Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease

Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O 2 ) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO 2 − ) is a marker of vascular N...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 110; no. 6; pp. 1582 - 1591
Main Authors Kenjale, Aarti A., Ham, Katherine L., Stabler, Thomas, Robbins, Jennifer L., Johnson, Johanna L., VanBruggen, Mitch, Privette, Grayson, Yim, Eunji, Kraus, William E., Allen, Jason D.
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Physiological Society 01.06.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O 2 ) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO 2 − ) is a marker of vascular NO production but may also be a protected circulating “source” that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO 2 − concentration, increase exercise tolerance, and decrease gastrocnemius fractional O 2 extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects ( n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO 2 − ] (152 ± 72 nM) following PL. BR increased plasma [NO 2 − ] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O 2 extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing ( P ≤ 0.05). These findings support the hypothesis that NO 2 − -related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.
AbstractList Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O 2 ) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO 2 − ) is a marker of vascular NO production but may also be a protected circulating “source” that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO 2 − concentration, increase exercise tolerance, and decrease gastrocnemius fractional O 2 extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects ( n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO 2 − ] (152 ± 72 nM) following PL. BR increased plasma [NO 2 − ] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O 2 extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing ( P ≤ 0.05). These findings support the hypothesis that NO 2 − -related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O...) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (...) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma ... concentration, increase exercise tolerance, and decrease gastrocnemius fractional O... extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [...] (152 ± 72 nM) following PL. BR increased plasma [...] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O... extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that ...-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. (ProQuest: ... denotes formulae/symbols omitted.)
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O 2 ) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO 2 − ) is a marker of vascular NO production but may also be a protected circulating “source” that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO 2 − concentration, increase exercise tolerance, and decrease gastrocnemius fractional O 2 extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects ( n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO 2 − ] (152 ± 72 nM) following PL. BR increased plasma [NO 2 − ] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O 2 extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing ( P ≤ 0.05). These findings support the hypothesis that NO 2 − -related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.
Author Kraus, William E.
Ham, Katherine L.
Robbins, Jennifer L.
Privette, Grayson
Yim, Eunji
Stabler, Thomas
Allen, Jason D.
VanBruggen, Mitch
Kenjale, Aarti A.
Johnson, Johanna L.
Author_xml – sequence: 1
  givenname: Aarti A.
  surname: Kenjale
  fullname: Kenjale, Aarti A.
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 2
  givenname: Katherine L.
  surname: Ham
  fullname: Ham, Katherine L.
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 3
  givenname: Thomas
  surname: Stabler
  fullname: Stabler, Thomas
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 4
  givenname: Jennifer L.
  surname: Robbins
  fullname: Robbins, Jennifer L.
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 5
  givenname: Johanna L.
  surname: Johnson
  fullname: Johnson, Johanna L.
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 6
  givenname: Mitch
  surname: VanBruggen
  fullname: VanBruggen, Mitch
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 7
  givenname: Grayson
  surname: Privette
  fullname: Privette, Grayson
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 8
  givenname: Eunji
  surname: Yim
  fullname: Yim, Eunji
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 9
  givenname: William E.
  surname: Kraus
  fullname: Kraus, William E.
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
– sequence: 10
  givenname: Jason D.
  surname: Allen
  fullname: Allen, Jason D.
  organization: Department of Medicine, Duke University Medical Center, Durham, North Carolina; and, Wake Forest University Translational Science Center, Winston-Salem, North Carolina
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24235708$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21454745$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFvwAREuKUZRzbcfYAEiqfUiUucEOyHGfCepXYwU5Q--87yy6l9MLJHs8zr94Zzxk7CTEgY884rDlX1audnaZh2l5nH4c1AGi-roDzB2xF2arkNfATtmq0glKrRp-ys5x3AFxKxR-x04pLJbVUK_b9ncfZpusi-DnZGYu8kDKOGGY7-xgKDFsbHOYCrzA5n7GYMPUxjfvXwod96KctJjsUNs0U0KUjzmZ8zB72dsj45Hies28f3n-9-FRefvn4-eLtZenkBuayaXirO6XaijdAgeh7FAAbkD1Yhy3XWjpVq1bIRiLoFvqur6mBppNW6o04Z28OutPSjtg5Mk92zJT8SK2ZaL35NxP81vyIv4zgfMNFTQIvjwIp_lwwz2b02eEw2IBxyabRlRIcaknk83vkLi4pUHcEaVlXQiuCnt71c2vkz9gJeHEEbHZ26BMN0-e_nKyE0tAQpw-cSzHnhP0twsHsF8HcXQTzexHMfhGo8vW9SucPP0oD8MN_628AxHrAlQ
CODEN JAPHEV
CitedBy_id crossref_primary_10_1007_s00421_020_04368_8
crossref_primary_10_1007_s00520_022_07520_6
crossref_primary_10_1017_S0954422413000188
crossref_primary_10_3390_nu13072143
crossref_primary_10_1016_j_niox_2012_03_006
crossref_primary_10_1089_ars_2011_4196
crossref_primary_10_1016_j_healun_2016_01_018
crossref_primary_10_1007_s00421_013_2589_8
crossref_primary_10_3389_fnut_2024_1398108
crossref_primary_10_1016_j_niox_2012_03_003
crossref_primary_10_1016_j_niox_2015_01_002
crossref_primary_10_18632_aging_101984
crossref_primary_10_1016_j_yjmcc_2014_01_012
crossref_primary_10_1139_apnm_2020_0498
crossref_primary_10_1080_17461391_2018_1445298
crossref_primary_10_1249_MSS_0b013e3182640f48
crossref_primary_10_1038_nrd4623
crossref_primary_10_1016_j_clnu_2021_11_005
crossref_primary_10_1007_s40279_017_0744_9
crossref_primary_10_1080_09637486_2017_1328666
crossref_primary_10_1080_10408398_2013_811212
crossref_primary_10_1152_japplphysiol_00772_2017
crossref_primary_10_3390_nu9111171
crossref_primary_10_1016_j_niox_2015_05_004
crossref_primary_10_1016_j_niox_2015_05_005
crossref_primary_10_1016_j_niox_2017_05_005
crossref_primary_10_1152_japplphysiol_00559_2023
crossref_primary_10_2196_resprot_7596
crossref_primary_10_1113_jphysiol_2011_216341
crossref_primary_10_3390_nu11071683
crossref_primary_10_3390_nu16081136
crossref_primary_10_1152_japplphysiol_01253_2011
crossref_primary_10_3390_nu11050954
crossref_primary_10_1152_japplphysiol_00292_2019
crossref_primary_10_3390_biomedicines11071859
crossref_primary_10_1152_japplphysiol_01053_2018
crossref_primary_10_3389_fphar_2021_666334
crossref_primary_10_1093_nutrit_nuu014
crossref_primary_10_1161_CIRCULATIONAHA_112_112912
crossref_primary_10_1152_ajpregu_00068_2014
crossref_primary_10_1161_JAHA_114_001072
crossref_primary_10_1152_ajpheart_00414_2017
crossref_primary_10_1002_mnfr_201500153
crossref_primary_10_1016_j_freeradbiomed_2013_01_024
crossref_primary_10_1007_s11883_018_0723_0
crossref_primary_10_3390_nu16223832
crossref_primary_10_1080_20002297_2024_2322228
crossref_primary_10_1177_0260106018790428
crossref_primary_10_1007_s00421_018_3835_x
crossref_primary_10_1016_j_mvr_2022_104469
crossref_primary_10_1016_j_niox_2018_03_009
crossref_primary_10_1016_j_nutres_2012_02_002
crossref_primary_10_1152_ajpheart_00421_2015
crossref_primary_10_14814_phy2_12089
crossref_primary_10_1152_ajpheart_00235_2020
crossref_primary_10_1016_j_niox_2025_03_003
crossref_primary_10_1007_s00421_022_05056_5
crossref_primary_10_1016_j_freeradbiomed_2014_09_021
crossref_primary_10_1155_2016_8139861
crossref_primary_10_1016_j_niox_2016_10_002
crossref_primary_10_1016_j_nutres_2016_11_004
crossref_primary_10_1007_s00421_018_3843_x
crossref_primary_10_1152_ajpregu_00121_2021
crossref_primary_10_1016_j_nutres_2015_05_017
crossref_primary_10_1111_cpf_12478
crossref_primary_10_1152_japplphysiol_00096_2014
crossref_primary_10_15171_jcvtr_2018_01
crossref_primary_10_1111_bcp_12918
crossref_primary_10_3390_nu7042801
crossref_primary_10_1519_JSC_0b013e318236d081
crossref_primary_10_52547_ajcm_28_3_176
crossref_primary_10_1152_ajpheart_00138_2014
crossref_primary_10_1016_j_niox_2014_10_007
crossref_primary_10_1152_japplphysiol_00747_2017
crossref_primary_10_1038_s41430_018_0140_z
crossref_primary_10_1016_j_niox_2019_10_009
crossref_primary_10_1152_japplphysiol_00323_2024
crossref_primary_10_1139_apnm_2014_0036
crossref_primary_10_1152_japplphysiol_00220_2023
crossref_primary_10_1152_ajpregu_00263_2016
crossref_primary_10_1016_j_clinthera_2023_09_005
crossref_primary_10_1080_09637486_2018_1492521
crossref_primary_10_1152_ajpregu_00183_2014
crossref_primary_10_1016_j_conctc_2020_100693
crossref_primary_10_1152_japplphysiol_00367_2016
crossref_primary_10_1017_S0954422420000049
crossref_primary_10_1089_dia_2011_0291
crossref_primary_10_1016_j_rmed_2024_107745
crossref_primary_10_1123_ijsnem_2021_0054
crossref_primary_10_3389_fphys_2019_00404
crossref_primary_10_1113_JP271252
crossref_primary_10_1152_japplphysiol_00614_2011
crossref_primary_10_1016_j_freeradbiomed_2011_05_037
crossref_primary_10_1016_j_nfs_2020_08_001
crossref_primary_10_1152_ajpregu_00406_2012
crossref_primary_10_1146_annurev_nutr_082117_051622
crossref_primary_10_3390_genes15010135
crossref_primary_10_2196_resprot_8865
crossref_primary_10_1016_j_niox_2023_01_003
crossref_primary_10_15430_JCP_2021_26_1_1
crossref_primary_10_1016_j_niox_2022_10_004
crossref_primary_10_1155_2015_715859
crossref_primary_10_1152_japplphysiol_01036_2016
crossref_primary_10_1161_CIRCRESAHA_118_313667
crossref_primary_10_1177_1358863X14568444
crossref_primary_10_14814_phy2_70076
crossref_primary_10_1152_ajpheart_00451_2016
crossref_primary_10_1248_bpb_b17_00316
crossref_primary_10_3390_nu11123003
crossref_primary_10_1016_j_cell_2022_06_010
crossref_primary_10_1371_journal_pone_0144504
crossref_primary_10_1007_s00217_012_1792_x
crossref_primary_10_3233_CH_189009
crossref_primary_10_1255_jnirs_963
crossref_primary_10_1016_j_niox_2017_09_005
crossref_primary_10_1186_s12970_018_0242_y
crossref_primary_10_1080_17461391_2011_635705
crossref_primary_10_1016_j_niox_2014_04_007
crossref_primary_10_1152_japplphysiol_00629_2011
crossref_primary_10_1016_j_coph_2018_02_009
crossref_primary_10_1152_japplphysiol_00122_2020
crossref_primary_10_1016_j_jdiacomp_2013_08_002
crossref_primary_10_3390_nu6115224
crossref_primary_10_1139_apnm_2014_0228
crossref_primary_10_1002_rco2_105
crossref_primary_10_1016_j_niox_2013_11_002
crossref_primary_10_1016_j_niox_2016_01_001
crossref_primary_10_1016_j_cmet_2018_06_007
crossref_primary_10_1186_s13023_017_0652_y
crossref_primary_10_1016_j_niox_2016_01_002
crossref_primary_10_1016_j_freeradbiomed_2016_12_015
crossref_primary_10_14814_phy2_13572
crossref_primary_10_1017_S0007114522001337
crossref_primary_10_1016_j_niox_2022_06_002
crossref_primary_10_1155_2013_435629
crossref_primary_10_1152_japplphysiol_01110_2016
crossref_primary_10_1152_ajpendo_00122_2016
crossref_primary_10_1249_MSS_0000000000001857
crossref_primary_10_1007_BF03262311
crossref_primary_10_1016_j_resp_2013_04_001
crossref_primary_10_1002_mnfr_201400286
crossref_primary_10_1093_nutrit_nuab074
crossref_primary_10_1113_jphysiol_2012_234906
crossref_primary_10_3389_fnhum_2023_1115355
crossref_primary_10_1038_s41569_021_00663_9
crossref_primary_10_3390_nu14173560
crossref_primary_10_1016_j_tiv_2020_105048
crossref_primary_10_15406_mojgg_2017_01_00003
crossref_primary_10_1371_journal_pone_0235047
crossref_primary_10_1097_ACO_0b013e3283521230
crossref_primary_10_1152_japplphysiol_00014_2016
crossref_primary_10_1007_s13311_016_0494_7
crossref_primary_10_1016_j_niox_2018_08_007
crossref_primary_10_1155_2014_676235
crossref_primary_10_1007_s40279_014_0149_y
crossref_primary_10_1016_j_resp_2013_12_015
crossref_primary_10_1016_j_niox_2020_03_007
crossref_primary_10_1152_japplphysiol_00662_2014
crossref_primary_10_1016_j_niox_2022_02_004
crossref_primary_10_3390_nu13061986
crossref_primary_10_1016_j_mvr_2024_104713
crossref_primary_10_14814_phy2_15531
crossref_primary_10_1080_02640414_2019_1580130
crossref_primary_10_1016_j_amjcard_2018_11_034
crossref_primary_10_1016_j_niox_2020_10_002
crossref_primary_10_1113_jphysiol_2011_220673
crossref_primary_10_3390_ijms21082703
crossref_primary_10_3390_sports5040080
crossref_primary_10_1152_ajpheart_00015_2018
crossref_primary_10_1080_09637486_2019_1580683
crossref_primary_10_3390_foods13050691
crossref_primary_10_1152_japplphysiol_00952_2016
crossref_primary_10_1016_j_resp_2012_09_008
crossref_primary_10_1139_apnm_2014_0137
crossref_primary_10_1152_japplphysiol_00521_2011
crossref_primary_10_1177_1074248415599061
crossref_primary_10_1016_j_ijcard_2013_12_014
crossref_primary_10_1007_s11694_015_9257_0
crossref_primary_10_1111_joim_12441
crossref_primary_10_1152_japplphysiol_00221_2023
crossref_primary_10_1111_sms_12684
crossref_primary_10_1007_s40279_022_01701_3
crossref_primary_10_1113_EP085061
crossref_primary_10_1161_CIRCRESAHA_118_313131
crossref_primary_10_1016_j_niox_2014_12_010
crossref_primary_10_1253_circj_CJ_18_0283
crossref_primary_10_14814_phy2_13004
crossref_primary_10_1016_j_niox_2014_03_162
crossref_primary_10_1016_j_jand_2020_02_014
crossref_primary_10_1152_ajpregu_00017_2018
crossref_primary_10_1016_j_freeradbiomed_2015_05_014
crossref_primary_10_1124_pr_120_019240
crossref_primary_10_1080_17461391_2015_1053418
crossref_primary_10_1016_j_freeradbiomed_2011_04_042
crossref_primary_10_1016_j_phanu_2020_100239
crossref_primary_10_1016_j_mvr_2014_12_002
crossref_primary_10_1139_apnm_2013_0263
crossref_primary_10_1152_japplphysiol_00321_2024
crossref_primary_10_1016_j_resp_2012_05_007
crossref_primary_10_1016_j_niox_2015_04_006
crossref_primary_10_1152_japplphysiol_00953_2016
crossref_primary_10_1136_bmjresp_2021_000948
crossref_primary_10_1016_j_niox_2016_12_008
crossref_primary_10_2174_1871525719666210427130511
crossref_primary_10_1113_jphysiol_2012_243121
crossref_primary_10_1007_s11906_015_0623_4
crossref_primary_10_1080_13813455_2020_1733025
crossref_primary_10_3390_nu11061327
crossref_primary_10_3945_jn_113_175778
crossref_primary_10_1016_j_jvs_2013_10_084
crossref_primary_10_1177_1535370214558024
crossref_primary_10_1152_japplphysiol_01004_2018
crossref_primary_10_1152_ajpgi_00203_2016
crossref_primary_10_1016_j_niox_2022_01_005
crossref_primary_10_1152_ajpregu_00275_2017
crossref_primary_10_1136_thoraxjnl_2019_214278
crossref_primary_10_1155_2015_613860
crossref_primary_10_1016_j_jff_2024_106435
crossref_primary_10_2217_fca_2016_0026
crossref_primary_10_1017_S0029665118000058
crossref_primary_10_1093_cdn_nzz113
crossref_primary_10_1007_s00394_015_0872_7
crossref_primary_10_1146_annurev_nutr_071812_161159
crossref_primary_10_1152_ajpendo_00667_2011
crossref_primary_10_1016_j_freeradbiomed_2012_08_580
crossref_primary_10_1016_j_nutres_2015_06_001
crossref_primary_10_1152_japplphysiol_00453_2020
crossref_primary_10_33689_spormetre_576675
crossref_primary_10_1136_bjsports_2011_090669
crossref_primary_10_1016_j_jchf_2015_12_013
crossref_primary_10_1249_MSS_0b013e3182687e5c
crossref_primary_10_1111_j_1365_2125_2012_04420_x
crossref_primary_10_1186_s12970_020_00358_5
crossref_primary_10_1152_japplphysiol_00850_2019
Cites_doi 10.1152/japplphysiol.00046.2010
10.1016/S0735-1097(01)01746-6
10.1172/JCI24650
10.1152/japplphysiol.01061.2006
10.1038/380221a0
10.1007/BF00377698
10.1172/JCI200112761
10.1016/j.freeradbiomed.2004.12.018
10.1152/japplphysiol.00722.2009
10.1161/HYPERTENSIONAHA.110.153536
10.1038/nm0895-804
10.1016/j.niox.2008.08.003
10.1177/000331979304400101
10.1161/HYPERTENSIONAHA.107.103523
10.1111/j.1748-1716.2007.01713.x
10.1038/nm954
10.1016/j.jacc.2008.08.074
10.1038/nm1109
10.1056/NEJM199704173361601
10.1161/01.CIR.0000089191.72957.ED
10.1001/jama.289.19.2560
10.1152/japplphysiol.01070.2010
10.1016/j.freeradbiomed.2009.11.006
10.1152/japplphysiol.00695.2002
10.1097/00005768-200206000-00009
10.1073/pnas.0402927101
10.1038/nrd2466
10.1038/nrmicro929
10.1002/med.20151
10.1016/S0968-0004(01)02035-7
10.3945/ajcn.2008.27131
10.1111/j.1476-5381.2009.00340.x
10.1001/archinte.163.8.884
10.1073/pnas.221381098
10.1161/01.CIR.88.5.2149
10.1073/pnas.98.1.355
10.1016/j.freeradbiomed.2010.06.033
10.1161/CIRCULATIONAHA.106.174526
10.1152/japplphysiol.00381.2003
10.1016/j.freeradbiomed.2004.04.027
10.1016/S0034-5687(00)00096-7
10.1152/ajpregu.00206.2010
10.1152/japplphysiol.01414.2006
10.1016/S0891-5849(03)00406-4
10.1172/JCI20664
10.1161/01.CIR.91.7.1981
10.1161/01.ATV.0000204350.44226.9a
10.1016/0735-1097(94)90305-0
10.1378/chest.128.4.2025
10.1093/geronj/49.3.B128
10.1161/01.RES.0000260171.52224.6b
10.1249/00005768-199104000-00003
10.18388/abp.2000_3946
10.1016/j.niox.2009.01.002
10.1161/01.RES.75.6.1086
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Physiological Society Jun 2011
Copyright © 2011 the American Physiological Society 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Physiological Society Jun 2011
– notice: Copyright © 2011 the American Physiological Society 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1152/japplphysiol.00071.2011
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1591
ExternalDocumentID PMC3119136
2400953581
21454745
24235708
10_1152_japplphysiol_00071_2011
Genre Randomized Controlled Trial
Journal Article
Research Support, N.I.H., Extramural
Feature
GeographicLocations North Carolina
GeographicLocations_xml – name: North Carolina
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG0287
GroupedDBID ---
-~X
.55
.GJ
18M
1CY
29J
2WC
39C
3O-
4.4
53G
5VS
85S
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
ACPRK
ACYGS
ADBBV
ADFNX
ADXHL
AEILP
AENEX
AETEA
AFOSN
AFRAH
AGCDD
AGNAY
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
C2-
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
J5H
KQ8
L7B
MVM
NEJ
OHT
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7M
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c490t-881b7d55b21808813ffe300904f0aceb1774c565b3484e07b0fdf65478d4a4793
ISSN 8750-7587
1522-1601
IngestDate Thu Aug 21 18:19:13 EDT 2025
Fri Jul 11 12:32:55 EDT 2025
Mon Jun 30 08:47:20 EDT 2025
Mon Jul 21 06:07:42 EDT 2025
Mon Jul 21 09:14:18 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 01:13:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Physical exercise
Cardiovascular disease
exercise
Nitrates
peripheral arterial disease
Arterial disease
Vascular disease
Vertebrata
Mammalia
nitrite
Nitric oxide
Occlusive arterial disease
Supplementation
Performance
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c490t-881b7d55b21808813ffe300904f0aceb1774c565b3484e07b0fdf65478d4a4793
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 21454745
PQID 877462375
PQPubID 40905
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3119136
proquest_miscellaneous_872531064
proquest_journals_877462375
pubmed_primary_21454745
pascalfrancis_primary_24235708
crossref_primary_10_1152_japplphysiol_00071_2011
crossref_citationtrail_10_1152_japplphysiol_00071_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2011
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
Nohl H (B41) 2000; 47
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B13
B14
B15
B16
B17
B18
B19
11457881 - J Clin Invest. 2001 Jul;108(2):279-87
8637569 - Nature. 1996 Mar 21;380(6571):221-6
20466802 - J Appl Physiol (1985). 2010 Jul;109(1):135-48
15197394 - Nat Rev Microbiol. 2004 Jul;2(7):593-602
18250365 - Hypertension. 2008 Mar;51(3):784-90
8169330 - J Gerontol. 1994 May;49(3):B128-34
14595407 - Nat Med. 2003 Dec;9(12):1498-505
15223073 - Free Radic Biol Med. 2004 Aug 1;37(3):395-400
8034885 - J Am Coll Cardiol. 1994 Aug;24(2):471-6
12748199 - JAMA. 2003 May 21;289(19):2560-72
2056896 - Med Sci Sports Exerc. 1991 Apr;23(4):402-8
17293481 - Circ Res. 2007 Mar 16;100(5):654-61
15361865 - Nat Med. 2004 Oct;10(10):1122-7
14583343 - Free Radic Biol Med. 2003 Oct 1;35(7):790-6
12048322 - Med Sci Sports Exerc. 2002 Jun;34(6):960-5
21071588 - J Appl Physiol (1985). 2011 Mar;110(3):591-600
8375359 - Eur J Appl Physiol Occup Physiol. 1993;67(1):20-5
9099655 - N Engl J Med. 1997 Apr 17;336(16):1117-24
15347817 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13683-8
18167491 - Nat Rev Drug Discov. 2008 Feb;7(2):156-67
14581384 - Circulation. 2003 Oct 28;108(17):2054-9
8222109 - Circulation. 1993 Nov;88(5 Pt 1):2149-55
11788217 - J Am Coll Cardiol. 2002 Jan 16;39(2):257-65
20585108 - Hypertension. 2010 Aug;56(2):274-81
20620208 - Free Radic Biol Med. 2010 Sep 15;49(6):1138-44
19439460 - Am J Clin Nutr. 2009 Jul;90(1):1-10
11134509 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355-60
7895356 - Circulation. 1995 Apr 1;91(7):1981-7
16424350 - Arterioscler Thromb Vasc Biol. 2006 Apr;26(4):697-705
12611769 - J Appl Physiol (1985). 2003 Jul;95(1):149-58
17635415 - Acta Physiol (Oxf). 2007 Sep;191(1):59-66
17823295 - J Appl Physiol (1985). 2007 Dec;103(6):1999-2004
11606734 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12814-9
16549646 - Circulation. 2006 Mar 21;113(11):e463-654
19661447 - J Appl Physiol (1985). 2009 Oct;107(4):1144-55
16041407 - J Clin Invest. 2005 Aug;115(8):2099-107
18793740 - Nitric Oxide. 2008 Dec;19(4):333-7
19161880 - J Am Coll Cardiol. 2009 Jan 27;53(4):323-30
10773245 - Respir Physiol. 2000 Apr;120(2):151-66
14702102 - J Clin Invest. 2004 Jan;113(1):19-21
11996114 - Acta Biochim Pol. 2000;47(4):913-21
19594749 - Br J Pharmacol. 2009 Aug;157(8):1523-30
14657038 - J Appl Physiol (1985). 2004 Mar;96(3):1033-8
7585184 - Nat Med. 1995 Aug;1(8):804-9
12719196 - Arch Intern Med. 2003 Apr 28;163(8):884-92
19219851 - Med Res Rev. 2009 Sep;29(5):683-741
11796222 - Trends Biochem Sci. 2002 Jan;27(1):33-9
7525103 - Circ Res. 1994 Dec;75(6):1086-95
16236851 - Chest. 2005 Oct;128(4):2025-34
19371597 - Nitric Oxide. 2009 Jun;20(4):231-7
20702806 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121-31
8424578 - Angiology. 1993 Jan;44(1):1-10
15808413 - Free Radic Biol Med. 2005 May 1;38(9):1164-9
19913611 - Free Radic Biol Med. 2010 Jan 15;48(2):342-7
17495116 - J Appl Physiol (1985). 2007 Sep;103(3):771-8
References_xml – ident: B5
  doi: 10.1152/japplphysiol.00046.2010
– ident: B13
  doi: 10.1016/S0735-1097(01)01746-6
– ident: B24
  doi: 10.1172/JCI24650
– ident: B16
  doi: 10.1152/japplphysiol.01061.2006
– ident: B26
  doi: 10.1038/380221a0
– ident: B15
  doi: 10.1007/BF00377698
– ident: B8
  doi: 10.1172/JCI200112761
– ident: B2
  doi: 10.1016/j.freeradbiomed.2004.12.018
– ident: B6
  doi: 10.1152/japplphysiol.00722.2009
– ident: B28
  doi: 10.1161/HYPERTENSIONAHA.110.153536
– ident: B55
  doi: 10.1038/nm0895-804
– ident: B20
  doi: 10.1016/j.niox.2008.08.003
– ident: B44
  doi: 10.1177/000331979304400101
– ident: B53
  doi: 10.1161/HYPERTENSIONAHA.107.103523
– ident: B35
  doi: 10.1111/j.1748-1716.2007.01713.x
– ident: B14
  doi: 10.1038/nm954
– ident: B31
  doi: 10.1016/j.jacc.2008.08.074
– ident: B25
  doi: 10.1038/nm1109
– ident: B4
  doi: 10.1056/NEJM199704173361601
– ident: B51
  doi: 10.1161/01.CIR.0000089191.72957.ED
– ident: B11
  doi: 10.1001/jama.289.19.2560
– ident: B33
  doi: 10.1152/japplphysiol.01070.2010
– ident: B34
  doi: 10.1016/j.freeradbiomed.2009.11.006
– ident: B21
  doi: 10.1152/japplphysiol.00695.2002
– ident: B54
  doi: 10.1097/00005768-200206000-00009
– ident: B52
  doi: 10.1073/pnas.0402927101
– ident: B39
  doi: 10.1038/nrd2466
– ident: B38
  doi: 10.1038/nrmicro929
– ident: B49
  doi: 10.1002/med.20151
– ident: B12
  doi: 10.1016/S0968-0004(01)02035-7
– ident: B23
  doi: 10.3945/ajcn.2008.27131
– ident: B42
  doi: 10.1111/j.1476-5381.2009.00340.x
– ident: B7
  doi: 10.1001/archinte.163.8.884
– ident: B36
  doi: 10.1073/pnas.221381098
– ident: B9
  doi: 10.1161/01.CIR.88.5.2149
– ident: B48
  doi: 10.1073/pnas.98.1.355
– ident: B3
  doi: 10.1016/j.freeradbiomed.2010.06.033
– ident: B22
  doi: 10.1161/CIRCULATIONAHA.106.174526
– ident: B27
  doi: 10.1152/japplphysiol.00381.2003
– ident: B37
  doi: 10.1016/j.freeradbiomed.2004.04.027
– ident: B30
  doi: 10.1016/S0034-5687(00)00096-7
– ident: B50
  doi: 10.1152/ajpregu.00206.2010
– ident: B17
  doi: 10.1152/japplphysiol.01414.2006
– ident: B32
  doi: 10.1016/S0891-5849(03)00406-4
– ident: B19
  doi: 10.1172/JCI20664
– ident: B47
  doi: 10.1161/01.CIR.91.7.1981
– ident: B29
  doi: 10.1161/01.ATV.0000204350.44226.9a
– ident: B10
  doi: 10.1016/0735-1097(94)90305-0
– ident: B43
  doi: 10.1378/chest.128.4.2025
– ident: B40
  doi: 10.1093/geronj/49.3.B128
– ident: B46
  doi: 10.1161/01.RES.0000260171.52224.6b
– ident: B18
  doi: 10.1249/00005768-199104000-00003
– volume: 47
  start-page: 913
  year: 2000
  ident: B41
  publication-title: Acta Biochim Pol
  doi: 10.18388/abp.2000_3946
– ident: B1
  doi: 10.1016/j.niox.2009.01.002
– ident: B45
  doi: 10.1161/01.RES.75.6.1086
– reference: 19594749 - Br J Pharmacol. 2009 Aug;157(8):1523-30
– reference: 14657038 - J Appl Physiol (1985). 2004 Mar;96(3):1033-8
– reference: 17823295 - J Appl Physiol (1985). 2007 Dec;103(6):1999-2004
– reference: 8375359 - Eur J Appl Physiol Occup Physiol. 1993;67(1):20-5
– reference: 8034885 - J Am Coll Cardiol. 1994 Aug;24(2):471-6
– reference: 7525103 - Circ Res. 1994 Dec;75(6):1086-95
– reference: 10773245 - Respir Physiol. 2000 Apr;120(2):151-66
– reference: 15223073 - Free Radic Biol Med. 2004 Aug 1;37(3):395-400
– reference: 11796222 - Trends Biochem Sci. 2002 Jan;27(1):33-9
– reference: 18250365 - Hypertension. 2008 Mar;51(3):784-90
– reference: 14595407 - Nat Med. 2003 Dec;9(12):1498-505
– reference: 16549646 - Circulation. 2006 Mar 21;113(11):e463-654
– reference: 2056896 - Med Sci Sports Exerc. 1991 Apr;23(4):402-8
– reference: 9099655 - N Engl J Med. 1997 Apr 17;336(16):1117-24
– reference: 18793740 - Nitric Oxide. 2008 Dec;19(4):333-7
– reference: 17635415 - Acta Physiol (Oxf). 2007 Sep;191(1):59-66
– reference: 19371597 - Nitric Oxide. 2009 Jun;20(4):231-7
– reference: 11457881 - J Clin Invest. 2001 Jul;108(2):279-87
– reference: 15347817 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13683-8
– reference: 11788217 - J Am Coll Cardiol. 2002 Jan 16;39(2):257-65
– reference: 15197394 - Nat Rev Microbiol. 2004 Jul;2(7):593-602
– reference: 19913611 - Free Radic Biol Med. 2010 Jan 15;48(2):342-7
– reference: 7895356 - Circulation. 1995 Apr 1;91(7):1981-7
– reference: 17293481 - Circ Res. 2007 Mar 16;100(5):654-61
– reference: 16424350 - Arterioscler Thromb Vasc Biol. 2006 Apr;26(4):697-705
– reference: 14702102 - J Clin Invest. 2004 Jan;113(1):19-21
– reference: 14581384 - Circulation. 2003 Oct 28;108(17):2054-9
– reference: 20620208 - Free Radic Biol Med. 2010 Sep 15;49(6):1138-44
– reference: 7585184 - Nat Med. 1995 Aug;1(8):804-9
– reference: 20466802 - J Appl Physiol (1985). 2010 Jul;109(1):135-48
– reference: 8222109 - Circulation. 1993 Nov;88(5 Pt 1):2149-55
– reference: 19661447 - J Appl Physiol (1985). 2009 Oct;107(4):1144-55
– reference: 11996114 - Acta Biochim Pol. 2000;47(4):913-21
– reference: 18167491 - Nat Rev Drug Discov. 2008 Feb;7(2):156-67
– reference: 16236851 - Chest. 2005 Oct;128(4):2025-34
– reference: 11134509 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355-60
– reference: 11606734 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12814-9
– reference: 15808413 - Free Radic Biol Med. 2005 May 1;38(9):1164-9
– reference: 15361865 - Nat Med. 2004 Oct;10(10):1122-7
– reference: 8424578 - Angiology. 1993 Jan;44(1):1-10
– reference: 20585108 - Hypertension. 2010 Aug;56(2):274-81
– reference: 12748199 - JAMA. 2003 May 21;289(19):2560-72
– reference: 16041407 - J Clin Invest. 2005 Aug;115(8):2099-107
– reference: 19439460 - Am J Clin Nutr. 2009 Jul;90(1):1-10
– reference: 14583343 - Free Radic Biol Med. 2003 Oct 1;35(7):790-6
– reference: 20702806 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121-31
– reference: 8637569 - Nature. 1996 Mar 21;380(6571):221-6
– reference: 12611769 - J Appl Physiol (1985). 2003 Jul;95(1):149-58
– reference: 21071588 - J Appl Physiol (1985). 2011 Mar;110(3):591-600
– reference: 19161880 - J Am Coll Cardiol. 2009 Jan 27;53(4):323-30
– reference: 12048322 - Med Sci Sports Exerc. 2002 Jun;34(6):960-5
– reference: 12719196 - Arch Intern Med. 2003 Apr 28;163(8):884-92
– reference: 8169330 - J Gerontol. 1994 May;49(3):B128-34
– reference: 17495116 - J Appl Physiol (1985). 2007 Sep;103(3):771-8
– reference: 19219851 - Med Res Rev. 2009 Sep;29(5):683-741
SSID ssj0014451
Score 2.4839196
Snippet Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O 2 ) to working tissues and presents as claudication pain during...
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during...
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O...) to working tissues and presents as claudication pain during...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1582
SubjectTerms Aged
Aged, 80 and over
Analysis of Variance
Ankle Brachial Index
Beta vulgaris
Beverages
Bioavailability
Biological and medical sciences
Blood Pressure
Cross-Over Studies
Dietary Supplements
Exercise
Exercise Test
Exercise Tolerance
Female
Fundamental and applied biological sciences. Psychology
Heart Rate
Hemoglobins - metabolism
Human performance
Humans
Hypoxia
Infrared spectroscopy
Intermittent Claudication - blood
Intermittent Claudication - physiopathology
Intermittent Claudication - prevention & control
Male
Middle Aged
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiopathology
Nitrates - administration & dosage
Nitrates - metabolism
Nitric oxide
Nitric Oxide - blood
Nitrites - blood
North Carolina
Oxygen Consumption
Oxygenation
Oxyhemoglobins - metabolism
Pain
Peripheral Arterial Disease - blood
Peripheral Arterial Disease - physiopathology
Peripheral Arterial Disease - therapy
Plant Roots
Spectroscopy, Near-Infrared
Time Factors
Treatment Outcome
Vasodilation
Vein & artery diseases
Walking
Title Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease
URI https://www.ncbi.nlm.nih.gov/pubmed/21454745
https://www.proquest.com/docview/877462375
https://www.proquest.com/docview/872531064
https://pubmed.ncbi.nlm.nih.gov/PMC3119136
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7cFEqhlDbpQ00b9lB6MXIl7a4kH00fmIaUFhLIoSC0qxVRSGRTy4f2B_R3d2Z39bCd0MfFGEm7svx9Gs2sZr4h5HUUJUIoqXwFtt_nRQR2MGHcj5nKizKMZJ5igfPJ53h-xj-di_PR6Ncga2ndyIn6eWNdyf-gCtsAV6yS_Qdku0lhA3wHfOETEIbPv8L4faUbzHqD2xIVH8YrbNFp08ENrLq-QFBXXWMlVCnu6gRM_jjYDKzAuhqb3M5q65XNrteaO6_VrIhY_SaUepqmYrCmANb70uUpz_Bn9wumc8u_47bucNytPYPXK11V4iBpyVaoSbco3qbiuFFFv_raJlVNtDOwEPyGsdvWWmCX2Vrt2NNQ2NZEu4ZeRKbBAFy0u-CJcZeMKOtwBCC2vDb4oyY7T6x45ZbGdrvrDrkbQbiB9vL4a_82CkXcXG4gnPftLWc1utJ2ng0n58EyX8H9VtpGKTdFMtsJuQMP5_QReehApjPLs8dkpOt9cjCr82Zx_YO-oV86yPfJvROXk3FAvjkWUsdCusVC2rKQtiykAxbSqqY9C2nLQupY-IScffxw-m7uu54dvuLToPFTCIOSQggJriM8wEJWlpqBHx_wMsiVRrEzriCIkIynXAeJDMqixAbYacFzXOV9SvbqRa2fE1rIhAeFYrksGIzB2IDpREOAHRaClVOPxO2fnCknaI99Va4yE9iKKBsClRmgMgTKI0E3cGk1Xf485GgDxW4chiMiCVKPHLawZs5CrLIULhbCi0R4hHZ7wXzjO7m81os1HhLBUxDiAo88sxzop3Zk8kiywY7uAFSG39xTVxdGIZ6hbCOLX9w65yG539-eL8le832tX4F33cgjQ_3f_QPWJw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+nitrate+supplementation+enhances+exercise+performance+in+peripheral+arterial+disease&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Kenjale%2C+Aarti+A&rft.au=Ham%2C+Katherine+L&rft.au=Stabler%2C+Thomas&rft.au=Robbins%2C+Jennifer+L&rft.date=2011-06-01&rft.eissn=1522-1601&rft.volume=110&rft.issue=6&rft.spage=1582&rft_id=info:doi/10.1152%2Fjapplphysiol.00071.2011&rft_id=info%3Apmid%2F21454745&rft.externalDocID=21454745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon