Organ/body-on-a-chip based on microfluidic technology for drug discovery

Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains diff...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and pharmacokinetics Vol. 33; no. 1; pp. 43 - 48
Main Authors Kimura, Hiroshi, Sakai, Yasuyuki, Fujii, Teruo
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. [Display omitted]
AbstractList Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future.
Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future.Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future.
Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. [Display omitted]
Author Fujii, Teruo
Kimura, Hiroshi
Sakai, Yasuyuki
Author_xml – sequence: 1
  givenname: Hiroshi
  surname: Kimura
  fullname: Kimura, Hiroshi
  email: hkimura@tokai-u.jp
  organization: Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, 259-1292, Kanagawa, Japan
– sequence: 2
  givenname: Yasuyuki
  surname: Sakai
  fullname: Sakai, Yasuyuki
  email: sakaiyas@iis.u-tokyo.ac.jp
  organization: Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
– sequence: 3
  givenname: Teruo
  surname: Fujii
  fullname: Fujii, Teruo
  email: tfujii@iis.u-tokyo.ac.jp
  organization: International Research Center on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo, 153-8505, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29175062$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUhi0E4lJ4AQaUkSWp7SSOLbEgxE2qxAKz5ctJcUnsYidIfXtSlS4Mnc4Zvv_o_N8FOvbBA0LXBBcEEzZfFbZffxUUk6YgpMC4PELnhHOcY0Hx8bSXVZNXJWvO0EVKqwko64qeojMqSFNjRs_Ry1tcKj_XwW7y4HOVm0-3zrRKYLPgs96ZGNpudNaZbADz6UMXlpusDTGzcVxm1iUTfiBuLtFJq7oEV39zhj6eHt8fXvLF2_Prw_0iN5XAQ86pZhQYEIOpgBqwNZUpOTStNpQbLVjLWQtTCw0cl1TVQmsgmjdKMcV1OUO3u7vrGL5HSIPspxeg65SHMCZJBBOipBjXE3rzh466ByvX0fUqbuS-_QTwHTCVTClCK40b1OCCH6JynSRYbkXLldyKllvRkhC59ThD9F90f_1g6G4XgknQj4Mok3HgDVgXwQzSBnco_gtDF5c8
CitedBy_id crossref_primary_10_3390_cancers14040935
crossref_primary_10_1007_s00204_019_02585_5
crossref_primary_10_2745_dds_34_243
crossref_primary_10_3390_ijms222413513
crossref_primary_10_1088_1361_6439_accd00
crossref_primary_10_1007_s12223_023_01084_6
crossref_primary_10_1002_smtd_202101217
crossref_primary_10_1097_FJC_0000000000001086
crossref_primary_10_1016_j_biopha_2020_110852
crossref_primary_10_3390_mi10040252
crossref_primary_10_3389_fphys_2020_00715
crossref_primary_10_1063_1_5126714
crossref_primary_10_3389_fcell_2019_00275
crossref_primary_10_1039_D4BM01273A
crossref_primary_10_1016_j_mtbio_2022_100269
crossref_primary_10_1016_j_kint_2018_06_034
crossref_primary_10_3390_mi11030305
crossref_primary_10_1080_17435390_2021_2012609
crossref_primary_10_1177_2041731420965318
crossref_primary_10_1248_bpb_b19_01070
crossref_primary_10_1021_acssensors_4c01230
crossref_primary_10_2174_0929867329666220329190825
crossref_primary_10_1002_adtp_202200030
crossref_primary_10_3390_pharmaceutics13101657
crossref_primary_10_3390_mi16030327
crossref_primary_10_1063_5_0048986
crossref_primary_10_1016_j_addr_2021_113901
crossref_primary_10_1007_s10856_023_06718_2
crossref_primary_10_1093_cvr_cvab075
crossref_primary_10_1039_C9BM00243J
crossref_primary_10_1038_s41598_020_63096_3
crossref_primary_10_1039_D1EN00925G
crossref_primary_10_3390_chemosensors9040083
crossref_primary_10_3390_diseases12090206
crossref_primary_10_3390_molecules24040675
crossref_primary_10_1039_D0LC01158D
crossref_primary_10_1063_5_0190337
crossref_primary_10_35848_1347_4065_ad04ff
crossref_primary_10_1007_s13239_023_00707_w
crossref_primary_10_1002_elps_202100098
crossref_primary_10_1016_j_matdes_2022_111517
crossref_primary_10_1080_17460441_2020_1700225
crossref_primary_10_1016_j_biopha_2024_117230
crossref_primary_10_1016_j_talanta_2021_122882
crossref_primary_10_1038_s41584_021_00736_6
crossref_primary_10_3390_cells13110900
crossref_primary_10_3390_bios12070459
crossref_primary_10_3390_mi12091007
crossref_primary_10_3389_fbioe_2024_1373386
crossref_primary_10_1016_j_addr_2022_114365
crossref_primary_10_1002_btm2_10296
crossref_primary_10_1016_j_cca_2023_117646
crossref_primary_10_1039_D2LC00268J
crossref_primary_10_1007_s12272_022_01390_6
crossref_primary_10_3390_mi11040447
crossref_primary_10_1016_j_talanta_2021_122097
crossref_primary_10_1016_j_engreg_2024_02_002
crossref_primary_10_2139_ssrn_4020640
crossref_primary_10_1016_j_bioactmat_2020_09_022
crossref_primary_10_1002_smtd_202100338
crossref_primary_10_1039_D1LC00869B
crossref_primary_10_1007_s12035_019_01653_2
crossref_primary_10_34133_bmef_0022
crossref_primary_10_1016_j_heliyon_2023_e21070
crossref_primary_10_1002_elps_201900170
crossref_primary_10_12701_yujm_2019_00297
crossref_primary_10_3390_gels7010017
crossref_primary_10_1017_jfm_2021_1128
crossref_primary_10_1242_dmm_039347
crossref_primary_10_3390_cells10040886
crossref_primary_10_4252_wjsc_v11_i10_803
crossref_primary_10_1016_j_ces_2022_117555
crossref_primary_10_1063_5_0058798
crossref_primary_10_1039_D3LC00934C
crossref_primary_10_1016_j_wear_2025_205789
crossref_primary_10_3390_mi12050550
crossref_primary_10_1111_jne_12650
crossref_primary_10_2491_jjsth_30_512
crossref_primary_10_1021_acs_chemrev_0c01289
crossref_primary_10_1080_14767058_2020_1802716
crossref_primary_10_3390_biology13121005
crossref_primary_10_1002_adhm_201801363
crossref_primary_10_2174_1381612825666190308150055
crossref_primary_10_3390_mi11100898
crossref_primary_10_1248_yakushi_22_00161_1
crossref_primary_10_1002_elps_201800353
crossref_primary_10_1039_D2LC00941B
crossref_primary_10_1002_smll_202003517
crossref_primary_10_1088_1748_605X_abe55e
crossref_primary_10_1016_j_vesic_2024_100035
crossref_primary_10_1016_j_snb_2024_135409
crossref_primary_10_1002_anbr_202000022
crossref_primary_10_1002_mds3_10067
crossref_primary_10_1002_mba2_63
crossref_primary_10_1038_s41598_024_84297_0
crossref_primary_10_1039_D4LC00404C
crossref_primary_10_3390_cells9051282
crossref_primary_10_2174_138161282445190416155151
crossref_primary_10_2144_btn_2019_0115
crossref_primary_10_3390_biomedicines9101415
crossref_primary_10_1016_j_tiv_2019_104752
crossref_primary_10_1002_VIW_20200177
crossref_primary_10_32362_2410_6593_2019_14_5_39_50
crossref_primary_10_3390_mi11060565
crossref_primary_10_1016_j_actbio_2023_05_005
crossref_primary_10_1016_j_drudis_2019_03_006
crossref_primary_10_1007_s10404_020_02347_1
crossref_primary_10_1007_s12195_020_00649_6
crossref_primary_10_1016_j_ooc_2021_100010
crossref_primary_10_1038_s41598_020_61296_5
crossref_primary_10_1146_annurev_anchem_091620_091335
crossref_primary_10_3999_jscpt_51_171
crossref_primary_10_1002_smtd_201900589
crossref_primary_10_1177_15353702211052280
crossref_primary_10_1016_j_gene_2018_11_058
crossref_primary_10_1177_2472555219831407
crossref_primary_10_2116_analsci_18SDP04
crossref_primary_10_1002_admt_202101633
crossref_primary_10_1016_j_jacbts_2020_03_010
crossref_primary_10_1038_s41598_019_56711_5
crossref_primary_10_1021_acsami_0c22381
crossref_primary_10_1039_C8AY00970H
crossref_primary_10_1002_adhm_201901435
crossref_primary_10_3390_cells10123552
crossref_primary_10_15671_hjbc_610448
crossref_primary_10_3390_ijms22157770
crossref_primary_10_1002_advs_202100798
crossref_primary_10_3390_mi11080727
crossref_primary_10_1007_s13346_022_01189_4
crossref_primary_10_1016_j_sna_2019_111704
crossref_primary_10_1016_j_tibtech_2019_03_003
crossref_primary_10_3389_fmed_2020_00537
crossref_primary_10_1016_j_ejps_2021_105876
crossref_primary_10_1007_s10404_021_02502_2
crossref_primary_10_1007_s11626_021_00548_8
crossref_primary_10_1016_j_polymer_2023_126439
crossref_primary_10_1080_00498254_2023_2180454
crossref_primary_10_1007_s10544_020_0470_1
crossref_primary_10_1016_j_bprint_2025_e00394
crossref_primary_10_1039_D0LC00799D
crossref_primary_10_3748_wjg_v26_i25_3562
crossref_primary_10_1080_15476278_2018_1501136
crossref_primary_10_3389_fphys_2019_01192
crossref_primary_10_2174_1381612825666190220161254
crossref_primary_10_1016_j_bej_2020_107783
crossref_primary_10_2147_IJNRD_S344725
crossref_primary_10_3389_fimmu_2022_1011143
crossref_primary_10_3390_mi15091137
crossref_primary_10_3390_bioengineering9050220
crossref_primary_10_1186_s40643_020_00325_7
crossref_primary_10_1080_14740338_2019_1634689
crossref_primary_10_1038_s44222_023_00138_1
crossref_primary_10_1088_1361_6528_aae18a
crossref_primary_10_1093_cercor_bhae346
crossref_primary_10_1021_acsbiomaterials_1c01094
crossref_primary_10_1021_acsnano_0c08404
crossref_primary_10_3390_pharmaceutics12060542
crossref_primary_10_1063_5_0084308
crossref_primary_10_1109_ACCESS_2021_3050161
crossref_primary_10_3390_biomedicines11102852
crossref_primary_10_3892_mi_2024_212
crossref_primary_10_1007_s10544_019_0423_8
crossref_primary_10_1111_iej_13137
crossref_primary_10_1016_j_mtadv_2022_100286
crossref_primary_10_1038_s41598_024_77665_3
crossref_primary_10_1002_bit_27855
crossref_primary_10_3390_cancers13061381
crossref_primary_10_3390_mi11060593
crossref_primary_10_1039_D1RA00855B
crossref_primary_10_1016_j_gendis_2022_04_003
crossref_primary_10_1002_bit_27171
crossref_primary_10_3390_ijerph17062124
crossref_primary_10_1016_j_molliq_2023_122706
crossref_primary_10_1080_23746149_2019_1622451
crossref_primary_10_1002_adhm_202202376
crossref_primary_10_1021_acsbiomaterials_3c00066
crossref_primary_10_3390_mi10030165
crossref_primary_10_35848_1347_4065_adb6aa
crossref_primary_10_1088_1758_5090_adb4a2
crossref_primary_10_1186_s40580_021_00270_x
crossref_primary_10_3390_mi10080533
crossref_primary_10_1088_1758_5090_ab10ae
crossref_primary_10_1088_1758_5090_adb999
crossref_primary_10_1021_acsomega_4c02121
crossref_primary_10_1088_1758_5090_ac77c1
crossref_primary_10_1089_ten_tec_2020_0337
crossref_primary_10_1177_00236772211045483
crossref_primary_10_1063_5_0061896
crossref_primary_10_1088_2516_1091_ab7cc4
crossref_primary_10_1016_j_bprint_2021_e00171
crossref_primary_10_1186_s12958_020_00621_z
crossref_primary_10_1016_j_trac_2022_116851
crossref_primary_10_1042_BST20210840
crossref_primary_10_1016_j_colsurfb_2025_114507
crossref_primary_10_1186_s13036_019_0219_7
crossref_primary_10_3390_mi15070873
crossref_primary_10_3390_bios13080779
crossref_primary_10_1021_acs_chemrev_1c00621
crossref_primary_10_1016_j_mvr_2018_11_012
crossref_primary_10_1016_j_biosx_2022_100194
crossref_primary_10_1152_ajpcell_00186_2020
crossref_primary_10_1016_j_onano_2023_100197
crossref_primary_10_1088_2516_1091_ac8259
crossref_primary_10_3390_cancers14153561
crossref_primary_10_1021_acs_analchem_0c01970
crossref_primary_10_1016_j_brainresbull_2021_06_012
crossref_primary_10_1177_15347354241311917
crossref_primary_10_4196_kjpp_2020_24_6_441
crossref_primary_10_1016_j_jconrel_2020_02_041
crossref_primary_10_3389_fphar_2021_762654
crossref_primary_10_1371_journal_pone_0315997
crossref_primary_10_1248_yakushi_22_00172
crossref_primary_10_3390_ijms222212473
crossref_primary_10_3390_app131810510
crossref_primary_10_3390_mi14010103
crossref_primary_10_3389_fbioe_2024_1462293
crossref_primary_10_3390_ijms21228755
crossref_primary_10_1007_s11517_024_03062_7
crossref_primary_10_1155_2020_6481317
crossref_primary_10_35848_1347_4065_ac1c3d
crossref_primary_10_1016_j_jtos_2023_11_004
crossref_primary_10_3390_mi13020305
crossref_primary_10_2131_jts_47_13
crossref_primary_10_1016_j_cjph_2021_11_036
crossref_primary_10_1111_jnc_15289
crossref_primary_10_1016_j_bcp_2019_113648
crossref_primary_10_34133_2022_9758187
crossref_primary_10_1177_08839115241237327
crossref_primary_10_3390_cancers12113107
crossref_primary_10_3390_ma12182945
crossref_primary_10_1080_21688370_2022_2163820
crossref_primary_10_1109_TIM_2023_3334366
crossref_primary_10_1016_j_bios_2022_114820
crossref_primary_10_1002_bit_27816
crossref_primary_10_1177_02611929231170392
crossref_primary_10_1016_j_molmed_2020_01_008
crossref_primary_10_3389_fbioe_2022_840674
crossref_primary_10_2144_fsoa_2023_0061
crossref_primary_10_1016_j_mex_2024_102584
crossref_primary_10_1016_j_biomaterials_2019_119628
crossref_primary_10_1007_s40778_022_00219_8
crossref_primary_10_1007_s10404_019_2283_1
crossref_primary_10_3390_v15010158
crossref_primary_10_1002_adfm_202006796
crossref_primary_10_1016_j_addr_2021_05_005
crossref_primary_10_1063_5_0144862
crossref_primary_10_3390_app10030900
crossref_primary_10_1254_fpj_22046
crossref_primary_10_1016_j_trac_2019_06_026
crossref_primary_10_1089_omi_2018_0172
crossref_primary_10_1016_j_dmpk_2021_100425
crossref_primary_10_1016_j_ijadhadh_2023_103429
crossref_primary_10_3390_bioengineering11121220
crossref_primary_10_3390_bioengineering6040091
crossref_primary_10_1002_advs_202101027
crossref_primary_10_1088_1361_6439_abc820
crossref_primary_10_26787_nydha_2618_8783_2022_7_3_90_94
crossref_primary_10_1163_25889567_BJA10004
crossref_primary_10_1039_D4AN00267A
crossref_primary_10_3390_biomimetics6040062
crossref_primary_10_3390_mi11070646
crossref_primary_10_1002_admt_202000183
crossref_primary_10_7554_eLife_66716
crossref_primary_10_1016_j_snb_2021_131338
crossref_primary_10_1016_j_trac_2022_116894
crossref_primary_10_2116_analsci_17R006
crossref_primary_10_1186_s12906_023_04217_z
crossref_primary_10_1016_j_fct_2021_112155
crossref_primary_10_1155_2020_6187048
crossref_primary_10_1038_s41598_021_82853_6
crossref_primary_10_1080_10255842_2020_1714948
crossref_primary_10_1002_pat_5847
crossref_primary_10_3390_biom10091306
crossref_primary_10_3390_molecules24040753
crossref_primary_10_1021_acs_analchem_8b05689
crossref_primary_10_1016_j_coelec_2023_101270
crossref_primary_10_1063_1_5133970
crossref_primary_10_1039_D1PY01077H
crossref_primary_10_1093_abbs_gmab046
crossref_primary_10_1016_j_bcp_2020_114173
crossref_primary_10_1039_D4BM00663A
crossref_primary_10_1016_j_drudis_2023_103515
crossref_primary_10_1007_s00170_023_11773_8
crossref_primary_10_3390_app12083829
crossref_primary_10_3390_cells9010037
crossref_primary_10_1007_s12195_020_00636_x
crossref_primary_10_1016_j_jiec_2018_11_041
crossref_primary_10_1016_j_addr_2018_05_005
crossref_primary_10_1177_20417314221095339
crossref_primary_10_3390_v14122799
crossref_primary_10_1139_cjp_2021_0199
crossref_primary_10_1002_bit_27151
crossref_primary_10_1213_ANE_0000000000004801
crossref_primary_10_3390_bios14090449
crossref_primary_10_1016_j_ooc_2022_100020
crossref_primary_10_3390_mi14010022
crossref_primary_10_1039_D2QM00072E
crossref_primary_10_1063_5_0185494
crossref_primary_10_1007_s11892_020_01357_1
crossref_primary_10_1088_2516_1091_ab23df
crossref_primary_10_3390_mi15101195
crossref_primary_10_1016_j_dmpk_2024_101044
crossref_primary_10_3390_polym14214478
crossref_primary_10_3389_fcimb_2025_1521265
crossref_primary_10_3389_fmicb_2023_1266136
crossref_primary_10_1007_s10404_023_02629_4
crossref_primary_10_1098_rsfs_2019_0031
crossref_primary_10_1016_j_semcdb_2022_09_010
crossref_primary_10_1016_j_dmpk_2024_101046
crossref_primary_10_3390_bioengineering9040150
crossref_primary_10_1007_s00146_019_00892_0
crossref_primary_10_1016_j_colsurfb_2021_112300
crossref_primary_10_1016_j_biotechadv_2019_107460
Cites_doi 10.1126/science.1188302
10.1073/pnas.1522193112
10.1038/s41551-017-0069
10.1002/bit.10143
10.1016/j.biomaterials.2013.10.070
10.1177/1535370214529397
10.1021/ac100806x
10.1146/annurev-pathol-012414-040418
10.1039/C1IB00096A
10.1177/2211068214557812
10.1109/TBME.2013.2244891
10.1089/ten.tea.2012.0605
10.1155/2013/319476
10.1186/1471-2105-15-S16-S16
10.1039/c2lc40074j
10.1063/1.3580753
10.1021/ac302938q
10.1039/C6LC00361C
10.1039/B907515A
10.1007/978-1-60327-106-6_3
10.1080/00498250210128675
10.1039/b717091b
10.4155/fsoa-2017-0002
10.1126/scitranslmed.3004249
10.1021/bp034077d
10.1039/b901377f
10.1126/science.1069210
10.1039/b917763a
10.1016/S0090-9556(25)06742-X
10.1023/A:1016040212127
ContentType Journal Article
Copyright 2017 The Japanese Society for the Study of Xenobiotics
Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 The Japanese Society for the Study of Xenobiotics
– notice: Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.dmpk.2017.11.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1880-0920
EndPage 48
ExternalDocumentID 29175062
10_1016_j_dmpk_2017_11_003
S1347436717301957
Genre Journal Article
Review
GroupedDBID ---
--M
0R~
29G
2WC
4.4
457
53G
5GY
6I.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAWUL
BKOJK
BKOMP
BLXMC
CS3
DIK
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
F5P
FDB
FEDTE
FIRID
FYGXN
GBLVA
GX1
HH5
HVGLF
HZ~
JMI
JSF
JSH
KOM
KQ8
M41
MOJWN
M~E
O9-
OAUVE
RJT
RNS
ROL
RZJ
SPCBC
SSP
SSZ
T5K
TKC
TR2
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
OVT
NPM
7X8
SSH
ID FETCH-LOGICAL-c490t-82b62e6e1c029e5e0dc4c38e7fbc28cb96f86fe188be8032a59bbe1b87aa6a8b3
IEDL.DBID AIKHN
ISSN 1347-4367
1880-0920
IngestDate Thu Jul 10 17:17:43 EDT 2025
Wed Feb 19 02:41:35 EST 2025
Tue Aug 05 12:04:40 EDT 2025
Thu Apr 24 22:51:52 EDT 2025
Fri Feb 23 02:46:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Body-on-a-chip
Animal testing
ADME
Organ-on-a-chip
Cell-based assay
Drug discovery
Microfluidic device
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-82b62e6e1c029e5e0dc4c38e7fbc28cb96f86fe188be8032a59bbe1b87aa6a8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1347436717301957
PMID 29175062
PQID 1969932005
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1969932005
pubmed_primary_29175062
crossref_citationtrail_10_1016_j_dmpk_2017_11_003
crossref_primary_10_1016_j_dmpk_2017_11_003
elsevier_sciencedirect_doi_10_1016_j_dmpk_2017_11_003
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
2018-Feb
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Drug metabolism and pharmacokinetics
PublicationTitleAlternate Drug Metab Pharmacokinet
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Satoh, Narazaki, Sugita, Kobayashi, Sugiura, Kanamori (bib33) 2016; 16
Nakao, Kimura, Sakai, Fujii (bib14) 2011; 5
Sung, Shuler (bib25) 2009; 9
Su, Li, Zink, Loo (bib15) 2014; 15
Sung, Kam, Shuler (bib26) 2010; 10
Borenstein, Terai, King, Weinberg, Kaazempur-Mofrad, Vacanti (bib5) 2002; 4
Zhou, Ma, Lin, Qin (bib17) 2014; 35
Jang, Suh (bib19) 2010; 10
Kim, Li, Collins, Ingber (bib23) 2016; 113
Griffith, Naughton (bib4) 2002; 295
Huang, Chang, Chen, Harn, Tang, Wu (bib16) 2013; 19
Frohlich, Zhang, Charest (bib18) 2012; 4
Kimura, Ikeda, Nakayama, Sakai, Fujii (bib30) 2015; 20
Huh, Leslie, Matthews, Fraser, Jurek, Hamilton (bib9) 2012; 4
Kimura, Yamamoto, Sakai, Sakai, Fujii (bib22) 2008; 8
Ng, Zhuang, Lin, Teo (bib21) 2013; 2013
Kim, Ingber (bib11) 2013; 5
Musah, Mammoto, Ferrante, Jeanty, Hirano-Kobayashi, Mammoto (bib12) 2017; 1
Imura, Sato, Yoshimura (bib28) 2010; 82
Lin (bib1) 1995; 23
Rodriguez-Antona, Donato, Boobis, Edwards, Watts, Castell (bib3) 2002; 32
Sung, Srinivasan, Esch, McLamb, Bernabini, Shuler (bib27) 2014; 239
Abaci, Shuler (bib31) 2015; 7
Kim, Huh, Hamilton, Ingber (bib10) 2012; 12
Powers, Domansky, Kaazempur-Mofrad, Kalezi, Capitano, Upadhyaya (bib13) 2002; 78
Sin, Chin, Jamil, Kostov, Rao, Shuler (bib24) 2004; 20
Imura, Yoshimura, Sato (bib29) 2013; 85
Wolfe, Qin, Whitesides (bib2) 2010; 583
Wikswo, Block, Cliffel, Goodwin, Marasco, Markov (bib6) 2013; 60
Dehne, Hasenberg, Marx (bib32) 2017; 3
Jang, Mehr, Hamilton, McPartlin, Chung, Suh (bib20) 2013; 5
Huh, Matthews, Mammoto, Montoya-Zavala, Hsin, Ingber (bib8) 2010; 328
Benam, Dauth, Hassell, Herland, Jain, Jang (bib7) 2015; 10
Zhou (10.1016/j.dmpk.2017.11.003_bib17) 2014; 35
Sung (10.1016/j.dmpk.2017.11.003_bib25) 2009; 9
Sin (10.1016/j.dmpk.2017.11.003_bib24) 2004; 20
Abaci (10.1016/j.dmpk.2017.11.003_bib31) 2015; 7
Kimura (10.1016/j.dmpk.2017.11.003_bib22) 2008; 8
Griffith (10.1016/j.dmpk.2017.11.003_bib4) 2002; 295
Jang (10.1016/j.dmpk.2017.11.003_bib19) 2010; 10
Satoh (10.1016/j.dmpk.2017.11.003_bib33) 2016; 16
Borenstein (10.1016/j.dmpk.2017.11.003_bib5) 2002; 4
Jang (10.1016/j.dmpk.2017.11.003_bib20) 2013; 5
Kim (10.1016/j.dmpk.2017.11.003_bib10) 2012; 12
Nakao (10.1016/j.dmpk.2017.11.003_bib14) 2011; 5
Wikswo (10.1016/j.dmpk.2017.11.003_bib6) 2013; 60
Dehne (10.1016/j.dmpk.2017.11.003_bib32) 2017; 3
Sung (10.1016/j.dmpk.2017.11.003_bib27) 2014; 239
Imura (10.1016/j.dmpk.2017.11.003_bib28) 2010; 82
Kim (10.1016/j.dmpk.2017.11.003_bib23) 2016; 113
Benam (10.1016/j.dmpk.2017.11.003_bib7) 2015; 10
Huang (10.1016/j.dmpk.2017.11.003_bib16) 2013; 19
Frohlich (10.1016/j.dmpk.2017.11.003_bib18) 2012; 4
Su (10.1016/j.dmpk.2017.11.003_bib15) 2014; 15
Kimura (10.1016/j.dmpk.2017.11.003_bib30) 2015; 20
Rodriguez-Antona (10.1016/j.dmpk.2017.11.003_bib3) 2002; 32
Huh (10.1016/j.dmpk.2017.11.003_bib9) 2012; 4
Lin (10.1016/j.dmpk.2017.11.003_bib1) 1995; 23
Kim (10.1016/j.dmpk.2017.11.003_bib11) 2013; 5
Sung (10.1016/j.dmpk.2017.11.003_bib26) 2010; 10
Wolfe (10.1016/j.dmpk.2017.11.003_bib2) 2010; 583
Powers (10.1016/j.dmpk.2017.11.003_bib13) 2002; 78
Ng (10.1016/j.dmpk.2017.11.003_bib21) 2013; 2013
Imura (10.1016/j.dmpk.2017.11.003_bib29) 2013; 85
Musah (10.1016/j.dmpk.2017.11.003_bib12) 2017; 1
Huh (10.1016/j.dmpk.2017.11.003_bib8) 2010; 328
References_xml – volume: 82
  start-page: 9983
  year: 2010
  end-page: 9988
  ident: bib28
  article-title: Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity
  publication-title: Anal Chem
– volume: 35
  start-page: 1390
  year: 2014
  end-page: 1401
  ident: bib17
  article-title: Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices
  publication-title: Biomaterials
– volume: 12
  start-page: 2165
  year: 2012
  end-page: 2174
  ident: bib10
  article-title: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
  publication-title: Lab a Chip
– volume: 113
  start-page: E7
  year: 2016
  end-page: E15
  ident: bib23
  article-title: Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 36
  year: 2010
  end-page: 42
  ident: bib19
  article-title: A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells
  publication-title: Lab a Chip
– volume: 2013
  start-page: 10
  year: 2013
  ident: bib21
  article-title: A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study
  publication-title: Int J Tissue Eng
– volume: 9
  start-page: 1385
  year: 2009
  end-page: 1394
  ident: bib25
  article-title: A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs
  publication-title: Lab a chip
– volume: 20
  start-page: 338
  year: 2004
  end-page: 345
  ident: bib24
  article-title: The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors
  publication-title: Biotechnol Prog
– volume: 295
  start-page: 1009
  year: 2002
  end-page: 1014
  ident: bib4
  article-title: Tissue engineering–current challenges and expanding opportunities
  publication-title: Science
– volume: 78
  start-page: 257
  year: 2002
  end-page: 269
  ident: bib13
  article-title: A microfabricated array bioreactor for perfused 3D liver culture
  publication-title: Biotechnol Bioeng
– volume: 85
  start-page: 1683
  year: 2013
  end-page: 1688
  ident: bib29
  article-title: Microcirculation system with a dialysis part for bioassays evaluating anticancer activity and retention
  publication-title: Anal Chem
– volume: 32
  start-page: 505
  year: 2002
  end-page: 520
  ident: bib3
  article-title: Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells
  publication-title: Xenobiotica
– volume: 4
  start-page: 167
  year: 2002
  end-page: 175
  ident: bib5
  article-title: Microfabrication technology for vascularized tissue engineering
  publication-title: Biomed Microdevices
– volume: 23
  start-page: 1008
  year: 1995
  end-page: 1021
  ident: bib1
  article-title: Species similarities and differences in pharmacokinetics
  publication-title: Drug Metab Dispos
– volume: 3
  year: 2017
  ident: bib32
  article-title: The ascendance of microphysiological systems to solve the drug testing dilemma
  publication-title: Future Sci OA
– volume: 15
  start-page: S16
  year: 2014
  ident: bib15
  article-title: Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels
  publication-title: BMC Bioinforma
– volume: 19
  start-page: 2024
  year: 2013
  end-page: 2034
  ident: bib16
  article-title: Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells
  publication-title: Tissue Eng Part A
– volume: 4
  start-page: 75
  year: 2012
  end-page: 83
  ident: bib18
  article-title: The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function
  publication-title: Integr Biol
– volume: 328
  start-page: 1662
  year: 2010
  end-page: 1668
  ident: bib8
  article-title: Reconstituting organ-level lung functions on a chip
  publication-title: Science
– volume: 239
  start-page: 1225
  year: 2014
  end-page: 1239
  ident: bib27
  article-title: Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure
  publication-title: Exp Biol Med
– volume: 60
  start-page: 682
  year: 2013
  end-page: 690
  ident: bib6
  article-title: Engineering challenges for instrumenting and controlling integrated organ-on-chip systems
  publication-title: IEEE Trans Biomed Eng
– volume: 7
  start-page: 383
  year: 2015
  end-page: 391
  ident: bib31
  article-title: Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling
  publication-title: Integr Biol Quantitative Biosci Nano macro
– volume: 8
  start-page: 741
  year: 2008
  end-page: 746
  ident: bib22
  article-title: An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models
  publication-title: Lab a Chip
– volume: 583
  start-page: 81
  year: 2010
  end-page: 107
  ident: bib2
  article-title: Rapid prototyping of microstructures by soft lithography for biotechnology
  publication-title: Methods Mol Biol Clift NJ
– volume: 4
  start-page: 159ra47
  year: 2012
  ident: bib9
  article-title: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice
  publication-title: Sci Transl Med
– volume: 10
  start-page: 446
  year: 2010
  end-page: 455
  ident: bib26
  article-title: A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip
  publication-title: Lab a Chip
– volume: 5
  start-page: 1130
  year: 2013
  end-page: 1140
  ident: bib11
  article-title: Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation
  publication-title: Integr Biol Quantitative Biosci Nano Macro
– volume: 20
  start-page: 265
  year: 2015
  end-page: 273
  ident: bib30
  article-title: An on-chip small intestine-liver model for pharmacokinetic studies
  publication-title: J Laboratory Automation
– volume: 5
  start-page: 22212
  year: 2011
  ident: bib14
  article-title: Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device
  publication-title: Biomicrofluidics
– volume: 16
  start-page: 2339
  year: 2016
  end-page: 2348
  ident: bib33
  article-title: A pneumatic pressure-driven multi-throughput microfluidic circulation culture system
  publication-title: Lab a Chip
– volume: 5
  start-page: 1119
  year: 2013
  end-page: 1129
  ident: bib20
  article-title: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment
  publication-title: Integr Biol Quantitative Biosci Nano Macro
– volume: 10
  start-page: 195
  year: 2015
  end-page: 262
  ident: bib7
  article-title: Engineered in vitro disease models
  publication-title: Annu Rev pathology
– volume: 1
  year: 2017
  ident: bib12
  article-title: Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip
  publication-title: Nat Biomed Eng
– volume: 328
  start-page: 1662
  issue: 5986
  year: 2010
  ident: 10.1016/j.dmpk.2017.11.003_bib8
  article-title: Reconstituting organ-level lung functions on a chip
  publication-title: Science
  doi: 10.1126/science.1188302
– volume: 113
  start-page: E7
  issue: 1
  year: 2016
  ident: 10.1016/j.dmpk.2017.11.003_bib23
  article-title: Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1522193112
– volume: 1
  issue: 5
  year: 2017
  ident: 10.1016/j.dmpk.2017.11.003_bib12
  article-title: Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-017-0069
– volume: 78
  start-page: 257
  issue: 3
  year: 2002
  ident: 10.1016/j.dmpk.2017.11.003_bib13
  article-title: A microfabricated array bioreactor for perfused 3D liver culture
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.10143
– volume: 35
  start-page: 1390
  issue: 5
  year: 2014
  ident: 10.1016/j.dmpk.2017.11.003_bib17
  article-title: Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.10.070
– volume: 7
  start-page: 383
  issue: 4
  year: 2015
  ident: 10.1016/j.dmpk.2017.11.003_bib31
  article-title: Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling
  publication-title: Integr Biol Quantitative Biosci Nano macro
– volume: 239
  start-page: 1225
  issue: 9
  year: 2014
  ident: 10.1016/j.dmpk.2017.11.003_bib27
  article-title: Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure
  publication-title: Exp Biol Med
  doi: 10.1177/1535370214529397
– volume: 82
  start-page: 9983
  issue: 24
  year: 2010
  ident: 10.1016/j.dmpk.2017.11.003_bib28
  article-title: Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity
  publication-title: Anal Chem
  doi: 10.1021/ac100806x
– volume: 10
  start-page: 195
  year: 2015
  ident: 10.1016/j.dmpk.2017.11.003_bib7
  article-title: Engineered in vitro disease models
  publication-title: Annu Rev pathology
  doi: 10.1146/annurev-pathol-012414-040418
– volume: 4
  start-page: 75
  issue: 1
  year: 2012
  ident: 10.1016/j.dmpk.2017.11.003_bib18
  article-title: The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function
  publication-title: Integr Biol
  doi: 10.1039/C1IB00096A
– volume: 20
  start-page: 265
  issue: 3
  year: 2015
  ident: 10.1016/j.dmpk.2017.11.003_bib30
  article-title: An on-chip small intestine-liver model for pharmacokinetic studies
  publication-title: J Laboratory Automation
  doi: 10.1177/2211068214557812
– volume: 60
  start-page: 682
  issue: 3
  year: 2013
  ident: 10.1016/j.dmpk.2017.11.003_bib6
  article-title: Engineering challenges for instrumenting and controlling integrated organ-on-chip systems
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2244891
– volume: 19
  start-page: 2024
  issue: 17–18
  year: 2013
  ident: 10.1016/j.dmpk.2017.11.003_bib16
  article-title: Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2012.0605
– volume: 2013
  start-page: 10
  year: 2013
  ident: 10.1016/j.dmpk.2017.11.003_bib21
  article-title: A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study
  publication-title: Int J Tissue Eng
  doi: 10.1155/2013/319476
– volume: 15
  start-page: S16
  issue: Suppl.16
  year: 2014
  ident: 10.1016/j.dmpk.2017.11.003_bib15
  article-title: Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-15-S16-S16
– volume: 5
  start-page: 1119
  issue: 9
  year: 2013
  ident: 10.1016/j.dmpk.2017.11.003_bib20
  article-title: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment
  publication-title: Integr Biol Quantitative Biosci Nano Macro
– volume: 12
  start-page: 2165
  issue: 12
  year: 2012
  ident: 10.1016/j.dmpk.2017.11.003_bib10
  article-title: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
  publication-title: Lab a Chip
  doi: 10.1039/c2lc40074j
– volume: 5
  start-page: 22212
  issue: 2
  year: 2011
  ident: 10.1016/j.dmpk.2017.11.003_bib14
  article-title: Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3580753
– volume: 85
  start-page: 1683
  issue: 3
  year: 2013
  ident: 10.1016/j.dmpk.2017.11.003_bib29
  article-title: Microcirculation system with a dialysis part for bioassays evaluating anticancer activity and retention
  publication-title: Anal Chem
  doi: 10.1021/ac302938q
– volume: 16
  start-page: 2339
  issue: 12
  year: 2016
  ident: 10.1016/j.dmpk.2017.11.003_bib33
  article-title: A pneumatic pressure-driven multi-throughput microfluidic circulation culture system
  publication-title: Lab a Chip
  doi: 10.1039/C6LC00361C
– volume: 5
  start-page: 1130
  issue: 9
  year: 2013
  ident: 10.1016/j.dmpk.2017.11.003_bib11
  article-title: Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation
  publication-title: Integr Biol Quantitative Biosci Nano Macro
– volume: 10
  start-page: 36
  issue: 1
  year: 2010
  ident: 10.1016/j.dmpk.2017.11.003_bib19
  article-title: A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells
  publication-title: Lab a Chip
  doi: 10.1039/B907515A
– volume: 583
  start-page: 81
  year: 2010
  ident: 10.1016/j.dmpk.2017.11.003_bib2
  article-title: Rapid prototyping of microstructures by soft lithography for biotechnology
  publication-title: Methods Mol Biol Clift NJ
  doi: 10.1007/978-1-60327-106-6_3
– volume: 32
  start-page: 505
  issue: 6
  year: 2002
  ident: 10.1016/j.dmpk.2017.11.003_bib3
  article-title: Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells
  publication-title: Xenobiotica
  doi: 10.1080/00498250210128675
– volume: 8
  start-page: 741
  issue: 5
  year: 2008
  ident: 10.1016/j.dmpk.2017.11.003_bib22
  article-title: An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models
  publication-title: Lab a Chip
  doi: 10.1039/b717091b
– volume: 3
  issue: 2
  year: 2017
  ident: 10.1016/j.dmpk.2017.11.003_bib32
  article-title: The ascendance of microphysiological systems to solve the drug testing dilemma
  publication-title: Future Sci OA
  doi: 10.4155/fsoa-2017-0002
– volume: 4
  start-page: 159ra47
  issue: 159
  year: 2012
  ident: 10.1016/j.dmpk.2017.11.003_bib9
  article-title: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3004249
– volume: 20
  start-page: 338
  issue: 1
  year: 2004
  ident: 10.1016/j.dmpk.2017.11.003_bib24
  article-title: The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors
  publication-title: Biotechnol Prog
  doi: 10.1021/bp034077d
– volume: 9
  start-page: 1385
  issue: 10
  year: 2009
  ident: 10.1016/j.dmpk.2017.11.003_bib25
  article-title: A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs
  publication-title: Lab a chip
  doi: 10.1039/b901377f
– volume: 295
  start-page: 1009
  issue: 5557
  year: 2002
  ident: 10.1016/j.dmpk.2017.11.003_bib4
  article-title: Tissue engineering–current challenges and expanding opportunities
  publication-title: Science
  doi: 10.1126/science.1069210
– volume: 10
  start-page: 446
  issue: 4
  year: 2010
  ident: 10.1016/j.dmpk.2017.11.003_bib26
  article-title: A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip
  publication-title: Lab a Chip
  doi: 10.1039/b917763a
– volume: 23
  start-page: 1008
  issue: 10
  year: 1995
  ident: 10.1016/j.dmpk.2017.11.003_bib1
  article-title: Species similarities and differences in pharmacokinetics
  publication-title: Drug Metab Dispos
  doi: 10.1016/S0090-9556(25)06742-X
– volume: 4
  start-page: 167
  issue: 3
  year: 2002
  ident: 10.1016/j.dmpk.2017.11.003_bib5
  article-title: Microfabrication technology for vascularized tissue engineering
  publication-title: Biomed Microdevices
  doi: 10.1023/A:1016040212127
SSID ssj0033542
Score 2.599743
SecondaryResourceType review_article
Snippet Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms ADME
Animal testing
Body-on-a-chip
Cell-based assay
Drug discovery
Microfluidic device
Organ-on-a-chip
Title Organ/body-on-a-chip based on microfluidic technology for drug discovery
URI https://dx.doi.org/10.1016/j.dmpk.2017.11.003
https://www.ncbi.nlm.nih.gov/pubmed/29175062
https://www.proquest.com/docview/1969932005
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7Bcumlamlptw_kShUXcNd52HGOCEG3rYSQAGlvkV8p4ZGsYPew_74zeSyqUDn0mMhWrBl7HvH3zQB8DanJNCqa50KVmKDgSdeZlVyJUvvgI-FDi_I9VdPL9OdMzjbgaODCEKyyt_2dTW-tdf9m0ktzMq-qyTmRINNE0TUysd6yTdiK0buKEWwd_vg1PR0McpLItocOjec0oefOdDAvfze_IYRX9o2KeQ69s576p3_Fn60fOnkFL_sAkh12a3wNG6Hehr2zrgL16oBdPBKqHg7YHjt7rE29egPTlns5sY1f8abmhruras7IlXnW1OyO4Hnl7bLylWOL9V93hpEt8_fL34xIvAT6XL2Fy5Pji6Mp75spcJfmYsF1bFUcVIiciPMgg_AudYkOWWldrJ3NValVGSKtbdAiiY3MrQ2R1Zkxymib7MCoburwHphLpS1znVhMNVIjM4Pyd5hW6VKh_VN6DNEgwsL1lcap4cVtMUDKrgsSe0FixxSE6pOOYX89Z97V2Xh2tBw0U_y1Wwp0BM_O-zKoscBjRHcjpg7N8qGgKkEYyqJNGsO7Tr_rdcSY0kqh4g__-dWP8AKfdIf1_gSjxf0yfMZQZmF3-626C5vfZ9EfDwfxrw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4AL4s3yNBL0QsMmTuw4Bw4VUGXZsqrEVurN-BUItMmquyuU38UfZCaPrRCiB6RekzixZjyv-JvPhLz0iU4lKDrIQlFAgQKWLlPDAxEW0nkXhc63KN-ZyI-Tjyf8ZIv8GnphEFbZ-_7Op7feur8y7qU5XpTl-DM2QSaxwG1k7HpLe2Tl1Dc_oW5bvp28ByW_Yuzgw_xdHvRHCwQ2ycJVIJkRzAsf2ZBlnvvQ2cTG0qeFsUxak4lCisJHUhovw5hpnhnjIyNTrYWWJob3XiM7yIYFZrWzP5nmsyEAxDFvz-zB-QU4wb5Xp4OVubPFD0SUpW-QPHQ4q-vvePivfLeNewe3yM0-YaX7nUxuky1f3SG7Rx3jdbNH5xcNXMs9ukuPLriwm7skb3s9x6Z2TVBXgQ7st3JBMXQ6Wlf0DOGAxem6dKWlq81ffgqZNHXn668Um4YRZNrcI8dXIuH7ZLuqK_-QUJtwU2QyNlDaJJqnGvRtoYyThQB_K-SIRIMIle2ZzfGAjVM1QNi-KxS7QrFDyYN8qCPyejNm0fF6XPo0HzSj_lidCgLPpeNeDGpUYLa4F6MrX6-XClmJIHUGHzgiDzr9bubBoITmoWCP_vOrz8n1fP7pUB1OZtPH5AbckR3O_AnZXp2v_VNIo1bmWb9sKfly1ZbyG7GVL44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organ%2Fbody-on-a-chip+based+on+microfluidic+technology+for+drug+discovery&rft.jtitle=Drug+metabolism+and+pharmacokinetics&rft.au=Kimura%2C+Hiroshi&rft.au=Sakai%2C+Yasuyuki&rft.au=Fujii%2C+Teruo&rft.date=2018-02-01&rft.eissn=1880-0920&rft.volume=33&rft.issue=1&rft.spage=43&rft_id=info:doi/10.1016%2Fj.dmpk.2017.11.003&rft_id=info%3Apmid%2F29175062&rft.externalDocID=29175062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-4367&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-4367&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-4367&client=summon