Organ/body-on-a-chip based on microfluidic technology for drug discovery
Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains diff...
Saved in:
Published in | Drug metabolism and pharmacokinetics Vol. 33; no. 1; pp. 43 - 48 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future.
[Display omitted] |
---|---|
AbstractList | Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future.Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. [Display omitted] |
Author | Fujii, Teruo Kimura, Hiroshi Sakai, Yasuyuki |
Author_xml | – sequence: 1 givenname: Hiroshi surname: Kimura fullname: Kimura, Hiroshi email: hkimura@tokai-u.jp organization: Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, 259-1292, Kanagawa, Japan – sequence: 2 givenname: Yasuyuki surname: Sakai fullname: Sakai, Yasuyuki email: sakaiyas@iis.u-tokyo.ac.jp organization: Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan – sequence: 3 givenname: Teruo surname: Fujii fullname: Fujii, Teruo email: tfujii@iis.u-tokyo.ac.jp organization: International Research Center on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo, 153-8505, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29175062$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kLtOwzAUhi0E4lJ4AQaUkSWp7SSOLbEgxE2qxAKz5ctJcUnsYidIfXtSlS4Mnc4Zvv_o_N8FOvbBA0LXBBcEEzZfFbZffxUUk6YgpMC4PELnhHOcY0Hx8bSXVZNXJWvO0EVKqwko64qeojMqSFNjRs_Ry1tcKj_XwW7y4HOVm0-3zrRKYLPgs96ZGNpudNaZbADz6UMXlpusDTGzcVxm1iUTfiBuLtFJq7oEV39zhj6eHt8fXvLF2_Prw_0iN5XAQ86pZhQYEIOpgBqwNZUpOTStNpQbLVjLWQtTCw0cl1TVQmsgmjdKMcV1OUO3u7vrGL5HSIPspxeg65SHMCZJBBOipBjXE3rzh466ByvX0fUqbuS-_QTwHTCVTClCK40b1OCCH6JynSRYbkXLldyKllvRkhC59ThD9F90f_1g6G4XgknQj4Mok3HgDVgXwQzSBnco_gtDF5c8 |
CitedBy_id | crossref_primary_10_3390_cancers14040935 crossref_primary_10_1007_s00204_019_02585_5 crossref_primary_10_2745_dds_34_243 crossref_primary_10_3390_ijms222413513 crossref_primary_10_1088_1361_6439_accd00 crossref_primary_10_1007_s12223_023_01084_6 crossref_primary_10_1002_smtd_202101217 crossref_primary_10_1097_FJC_0000000000001086 crossref_primary_10_1016_j_biopha_2020_110852 crossref_primary_10_3390_mi10040252 crossref_primary_10_3389_fphys_2020_00715 crossref_primary_10_1063_1_5126714 crossref_primary_10_3389_fcell_2019_00275 crossref_primary_10_1039_D4BM01273A crossref_primary_10_1016_j_mtbio_2022_100269 crossref_primary_10_1016_j_kint_2018_06_034 crossref_primary_10_3390_mi11030305 crossref_primary_10_1080_17435390_2021_2012609 crossref_primary_10_1177_2041731420965318 crossref_primary_10_1248_bpb_b19_01070 crossref_primary_10_1021_acssensors_4c01230 crossref_primary_10_2174_0929867329666220329190825 crossref_primary_10_1002_adtp_202200030 crossref_primary_10_3390_pharmaceutics13101657 crossref_primary_10_3390_mi16030327 crossref_primary_10_1063_5_0048986 crossref_primary_10_1016_j_addr_2021_113901 crossref_primary_10_1007_s10856_023_06718_2 crossref_primary_10_1093_cvr_cvab075 crossref_primary_10_1039_C9BM00243J crossref_primary_10_1038_s41598_020_63096_3 crossref_primary_10_1039_D1EN00925G crossref_primary_10_3390_chemosensors9040083 crossref_primary_10_3390_diseases12090206 crossref_primary_10_3390_molecules24040675 crossref_primary_10_1039_D0LC01158D crossref_primary_10_1063_5_0190337 crossref_primary_10_35848_1347_4065_ad04ff crossref_primary_10_1007_s13239_023_00707_w crossref_primary_10_1002_elps_202100098 crossref_primary_10_1016_j_matdes_2022_111517 crossref_primary_10_1080_17460441_2020_1700225 crossref_primary_10_1016_j_biopha_2024_117230 crossref_primary_10_1016_j_talanta_2021_122882 crossref_primary_10_1038_s41584_021_00736_6 crossref_primary_10_3390_cells13110900 crossref_primary_10_3390_bios12070459 crossref_primary_10_3390_mi12091007 crossref_primary_10_3389_fbioe_2024_1373386 crossref_primary_10_1016_j_addr_2022_114365 crossref_primary_10_1002_btm2_10296 crossref_primary_10_1016_j_cca_2023_117646 crossref_primary_10_1039_D2LC00268J crossref_primary_10_1007_s12272_022_01390_6 crossref_primary_10_3390_mi11040447 crossref_primary_10_1016_j_talanta_2021_122097 crossref_primary_10_1016_j_engreg_2024_02_002 crossref_primary_10_2139_ssrn_4020640 crossref_primary_10_1016_j_bioactmat_2020_09_022 crossref_primary_10_1002_smtd_202100338 crossref_primary_10_1039_D1LC00869B crossref_primary_10_1007_s12035_019_01653_2 crossref_primary_10_34133_bmef_0022 crossref_primary_10_1016_j_heliyon_2023_e21070 crossref_primary_10_1002_elps_201900170 crossref_primary_10_12701_yujm_2019_00297 crossref_primary_10_3390_gels7010017 crossref_primary_10_1017_jfm_2021_1128 crossref_primary_10_1242_dmm_039347 crossref_primary_10_3390_cells10040886 crossref_primary_10_4252_wjsc_v11_i10_803 crossref_primary_10_1016_j_ces_2022_117555 crossref_primary_10_1063_5_0058798 crossref_primary_10_1039_D3LC00934C crossref_primary_10_1016_j_wear_2025_205789 crossref_primary_10_3390_mi12050550 crossref_primary_10_1111_jne_12650 crossref_primary_10_2491_jjsth_30_512 crossref_primary_10_1021_acs_chemrev_0c01289 crossref_primary_10_1080_14767058_2020_1802716 crossref_primary_10_3390_biology13121005 crossref_primary_10_1002_adhm_201801363 crossref_primary_10_2174_1381612825666190308150055 crossref_primary_10_3390_mi11100898 crossref_primary_10_1248_yakushi_22_00161_1 crossref_primary_10_1002_elps_201800353 crossref_primary_10_1039_D2LC00941B crossref_primary_10_1002_smll_202003517 crossref_primary_10_1088_1748_605X_abe55e crossref_primary_10_1016_j_vesic_2024_100035 crossref_primary_10_1016_j_snb_2024_135409 crossref_primary_10_1002_anbr_202000022 crossref_primary_10_1002_mds3_10067 crossref_primary_10_1002_mba2_63 crossref_primary_10_1038_s41598_024_84297_0 crossref_primary_10_1039_D4LC00404C crossref_primary_10_3390_cells9051282 crossref_primary_10_2174_138161282445190416155151 crossref_primary_10_2144_btn_2019_0115 crossref_primary_10_3390_biomedicines9101415 crossref_primary_10_1016_j_tiv_2019_104752 crossref_primary_10_1002_VIW_20200177 crossref_primary_10_32362_2410_6593_2019_14_5_39_50 crossref_primary_10_3390_mi11060565 crossref_primary_10_1016_j_actbio_2023_05_005 crossref_primary_10_1016_j_drudis_2019_03_006 crossref_primary_10_1007_s10404_020_02347_1 crossref_primary_10_1007_s12195_020_00649_6 crossref_primary_10_1016_j_ooc_2021_100010 crossref_primary_10_1038_s41598_020_61296_5 crossref_primary_10_1146_annurev_anchem_091620_091335 crossref_primary_10_3999_jscpt_51_171 crossref_primary_10_1002_smtd_201900589 crossref_primary_10_1177_15353702211052280 crossref_primary_10_1016_j_gene_2018_11_058 crossref_primary_10_1177_2472555219831407 crossref_primary_10_2116_analsci_18SDP04 crossref_primary_10_1002_admt_202101633 crossref_primary_10_1016_j_jacbts_2020_03_010 crossref_primary_10_1038_s41598_019_56711_5 crossref_primary_10_1021_acsami_0c22381 crossref_primary_10_1039_C8AY00970H crossref_primary_10_1002_adhm_201901435 crossref_primary_10_3390_cells10123552 crossref_primary_10_15671_hjbc_610448 crossref_primary_10_3390_ijms22157770 crossref_primary_10_1002_advs_202100798 crossref_primary_10_3390_mi11080727 crossref_primary_10_1007_s13346_022_01189_4 crossref_primary_10_1016_j_sna_2019_111704 crossref_primary_10_1016_j_tibtech_2019_03_003 crossref_primary_10_3389_fmed_2020_00537 crossref_primary_10_1016_j_ejps_2021_105876 crossref_primary_10_1007_s10404_021_02502_2 crossref_primary_10_1007_s11626_021_00548_8 crossref_primary_10_1016_j_polymer_2023_126439 crossref_primary_10_1080_00498254_2023_2180454 crossref_primary_10_1007_s10544_020_0470_1 crossref_primary_10_1016_j_bprint_2025_e00394 crossref_primary_10_1039_D0LC00799D crossref_primary_10_3748_wjg_v26_i25_3562 crossref_primary_10_1080_15476278_2018_1501136 crossref_primary_10_3389_fphys_2019_01192 crossref_primary_10_2174_1381612825666190220161254 crossref_primary_10_1016_j_bej_2020_107783 crossref_primary_10_2147_IJNRD_S344725 crossref_primary_10_3389_fimmu_2022_1011143 crossref_primary_10_3390_mi15091137 crossref_primary_10_3390_bioengineering9050220 crossref_primary_10_1186_s40643_020_00325_7 crossref_primary_10_1080_14740338_2019_1634689 crossref_primary_10_1038_s44222_023_00138_1 crossref_primary_10_1088_1361_6528_aae18a crossref_primary_10_1093_cercor_bhae346 crossref_primary_10_1021_acsbiomaterials_1c01094 crossref_primary_10_1021_acsnano_0c08404 crossref_primary_10_3390_pharmaceutics12060542 crossref_primary_10_1063_5_0084308 crossref_primary_10_1109_ACCESS_2021_3050161 crossref_primary_10_3390_biomedicines11102852 crossref_primary_10_3892_mi_2024_212 crossref_primary_10_1007_s10544_019_0423_8 crossref_primary_10_1111_iej_13137 crossref_primary_10_1016_j_mtadv_2022_100286 crossref_primary_10_1038_s41598_024_77665_3 crossref_primary_10_1002_bit_27855 crossref_primary_10_3390_cancers13061381 crossref_primary_10_3390_mi11060593 crossref_primary_10_1039_D1RA00855B crossref_primary_10_1016_j_gendis_2022_04_003 crossref_primary_10_1002_bit_27171 crossref_primary_10_3390_ijerph17062124 crossref_primary_10_1016_j_molliq_2023_122706 crossref_primary_10_1080_23746149_2019_1622451 crossref_primary_10_1002_adhm_202202376 crossref_primary_10_1021_acsbiomaterials_3c00066 crossref_primary_10_3390_mi10030165 crossref_primary_10_35848_1347_4065_adb6aa crossref_primary_10_1088_1758_5090_adb4a2 crossref_primary_10_1186_s40580_021_00270_x crossref_primary_10_3390_mi10080533 crossref_primary_10_1088_1758_5090_ab10ae crossref_primary_10_1088_1758_5090_adb999 crossref_primary_10_1021_acsomega_4c02121 crossref_primary_10_1088_1758_5090_ac77c1 crossref_primary_10_1089_ten_tec_2020_0337 crossref_primary_10_1177_00236772211045483 crossref_primary_10_1063_5_0061896 crossref_primary_10_1088_2516_1091_ab7cc4 crossref_primary_10_1016_j_bprint_2021_e00171 crossref_primary_10_1186_s12958_020_00621_z crossref_primary_10_1016_j_trac_2022_116851 crossref_primary_10_1042_BST20210840 crossref_primary_10_1016_j_colsurfb_2025_114507 crossref_primary_10_1186_s13036_019_0219_7 crossref_primary_10_3390_mi15070873 crossref_primary_10_3390_bios13080779 crossref_primary_10_1021_acs_chemrev_1c00621 crossref_primary_10_1016_j_mvr_2018_11_012 crossref_primary_10_1016_j_biosx_2022_100194 crossref_primary_10_1152_ajpcell_00186_2020 crossref_primary_10_1016_j_onano_2023_100197 crossref_primary_10_1088_2516_1091_ac8259 crossref_primary_10_3390_cancers14153561 crossref_primary_10_1021_acs_analchem_0c01970 crossref_primary_10_1016_j_brainresbull_2021_06_012 crossref_primary_10_1177_15347354241311917 crossref_primary_10_4196_kjpp_2020_24_6_441 crossref_primary_10_1016_j_jconrel_2020_02_041 crossref_primary_10_3389_fphar_2021_762654 crossref_primary_10_1371_journal_pone_0315997 crossref_primary_10_1248_yakushi_22_00172 crossref_primary_10_3390_ijms222212473 crossref_primary_10_3390_app131810510 crossref_primary_10_3390_mi14010103 crossref_primary_10_3389_fbioe_2024_1462293 crossref_primary_10_3390_ijms21228755 crossref_primary_10_1007_s11517_024_03062_7 crossref_primary_10_1155_2020_6481317 crossref_primary_10_35848_1347_4065_ac1c3d crossref_primary_10_1016_j_jtos_2023_11_004 crossref_primary_10_3390_mi13020305 crossref_primary_10_2131_jts_47_13 crossref_primary_10_1016_j_cjph_2021_11_036 crossref_primary_10_1111_jnc_15289 crossref_primary_10_1016_j_bcp_2019_113648 crossref_primary_10_34133_2022_9758187 crossref_primary_10_1177_08839115241237327 crossref_primary_10_3390_cancers12113107 crossref_primary_10_3390_ma12182945 crossref_primary_10_1080_21688370_2022_2163820 crossref_primary_10_1109_TIM_2023_3334366 crossref_primary_10_1016_j_bios_2022_114820 crossref_primary_10_1002_bit_27816 crossref_primary_10_1177_02611929231170392 crossref_primary_10_1016_j_molmed_2020_01_008 crossref_primary_10_3389_fbioe_2022_840674 crossref_primary_10_2144_fsoa_2023_0061 crossref_primary_10_1016_j_mex_2024_102584 crossref_primary_10_1016_j_biomaterials_2019_119628 crossref_primary_10_1007_s40778_022_00219_8 crossref_primary_10_1007_s10404_019_2283_1 crossref_primary_10_3390_v15010158 crossref_primary_10_1002_adfm_202006796 crossref_primary_10_1016_j_addr_2021_05_005 crossref_primary_10_1063_5_0144862 crossref_primary_10_3390_app10030900 crossref_primary_10_1254_fpj_22046 crossref_primary_10_1016_j_trac_2019_06_026 crossref_primary_10_1089_omi_2018_0172 crossref_primary_10_1016_j_dmpk_2021_100425 crossref_primary_10_1016_j_ijadhadh_2023_103429 crossref_primary_10_3390_bioengineering11121220 crossref_primary_10_3390_bioengineering6040091 crossref_primary_10_1002_advs_202101027 crossref_primary_10_1088_1361_6439_abc820 crossref_primary_10_26787_nydha_2618_8783_2022_7_3_90_94 crossref_primary_10_1163_25889567_BJA10004 crossref_primary_10_1039_D4AN00267A crossref_primary_10_3390_biomimetics6040062 crossref_primary_10_3390_mi11070646 crossref_primary_10_1002_admt_202000183 crossref_primary_10_7554_eLife_66716 crossref_primary_10_1016_j_snb_2021_131338 crossref_primary_10_1016_j_trac_2022_116894 crossref_primary_10_2116_analsci_17R006 crossref_primary_10_1186_s12906_023_04217_z crossref_primary_10_1016_j_fct_2021_112155 crossref_primary_10_1155_2020_6187048 crossref_primary_10_1038_s41598_021_82853_6 crossref_primary_10_1080_10255842_2020_1714948 crossref_primary_10_1002_pat_5847 crossref_primary_10_3390_biom10091306 crossref_primary_10_3390_molecules24040753 crossref_primary_10_1021_acs_analchem_8b05689 crossref_primary_10_1016_j_coelec_2023_101270 crossref_primary_10_1063_1_5133970 crossref_primary_10_1039_D1PY01077H crossref_primary_10_1093_abbs_gmab046 crossref_primary_10_1016_j_bcp_2020_114173 crossref_primary_10_1039_D4BM00663A crossref_primary_10_1016_j_drudis_2023_103515 crossref_primary_10_1007_s00170_023_11773_8 crossref_primary_10_3390_app12083829 crossref_primary_10_3390_cells9010037 crossref_primary_10_1007_s12195_020_00636_x crossref_primary_10_1016_j_jiec_2018_11_041 crossref_primary_10_1016_j_addr_2018_05_005 crossref_primary_10_1177_20417314221095339 crossref_primary_10_3390_v14122799 crossref_primary_10_1139_cjp_2021_0199 crossref_primary_10_1002_bit_27151 crossref_primary_10_1213_ANE_0000000000004801 crossref_primary_10_3390_bios14090449 crossref_primary_10_1016_j_ooc_2022_100020 crossref_primary_10_3390_mi14010022 crossref_primary_10_1039_D2QM00072E crossref_primary_10_1063_5_0185494 crossref_primary_10_1007_s11892_020_01357_1 crossref_primary_10_1088_2516_1091_ab23df crossref_primary_10_3390_mi15101195 crossref_primary_10_1016_j_dmpk_2024_101044 crossref_primary_10_3390_polym14214478 crossref_primary_10_3389_fcimb_2025_1521265 crossref_primary_10_3389_fmicb_2023_1266136 crossref_primary_10_1007_s10404_023_02629_4 crossref_primary_10_1098_rsfs_2019_0031 crossref_primary_10_1016_j_semcdb_2022_09_010 crossref_primary_10_1016_j_dmpk_2024_101046 crossref_primary_10_3390_bioengineering9040150 crossref_primary_10_1007_s00146_019_00892_0 crossref_primary_10_1016_j_colsurfb_2021_112300 crossref_primary_10_1016_j_biotechadv_2019_107460 |
Cites_doi | 10.1126/science.1188302 10.1073/pnas.1522193112 10.1038/s41551-017-0069 10.1002/bit.10143 10.1016/j.biomaterials.2013.10.070 10.1177/1535370214529397 10.1021/ac100806x 10.1146/annurev-pathol-012414-040418 10.1039/C1IB00096A 10.1177/2211068214557812 10.1109/TBME.2013.2244891 10.1089/ten.tea.2012.0605 10.1155/2013/319476 10.1186/1471-2105-15-S16-S16 10.1039/c2lc40074j 10.1063/1.3580753 10.1021/ac302938q 10.1039/C6LC00361C 10.1039/B907515A 10.1007/978-1-60327-106-6_3 10.1080/00498250210128675 10.1039/b717091b 10.4155/fsoa-2017-0002 10.1126/scitranslmed.3004249 10.1021/bp034077d 10.1039/b901377f 10.1126/science.1069210 10.1039/b917763a 10.1016/S0090-9556(25)06742-X 10.1023/A:1016040212127 |
ContentType | Journal Article |
Copyright | 2017 The Japanese Society for the Study of Xenobiotics Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 The Japanese Society for the Study of Xenobiotics – notice: Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.dmpk.2017.11.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1880-0920 |
EndPage | 48 |
ExternalDocumentID | 29175062 10_1016_j_dmpk_2017_11_003 S1347436717301957 |
Genre | Journal Article Review |
GroupedDBID | --- --M 0R~ 29G 2WC 4.4 457 53G 5GY 6I. 7-5 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAWUL BKOJK BKOMP BLXMC CS3 DIK DU5 E3Z EBS EFJIC EFLBG EJD F5P FDB FEDTE FIRID FYGXN GBLVA GX1 HH5 HVGLF HZ~ JMI JSF JSH KOM KQ8 M41 MOJWN M~E O9- OAUVE RJT RNS ROL RZJ SPCBC SSP SSZ T5K TKC TR2 ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS OVT NPM 7X8 SSH |
ID | FETCH-LOGICAL-c490t-82b62e6e1c029e5e0dc4c38e7fbc28cb96f86fe188be8032a59bbe1b87aa6a8b3 |
IEDL.DBID | AIKHN |
ISSN | 1347-4367 1880-0920 |
IngestDate | Thu Jul 10 17:17:43 EDT 2025 Wed Feb 19 02:41:35 EST 2025 Tue Aug 05 12:04:40 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Fri Feb 23 02:46:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Body-on-a-chip Animal testing ADME Organ-on-a-chip Cell-based assay Drug discovery Microfluidic device |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-82b62e6e1c029e5e0dc4c38e7fbc28cb96f86fe188be8032a59bbe1b87aa6a8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1347436717301957 |
PMID | 29175062 |
PQID | 1969932005 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1969932005 pubmed_primary_29175062 crossref_citationtrail_10_1016_j_dmpk_2017_11_003 crossref_primary_10_1016_j_dmpk_2017_11_003 elsevier_sciencedirect_doi_10_1016_j_dmpk_2017_11_003 |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-00 2018-Feb 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Drug metabolism and pharmacokinetics |
PublicationTitleAlternate | Drug Metab Pharmacokinet |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Satoh, Narazaki, Sugita, Kobayashi, Sugiura, Kanamori (bib33) 2016; 16 Nakao, Kimura, Sakai, Fujii (bib14) 2011; 5 Sung, Shuler (bib25) 2009; 9 Su, Li, Zink, Loo (bib15) 2014; 15 Sung, Kam, Shuler (bib26) 2010; 10 Borenstein, Terai, King, Weinberg, Kaazempur-Mofrad, Vacanti (bib5) 2002; 4 Zhou, Ma, Lin, Qin (bib17) 2014; 35 Jang, Suh (bib19) 2010; 10 Kim, Li, Collins, Ingber (bib23) 2016; 113 Griffith, Naughton (bib4) 2002; 295 Huang, Chang, Chen, Harn, Tang, Wu (bib16) 2013; 19 Frohlich, Zhang, Charest (bib18) 2012; 4 Kimura, Ikeda, Nakayama, Sakai, Fujii (bib30) 2015; 20 Huh, Leslie, Matthews, Fraser, Jurek, Hamilton (bib9) 2012; 4 Kimura, Yamamoto, Sakai, Sakai, Fujii (bib22) 2008; 8 Ng, Zhuang, Lin, Teo (bib21) 2013; 2013 Kim, Ingber (bib11) 2013; 5 Musah, Mammoto, Ferrante, Jeanty, Hirano-Kobayashi, Mammoto (bib12) 2017; 1 Imura, Sato, Yoshimura (bib28) 2010; 82 Lin (bib1) 1995; 23 Rodriguez-Antona, Donato, Boobis, Edwards, Watts, Castell (bib3) 2002; 32 Sung, Srinivasan, Esch, McLamb, Bernabini, Shuler (bib27) 2014; 239 Abaci, Shuler (bib31) 2015; 7 Kim, Huh, Hamilton, Ingber (bib10) 2012; 12 Powers, Domansky, Kaazempur-Mofrad, Kalezi, Capitano, Upadhyaya (bib13) 2002; 78 Sin, Chin, Jamil, Kostov, Rao, Shuler (bib24) 2004; 20 Imura, Yoshimura, Sato (bib29) 2013; 85 Wolfe, Qin, Whitesides (bib2) 2010; 583 Wikswo, Block, Cliffel, Goodwin, Marasco, Markov (bib6) 2013; 60 Dehne, Hasenberg, Marx (bib32) 2017; 3 Jang, Mehr, Hamilton, McPartlin, Chung, Suh (bib20) 2013; 5 Huh, Matthews, Mammoto, Montoya-Zavala, Hsin, Ingber (bib8) 2010; 328 Benam, Dauth, Hassell, Herland, Jain, Jang (bib7) 2015; 10 Zhou (10.1016/j.dmpk.2017.11.003_bib17) 2014; 35 Sung (10.1016/j.dmpk.2017.11.003_bib25) 2009; 9 Sin (10.1016/j.dmpk.2017.11.003_bib24) 2004; 20 Abaci (10.1016/j.dmpk.2017.11.003_bib31) 2015; 7 Kimura (10.1016/j.dmpk.2017.11.003_bib22) 2008; 8 Griffith (10.1016/j.dmpk.2017.11.003_bib4) 2002; 295 Jang (10.1016/j.dmpk.2017.11.003_bib19) 2010; 10 Satoh (10.1016/j.dmpk.2017.11.003_bib33) 2016; 16 Borenstein (10.1016/j.dmpk.2017.11.003_bib5) 2002; 4 Jang (10.1016/j.dmpk.2017.11.003_bib20) 2013; 5 Kim (10.1016/j.dmpk.2017.11.003_bib10) 2012; 12 Nakao (10.1016/j.dmpk.2017.11.003_bib14) 2011; 5 Wikswo (10.1016/j.dmpk.2017.11.003_bib6) 2013; 60 Dehne (10.1016/j.dmpk.2017.11.003_bib32) 2017; 3 Sung (10.1016/j.dmpk.2017.11.003_bib27) 2014; 239 Imura (10.1016/j.dmpk.2017.11.003_bib28) 2010; 82 Kim (10.1016/j.dmpk.2017.11.003_bib23) 2016; 113 Benam (10.1016/j.dmpk.2017.11.003_bib7) 2015; 10 Huang (10.1016/j.dmpk.2017.11.003_bib16) 2013; 19 Frohlich (10.1016/j.dmpk.2017.11.003_bib18) 2012; 4 Su (10.1016/j.dmpk.2017.11.003_bib15) 2014; 15 Kimura (10.1016/j.dmpk.2017.11.003_bib30) 2015; 20 Rodriguez-Antona (10.1016/j.dmpk.2017.11.003_bib3) 2002; 32 Huh (10.1016/j.dmpk.2017.11.003_bib9) 2012; 4 Lin (10.1016/j.dmpk.2017.11.003_bib1) 1995; 23 Kim (10.1016/j.dmpk.2017.11.003_bib11) 2013; 5 Sung (10.1016/j.dmpk.2017.11.003_bib26) 2010; 10 Wolfe (10.1016/j.dmpk.2017.11.003_bib2) 2010; 583 Powers (10.1016/j.dmpk.2017.11.003_bib13) 2002; 78 Ng (10.1016/j.dmpk.2017.11.003_bib21) 2013; 2013 Imura (10.1016/j.dmpk.2017.11.003_bib29) 2013; 85 Musah (10.1016/j.dmpk.2017.11.003_bib12) 2017; 1 Huh (10.1016/j.dmpk.2017.11.003_bib8) 2010; 328 |
References_xml | – volume: 82 start-page: 9983 year: 2010 end-page: 9988 ident: bib28 article-title: Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity publication-title: Anal Chem – volume: 35 start-page: 1390 year: 2014 end-page: 1401 ident: bib17 article-title: Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices publication-title: Biomaterials – volume: 12 start-page: 2165 year: 2012 end-page: 2174 ident: bib10 article-title: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow publication-title: Lab a Chip – volume: 113 start-page: E7 year: 2016 end-page: E15 ident: bib23 article-title: Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 36 year: 2010 end-page: 42 ident: bib19 article-title: A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells publication-title: Lab a Chip – volume: 2013 start-page: 10 year: 2013 ident: bib21 article-title: A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study publication-title: Int J Tissue Eng – volume: 9 start-page: 1385 year: 2009 end-page: 1394 ident: bib25 article-title: A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs publication-title: Lab a chip – volume: 20 start-page: 338 year: 2004 end-page: 345 ident: bib24 article-title: The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors publication-title: Biotechnol Prog – volume: 295 start-page: 1009 year: 2002 end-page: 1014 ident: bib4 article-title: Tissue engineering–current challenges and expanding opportunities publication-title: Science – volume: 78 start-page: 257 year: 2002 end-page: 269 ident: bib13 article-title: A microfabricated array bioreactor for perfused 3D liver culture publication-title: Biotechnol Bioeng – volume: 85 start-page: 1683 year: 2013 end-page: 1688 ident: bib29 article-title: Microcirculation system with a dialysis part for bioassays evaluating anticancer activity and retention publication-title: Anal Chem – volume: 32 start-page: 505 year: 2002 end-page: 520 ident: bib3 article-title: Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells publication-title: Xenobiotica – volume: 4 start-page: 167 year: 2002 end-page: 175 ident: bib5 article-title: Microfabrication technology for vascularized tissue engineering publication-title: Biomed Microdevices – volume: 23 start-page: 1008 year: 1995 end-page: 1021 ident: bib1 article-title: Species similarities and differences in pharmacokinetics publication-title: Drug Metab Dispos – volume: 3 year: 2017 ident: bib32 article-title: The ascendance of microphysiological systems to solve the drug testing dilemma publication-title: Future Sci OA – volume: 15 start-page: S16 year: 2014 ident: bib15 article-title: Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels publication-title: BMC Bioinforma – volume: 19 start-page: 2024 year: 2013 end-page: 2034 ident: bib16 article-title: Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells publication-title: Tissue Eng Part A – volume: 4 start-page: 75 year: 2012 end-page: 83 ident: bib18 article-title: The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function publication-title: Integr Biol – volume: 328 start-page: 1662 year: 2010 end-page: 1668 ident: bib8 article-title: Reconstituting organ-level lung functions on a chip publication-title: Science – volume: 239 start-page: 1225 year: 2014 end-page: 1239 ident: bib27 article-title: Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure publication-title: Exp Biol Med – volume: 60 start-page: 682 year: 2013 end-page: 690 ident: bib6 article-title: Engineering challenges for instrumenting and controlling integrated organ-on-chip systems publication-title: IEEE Trans Biomed Eng – volume: 7 start-page: 383 year: 2015 end-page: 391 ident: bib31 article-title: Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling publication-title: Integr Biol Quantitative Biosci Nano macro – volume: 8 start-page: 741 year: 2008 end-page: 746 ident: bib22 article-title: An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models publication-title: Lab a Chip – volume: 583 start-page: 81 year: 2010 end-page: 107 ident: bib2 article-title: Rapid prototyping of microstructures by soft lithography for biotechnology publication-title: Methods Mol Biol Clift NJ – volume: 4 start-page: 159ra47 year: 2012 ident: bib9 article-title: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice publication-title: Sci Transl Med – volume: 10 start-page: 446 year: 2010 end-page: 455 ident: bib26 article-title: A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip publication-title: Lab a Chip – volume: 5 start-page: 1130 year: 2013 end-page: 1140 ident: bib11 article-title: Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation publication-title: Integr Biol Quantitative Biosci Nano Macro – volume: 20 start-page: 265 year: 2015 end-page: 273 ident: bib30 article-title: An on-chip small intestine-liver model for pharmacokinetic studies publication-title: J Laboratory Automation – volume: 5 start-page: 22212 year: 2011 ident: bib14 article-title: Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device publication-title: Biomicrofluidics – volume: 16 start-page: 2339 year: 2016 end-page: 2348 ident: bib33 article-title: A pneumatic pressure-driven multi-throughput microfluidic circulation culture system publication-title: Lab a Chip – volume: 5 start-page: 1119 year: 2013 end-page: 1129 ident: bib20 article-title: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment publication-title: Integr Biol Quantitative Biosci Nano Macro – volume: 10 start-page: 195 year: 2015 end-page: 262 ident: bib7 article-title: Engineered in vitro disease models publication-title: Annu Rev pathology – volume: 1 year: 2017 ident: bib12 article-title: Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip publication-title: Nat Biomed Eng – volume: 328 start-page: 1662 issue: 5986 year: 2010 ident: 10.1016/j.dmpk.2017.11.003_bib8 article-title: Reconstituting organ-level lung functions on a chip publication-title: Science doi: 10.1126/science.1188302 – volume: 113 start-page: E7 issue: 1 year: 2016 ident: 10.1016/j.dmpk.2017.11.003_bib23 article-title: Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1522193112 – volume: 1 issue: 5 year: 2017 ident: 10.1016/j.dmpk.2017.11.003_bib12 article-title: Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip publication-title: Nat Biomed Eng doi: 10.1038/s41551-017-0069 – volume: 78 start-page: 257 issue: 3 year: 2002 ident: 10.1016/j.dmpk.2017.11.003_bib13 article-title: A microfabricated array bioreactor for perfused 3D liver culture publication-title: Biotechnol Bioeng doi: 10.1002/bit.10143 – volume: 35 start-page: 1390 issue: 5 year: 2014 ident: 10.1016/j.dmpk.2017.11.003_bib17 article-title: Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.10.070 – volume: 7 start-page: 383 issue: 4 year: 2015 ident: 10.1016/j.dmpk.2017.11.003_bib31 article-title: Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling publication-title: Integr Biol Quantitative Biosci Nano macro – volume: 239 start-page: 1225 issue: 9 year: 2014 ident: 10.1016/j.dmpk.2017.11.003_bib27 article-title: Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure publication-title: Exp Biol Med doi: 10.1177/1535370214529397 – volume: 82 start-page: 9983 issue: 24 year: 2010 ident: 10.1016/j.dmpk.2017.11.003_bib28 article-title: Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity publication-title: Anal Chem doi: 10.1021/ac100806x – volume: 10 start-page: 195 year: 2015 ident: 10.1016/j.dmpk.2017.11.003_bib7 article-title: Engineered in vitro disease models publication-title: Annu Rev pathology doi: 10.1146/annurev-pathol-012414-040418 – volume: 4 start-page: 75 issue: 1 year: 2012 ident: 10.1016/j.dmpk.2017.11.003_bib18 article-title: The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function publication-title: Integr Biol doi: 10.1039/C1IB00096A – volume: 20 start-page: 265 issue: 3 year: 2015 ident: 10.1016/j.dmpk.2017.11.003_bib30 article-title: An on-chip small intestine-liver model for pharmacokinetic studies publication-title: J Laboratory Automation doi: 10.1177/2211068214557812 – volume: 60 start-page: 682 issue: 3 year: 2013 ident: 10.1016/j.dmpk.2017.11.003_bib6 article-title: Engineering challenges for instrumenting and controlling integrated organ-on-chip systems publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2244891 – volume: 19 start-page: 2024 issue: 17–18 year: 2013 ident: 10.1016/j.dmpk.2017.11.003_bib16 article-title: Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2012.0605 – volume: 2013 start-page: 10 year: 2013 ident: 10.1016/j.dmpk.2017.11.003_bib21 article-title: A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study publication-title: Int J Tissue Eng doi: 10.1155/2013/319476 – volume: 15 start-page: S16 issue: Suppl.16 year: 2014 ident: 10.1016/j.dmpk.2017.11.003_bib15 article-title: Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels publication-title: BMC Bioinforma doi: 10.1186/1471-2105-15-S16-S16 – volume: 5 start-page: 1119 issue: 9 year: 2013 ident: 10.1016/j.dmpk.2017.11.003_bib20 article-title: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment publication-title: Integr Biol Quantitative Biosci Nano Macro – volume: 12 start-page: 2165 issue: 12 year: 2012 ident: 10.1016/j.dmpk.2017.11.003_bib10 article-title: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow publication-title: Lab a Chip doi: 10.1039/c2lc40074j – volume: 5 start-page: 22212 issue: 2 year: 2011 ident: 10.1016/j.dmpk.2017.11.003_bib14 article-title: Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device publication-title: Biomicrofluidics doi: 10.1063/1.3580753 – volume: 85 start-page: 1683 issue: 3 year: 2013 ident: 10.1016/j.dmpk.2017.11.003_bib29 article-title: Microcirculation system with a dialysis part for bioassays evaluating anticancer activity and retention publication-title: Anal Chem doi: 10.1021/ac302938q – volume: 16 start-page: 2339 issue: 12 year: 2016 ident: 10.1016/j.dmpk.2017.11.003_bib33 article-title: A pneumatic pressure-driven multi-throughput microfluidic circulation culture system publication-title: Lab a Chip doi: 10.1039/C6LC00361C – volume: 5 start-page: 1130 issue: 9 year: 2013 ident: 10.1016/j.dmpk.2017.11.003_bib11 article-title: Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation publication-title: Integr Biol Quantitative Biosci Nano Macro – volume: 10 start-page: 36 issue: 1 year: 2010 ident: 10.1016/j.dmpk.2017.11.003_bib19 article-title: A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells publication-title: Lab a Chip doi: 10.1039/B907515A – volume: 583 start-page: 81 year: 2010 ident: 10.1016/j.dmpk.2017.11.003_bib2 article-title: Rapid prototyping of microstructures by soft lithography for biotechnology publication-title: Methods Mol Biol Clift NJ doi: 10.1007/978-1-60327-106-6_3 – volume: 32 start-page: 505 issue: 6 year: 2002 ident: 10.1016/j.dmpk.2017.11.003_bib3 article-title: Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells publication-title: Xenobiotica doi: 10.1080/00498250210128675 – volume: 8 start-page: 741 issue: 5 year: 2008 ident: 10.1016/j.dmpk.2017.11.003_bib22 article-title: An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models publication-title: Lab a Chip doi: 10.1039/b717091b – volume: 3 issue: 2 year: 2017 ident: 10.1016/j.dmpk.2017.11.003_bib32 article-title: The ascendance of microphysiological systems to solve the drug testing dilemma publication-title: Future Sci OA doi: 10.4155/fsoa-2017-0002 – volume: 4 start-page: 159ra47 issue: 159 year: 2012 ident: 10.1016/j.dmpk.2017.11.003_bib9 article-title: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3004249 – volume: 20 start-page: 338 issue: 1 year: 2004 ident: 10.1016/j.dmpk.2017.11.003_bib24 article-title: The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors publication-title: Biotechnol Prog doi: 10.1021/bp034077d – volume: 9 start-page: 1385 issue: 10 year: 2009 ident: 10.1016/j.dmpk.2017.11.003_bib25 article-title: A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs publication-title: Lab a chip doi: 10.1039/b901377f – volume: 295 start-page: 1009 issue: 5557 year: 2002 ident: 10.1016/j.dmpk.2017.11.003_bib4 article-title: Tissue engineering–current challenges and expanding opportunities publication-title: Science doi: 10.1126/science.1069210 – volume: 10 start-page: 446 issue: 4 year: 2010 ident: 10.1016/j.dmpk.2017.11.003_bib26 article-title: A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip publication-title: Lab a Chip doi: 10.1039/b917763a – volume: 23 start-page: 1008 issue: 10 year: 1995 ident: 10.1016/j.dmpk.2017.11.003_bib1 article-title: Species similarities and differences in pharmacokinetics publication-title: Drug Metab Dispos doi: 10.1016/S0090-9556(25)06742-X – volume: 4 start-page: 167 issue: 3 year: 2002 ident: 10.1016/j.dmpk.2017.11.003_bib5 article-title: Microfabrication technology for vascularized tissue engineering publication-title: Biomed Microdevices doi: 10.1023/A:1016040212127 |
SSID | ssj0033542 |
Score | 2.599743 |
SecondaryResourceType | review_article |
Snippet | Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 43 |
SubjectTerms | ADME Animal testing Body-on-a-chip Cell-based assay Drug discovery Microfluidic device Organ-on-a-chip |
Title | Organ/body-on-a-chip based on microfluidic technology for drug discovery |
URI | https://dx.doi.org/10.1016/j.dmpk.2017.11.003 https://www.ncbi.nlm.nih.gov/pubmed/29175062 https://www.proquest.com/docview/1969932005 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7Bcumlamlptw_kShUXcNd52HGOCEG3rYSQAGlvkV8p4ZGsYPew_74zeSyqUDn0mMhWrBl7HvH3zQB8DanJNCqa50KVmKDgSdeZlVyJUvvgI-FDi_I9VdPL9OdMzjbgaODCEKyyt_2dTW-tdf9m0ktzMq-qyTmRINNE0TUysd6yTdiK0buKEWwd_vg1PR0McpLItocOjec0oefOdDAvfze_IYRX9o2KeQ69s576p3_Fn60fOnkFL_sAkh12a3wNG6Hehr2zrgL16oBdPBKqHg7YHjt7rE29egPTlns5sY1f8abmhruras7IlXnW1OyO4Hnl7bLylWOL9V93hpEt8_fL34xIvAT6XL2Fy5Pji6Mp75spcJfmYsF1bFUcVIiciPMgg_AudYkOWWldrJ3NValVGSKtbdAiiY3MrQ2R1Zkxymib7MCoburwHphLpS1znVhMNVIjM4Pyd5hW6VKh_VN6DNEgwsL1lcap4cVtMUDKrgsSe0FixxSE6pOOYX89Z97V2Xh2tBw0U_y1Wwp0BM_O-zKoscBjRHcjpg7N8qGgKkEYyqJNGsO7Tr_rdcSY0kqh4g__-dWP8AKfdIf1_gSjxf0yfMZQZmF3-626C5vfZ9EfDwfxrw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4AL4s3yNBL0QsMmTuw4Bw4VUGXZsqrEVurN-BUItMmquyuU38UfZCaPrRCiB6RekzixZjyv-JvPhLz0iU4lKDrIQlFAgQKWLlPDAxEW0nkXhc63KN-ZyI-Tjyf8ZIv8GnphEFbZ-_7Op7feur8y7qU5XpTl-DM2QSaxwG1k7HpLe2Tl1Dc_oW5bvp28ByW_Yuzgw_xdHvRHCwQ2ycJVIJkRzAsf2ZBlnvvQ2cTG0qeFsUxak4lCisJHUhovw5hpnhnjIyNTrYWWJob3XiM7yIYFZrWzP5nmsyEAxDFvz-zB-QU4wb5Xp4OVubPFD0SUpW-QPHQ4q-vvePivfLeNewe3yM0-YaX7nUxuky1f3SG7Rx3jdbNH5xcNXMs9ukuPLriwm7skb3s9x6Z2TVBXgQ7st3JBMXQ6Wlf0DOGAxem6dKWlq81ffgqZNHXn668Um4YRZNrcI8dXIuH7ZLuqK_-QUJtwU2QyNlDaJJqnGvRtoYyThQB_K-SIRIMIle2ZzfGAjVM1QNi-KxS7QrFDyYN8qCPyejNm0fF6XPo0HzSj_lidCgLPpeNeDGpUYLa4F6MrX6-XClmJIHUGHzgiDzr9bubBoITmoWCP_vOrz8n1fP7pUB1OZtPH5AbckR3O_AnZXp2v_VNIo1bmWb9sKfly1ZbyG7GVL44 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organ%2Fbody-on-a-chip+based+on+microfluidic+technology+for+drug+discovery&rft.jtitle=Drug+metabolism+and+pharmacokinetics&rft.au=Kimura%2C+Hiroshi&rft.au=Sakai%2C+Yasuyuki&rft.au=Fujii%2C+Teruo&rft.date=2018-02-01&rft.eissn=1880-0920&rft.volume=33&rft.issue=1&rft.spage=43&rft_id=info:doi/10.1016%2Fj.dmpk.2017.11.003&rft_id=info%3Apmid%2F29175062&rft.externalDocID=29175062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-4367&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-4367&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-4367&client=summon |