Identification of Neurodegenerative Diseases Based on Vertical Ground Reaction Force Classification Using Time–Frequency Spectrogram and Deep Learning Neural Network Features

A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 11; no. 7; p. 902
Main Authors Setiawan, Febryan, Lin, Che-Wei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time–domain vGRF signal was modified into a time–frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time–frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases.
AbstractList A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time–domain vGRF signal was modified into a time–frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k -fold cross-validation ( k -fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time–frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases.
A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time-domain vGRF signal was modified into a time-frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and -fold cross-validation ( -fold CV, = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time-frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases.
A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time-domain vGRF signal was modified into a time-frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time-frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases.A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time-domain vGRF signal was modified into a time-frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time-frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases.
A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time–domain vGRF signal was modified into a time–frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV, k = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time–frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases.
Author Lin, Che-Wei
Setiawan, Febryan
AuthorAffiliation 1 Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan; febryans2802.wtmh@gmail.com
2 Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
AuthorAffiliation_xml – name: 2 Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
– name: 1 Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan; febryans2802.wtmh@gmail.com
Author_xml – sequence: 1
  givenname: Febryan
  orcidid: 0000-0002-3671-9127
  surname: Setiawan
  fullname: Setiawan, Febryan
– sequence: 2
  givenname: Che-Wei
  orcidid: 0000-0002-1894-1189
  surname: Lin
  fullname: Lin, Che-Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34356136$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFu1DAURS1URMvQPStkiQ2bATt24mSDBFOmjDQqErRsrRfnZfCQsQc7KeqOf-BH-Ca-BGemlLYSXtiWfe7189V7TA6cd0jIU85eClGxV3UA66KxnDPFKpY9IEcZU8VUyCw_uLU_JMcxrlkaJWMiZ4_IoZAiL7gojsivRYOut6010FvvqG_pGQ7BN7hChyEdXiI9sREhYqRv09zQhH3G0CdJR0-DH1xDPyKYnX7ug0E66yDGf6YX0boVPbcb_P3j5zzgtwGduaKftmj64FcBNhSSyQnili4RghvxsYz0wBn23334SucI_RAwPiEPW-giHl-vE3Ixf3c-ez9dfjhdzN4sp0ZWrJ-WOZY1Z7LljRDIDRRQQoZQcm6yjKtKYpWWmitVZMhkbphQCtuGMWmEMGJCFnvfxsNab4PdQLjSHqzeHfiw0jBm0KE2eSNMq4RgvJZl2UJlMmhrhrJsTJ2ynpDXe6_tUG-wMSnx9LU7pndvnP2iV_5Sl4KJSpXJ4MW1QfApvNjrjY0Guw4c-iHqLM8rmSlZjejze-jaD8GlqEZKSlmofKSe3a7oppS_jZEAtgdM8DEGbG8QzvTYfvp--yVJcU9ibL9rgPQn2_1f-Ad3tuWJ
CitedBy_id crossref_primary_10_3390_brainsci12030319
crossref_primary_10_1007_s11571_023_09973_9
crossref_primary_10_1109_ACCESS_2022_3158961
crossref_primary_10_3390_s21155207
crossref_primary_10_1016_j_bspc_2025_107800
crossref_primary_10_1007_s11517_025_03334_w
crossref_primary_10_1007_s00521_024_10222_1
crossref_primary_10_1016_j_ijmedinf_2024_105542
crossref_primary_10_1177_09287329241291367
crossref_primary_10_3390_s24185957
crossref_primary_10_1016_j_neucom_2025_129533
crossref_primary_10_1007_s10489_023_04557_w
crossref_primary_10_1177_20552076231173569
crossref_primary_10_1016_j_compbiomed_2023_107270
Cites_doi 10.1109/ACCESS.2019.2921568
10.1109/TKDE.2019.2912815
10.4103/2152-7806.169561
10.1109/TBME.2016.2536438
10.1152/jappl.2000.88.6.2045
10.7717/peerj.4568
10.1109/BIOCAS.2018.8584808
10.11138/FNeur/2017.32.1.028
10.3389/fmolb.2015.00054
10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9
10.1109/ICDAR.2017.148
10.1007/s13246-019-00742-9
10.1088/1742-6596/1087/6/062032
10.1159/000351153
10.1016/j.ncl.2016.06.012
10.1186/s40537-021-00428-8
10.1016/j.jtbi.2008.05.023
10.1016/0021-9290(94)00074-E
10.1613/jair.5756
10.1007/BF00994018
10.1016/j.ncl.2014.09.003
10.14802/jmd.17041
10.1111/j.1748-1716.1987.tb08045.x
10.1109/ACCESS.2019.2948857
10.1109/JBHI.2019.2959839
10.1109/DSC.2016.18
10.1109/TASSP.1977.1162950
10.1109/TNSRE.2017.2732448
10.1016/j.knosys.2018.01.004
10.1016/j.acha.2010.08.002
10.1038/nmeth.4346
10.1109/ACCESS.2019.2961960
10.1109/ACCESS.2019.2912273
10.1109/ACCESS.2019.2928017
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1016/j.patrec.2005.10.010
10.1016/j.bspc.2016.08.016
10.1056/NEJMra1603471
10.1007/978-0-387-39940-9_565
10.1002/mds.870130310
10.1007/s11036-020-01530-6
10.1016/j.ins.2015.04.047
10.1038/nn.3584
10.1016/j.bspc.2016.08.022
10.3390/s20143857
10.1109/TGRS.2016.2584107
10.1016/j.eswa.2016.03.018
10.1016/j.bspc.2015.02.002
10.4108/ICST.PERVASIVEHEALTH2009.6053
10.1186/s40535-018-0052-y
10.1155/2018/7354081
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7TK
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/brainsci11070902
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2076-3425
ExternalDocumentID oai_doaj_org_article_c5d3cf73301b488fa9c2afb0e48dcb34
PMC8303978
34356136
10_3390_brainsci11070902
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
PQGLB
3V.
7TK
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-85e8b104f1d33e1ca6a8a2ea811c221794e9217b17762e045c0377efd004c33c3
IEDL.DBID BENPR
ISSN 2076-3425
IngestDate Wed Aug 27 01:25:39 EDT 2025
Thu Aug 21 13:59:15 EDT 2025
Fri Jul 11 12:25:21 EDT 2025
Fri Jul 25 12:01:30 EDT 2025
Mon Jul 21 05:40:36 EDT 2025
Tue Jul 01 04:03:25 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords neuro-degenerative diseases
deep learning
vertical ground reaction force signal
time–frequency spectrogram
gait analysis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-85e8b104f1d33e1ca6a8a2ea811c221794e9217b17762e045c0377efd004c33c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1894-1189
0000-0002-3671-9127
OpenAccessLink https://www.proquest.com/docview/2554446758?pq-origsite=%requestingapplication%
PMID 34356136
PQID 2554446758
PQPubID 2032423
ParticipantIDs doaj_primary_oai_doaj_org_article_c5d3cf73301b488fa9c2afb0e48dcb34
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8303978
proquest_miscellaneous_2559427498
proquest_journals_2554446758
pubmed_primary_34356136
crossref_primary_10_3390_brainsci11070902
crossref_citationtrail_10_3390_brainsci11070902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210708
PublicationDateYYYYMMDD 2021-07-08
PublicationDate_xml – month: 7
  year: 2021
  text: 20210708
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Brain sciences
PublicationTitleAlternate Brain Sci
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hoff (ref_16) 2001; 16
Zarei (ref_11) 2015; 6
Ren (ref_64) 2016; 64
Hegde (ref_48) 2019; 42
ref_56
ref_52
Logroscino (ref_4) 2013; 41
Sadowsky (ref_33) 1994; 15
ref_51
Daubechies (ref_35) 2011; 30
Hausdorff (ref_10) 2000; 88
ref_15
Tadesse (ref_27) 2020; 24
Dayalu (ref_13) 2015; 33
ref_61
Agrawal (ref_6) 2015; 2
Wong (ref_57) 2020; 32
Zeng (ref_22) 2015; 317
Huang (ref_24) 2019; 7
Seuret (ref_42) 2017; Volume 1
Xu (ref_28) 2018; Volume 5
ref_29
Zhao (ref_23) 2018; 145
Krizhevsky (ref_53) 2012; 25
Pyo (ref_14) 2017; 10
Wu (ref_20) 2017; 31
Fawcett (ref_59) 2006; 27
Xia (ref_18) 2015; 18
Allen (ref_34) 1977; 25
Li (ref_49) 2018; 2018
Srivastava (ref_54) 2014; 15
Vilalta (ref_46) 2018; 61
He (ref_26) 2019; 7
ref_36
Hausdorff (ref_8) 1998; 13
ref_32
Youden (ref_60) 1950; 3
Pistacchi (ref_17) 2017; 32
Liu (ref_50) 2019; 7
Roccetti (ref_38) 2021; 8
Roccetti (ref_58) 2020; 25
Brown (ref_9) 2017; 377
ref_39
ref_37
Banaie (ref_12) 2008; 254
Bilgin (ref_21) 2017; 31
Cortes (ref_55) 1995; 20
Nilsson (ref_62) 1987; 129
Renton (ref_5) 2014; 17
Hausdorff (ref_31) 2019; 101
Hausdorff (ref_30) 1995; 28
ref_43
Pham (ref_63) 2017; 26
Garg (ref_41) 2019; 8
ref_40
ref_1
Chen (ref_44) 2016; 54
Lee (ref_2) 2016; 34
Liu (ref_45) 2018; 1087
ref_3
Kaya (ref_19) 2016; 56
Rajaraman (ref_47) 2018; 6
Xie (ref_25) 2019; 7
ref_7
References_xml – volume: 7
  start-page: 85985
  year: 2019
  ident: ref_26
  article-title: Simultaneous human health monitoring and time-frequency sparse representation using EEG and ECG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921568
– volume: 32
  start-page: 1586
  year: 2020
  ident: ref_57
  article-title: Reliable Accuracy Estimates from k-Fold Cross Validation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2912815
– volume: 6
  start-page: 171
  year: 2015
  ident: ref_11
  article-title: A comprehensive review of amyotrophic lateral sclerosis
  publication-title: Surg. Neurol. Int.
  doi: 10.4103/2152-7806.169561
– ident: ref_51
– volume: 64
  start-page: 52
  year: 2016
  ident: ref_64
  article-title: Gait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decomposition
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2536438
– volume: 88
  start-page: 2045
  year: 2000
  ident: ref_10
  article-title: Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.2000.88.6.2045
– volume: 6
  start-page: e4568
  year: 2018
  ident: ref_47
  article-title: Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images
  publication-title: PeerJ
  doi: 10.7717/peerj.4568
– ident: ref_1
– ident: ref_29
  doi: 10.1109/BIOCAS.2018.8584808
– volume: 32
  start-page: 28
  year: 2017
  ident: ref_17
  article-title: Gait analysis and clinical correlations in early Parkinson’s disease
  publication-title: Funct. Neurol.
  doi: 10.11138/FNeur/2017.32.1.028
– volume: 2
  start-page: 54
  year: 2015
  ident: ref_6
  article-title: Molecular diagnostics of neurodegenerative disorders
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2015.00054
– volume: 16
  start-page: 58
  year: 2001
  ident: ref_16
  article-title: Accelerometric assessment of levodopa-induced dyskinesias in Parkinson’s disease
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9
– volume: Volume 1
  start-page: 877
  year: 2017
  ident: ref_42
  article-title: PCA-initialized deep neural networks applied to document image analysis
  publication-title: Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)
  doi: 10.1109/ICDAR.2017.148
– volume: 42
  start-page: 627
  year: 2019
  ident: ref_48
  article-title: Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: A study
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-019-00742-9
– volume: 1087
  start-page: 062032
  year: 2018
  ident: ref_45
  article-title: Feature extraction and image recognition with convolutional neural networks
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1087/6/062032
– volume: 41
  start-page: 118
  year: 2013
  ident: ref_4
  article-title: Global Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review of the Published Literature
  publication-title: Neuroepidemiology
  doi: 10.1159/000351153
– volume: 101
  start-page: e215
  year: 2019
  ident: ref_31
  article-title: Gait Dynamics in Neuro-Degenerative Disease Database. 21 Dec 2000; PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 34
  start-page: 955
  year: 2016
  ident: ref_2
  article-title: Epidemiology of Parkinson Disease
  publication-title: Neurol. Clin.
  doi: 10.1016/j.ncl.2016.06.012
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_38
  article-title: An alternative approach to dimension reduction for pareto distributed data: A case study
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00428-8
– volume: 254
  start-page: 361
  year: 2008
  ident: ref_12
  article-title: Huntington’s disease: Modeling the gait disorder and proposing novel treatments
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.05.023
– volume: 28
  start-page: 347
  year: 1995
  ident: ref_30
  article-title: Footswitch system for measurement of the temporal parameters of gait
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)00074-E
– ident: ref_52
– volume: 61
  start-page: 563
  year: 2018
  ident: ref_46
  article-title: On the behavior of convolutional nets for feature extraction
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.5756
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_55
  article-title: Support-Vector Networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 33
  start-page: 101
  year: 2015
  ident: ref_13
  article-title: Huntington disease: Pathogenesis and treatment
  publication-title: Neurol. Clin.
  doi: 10.1016/j.ncl.2014.09.003
– volume: 10
  start-page: 140
  year: 2017
  ident: ref_14
  article-title: Quantitative gait analysis in patients with huntington’s disease
  publication-title: J. Mov. Disord.
  doi: 10.14802/jmd.17041
– volume: 129
  start-page: 107
  year: 1987
  ident: ref_62
  article-title: Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1987.tb08045.x
– volume: 7
  start-page: 153751
  year: 2019
  ident: ref_25
  article-title: Feature enrichment based convolutional neural network for heartbeat classification from electrocardiogram
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948857
– volume: 24
  start-page: 2131
  year: 2020
  ident: ref_27
  article-title: Multi-modal diagnosis of infectious diseases in the developing world
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2959839
– ident: ref_39
  doi: 10.1109/DSC.2016.18
– volume: 25
  start-page: 235
  year: 1977
  ident: ref_34
  article-title: Short term spectral analysis, synthesis, and modification by discrete Fourier transform
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1977.1162950
– volume: 26
  start-page: 188
  year: 2017
  ident: ref_63
  article-title: Texture classification and visualization of time series of gait dynamics in patients with neuro-degenerative diseases
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2732448
– volume: 145
  start-page: 91
  year: 2018
  ident: ref_23
  article-title: Dual channel LSTM based multi-feature extraction in gait for diagnosis of Neurodegenerative diseases
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.01.004
– ident: ref_7
– volume: 30
  start-page: 243
  year: 2011
  ident: ref_35
  article-title: Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.08.002
– ident: ref_36
  doi: 10.1038/nmeth.4346
– volume: 8
  start-page: 1347
  year: 2019
  ident: ref_41
  article-title: A low effort approach to structured CNN design using PCA
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961960
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref_53
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_3
– volume: 7
  start-page: 53731
  year: 2019
  ident: ref_50
  article-title: Spectrum analysis of EEG signals using CNN to model patient’s consciousness level based on anesthesiologists’ experience
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912273
– volume: 7
  start-page: 92871
  year: 2019
  ident: ref_24
  article-title: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928017
– volume: 3
  start-page: 32
  year: 1950
  ident: ref_60
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– ident: ref_40
– ident: ref_37
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_59
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 31
  start-page: 288
  year: 2017
  ident: ref_21
  article-title: The impact of feature extraction for the classification of amyotrophic lateral sclerosis among neurodegenerative diseases and healthy subjects
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2016.08.016
– volume: 377
  start-page: 1602
  year: 2017
  ident: ref_9
  article-title: Amyotrophic Lateral Sclerosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1603471
– volume: 15
  start-page: 306
  year: 1994
  ident: ref_33
  article-title: The continuous wavelet transform: A tool for signal investigation and understanding
  publication-title: Johns Hopkins APL Tech. Dig.
– ident: ref_56
  doi: 10.1007/978-0-387-39940-9_565
– volume: 13
  start-page: 428
  year: 1998
  ident: ref_8
  article-title: Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.870130310
– volume: 25
  start-page: 1075
  year: 2020
  ident: ref_58
  article-title: A Cautionary Tale for Machine Learning Design: Why we Still Need Human-Assisted Big Data Analysis
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-020-01530-6
– volume: 317
  start-page: 246
  year: 2015
  ident: ref_22
  article-title: Classification of neurodegenerative diseases using gait dynamics via deterministic learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.04.047
– volume: 17
  start-page: 17
  year: 2014
  ident: ref_5
  article-title: State of play in amyotrophic lateral sclerosis genetics
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3584
– volume: 31
  start-page: 265
  year: 2017
  ident: ref_20
  article-title: Measuring signal fluctuations in gait rhythm time series of patients with Parkinson’s disease using entropy parameters
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.08.022
– ident: ref_32
  doi: 10.3390/s20143857
– volume: 54
  start-page: 6232
  year: 2016
  ident: ref_44
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2584107
– ident: ref_15
– volume: 56
  start-page: 156
  year: 2016
  ident: ref_19
  article-title: Detection of Parkinson’s disease by shifted one dimensional local binary patterns from gait
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.03.018
– volume: 18
  start-page: 254
  year: 2015
  ident: ref_18
  article-title: Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2015.02.002
– ident: ref_61
  doi: 10.4108/ICST.PERVASIVEHEALTH2009.6053
– ident: ref_43
– volume: Volume 5
  start-page: 5
  year: 2018
  ident: ref_28
  article-title: Deep bidirectional intelligence: AlphaZero, deep IA-search, deep IA-infer, and TPC causal learning
  publication-title: Applied Informatics
  doi: 10.1186/s40535-018-0052-y
– volume: 2018
  start-page: 7354081
  year: 2018
  ident: ref_49
  article-title: Deep convolutional neural network based ECG classification system using information fusion and one-hot encoding techniques
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/7354081
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_54
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
SSID ssj0000800350
Score 2.2633862
Snippet A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 902
SubjectTerms Algorithms
Amyotrophic lateral sclerosis
Classification
Deep learning
Discriminant analysis
Gait
gait analysis
Genetic transformation
Motor neurone disease
Nervous system
Neural networks
neuro-degenerative diseases
Neurodegenerative diseases
Parkinson's disease
Patients
Principal components analysis
Sensors
Support vector machines
Time series
time–frequency spectrogram
vertical ground reaction force signal
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELZQT1wQtAUWCnIlhMRhlV3bu2sfW0pUIdEDoqi3lX_GBQSbKk0OvfUdeBGeiSdhxt6GpEJw4ZJI2YnXG8_E89mfv2HsRfCU1cq2tMpXCFBiUzotIwYeGA_K-7al887vTtrjU_X2rDlbK_VFnLAsD5x_uIlvgvSxQ9hdO3S2aI0XNroKlA7eyaQEinPeGpj6MuZBsqnyvqREXD9xVHEBZxXCO8RF3JiHklz_n3LM21TJtblnep_dG5NGfpA7-4DdgWGb7RwMCJi_XfGXPNE40_r4DvuRj97GcS2OzyJPAhwBzpPCNP298aO8LXPJD_E1cDT7mPjVeBNajBoCfw_5xAOfzuYeeKqd-bvRRDTgdHzk5_X36TzTsa84FbNfZMIXt9jIEcAFHxVcz1M38AYnmXjOKflcItjfZafTNx9eH5djWYbSK1MtSt2AdojiYh2khNrb1morwOq69kJQgIPBN9K1agVgyugr2XUQA8ajl9LLh2xrmA3wmHFoEf35YJUIUjlTGdc10QZJjYOoXcEmN4PU-1GznEpnfO0Ru9Cw9reHtWCvVt-4yHodf7E9pHFf2ZHSdvoA_a8f_a__l_8VbO_Ga_ox_C97xGkKcTZisYLtry5j4NJujB1gtkw2RolOGbR5lJ1s1ROJSSzmWW3Bug332-jq5pXh86ckDq4xJzGdfvI_nu0puyuIwkOr2XqPbS3mS3iGOdjCPU_h9gsBHzfM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLigQnkECjISQuIQmsTO64BQS1lVSO0Bsai3yI_xFlSSNrsrsTf-A3-E38QvYcbObtlq1UtWSiaOteOxv8-eB2OvrCFUK4pYSZMgQXF5rCvh0PCgNiCNKQqKdz4-KY7G8tNpfnoVHj38gdON1I7qSY3787c_Lxfv0eDfEeNEyr6nqZgCLhhEZcjN8Da7g-tSSWZ6PID97wM2EnkSzio3vri2NvkU_ptw53X3yf_Wo9E2uzcASb4fNH-f3YL2AdvZb5FE_1jw19y7dvo98x32J4TjumF_jneO-6QcFiY-6zRNefwwHNVM-QFeLUexr97nGj9CG1St5Z8hREHwUdcb4L6e5lWj3vmAU0jJ31-_R31w0V5wKnA_C05gXGEjhwAXfMjqOvHdwA-cBGd0ToB03sP0IRuPPn75cBQPpRpiI-tkFlc5VBqZnUutEJAaVahKZaCqNDVZRkYPNf5QrqsiA4SRJhFlCc6ijRohjHjEttquhSeMQ4GM0FglMyukrpNal7lTVlDjkKU6YntLJTVmyGNO5TTOG-QzpNbmuloj9mb1xkXI4XGD7AHpfSVH2bf9ja6fNIMxNya3wrhS4OSocQJ0qjaZcjoBWVmjhYzY7nLUNMsR3SB3k8i9kZ9F7OXqMRozndCoFrq5l6llVsoaZR6HQbbqiUBgi9iriFi5NvzWurr-pP125hOGV4hT6rJ6enO3nrG7GTns0N51tcu2Zv0cniPimukX3pD-AZRSMmk
  priority: 102
  providerName: Scholars Portal
Title Identification of Neurodegenerative Diseases Based on Vertical Ground Reaction Force Classification Using Time–Frequency Spectrogram and Deep Learning Neural Network Features
URI https://www.ncbi.nlm.nih.gov/pubmed/34356136
https://www.proquest.com/docview/2554446758
https://www.proquest.com/docview/2559427498
https://pubmed.ncbi.nlm.nih.gov/PMC8303978
https://doaj.org/article/c5d3cf73301b488fa9c2afb0e48dcb34
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvXBBQPkJtJWREBKHaJPYSZwT6tKuKqSuUEVRb5F_FyRIlv059MY78CI8E0_SGdubshXqJZESx7E0nvE3488zhLwxGlEtq1LJdQYOiitTJZgDxbONtlzrqsLzzmfT6vSCf7wsL2PAbRlplRub6A216TXGyEcAfTm4LgBv389_plg1CndXYwmN-2QXTLAA52t3fDL9dD5EWRAPsTIL-5MM_PuRwsoLsLqg34OcxK31yKft_x_WvE2Z_GcNmjwiDyN4pEdB2o_JPds9IXtHHTjOP67oW-rpnD5Ovkf-hCO4LsbkaO-oT8Rh7MxnmkYzR4_D9sySjuFqKDT74nnW8BMMSnWGnttw8oFO-oW21NfQvOnUEw4oHiP5--v3ZBFo2VcUi9qvAvGLSujk2No5jZlcZ34Y8INpIKBTBKFrcPqfkovJyecPp2ksz5Bq3mSrVJRWKPDmXG4Ys7mWlRSysFLkuS4KVHTbwA3zW1WFBeioM1bX1hnQS82YZs_ITtd39gWhtgIvUBvJC8O4arJG1aWThmHntshVQkYbIbU65i7HEhrfW_BhUKztbbEm5N3wxTzk7bij7RjlPrTDjNv-Qb-YtVGBW10apl3NwCAqMHpONrqQTmWWC6MV4wnZ38yaNpqBZXszaRPyengNCoy7MrKz_dq3aXhR8wbaPA-TbBgJAzALeKtKSL01_baGuv2m-_bVJwkXgE2aWry8e1ivyIMCSToYrxb7ZGe1WNsDQFkrdRhV6dBHKeB6xsU1SzExZg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKeoALAspPoICRAInDKru29--AUEMapbSNUGlRb1uvPRuQYDfkRyg33oH3QDwTT8KMd5OSCvXWSyJlHa-lGY-_GX8zw9hzawjVysjTyvjooBShlyeywI0HqQFlTBRRvvPhMBqcqHen4ekG-7XMhSFa5dImOkNtK0Mx8g5CX4WuC8LbN-NvHnWNotvVZQuNWi32YfEdXbbp670eyveFEP3d47cDr-kq4BmV-jMvCSHJ0QkpAislBEZHOtECdBIERgjST0jxi8oyRQIQ8RhfxjEUFtXJSGkkznuNbSqJrkyLbXZ3h--PVlEdwl8y9Ov7UClTv5NTpwc8zcjPIg7k2vnn2gT8D9tepGj-c-b1b7GbDVjlO7V23WYbUN5hWzslOupfF_wld_RRF5ffYr_rlN-iiQHyquCu8IeFkatsTWaV9-rroCnv4qflOOyj43XjSygIVlp-BHWmBe9XEwPc9ew8n9QRHDilrfz58bM_qWngC_5h7Hr5ENGMa5ykBzDmTeXYkVsGvmBYE945gd75BKZ32cmVCO4ea5VVCQ8Yhwi9TmO1ElaqPPXTPA4LbSVNDiLI26yzFFJmmlrp1LLjS4Y-E4k1uyjWNnu1-se4rhNyydguyX01jip8ux-qyShrDEZmQitNEUs0wDka2UKnRugi90El1uRStdn2UmuyxuxMs_NN0mbPVo_RYNAtkC6hmrsxqRKxSnHM_VrJViuRCJ4R30VtFq-p39pS15-Unz-5ouQJYqE0Th5evqyn7Prg-PAgO9gb7j9iNwQRhChWnmyz1mwyh8eI8Gb5k2ZbcXZ21Tv5Lymfauo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiEuCCg_gQJGAiQOq2xs798BoYY0ailEVaGot63XHgck2A35EcqNd-BFOPM4PAkz3k1KKtRbL4mUdbyWZjz-ZvzNDGNPrSFUK-NAKxOig-KioEilw40HmQFlTBxTvvO7Ybx3rN6cRCcb7PcyF4ZolUub6A21rQzFyDsIfRW6LghvO66hRRz2B6_G3wLqIEU3rct2GrWKHMDiO7pv05f7fZT1MyEGux9e7wVNh4HAqCycBWkEaYEOietaKaFrdKxTLUCn3a4RgnQVMvyiEk2xAEQ_JpRJAs6iahkpjcR5r7DNBL2isMU2e7vDw6NVhIewmIzC-m5UyizsFNT1AU828rmID7l2FvqWAf_Duefpmv-cf4Mb7HoDXPlOrWk32QaUt9jWTolO-9cFf849ldTH6LfYrzr91zXxQF457ouAWBj5KtdkYnm_vhqa8h5-Wo7DPnqON76EAmKl5UdQZ13wQTUxwH3_zrNJPdmBUwrLnx8_B5OaEr7g78e-rw-RzrjGSfoAY95UkR35ZeALhjX5nRMAnk9gepsdX4rg7rBWWZVwj3GI0QM1VithpSqyMCuSyGkraXIQ3aLNOksh5aapm07tO77k6D-RWPPzYm2zF6t_jOuaIReM7ZHcV-Oo2rf_oZqM8sZ45Cay0rhEojEu0OA6nRmhXRGCSq0ppGqz7aXW5I0JmuZnG6bNnqweo_GgGyFdQjX3YzIlEpXhmLu1kq1WIhFII9aL2yxZU7-1pa4_KT9_8gXKU8RFWZLev3hZj9lV3MH52_3hwQN2TRBXiMLm6TZrzSZzeIhgb1Y8anYVZ6eXvZH_Ar2gbx8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Neurodegenerative+Diseases+Based+on+Vertical+Ground+Reaction+Force+Classification+Using+Time%E2%80%93Frequency+Spectrogram+and+Deep+Learning+Neural+Network+Features&rft.jtitle=Brain+sciences&rft.au=Setiawan%2C+Febryan&rft.au=Che-Wei%2C+Lin&rft.date=2021-07-08&rft.pub=MDPI+AG&rft.eissn=2076-3425&rft.volume=11&rft.issue=7&rft.spage=902&rft_id=info:doi/10.3390%2Fbrainsci11070902&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon