occlusive arterial disease Supplementation Performance |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c490t-881b7d55b21808813ffe300904f0aceb1774c565b3484e07b0fdf65478d4a4793 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 21454745 |
PQID | 877462375 |
PQPubID | 40905 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3119136 proquest_miscellaneous_872531064 proquest_journals_877462375 pubmed_primary_21454745 pascalfrancis_primary_24235708 crossref_primary_10_1152_japplphysiol_00071_2011 crossref_citationtrail_10_1152_japplphysiol_00071_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-01 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2011 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 Nohl H (B41) 2000; 47 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B13 B14 B15 B16 B17 B18 B19 11457881 - J Clin Invest. 2001 Jul;108(2):279-87 8637569 - Nature. 1996 Mar 21;380(6571):221-6 20466802 - J Appl Physiol (1985). 2010 Jul;109(1):135-48 15197394 - Nat Rev Microbiol. 2004 Jul;2(7):593-602 18250365 - Hypertension. 2008 Mar;51(3):784-90 8169330 - J Gerontol. 1994 May;49(3):B128-34 14595407 - Nat Med. 2003 Dec;9(12):1498-505 15223073 - Free Radic Biol Med. 2004 Aug 1;37(3):395-400 8034885 - J Am Coll Cardiol. 1994 Aug;24(2):471-6 12748199 - JAMA. 2003 May 21;289(19):2560-72 2056896 - Med Sci Sports Exerc. 1991 Apr;23(4):402-8 17293481 - Circ Res. 2007 Mar 16;100(5):654-61 15361865 - Nat Med. 2004 Oct;10(10):1122-7 14583343 - Free Radic Biol Med. 2003 Oct 1;35(7):790-6 12048322 - Med Sci Sports Exerc. 2002 Jun;34(6):960-5 21071588 - J Appl Physiol (1985). 2011 Mar;110(3):591-600 8375359 - Eur J Appl Physiol Occup Physiol. 1993;67(1):20-5 9099655 - N Engl J Med. 1997 Apr 17;336(16):1117-24 15347817 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13683-8 18167491 - Nat Rev Drug Discov. 2008 Feb;7(2):156-67 14581384 - Circulation. 2003 Oct 28;108(17):2054-9 8222109 - Circulation. 1993 Nov;88(5 Pt 1):2149-55 11788217 - J Am Coll Cardiol. 2002 Jan 16;39(2):257-65 20585108 - Hypertension. 2010 Aug;56(2):274-81 20620208 - Free Radic Biol Med. 2010 Sep 15;49(6):1138-44 19439460 - Am J Clin Nutr. 2009 Jul;90(1):1-10 11134509 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355-60 7895356 - Circulation. 1995 Apr 1;91(7):1981-7 16424350 - Arterioscler Thromb Vasc Biol. 2006 Apr;26(4):697-705 12611769 - J Appl Physiol (1985). 2003 Jul;95(1):149-58 17635415 - Acta Physiol (Oxf). 2007 Sep;191(1):59-66 17823295 - J Appl Physiol (1985). 2007 Dec;103(6):1999-2004 11606734 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12814-9 16549646 - Circulation. 2006 Mar 21;113(11):e463-654 19661447 - J Appl Physiol (1985). 2009 Oct;107(4):1144-55 16041407 - J Clin Invest. 2005 Aug;115(8):2099-107 18793740 - Nitric Oxide. 2008 Dec;19(4):333-7 19161880 - J Am Coll Cardiol. 2009 Jan 27;53(4):323-30 10773245 - Respir Physiol. 2000 Apr;120(2):151-66 14702102 - J Clin Invest. 2004 Jan;113(1):19-21 11996114 - Acta Biochim Pol. 2000;47(4):913-21 19594749 - Br J Pharmacol. 2009 Aug;157(8):1523-30 14657038 - J Appl Physiol (1985). 2004 Mar;96(3):1033-8 7585184 - Nat Med. 1995 Aug;1(8):804-9 12719196 - Arch Intern Med. 2003 Apr 28;163(8):884-92 19219851 - Med Res Rev. 2009 Sep;29(5):683-741 11796222 - Trends Biochem Sci. 2002 Jan;27(1):33-9 7525103 - Circ Res. 1994 Dec;75(6):1086-95 16236851 - Chest. 2005 Oct;128(4):2025-34 19371597 - Nitric Oxide. 2009 Jun;20(4):231-7 20702806 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121-31 8424578 - Angiology. 1993 Jan;44(1):1-10 15808413 - Free Radic Biol Med. 2005 May 1;38(9):1164-9 19913611 - Free Radic Biol Med. 2010 Jan 15;48(2):342-7 17495116 - J Appl Physiol (1985). 2007 Sep;103(3):771-8 |
References_xml | – ident: B5 doi: 10.1152/japplphysiol.00046.2010 – ident: B13 doi: 10.1016/S0735-1097(01)01746-6 – ident: B24 doi: 10.1172/JCI24650 – ident: B16 doi: 10.1152/japplphysiol.01061.2006 – ident: B26 doi: 10.1038/380221a0 – ident: B15 doi: 10.1007/BF00377698 – ident: B8 doi: 10.1172/JCI200112761 – ident: B2 doi: 10.1016/j.freeradbiomed.2004.12.018 – ident: B6 doi: 10.1152/japplphysiol.00722.2009 – ident: B28 doi: 10.1161/HYPERTENSIONAHA.110.153536 – ident: B55 doi: 10.1038/nm0895-804 – ident: B20 doi: 10.1016/j.niox.2008.08.003 – ident: B44 doi: 10.1177/000331979304400101 – ident: B53 doi: 10.1161/HYPERTENSIONAHA.107.103523 – ident: B35 doi: 10.1111/j.1748-1716.2007.01713.x – ident: B14 doi: 10.1038/nm954 – ident: B31 doi: 10.1016/j.jacc.2008.08.074 – ident: B25 doi: 10.1038/nm1109 – ident: B4 doi: 10.1056/NEJM199704173361601 – ident: B51 doi: 10.1161/01.CIR.0000089191.72957.ED – ident: B11 doi: 10.1001/jama.289.19.2560 – ident: B33 doi: 10.1152/japplphysiol.01070.2010 – ident: B34 doi: 10.1016/j.freeradbiomed.2009.11.006 – ident: B21 doi: 10.1152/japplphysiol.00695.2002 – ident: B54 doi: 10.1097/00005768-200206000-00009 – ident: B52 doi: 10.1073/pnas.0402927101 – ident: B39 doi: 10.1038/nrd2466 – ident: B38 doi: 10.1038/nrmicro929 – ident: B49 doi: 10.1002/med.20151 – ident: B12 doi: 10.1016/S0968-0004(01)02035-7 – ident: B23 doi: 10.3945/ajcn.2008.27131 – ident: B42 doi: 10.1111/j.1476-5381.2009.00340.x – ident: B7 doi: 10.1001/archinte.163.8.884 – ident: B36 doi: 10.1073/pnas.221381098 – ident: B9 doi: 10.1161/01.CIR.88.5.2149 – ident: B48 doi: 10.1073/pnas.98.1.355 – ident: B3 doi: 10.1016/j.freeradbiomed.2010.06.033 – ident: B22 doi: 10.1161/CIRCULATIONAHA.106.174526 – ident: B27 doi: 10.1152/japplphysiol.00381.2003 – ident: B37 doi: 10.1016/j.freeradbiomed.2004.04.027 – ident: B30 doi: 10.1016/S0034-5687(00)00096-7 – ident: B50 doi: 10.1152/ajpregu.00206.2010 – ident: B17 doi: 10.1152/japplphysiol.01414.2006 – ident: B32 doi: 10.1016/S0891-5849(03)00406-4 – ident: B19 doi: 10.1172/JCI20664 – ident: B47 doi: 10.1161/01.CIR.91.7.1981 – ident: B29 doi: 10.1161/01.ATV.0000204350.44226.9a – ident: B10 doi: 10.1016/0735-1097(94)90305-0 – ident: B43 doi: 10.1378/chest.128.4.2025 – ident: B40 doi: 10.1093/geronj/49.3.B128 – ident: B46 doi: 10.1161/01.RES.0000260171.52224.6b – ident: B18 doi: 10.1249/00005768-199104000-00003 – volume: 47 start-page: 913 year: 2000 ident: B41 publication-title: Acta Biochim Pol doi: 10.18388/abp.2000_3946 – ident: B1 doi: 10.1016/j.niox.2009.01.002 – ident: B45 doi: 10.1161/01.RES.75.6.1086 – reference: 19594749 - Br J Pharmacol. 2009 Aug;157(8):1523-30 – reference: 14657038 - J Appl Physiol (1985). 2004 Mar;96(3):1033-8 – reference: 17823295 - J Appl Physiol (1985). 2007 Dec;103(6):1999-2004 – reference: 8375359 - Eur J Appl Physiol Occup Physiol. 1993;67(1):20-5 – reference: 8034885 - J Am Coll Cardiol. 1994 Aug;24(2):471-6 – reference: 7525103 - Circ Res. 1994 Dec;75(6):1086-95 – reference: 10773245 - Respir Physiol. 2000 Apr;120(2):151-66 – reference: 15223073 - Free Radic Biol Med. 2004 Aug 1;37(3):395-400 – reference: 11796222 - Trends Biochem Sci. 2002 Jan;27(1):33-9 – reference: 18250365 - Hypertension. 2008 Mar;51(3):784-90 – reference: 14595407 - Nat Med. 2003 Dec;9(12):1498-505 – reference: 16549646 - Circulation. 2006 Mar 21;113(11):e463-654 – reference: 2056896 - Med Sci Sports Exerc. 1991 Apr;23(4):402-8 – reference: 9099655 - N Engl J Med. 1997 Apr 17;336(16):1117-24 – reference: 18793740 - Nitric Oxide. 2008 Dec;19(4):333-7 – reference: 17635415 - Acta Physiol (Oxf). 2007 Sep;191(1):59-66 – reference: 19371597 - Nitric Oxide. 2009 Jun;20(4):231-7 – reference: 11457881 - J Clin Invest. 2001 Jul;108(2):279-87 – reference: 15347817 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13683-8 – reference: 11788217 - J Am Coll Cardiol. 2002 Jan 16;39(2):257-65 – reference: 15197394 - Nat Rev Microbiol. 2004 Jul;2(7):593-602 – reference: 19913611 - Free Radic Biol Med. 2010 Jan 15;48(2):342-7 – reference: 7895356 - Circulation. 1995 Apr 1;91(7):1981-7 – reference: 17293481 - Circ Res. 2007 Mar 16;100(5):654-61 – reference: 16424350 - Arterioscler Thromb Vasc Biol. 2006 Apr;26(4):697-705 – reference: 14702102 - J Clin Invest. 2004 Jan;113(1):19-21 – reference: 14581384 - Circulation. 2003 Oct 28;108(17):2054-9 – reference: 20620208 - Free Radic Biol Med. 2010 Sep 15;49(6):1138-44 – reference: 7585184 - Nat Med. 1995 Aug;1(8):804-9 – reference: 20466802 - J Appl Physiol (1985). 2010 Jul;109(1):135-48 – reference: 8222109 - Circulation. 1993 Nov;88(5 Pt 1):2149-55 – reference: 19661447 - J Appl Physiol (1985). 2009 Oct;107(4):1144-55 – reference: 11996114 - Acta Biochim Pol. 2000;47(4):913-21 – reference: 18167491 - Nat Rev Drug Discov. 2008 Feb;7(2):156-67 – reference: 16236851 - Chest. 2005 Oct;128(4):2025-34 – reference: 11134509 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355-60 – reference: 11606734 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12814-9 – reference: 15808413 - Free Radic Biol Med. 2005 May 1;38(9):1164-9 – reference: 15361865 - Nat Med. 2004 Oct;10(10):1122-7 – reference: 8424578 - Angiology. 1993 Jan;44(1):1-10 – reference: 20585108 - Hypertension. 2010 Aug;56(2):274-81 – reference: 12748199 - JAMA. 2003 May 21;289(19):2560-72 – reference: 16041407 - J Clin Invest. 2005 Aug;115(8):2099-107 – reference: 19439460 - Am J Clin Nutr. 2009 Jul;90(1):1-10 – reference: 14583343 - Free Radic Biol Med. 2003 Oct 1;35(7):790-6 – reference: 20702806 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121-31 – reference: 8637569 - Nature. 1996 Mar 21;380(6571):221-6 – reference: 12611769 - J Appl Physiol (1985). 2003 Jul;95(1):149-58 – reference: 21071588 - J Appl Physiol (1985). 2011 Mar;110(3):591-600 – reference: 19161880 - J Am Coll Cardiol. 2009 Jan 27;53(4):323-30 – reference: 12048322 - Med Sci Sports Exerc. 2002 Jun;34(6):960-5 – reference: 12719196 - Arch Intern Med. 2003 Apr 28;163(8):884-92 – reference: 8169330 - J Gerontol. 1994 May;49(3):B128-34 – reference: 17495116 - J Appl Physiol (1985). 2007 Sep;103(3):771-8 – reference: 19219851 - Med Res Rev. 2009 Sep;29(5):683-741 |
SSID | ssj0014451 |
Score | 2.4839196 |
Snippet | Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O
2
) to working tissues and presents as claudication pain during... Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during... Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O...) to working tissues and presents as claudication pain during... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1582 |
SubjectTerms | Aged Aged, 80 and over Analysis of Variance Ankle Brachial Index Beta vulgaris Beverages Bioavailability Biological and medical sciences Blood Pressure Cross-Over Studies Dietary Supplements Exercise Exercise Test Exercise Tolerance Female Fundamental and applied biological sciences. Psychology Heart Rate Hemoglobins - metabolism Human performance Humans Hypoxia Infrared spectroscopy Intermittent Claudication - blood Intermittent Claudication - physiopathology Intermittent Claudication - prevention & control Male Middle Aged Muscle, Skeletal - metabolism Muscle, Skeletal - physiopathology Nitrates - administration & dosage Nitrates - metabolism Nitric oxide Nitric Oxide - blood Nitrites - blood North Carolina Oxygen Consumption Oxygenation Oxyhemoglobins - metabolism Pain Peripheral Arterial Disease - blood Peripheral Arterial Disease - physiopathology Peripheral Arterial Disease - therapy Plant Roots Spectroscopy, Near-Infrared Time Factors Treatment Outcome Vasodilation Vein & artery diseases Walking |
Title | Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21454745 https://www.proquest.com/docview/877462375 https://www.proquest.com/docview/872531064 https://pubmed.ncbi.nlm.nih.gov/PMC3119136 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7cFEqhlDbpQ00b9lB6MXIl7a4kH00fmIaUFhLIoSC0qxVRSGRTy4f2B_R3d2Z39bCd0MfFGEm7svx9Gs2sZr4h5HUUJUIoqXwFtt_nRQR2MGHcj5nKizKMZJ5igfPJ53h-xj-di_PR6Ncga2ndyIn6eWNdyf-gCtsAV6yS_Qdku0lhA3wHfOETEIbPv8L4faUbzHqD2xIVH8YrbNFp08ENrLq-QFBXXWMlVCnu6gRM_jjYDKzAuhqb3M5q65XNrteaO6_VrIhY_SaUepqmYrCmANb70uUpz_Bn9wumc8u_47bucNytPYPXK11V4iBpyVaoSbco3qbiuFFFv_raJlVNtDOwEPyGsdvWWmCX2Vrt2NNQ2NZEu4ZeRKbBAFy0u-CJcZeMKOtwBCC2vDb4oyY7T6x45ZbGdrvrDrkbQbiB9vL4a_82CkXcXG4gnPftLWc1utJ2ng0n58EyX8H9VtpGKTdFMtsJuQMP5_QReehApjPLs8dkpOt9cjCr82Zx_YO-oV86yPfJvROXk3FAvjkWUsdCusVC2rKQtiykAxbSqqY9C2nLQupY-IScffxw-m7uu54dvuLToPFTCIOSQggJriM8wEJWlpqBHx_wMsiVRrEzriCIkIynXAeJDMqixAbYacFzXOV9SvbqRa2fE1rIhAeFYrksGIzB2IDpREOAHRaClVOPxO2fnCknaI99Va4yE9iKKBsClRmgMgTKI0E3cGk1Xf485GgDxW4chiMiCVKPHLawZs5CrLIULhbCi0R4hHZ7wXzjO7m81os1HhLBUxDiAo88sxzop3Zk8kiywY7uAFSG39xTVxdGIZ6hbCOLX9w65yG539-eL8le832tX4F33cgjQ_3f_QPWJw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+nitrate+supplementation+enhances+exercise+performance+in+peripheral+arterial+disease&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Kenjale%2C+Aarti+A&rft.au=Ham%2C+Katherine+L&rft.au=Stabler%2C+Thomas&rft.au=Robbins%2C+Jennifer+L&rft.date=2011-06-01&rft.eissn=1522-1601&rft.volume=110&rft.issue=6&rft.spage=1582&rft_id=info:doi/10.1152%2Fjapplphysiol.00071.2011&rft_id=info%3Apmid%2F21454745&rft.externalDocID=21454745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |