Identification of Neurodegenerative Diseases Based on Vertical Ground Reaction Force Classification Using Time–Frequency Spectrogram and Deep Learning Neural Network Features
A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern...
Saved in:
Published in | Brain sciences Vol. 11; no. 7; p. 902 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time–domain vGRF signal was modified into a time–frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time–frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases. |
---|---|
AbstractList | A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time–domain vGRF signal was modified into a time–frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and
k
-fold cross-validation (
k
-fold CV,
k
= 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time–frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases. A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time-domain vGRF signal was modified into a time-frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and -fold cross-validation ( -fold CV, = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time-frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases. A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time-domain vGRF signal was modified into a time-frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time-frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases.A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time-domain vGRF signal was modified into a time-frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time-frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases. A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time–domain vGRF signal was modified into a time–frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time–frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases. |
Author | Lin, Che-Wei Setiawan, Febryan |
AuthorAffiliation | 1 Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan; febryans2802.wtmh@gmail.com 2 Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan |
AuthorAffiliation_xml | – name: 2 Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan – name: 1 Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan; febryans2802.wtmh@gmail.com |
Author_xml | – sequence: 1 givenname: Febryan orcidid: 0000-0002-3671-9127 surname: Setiawan fullname: Setiawan, Febryan – sequence: 2 givenname: Che-Wei orcidid: 0000-0002-1894-1189 surname: Lin fullname: Lin, Che-Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34356136$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksFu1DAURS1URMvQPStkiQ2bATt24mSDBFOmjDQqErRsrRfnZfCQsQc7KeqOf-BH-Ca-BGemlLYSXtiWfe7189V7TA6cd0jIU85eClGxV3UA66KxnDPFKpY9IEcZU8VUyCw_uLU_JMcxrlkaJWMiZ4_IoZAiL7gojsivRYOut6010FvvqG_pGQ7BN7hChyEdXiI9sREhYqRv09zQhH3G0CdJR0-DH1xDPyKYnX7ug0E66yDGf6YX0boVPbcb_P3j5zzgtwGduaKftmj64FcBNhSSyQnili4RghvxsYz0wBn23334SucI_RAwPiEPW-giHl-vE3Ixf3c-ez9dfjhdzN4sp0ZWrJ-WOZY1Z7LljRDIDRRQQoZQcm6yjKtKYpWWmitVZMhkbphQCtuGMWmEMGJCFnvfxsNab4PdQLjSHqzeHfiw0jBm0KE2eSNMq4RgvJZl2UJlMmhrhrJsTJ2ynpDXe6_tUG-wMSnx9LU7pndvnP2iV_5Sl4KJSpXJ4MW1QfApvNjrjY0Guw4c-iHqLM8rmSlZjejze-jaD8GlqEZKSlmofKSe3a7oppS_jZEAtgdM8DEGbG8QzvTYfvp--yVJcU9ibL9rgPQn2_1f-Ad3tuWJ |
CitedBy_id | crossref_primary_10_3390_brainsci12030319 crossref_primary_10_1007_s11571_023_09973_9 crossref_primary_10_1109_ACCESS_2022_3158961 crossref_primary_10_3390_s21155207 crossref_primary_10_1016_j_bspc_2025_107800 crossref_primary_10_1007_s11517_025_03334_w crossref_primary_10_1007_s00521_024_10222_1 crossref_primary_10_1016_j_ijmedinf_2024_105542 crossref_primary_10_1177_09287329241291367 crossref_primary_10_3390_s24185957 crossref_primary_10_1016_j_neucom_2025_129533 crossref_primary_10_1007_s10489_023_04557_w crossref_primary_10_1177_20552076231173569 crossref_primary_10_1016_j_compbiomed_2023_107270 |
Cites_doi | 10.1109/ACCESS.2019.2921568 10.1109/TKDE.2019.2912815 10.4103/2152-7806.169561 10.1109/TBME.2016.2536438 10.1152/jappl.2000.88.6.2045 10.7717/peerj.4568 10.1109/BIOCAS.2018.8584808 10.11138/FNeur/2017.32.1.028 10.3389/fmolb.2015.00054 10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9 10.1109/ICDAR.2017.148 10.1007/s13246-019-00742-9 10.1088/1742-6596/1087/6/062032 10.1159/000351153 10.1016/j.ncl.2016.06.012 10.1186/s40537-021-00428-8 10.1016/j.jtbi.2008.05.023 10.1016/0021-9290(94)00074-E 10.1613/jair.5756 10.1007/BF00994018 10.1016/j.ncl.2014.09.003 10.14802/jmd.17041 10.1111/j.1748-1716.1987.tb08045.x 10.1109/ACCESS.2019.2948857 10.1109/JBHI.2019.2959839 10.1109/DSC.2016.18 10.1109/TASSP.1977.1162950 10.1109/TNSRE.2017.2732448 10.1016/j.knosys.2018.01.004 10.1016/j.acha.2010.08.002 10.1038/nmeth.4346 10.1109/ACCESS.2019.2961960 10.1109/ACCESS.2019.2912273 10.1109/ACCESS.2019.2928017 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1016/j.patrec.2005.10.010 10.1016/j.bspc.2016.08.016 10.1056/NEJMra1603471 10.1007/978-0-387-39940-9_565 10.1002/mds.870130310 10.1007/s11036-020-01530-6 10.1016/j.ins.2015.04.047 10.1038/nn.3584 10.1016/j.bspc.2016.08.022 10.3390/s20143857 10.1109/TGRS.2016.2584107 10.1016/j.eswa.2016.03.018 10.1016/j.bspc.2015.02.002 10.4108/ICST.PERVASIVEHEALTH2009.6053 10.1186/s40535-018-0052-y 10.1155/2018/7354081 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7TK 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.3390/brainsci11070902 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2076-3425 |
ExternalDocumentID | oai_doaj_org_article_c5d3cf73301b488fa9c2afb0e48dcb34 PMC8303978 34356136 10_3390_brainsci11070902 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM PQGLB 3V. 7TK 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-85e8b104f1d33e1ca6a8a2ea811c221794e9217b17762e045c0377efd004c33c3 |
IEDL.DBID | BENPR |
ISSN | 2076-3425 |
IngestDate | Wed Aug 27 01:25:39 EDT 2025 Thu Aug 21 13:59:15 EDT 2025 Fri Jul 11 12:25:21 EDT 2025 Fri Jul 25 12:01:30 EDT 2025 Mon Jul 21 05:40:36 EDT 2025 Tue Jul 01 04:03:25 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | neuro-degenerative diseases deep learning vertical ground reaction force signal time–frequency spectrogram gait analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-85e8b104f1d33e1ca6a8a2ea811c221794e9217b17762e045c0377efd004c33c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1894-1189 0000-0002-3671-9127 |
OpenAccessLink | https://www.proquest.com/docview/2554446758?pq-origsite=%requestingapplication% |
PMID | 34356136 |
PQID | 2554446758 |
PQPubID | 2032423 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5d3cf73301b488fa9c2afb0e48dcb34 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8303978 proquest_miscellaneous_2559427498 proquest_journals_2554446758 pubmed_primary_34356136 crossref_primary_10_3390_brainsci11070902 crossref_citationtrail_10_3390_brainsci11070902 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210708 |
PublicationDateYYYYMMDD | 2021-07-08 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210708 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Brain sciences |
PublicationTitleAlternate | Brain Sci |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hoff (ref_16) 2001; 16 Zarei (ref_11) 2015; 6 Ren (ref_64) 2016; 64 Hegde (ref_48) 2019; 42 ref_56 ref_52 Logroscino (ref_4) 2013; 41 Sadowsky (ref_33) 1994; 15 ref_51 Daubechies (ref_35) 2011; 30 Hausdorff (ref_10) 2000; 88 ref_15 Tadesse (ref_27) 2020; 24 Dayalu (ref_13) 2015; 33 ref_61 Agrawal (ref_6) 2015; 2 Wong (ref_57) 2020; 32 Zeng (ref_22) 2015; 317 Huang (ref_24) 2019; 7 Seuret (ref_42) 2017; Volume 1 Xu (ref_28) 2018; Volume 5 ref_29 Zhao (ref_23) 2018; 145 Krizhevsky (ref_53) 2012; 25 Pyo (ref_14) 2017; 10 Wu (ref_20) 2017; 31 Fawcett (ref_59) 2006; 27 Xia (ref_18) 2015; 18 Allen (ref_34) 1977; 25 Li (ref_49) 2018; 2018 Srivastava (ref_54) 2014; 15 Vilalta (ref_46) 2018; 61 He (ref_26) 2019; 7 ref_36 Hausdorff (ref_8) 1998; 13 ref_32 Youden (ref_60) 1950; 3 Pistacchi (ref_17) 2017; 32 Liu (ref_50) 2019; 7 Roccetti (ref_38) 2021; 8 Roccetti (ref_58) 2020; 25 Brown (ref_9) 2017; 377 ref_39 ref_37 Banaie (ref_12) 2008; 254 Bilgin (ref_21) 2017; 31 Cortes (ref_55) 1995; 20 Nilsson (ref_62) 1987; 129 Renton (ref_5) 2014; 17 Hausdorff (ref_31) 2019; 101 Hausdorff (ref_30) 1995; 28 ref_43 Pham (ref_63) 2017; 26 Garg (ref_41) 2019; 8 ref_40 ref_1 Chen (ref_44) 2016; 54 Lee (ref_2) 2016; 34 Liu (ref_45) 2018; 1087 ref_3 Kaya (ref_19) 2016; 56 Rajaraman (ref_47) 2018; 6 Xie (ref_25) 2019; 7 ref_7 |
References_xml | – volume: 7 start-page: 85985 year: 2019 ident: ref_26 article-title: Simultaneous human health monitoring and time-frequency sparse representation using EEG and ECG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921568 – volume: 32 start-page: 1586 year: 2020 ident: ref_57 article-title: Reliable Accuracy Estimates from k-Fold Cross Validation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2912815 – volume: 6 start-page: 171 year: 2015 ident: ref_11 article-title: A comprehensive review of amyotrophic lateral sclerosis publication-title: Surg. Neurol. Int. doi: 10.4103/2152-7806.169561 – ident: ref_51 – volume: 64 start-page: 52 year: 2016 ident: ref_64 article-title: Gait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decomposition publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2536438 – volume: 88 start-page: 2045 year: 2000 ident: ref_10 article-title: Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis publication-title: J. Appl. Physiol. doi: 10.1152/jappl.2000.88.6.2045 – volume: 6 start-page: e4568 year: 2018 ident: ref_47 article-title: Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images publication-title: PeerJ doi: 10.7717/peerj.4568 – ident: ref_1 – ident: ref_29 doi: 10.1109/BIOCAS.2018.8584808 – volume: 32 start-page: 28 year: 2017 ident: ref_17 article-title: Gait analysis and clinical correlations in early Parkinson’s disease publication-title: Funct. Neurol. doi: 10.11138/FNeur/2017.32.1.028 – volume: 2 start-page: 54 year: 2015 ident: ref_6 article-title: Molecular diagnostics of neurodegenerative disorders publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2015.00054 – volume: 16 start-page: 58 year: 2001 ident: ref_16 article-title: Accelerometric assessment of levodopa-induced dyskinesias in Parkinson’s disease publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9 – volume: Volume 1 start-page: 877 year: 2017 ident: ref_42 article-title: PCA-initialized deep neural networks applied to document image analysis publication-title: Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) doi: 10.1109/ICDAR.2017.148 – volume: 42 start-page: 627 year: 2019 ident: ref_48 article-title: Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: A study publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-019-00742-9 – volume: 1087 start-page: 062032 year: 2018 ident: ref_45 article-title: Feature extraction and image recognition with convolutional neural networks publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1087/6/062032 – volume: 41 start-page: 118 year: 2013 ident: ref_4 article-title: Global Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review of the Published Literature publication-title: Neuroepidemiology doi: 10.1159/000351153 – volume: 101 start-page: e215 year: 2019 ident: ref_31 article-title: Gait Dynamics in Neuro-Degenerative Disease Database. 21 Dec 2000; PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 34 start-page: 955 year: 2016 ident: ref_2 article-title: Epidemiology of Parkinson Disease publication-title: Neurol. Clin. doi: 10.1016/j.ncl.2016.06.012 – volume: 8 start-page: 1 year: 2021 ident: ref_38 article-title: An alternative approach to dimension reduction for pareto distributed data: A case study publication-title: J. Big Data doi: 10.1186/s40537-021-00428-8 – volume: 254 start-page: 361 year: 2008 ident: ref_12 article-title: Huntington’s disease: Modeling the gait disorder and proposing novel treatments publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2008.05.023 – volume: 28 start-page: 347 year: 1995 ident: ref_30 article-title: Footswitch system for measurement of the temporal parameters of gait publication-title: J. Biomech. doi: 10.1016/0021-9290(94)00074-E – ident: ref_52 – volume: 61 start-page: 563 year: 2018 ident: ref_46 article-title: On the behavior of convolutional nets for feature extraction publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.5756 – volume: 20 start-page: 273 year: 1995 ident: ref_55 article-title: Support-Vector Networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 33 start-page: 101 year: 2015 ident: ref_13 article-title: Huntington disease: Pathogenesis and treatment publication-title: Neurol. Clin. doi: 10.1016/j.ncl.2014.09.003 – volume: 10 start-page: 140 year: 2017 ident: ref_14 article-title: Quantitative gait analysis in patients with huntington’s disease publication-title: J. Mov. Disord. doi: 10.14802/jmd.17041 – volume: 129 start-page: 107 year: 1987 ident: ref_62 article-title: Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1987.tb08045.x – volume: 7 start-page: 153751 year: 2019 ident: ref_25 article-title: Feature enrichment based convolutional neural network for heartbeat classification from electrocardiogram publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948857 – volume: 24 start-page: 2131 year: 2020 ident: ref_27 article-title: Multi-modal diagnosis of infectious diseases in the developing world publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2959839 – ident: ref_39 doi: 10.1109/DSC.2016.18 – volume: 25 start-page: 235 year: 1977 ident: ref_34 article-title: Short term spectral analysis, synthesis, and modification by discrete Fourier transform publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1977.1162950 – volume: 26 start-page: 188 year: 2017 ident: ref_63 article-title: Texture classification and visualization of time series of gait dynamics in patients with neuro-degenerative diseases publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2732448 – volume: 145 start-page: 91 year: 2018 ident: ref_23 article-title: Dual channel LSTM based multi-feature extraction in gait for diagnosis of Neurodegenerative diseases publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.01.004 – ident: ref_7 – volume: 30 start-page: 243 year: 2011 ident: ref_35 article-title: Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2010.08.002 – ident: ref_36 doi: 10.1038/nmeth.4346 – volume: 8 start-page: 1347 year: 2019 ident: ref_41 article-title: A low effort approach to structured CNN design using PCA publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961960 – volume: 25 start-page: 1097 year: 2012 ident: ref_53 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_3 – volume: 7 start-page: 53731 year: 2019 ident: ref_50 article-title: Spectrum analysis of EEG signals using CNN to model patient’s consciousness level based on anesthesiologists’ experience publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912273 – volume: 7 start-page: 92871 year: 2019 ident: ref_24 article-title: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928017 – volume: 3 start-page: 32 year: 1950 ident: ref_60 article-title: Index for rating diagnostic tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: ref_40 – ident: ref_37 – volume: 27 start-page: 861 year: 2006 ident: ref_59 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 31 start-page: 288 year: 2017 ident: ref_21 article-title: The impact of feature extraction for the classification of amyotrophic lateral sclerosis among neurodegenerative diseases and healthy subjects publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2016.08.016 – volume: 377 start-page: 1602 year: 2017 ident: ref_9 article-title: Amyotrophic Lateral Sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1603471 – volume: 15 start-page: 306 year: 1994 ident: ref_33 article-title: The continuous wavelet transform: A tool for signal investigation and understanding publication-title: Johns Hopkins APL Tech. Dig. – ident: ref_56 doi: 10.1007/978-0-387-39940-9_565 – volume: 13 start-page: 428 year: 1998 ident: ref_8 article-title: Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease publication-title: Mov. Disord. doi: 10.1002/mds.870130310 – volume: 25 start-page: 1075 year: 2020 ident: ref_58 article-title: A Cautionary Tale for Machine Learning Design: Why we Still Need Human-Assisted Big Data Analysis publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-020-01530-6 – volume: 317 start-page: 246 year: 2015 ident: ref_22 article-title: Classification of neurodegenerative diseases using gait dynamics via deterministic learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.04.047 – volume: 17 start-page: 17 year: 2014 ident: ref_5 article-title: State of play in amyotrophic lateral sclerosis genetics publication-title: Nat. Neurosci. doi: 10.1038/nn.3584 – volume: 31 start-page: 265 year: 2017 ident: ref_20 article-title: Measuring signal fluctuations in gait rhythm time series of patients with Parkinson’s disease using entropy parameters publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.08.022 – ident: ref_32 doi: 10.3390/s20143857 – volume: 54 start-page: 6232 year: 2016 ident: ref_44 article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2584107 – ident: ref_15 – volume: 56 start-page: 156 year: 2016 ident: ref_19 article-title: Detection of Parkinson’s disease by shifted one dimensional local binary patterns from gait publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.03.018 – volume: 18 start-page: 254 year: 2015 ident: ref_18 article-title: Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2015.02.002 – ident: ref_61 doi: 10.4108/ICST.PERVASIVEHEALTH2009.6053 – ident: ref_43 – volume: Volume 5 start-page: 5 year: 2018 ident: ref_28 article-title: Deep bidirectional intelligence: AlphaZero, deep IA-search, deep IA-infer, and TPC causal learning publication-title: Applied Informatics doi: 10.1186/s40535-018-0052-y – volume: 2018 start-page: 7354081 year: 2018 ident: ref_49 article-title: Deep convolutional neural network based ECG classification system using information fusion and one-hot encoding techniques publication-title: Math. Probl. Eng. doi: 10.1155/2018/7354081 – volume: 15 start-page: 1929 year: 2014 ident: ref_54 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. |
SSID | ssj0000800350 |
Score | 2.2633862 |
Snippet | A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 902 |
SubjectTerms | Algorithms Amyotrophic lateral sclerosis Classification Deep learning Discriminant analysis Gait gait analysis Genetic transformation Motor neurone disease Nervous system Neural networks neuro-degenerative diseases Neurodegenerative diseases Parkinson's disease Patients Principal components analysis Sensors Support vector machines Time series time–frequency spectrogram vertical ground reaction force signal Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELZQT1wQtAUWCnIlhMRhlV3bu2sfW0pUIdEDoqi3lX_GBQSbKk0OvfUdeBGeiSdhxt6GpEJw4ZJI2YnXG8_E89mfv2HsRfCU1cq2tMpXCFBiUzotIwYeGA_K-7al887vTtrjU_X2rDlbK_VFnLAsD5x_uIlvgvSxQ9hdO3S2aI0XNroKlA7eyaQEinPeGpj6MuZBsqnyvqREXD9xVHEBZxXCO8RF3JiHklz_n3LM21TJtblnep_dG5NGfpA7-4DdgWGb7RwMCJi_XfGXPNE40_r4DvuRj97GcS2OzyJPAhwBzpPCNP298aO8LXPJD_E1cDT7mPjVeBNajBoCfw_5xAOfzuYeeKqd-bvRRDTgdHzk5_X36TzTsa84FbNfZMIXt9jIEcAFHxVcz1M38AYnmXjOKflcItjfZafTNx9eH5djWYbSK1MtSt2AdojiYh2khNrb1morwOq69kJQgIPBN9K1agVgyugr2XUQA8ajl9LLh2xrmA3wmHFoEf35YJUIUjlTGdc10QZJjYOoXcEmN4PU-1GznEpnfO0Ru9Cw9reHtWCvVt-4yHodf7E9pHFf2ZHSdvoA_a8f_a__l_8VbO_Ga_ox_C97xGkKcTZisYLtry5j4NJujB1gtkw2RolOGbR5lJ1s1ROJSSzmWW3Bug332-jq5pXh86ckDq4xJzGdfvI_nu0puyuIwkOr2XqPbS3mS3iGOdjCPU_h9gsBHzfM priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLigQnkECjISQuIQmsTO64BQS1lVSO0Bsai3yI_xFlSSNrsrsTf-A3-E38QvYcbObtlq1UtWSiaOteOxv8-eB2OvrCFUK4pYSZMgQXF5rCvh0PCgNiCNKQqKdz4-KY7G8tNpfnoVHj38gdON1I7qSY3787c_Lxfv0eDfEeNEyr6nqZgCLhhEZcjN8Da7g-tSSWZ6PID97wM2EnkSzio3vri2NvkU_ptw53X3yf_Wo9E2uzcASb4fNH-f3YL2AdvZb5FE_1jw19y7dvo98x32J4TjumF_jneO-6QcFiY-6zRNefwwHNVM-QFeLUexr97nGj9CG1St5Z8hREHwUdcb4L6e5lWj3vmAU0jJ31-_R31w0V5wKnA_C05gXGEjhwAXfMjqOvHdwA-cBGd0ToB03sP0IRuPPn75cBQPpRpiI-tkFlc5VBqZnUutEJAaVahKZaCqNDVZRkYPNf5QrqsiA4SRJhFlCc6ijRohjHjEttquhSeMQ4GM0FglMyukrpNal7lTVlDjkKU6YntLJTVmyGNO5TTOG-QzpNbmuloj9mb1xkXI4XGD7AHpfSVH2bf9ja6fNIMxNya3wrhS4OSocQJ0qjaZcjoBWVmjhYzY7nLUNMsR3SB3k8i9kZ9F7OXqMRozndCoFrq5l6llVsoaZR6HQbbqiUBgi9iriFi5NvzWurr-pP125hOGV4hT6rJ6enO3nrG7GTns0N51tcu2Zv0cniPimukX3pD-AZRSMmk priority: 102 providerName: Scholars Portal |
Title | Identification of Neurodegenerative Diseases Based on Vertical Ground Reaction Force Classification Using Time–Frequency Spectrogram and Deep Learning Neural Network Features |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34356136 https://www.proquest.com/docview/2554446758 https://www.proquest.com/docview/2559427498 https://pubmed.ncbi.nlm.nih.gov/PMC8303978 https://doaj.org/article/c5d3cf73301b488fa9c2afb0e48dcb34 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvXBBQPkJtJWREBKHaJPYSZwT6tKuKqSuUEVRb5F_FyRIlv059MY78CI8E0_SGdubshXqJZESx7E0nvE3488zhLwxGlEtq1LJdQYOiitTJZgDxbONtlzrqsLzzmfT6vSCf7wsL2PAbRlplRub6A216TXGyEcAfTm4LgBv389_plg1CndXYwmN-2QXTLAA52t3fDL9dD5EWRAPsTIL-5MM_PuRwsoLsLqg34OcxK31yKft_x_WvE2Z_GcNmjwiDyN4pEdB2o_JPds9IXtHHTjOP67oW-rpnD5Ovkf-hCO4LsbkaO-oT8Rh7MxnmkYzR4_D9sySjuFqKDT74nnW8BMMSnWGnttw8oFO-oW21NfQvOnUEw4oHiP5--v3ZBFo2VcUi9qvAvGLSujk2No5jZlcZ34Y8INpIKBTBKFrcPqfkovJyecPp2ksz5Bq3mSrVJRWKPDmXG4Ys7mWlRSysFLkuS4KVHTbwA3zW1WFBeioM1bX1hnQS82YZs_ITtd39gWhtgIvUBvJC8O4arJG1aWThmHntshVQkYbIbU65i7HEhrfW_BhUKztbbEm5N3wxTzk7bij7RjlPrTDjNv-Qb-YtVGBW10apl3NwCAqMHpONrqQTmWWC6MV4wnZ38yaNpqBZXszaRPyengNCoy7MrKz_dq3aXhR8wbaPA-TbBgJAzALeKtKSL01_baGuv2m-_bVJwkXgE2aWry8e1ivyIMCSToYrxb7ZGe1WNsDQFkrdRhV6dBHKeB6xsU1SzExZg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKeoALAspPoICRAInDKru29--AUEMapbSNUGlRb1uvPRuQYDfkRyg33oH3QDwTT8KMd5OSCvXWSyJlHa-lGY-_GX8zw9hzawjVysjTyvjooBShlyeywI0HqQFlTBRRvvPhMBqcqHen4ekG-7XMhSFa5dImOkNtK0Mx8g5CX4WuC8LbN-NvHnWNotvVZQuNWi32YfEdXbbp670eyveFEP3d47cDr-kq4BmV-jMvCSHJ0QkpAislBEZHOtECdBIERgjST0jxi8oyRQIQ8RhfxjEUFtXJSGkkznuNbSqJrkyLbXZ3h--PVlEdwl8y9Ov7UClTv5NTpwc8zcjPIg7k2vnn2gT8D9tepGj-c-b1b7GbDVjlO7V23WYbUN5hWzslOupfF_wld_RRF5ffYr_rlN-iiQHyquCu8IeFkatsTWaV9-rroCnv4qflOOyj43XjSygIVlp-BHWmBe9XEwPc9ew8n9QRHDilrfz58bM_qWngC_5h7Hr5ENGMa5ykBzDmTeXYkVsGvmBYE945gd75BKZ32cmVCO4ea5VVCQ8Yhwi9TmO1ElaqPPXTPA4LbSVNDiLI26yzFFJmmlrp1LLjS4Y-E4k1uyjWNnu1-se4rhNyydguyX01jip8ux-qyShrDEZmQitNEUs0wDka2UKnRugi90El1uRStdn2UmuyxuxMs_NN0mbPVo_RYNAtkC6hmrsxqRKxSnHM_VrJViuRCJ4R30VtFq-p39pS15-Unz-5ouQJYqE0Th5evqyn7Prg-PAgO9gb7j9iNwQRhChWnmyz1mwyh8eI8Gb5k2ZbcXZ21Tv5Lymfauo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiEuCCg_gQJGAiQOq2xs798BoYY0ailEVaGot63XHgck2A35EcqNd-BFOPM4PAkz3k1KKtRbL4mUdbyWZjz-ZvzNDGNPrSFUK-NAKxOig-KioEilw40HmQFlTBxTvvO7Ybx3rN6cRCcb7PcyF4ZolUub6A21rQzFyDsIfRW6LghvO66hRRz2B6_G3wLqIEU3rct2GrWKHMDiO7pv05f7fZT1MyEGux9e7wVNh4HAqCycBWkEaYEOietaKaFrdKxTLUCn3a4RgnQVMvyiEk2xAEQ_JpRJAs6iahkpjcR5r7DNBL2isMU2e7vDw6NVhIewmIzC-m5UyizsFNT1AU828rmID7l2FvqWAf_Duefpmv-cf4Mb7HoDXPlOrWk32QaUt9jWTolO-9cFf849ldTH6LfYrzr91zXxQF457ouAWBj5KtdkYnm_vhqa8h5-Wo7DPnqON76EAmKl5UdQZ13wQTUxwH3_zrNJPdmBUwrLnx8_B5OaEr7g78e-rw-RzrjGSfoAY95UkR35ZeALhjX5nRMAnk9gepsdX4rg7rBWWZVwj3GI0QM1VithpSqyMCuSyGkraXIQ3aLNOksh5aapm07tO77k6D-RWPPzYm2zF6t_jOuaIReM7ZHcV-Oo2rf_oZqM8sZ45Cay0rhEojEu0OA6nRmhXRGCSq0ppGqz7aXW5I0JmuZnG6bNnqweo_GgGyFdQjX3YzIlEpXhmLu1kq1WIhFII9aL2yxZU7-1pa4_KT9_8gXKU8RFWZLev3hZj9lV3MH52_3hwQN2TRBXiMLm6TZrzSZzeIhgb1Y8anYVZ6eXvZH_Ar2gbx8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Neurodegenerative+Diseases+Based+on+Vertical+Ground+Reaction+Force+Classification+Using+Time%E2%80%93Frequency+Spectrogram+and+Deep+Learning+Neural+Network+Features&rft.jtitle=Brain+sciences&rft.au=Setiawan%2C+Febryan&rft.au=Che-Wei%2C+Lin&rft.date=2021-07-08&rft.pub=MDPI+AG&rft.eissn=2076-3425&rft.volume=11&rft.issue=7&rft.spage=902&rft_id=info:doi/10.3390%2Fbrainsci11070902&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |