Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption pro...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 15; no. 39; pp. 16819 - 16827 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N2V2 defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N2V2 defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g(-1) in a 4 × 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries. |
---|---|
AbstractList | The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N2V2 defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N2V2 defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g(-1) in a 4 × 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries.The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N2V2 defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N2V2 defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g(-1) in a 4 × 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries. The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initiodensity functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N sub(2)V sub(2) defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N sub(2)V sub(2) defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g super(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g super(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g super(-1) in a 4 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries. The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N2V2 defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N2V2 defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g(-1) in a 4 × 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries. |
Author | Yu, Yang-Xin |
Author_xml | – sequence: 1 givenname: Yang-Xin surname: Yu fullname: Yu, Yang-Xin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27775180$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24002442$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0k1rHSEUBmApKfne9AcUN4FSmFZHHZ1VKJekDQSySdeDo8dcw4xO1Bvov6-X3CRQCslKwee8yMs5QnshBkDoEyXfKGH9d8PMImin-vsP6JDyjjU9UXzv5S67A3SU8z0hhArK9tFBywlpOW8P0bzSAetpwsGXFO8gNDYuYLEFB6Zk7OclxUfAZQ14geRimnUwgKPDd0kvawiAdYgW8KwLJK-njCvCky9rv5kbHwMeddk-QT4_QR9dFXC6O4_R78uL29Wv5vrm59Xqx3VjeE9KI0dnrKRq5F0vlIZROA09GRnvrFCSSWmVdRLakQrhqtXKKSms4Q5UN7bsGH15yq2ff9hALsPss4Fp0gHiJg-0k1QQynv-NuVcyU5yzt5BGSeUMrlN_byjm3EGOyzJzzr9GZ6Lr-BsB3Q2enKpturzq5NSCqpIdeTJmRRzTuAG44sutdaStJ8GSobtDgyvO1BHvv4z8pz6H_wXKTmyeg |
CitedBy_id | crossref_primary_10_1039_C7CP02711G crossref_primary_10_1021_acsami_0c21429 crossref_primary_10_1016_j_rinma_2024_100529 crossref_primary_10_1039_C8TC00463C crossref_primary_10_1016_j_eml_2019_01_004 crossref_primary_10_3390_nano13071218 crossref_primary_10_1007_s00214_016_1805_0 crossref_primary_10_1039_C7RA07850A crossref_primary_10_1021_acs_jpcc_8b10367 crossref_primary_10_1016_j_ssc_2019_113770 crossref_primary_10_1016_j_apsusc_2019_143618 crossref_primary_10_1016_j_tsf_2020_137979 crossref_primary_10_1002_er_8046 crossref_primary_10_1007_s00894_020_04404_6 crossref_primary_10_1016_j_jpowsour_2015_06_054 crossref_primary_10_1080_08927022_2023_2211170 crossref_primary_10_1039_D4CC06821A crossref_primary_10_1088_1361_648X_ac630a crossref_primary_10_1021_acsnano_5b02322 crossref_primary_10_1016_j_apsusc_2018_12_020 crossref_primary_10_1016_j_susc_2023_122250 crossref_primary_10_1016_j_jmgm_2020_107537 crossref_primary_10_1016_j_apsusc_2024_159770 crossref_primary_10_1039_D1NJ04096K crossref_primary_10_1039_D3CP01485A crossref_primary_10_1002_smll_201702181 crossref_primary_10_1088_1757_899X_541_1_012003 crossref_primary_10_1016_j_jpowsour_2018_08_058 crossref_primary_10_1021_am5050604 crossref_primary_10_1002_aenm_201402115 crossref_primary_10_1016_j_physb_2024_416756 crossref_primary_10_1016_j_ijhydene_2022_04_241 crossref_primary_10_1109_TNANO_2022_3204587 crossref_primary_10_1039_C7CP04360K crossref_primary_10_1021_acsnano_8b05529 crossref_primary_10_1002_aenm_202002621 crossref_primary_10_1039_C8CP01949E crossref_primary_10_1016_j_jpowsour_2015_07_074 crossref_primary_10_1103_PhysRevApplied_12_014001 crossref_primary_10_1016_j_commatsci_2023_112539 crossref_primary_10_1016_j_jallcom_2019_01_394 crossref_primary_10_1007_s10853_016_0369_7 crossref_primary_10_1016_j_apsusc_2019_143723 crossref_primary_10_1016_j_ensm_2020_02_019 crossref_primary_10_1002_cey2_257 crossref_primary_10_1021_jp5102175 crossref_primary_10_1016_j_carbon_2021_12_074 crossref_primary_10_1016_j_jallcom_2024_174673 crossref_primary_10_1063_1_4870424 crossref_primary_10_1039_D1CP01741A crossref_primary_10_1021_acs_jpclett_3c02396 crossref_primary_10_1016_j_apmt_2017_08_013 crossref_primary_10_1080_08927022_2020_1805115 crossref_primary_10_3390_nano12081280 crossref_primary_10_1021_jp5095195 crossref_primary_10_1002_slct_201701552 crossref_primary_10_1021_acs_jpcc_1c07024 crossref_primary_10_1016_j_cplett_2019_03_062 crossref_primary_10_1016_j_est_2024_112109 crossref_primary_10_1039_D3DT02407E crossref_primary_10_1016_j_clay_2021_106363 crossref_primary_10_1016_j_jallcom_2023_173037 crossref_primary_10_1088_1361_648X_ac360a crossref_primary_10_1039_C5CP04666A crossref_primary_10_1002_ente_201700809 crossref_primary_10_1016_j_jallcom_2016_10_118 crossref_primary_10_1021_acsomega_9b02208 crossref_primary_10_1088_1361_6528_ab4d0d crossref_primary_10_1021_acs_energyfuels_4c02267 crossref_primary_10_1038_s41699_022_00287_8 crossref_primary_10_1039_C7TA05853E crossref_primary_10_1002_wcms_1346 crossref_primary_10_1016_j_ccr_2019_05_006 crossref_primary_10_1039_D0NR02453H crossref_primary_10_1021_cr5006217 crossref_primary_10_1021_acscatal_5b00332 crossref_primary_10_1016_j_jechem_2023_05_018 crossref_primary_10_1039_D4CP04355C crossref_primary_10_1039_C7CP00185A crossref_primary_10_1021_acs_jpcc_8b11261 crossref_primary_10_2174_2210681213666230911161526 crossref_primary_10_1016_j_electacta_2014_09_069 crossref_primary_10_1016_j_apsusc_2019_07_217 crossref_primary_10_1016_j_jssc_2020_121568 crossref_primary_10_1002_slct_202301496 crossref_primary_10_1149_2_1011908jes crossref_primary_10_1016_j_jmgm_2019_08_011 crossref_primary_10_1002_admi_202201278 crossref_primary_10_1016_j_jpowsour_2018_06_022 crossref_primary_10_1039_D1RA01506K crossref_primary_10_1016_j_jallcom_2020_157720 crossref_primary_10_1063_1_4963283 crossref_primary_10_1016_j_susc_2025_122700 crossref_primary_10_1021_nl501389h crossref_primary_10_22226_2410_3535_2022_1_27_31 crossref_primary_10_1016_j_cplett_2018_09_051 crossref_primary_10_1021_acs_est_1c08666 crossref_primary_10_1007_s10853_016_0378_6 crossref_primary_10_1142_S179360472451038X crossref_primary_10_1021_acsaem_0c01254 crossref_primary_10_1021_acssuschemeng_8b03327 crossref_primary_10_1039_D3RA04706G crossref_primary_10_1016_j_commatsci_2022_111637 crossref_primary_10_1016_j_jcis_2020_08_109 crossref_primary_10_1016_j_apsusc_2021_150264 crossref_primary_10_1039_C6NR09313B crossref_primary_10_1007_s10853_019_03586_6 crossref_primary_10_1039_C7CP07960E crossref_primary_10_1007_s42823_021_00308_4 crossref_primary_10_1039_C8CP02257G crossref_primary_10_1039_C9RA03235E crossref_primary_10_1016_j_ijbiomac_2024_135804 crossref_primary_10_1039_C5NJ00888C crossref_primary_10_1039_D1RA04046D crossref_primary_10_1007_s00894_018_3734_4 crossref_primary_10_1016_j_heliyon_2020_e04456 crossref_primary_10_1016_j_jmgm_2020_107752 crossref_primary_10_1039_D0RA03126G crossref_primary_10_1021_acs_nanolett_7b00038 crossref_primary_10_1002_adma_202210734 crossref_primary_10_1039_C8CP01960F crossref_primary_10_1039_D1CP03070A crossref_primary_10_1016_j_apsusc_2019_05_280 crossref_primary_10_1021_acsomega_0c05538 crossref_primary_10_7498_aps_66_246801 crossref_primary_10_1016_j_comptc_2024_114911 crossref_primary_10_1088_1367_2630_ac2851 crossref_primary_10_1039_C6CP06247D crossref_primary_10_3390_catal11121547 crossref_primary_10_1016_j_cplett_2021_139236 crossref_primary_10_1021_acs_jpcc_0c11602 crossref_primary_10_1039_C7NJ00328E crossref_primary_10_1016_j_apsusc_2019_144430 crossref_primary_10_1016_j_ensm_2018_09_001 crossref_primary_10_1021_acs_jpcc_5b10366 crossref_primary_10_1016_j_inoche_2025_114070 crossref_primary_10_1039_C4CS00141A crossref_primary_10_1016_j_mtcomm_2019_100714 crossref_primary_10_1016_j_physleta_2017_04_022 crossref_primary_10_1016_j_est_2024_112278 crossref_primary_10_1155_2016_6375962 crossref_primary_10_7498_aps_66_086801 crossref_primary_10_1016_j_est_2023_108178 crossref_primary_10_1039_D2MA00857B crossref_primary_10_1002_aenm_201801445 crossref_primary_10_1002_ente_202300590 crossref_primary_10_1039_C6CP08897J crossref_primary_10_7209_tanso_2018_2 crossref_primary_10_1016_j_est_2020_101386 crossref_primary_10_1080_00268976_2022_2133751 crossref_primary_10_1134_S0036024418120385 crossref_primary_10_1016_j_ensm_2020_11_004 crossref_primary_10_1039_C6TA04350J crossref_primary_10_1039_D1CP01194D crossref_primary_10_1016_j_apsusc_2020_145886 crossref_primary_10_1016_j_ijhydene_2019_07_153 crossref_primary_10_1016_j_cej_2023_146180 crossref_primary_10_1021_am405557c crossref_primary_10_1016_j_cej_2023_146181 crossref_primary_10_1038_srep27081 crossref_primary_10_1016_j_joule_2018_04_027 crossref_primary_10_1016_j_carbon_2016_06_035 crossref_primary_10_1039_C5TA05676D crossref_primary_10_1039_D3RA04051H crossref_primary_10_1021_acs_jpcc_5b06441 crossref_primary_10_1016_j_mtcomm_2020_101602 crossref_primary_10_1016_j_carbon_2016_05_013 crossref_primary_10_1016_j_physleta_2020_126479 crossref_primary_10_1016_j_electacta_2021_139719 crossref_primary_10_1021_acs_jpcc_8b05272 crossref_primary_10_1016_j_ensm_2021_02_019 crossref_primary_10_1103_PhysRevB_97_155428 crossref_primary_10_7498_aps_64_127301 crossref_primary_10_1016_j_carbon_2019_01_084 crossref_primary_10_1002_cphc_201800070 crossref_primary_10_1016_j_reactfunctpolym_2019_104349 crossref_primary_10_1016_j_molliq_2020_113009 crossref_primary_10_1063_1_4904032 crossref_primary_10_1016_j_ijhydene_2015_10_109 crossref_primary_10_1039_C8CP04850A crossref_primary_10_1039_D3CP04193J crossref_primary_10_1038_s41467_019_09274_y crossref_primary_10_1016_j_jpowsour_2015_05_074 crossref_primary_10_1039_D2CP05451E crossref_primary_10_1016_S1872_5805_23_60724_3 crossref_primary_10_3389_fchem_2021_670833 crossref_primary_10_1016_j_carbon_2020_07_022 crossref_primary_10_1039_C6CP06497C crossref_primary_10_1039_D2DT00551D crossref_primary_10_1039_C8NJ05807E crossref_primary_10_1039_C9GC03088C crossref_primary_10_1039_C7CP03246C crossref_primary_10_1016_j_cej_2025_161464 crossref_primary_10_1016_j_molliq_2021_117459 crossref_primary_10_1002_batt_202300537 crossref_primary_10_1039_C8TA09817D crossref_primary_10_1021_acs_energyfuels_3c01366 crossref_primary_10_3390_en13020312 crossref_primary_10_1039_C3EE44078H crossref_primary_10_1016_j_jmgm_2020_107567 crossref_primary_10_1071_CH21264 crossref_primary_10_1021_acs_jpcc_6b06555 crossref_primary_10_1016_j_cej_2019_122681 crossref_primary_10_1016_j_mtener_2019_100359 crossref_primary_10_1039_D2CP02730E crossref_primary_10_1039_c3ta12639k crossref_primary_10_1039_C8RA01680A crossref_primary_10_1016_j_apsusc_2015_09_163 crossref_primary_10_1016_j_apsusc_2023_156367 crossref_primary_10_1002_ente_202000361 crossref_primary_10_1016_j_jtice_2019_01_020 crossref_primary_10_1038_srep37911 crossref_primary_10_1016_j_eti_2023_103246 crossref_primary_10_1007_s00894_014_2244_2 crossref_primary_10_1016_j_apsusc_2020_145448 crossref_primary_10_1039_C8CP03537G crossref_primary_10_1021_acsami_3c17997 crossref_primary_10_1063_5_0214668 crossref_primary_10_1039_C4TA00103F crossref_primary_10_3390_molecules24040754 crossref_primary_10_1021_acsami_6b07390 crossref_primary_10_1016_j_cej_2022_138667 crossref_primary_10_1088_1674_1056_25_6_066102 crossref_primary_10_1021_acs_energyfuels_2c03557 crossref_primary_10_1021_acs_jpcc_1c09657 crossref_primary_10_1051_epjap_2016160059 crossref_primary_10_1016_j_est_2023_108007 crossref_primary_10_3390_app9153012 crossref_primary_10_1021_am504452a crossref_primary_10_1016_j_cplett_2020_138241 crossref_primary_10_1016_j_apsusc_2022_154673 crossref_primary_10_1021_acs_chemmater_5b02370 crossref_primary_10_1149_1945_7111_ab8404 crossref_primary_10_1016_j_apsusc_2020_147779 crossref_primary_10_1016_j_jpcs_2020_109639 crossref_primary_10_1002_admi_201701261 crossref_primary_10_1039_C4NR00454J crossref_primary_10_1016_j_apsusc_2020_148869 crossref_primary_10_1002_pssb_202100369 crossref_primary_10_1039_D3CP06146A crossref_primary_10_1039_C6TA09831B crossref_primary_10_1016_j_mtcomm_2023_107740 crossref_primary_10_1016_j_surfin_2024_105000 crossref_primary_10_1016_j_comptc_2021_113557 crossref_primary_10_1016_j_apsusc_2016_10_097 crossref_primary_10_1021_acsnano_1c09935 crossref_primary_10_1038_ncomms6261 crossref_primary_10_1002_eem2_12553 crossref_primary_10_3390_computation10030039 crossref_primary_10_1002_cnma_202200134 crossref_primary_10_1039_D1SE01779A crossref_primary_10_1016_j_apsusc_2019_143659 crossref_primary_10_1021_acs_jpcc_6b12687 crossref_primary_10_1021_acsami_9b04861 crossref_primary_10_1039_C8NR10383F crossref_primary_10_1063_5_0058598 crossref_primary_10_1088_1361_6528_ab6475 |
Cites_doi | 10.1039/c2nr31357j 10.1002/adma.200901285 10.1002/anie.201002617 10.1088/0034-4885/73/5/056501 10.1021/jp304861d 10.1007/s00214-011-0961-5 10.1063/1.1740588 10.1038/srep00586 10.1038/nature11458 10.1103/PhysRevLett.62.1201 10.1039/c0nr00820f 10.1023/A:1014915307738 10.1021/jp2121609 10.1063/1.3126008 10.1088/0957-4484/21/50/505202 10.1126/science.270.5236.590 10.1039/C1NR11307K 10.1016/j.apsusc.2012.05.162 10.1103/PhysRevB.84.165408 10.1103/PhysRevB.82.125416 10.1126/science.1208759 10.1021/cm102666r 10.1021/cr020730k 10.1002/anie.201003485 10.1021/jp040650f 10.1021/nn2006249 10.1002/adfm.201200186 10.1063/1.1316015 10.1103/PhysRevB.73.205101 10.1021/nl800957b 10.1002/anie.200907347 10.1063/1.3079096 10.1021/jp952713n 10.1063/1.3272008 10.1021/ja1002026 10.1103/PhysRevB.45.13244 10.1039/c1jm00049g 10.1126/science.1130681 10.1038/nature05180 10.1126/science.1158877 10.1063/1.458452 10.1016/j.elecom.2011.05.012 10.1021/nl3019164 10.1021/ac60156a007 10.1039/b612585a 10.1002/jcc.20782 10.1021/nl101223k 10.1021/jp049086z |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS |
Copyright_xml | – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 7TB 7U5 8FD FR3 L7M |
DOI | 10.1039/c3cp51689j |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | MEDLINE - Academic Solid State and Superconductivity Abstracts Solid State and Superconductivity Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1463-9084 |
EndPage | 16827 |
ExternalDocumentID | 24002442 27775180 10_1039_c3cp51689j |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG IQODW NPM 7X8 7TB 7U5 8FD FR3 L7M |
ID | FETCH-LOGICAL-c490t-7bfcd718b46958aeb5fae90b346d587377d8df7e2b155ffcda8f875dc4fe86b23 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 10:42:25 EDT 2025 Fri Jul 11 06:21:57 EDT 2025 Fri Jul 11 04:17:40 EDT 2025 Mon Jul 21 06:01:20 EDT 2025 Mon Jul 21 09:15:25 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Tue Jul 01 02:54:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Keywords | Lithium battery Defect Anode Nitrogen Graphene |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c490t-7bfcd718b46958aeb5fae90b346d587377d8df7e2b155ffcda8f875dc4fe86b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24002442 |
PQID | 1434011374 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1671501494 proquest_miscellaneous_1448767443 proquest_miscellaneous_1434011374 pubmed_primary_24002442 pascalfrancis_primary_27775180 crossref_citationtrail_10_1039_c3cp51689j crossref_primary_10_1039_c3cp51689j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2013 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Geim (c3cp51689j-(cit2)/*[position()=1]) 2009; 324 Berger (c3cp51689j-(cit3)/*[position()=1]) 2004; 108 Delley (c3cp51689j-(cit29)/*[position()=1]) 1990; 92 Ohta (c3cp51689j-(cit6)/*[position()=1]) 2006; 313 Delley (c3cp51689j-(cit28)/*[position()=1]) 2000; 113 Yoo (c3cp51689j-(cit9)/*[position()=1]) 2008; 8 Wu (c3cp51689j-(cit31)/*[position()=1]) 2011; 130 Zhou (c3cp51689j-(cit20)/*[position()=1]) 2004; 108 Gao (c3cp51689j-(cit16)/*[position()=1]) 2010; 49 Li (c3cp51689j-(cit19)/*[position()=1]) 2011; 13 Son (c3cp51689j-(cit4)/*[position()=1]) 2006; 444 Dahn (c3cp51689j-(cit47)/*[position()=1]) 1995; 270 Ortmann (c3cp51689j-(cit34)/*[position()=1]) 2006; 73 Chung (c3cp51689j-(cit39)/*[position()=1]) 2002; 37 Qiu (c3cp51689j-(cit30)/*[position()=1]) 2012; 258 Boukhvalov (c3cp51689j-(cit7)/*[position()=1]) 2012; 4 Lee (c3cp51689j-(cit10)/*[position()=1]) 2012; 12 Rajesh (c3cp51689j-(cit40)/*[position()=1]) 2009; 130 Yang (c3cp51689j-(cit41)/*[position()=1]) 2012; 22 Nadler (c3cp51689j-(cit37)/*[position()=1]) 1959; 31 Wang (c3cp51689j-(cit18)/*[position()=1]) 2011; 21 Zhao (c3cp51689j-(cit23)/*[position()=1]) 2011; 333 Xu (c3cp51689j-(cit17)/*[position()=1]) 2012; 4 Wu (c3cp51689j-(cit43)/*[position()=1]) 2010; 21 Winter (c3cp51689j-(cit45)/*[position()=1]) 2010; 104 Panchokarla (c3cp51689j-(cit25)/*[position()=1]) 2009; 21 Inada (c3cp51689j-(cit32)/*[position()=1]) 2008; 29 Novoselov (c3cp51689j-(cit1)/*[position()=1]) 2012; 490 Persson (c3cp51689j-(cit36)/*[position()=1]) 2010; 82 Krishnan (c3cp51689j-(cit49)/*[position()=1]) 2011; 84 Botello-Mendez (c3cp51689j-(cit15)/*[position()=1]) 2011; 3 Kattel (c3cp51689j-(cit13)/*[position()=1]) 2012; 116 Yang (c3cp51689j-(cit44)/*[position()=1]) 2009; 94 Yazyev (c3cp51689j-(cit14)/*[position()=1]) 2010; 73 Gao (c3cp51689j-(cit21)/*[position()=1]) 2010; 49 Lieb (c3cp51689j-(cit42)/*[position()=1]) 1989; 62 Zhou (c3cp51689j-(cit26)/*[position()=1]) 2012; 116 Delley (c3cp51689j-(cit33)/*[position()=1]) 1996; 100 Wu (c3cp51689j-(cit12)/*[position()=1]) 2010; 132 Lv (c3cp51689j-(cit22)/*[position()=1]) 2012; 2 Wu (c3cp51689j-(cit46)/*[position()=1]) 2011; 5 Dai (c3cp51689j-(cit5)/*[position()=1]) 2009; 95 Deng (c3cp51689j-(cit24)/*[position()=1]) 2011; 23 Perdew (c3cp51689j-(cit27)/*[position()=1]) 1992; 45 Mulliken (c3cp51689j-(cit35)/*[position()=1]) 1955; 23 Antony (c3cp51689j-(cit48)/*[position()=1]) 2006; 8 Yang (c3cp51689j-(cit8)/*[position()=1]) 2010; 49 Pollak (c3cp51689j-(cit11)/*[position()=1]) 2010; 10 |
References_xml | – volume: 4 start-page: 5425 year: 2012 ident: c3cp51689j-(cit17)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31357j – volume: 21 start-page: 4726 year: 2009 ident: c3cp51689j-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200901285 – volume: 49 start-page: 6764 year: 2010 ident: c3cp51689j-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002617 – volume: 73 start-page: 056501 year: 2010 ident: c3cp51689j-(cit14)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/5/056501 – volume: 116 start-page: 21780 year: 2012 ident: c3cp51689j-(cit26)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp304861d – volume: 130 start-page: 209 year: 2011 ident: c3cp51689j-(cit31)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-011-0961-5 – volume: 23 start-page: 1833 year: 1955 ident: c3cp51689j-(cit35)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1740588 – volume: 2 start-page: 586 year: 2012 ident: c3cp51689j-(cit22)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00586 – volume: 490 start-page: 192 year: 2012 ident: c3cp51689j-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature11458 – volume: 62 start-page: 1201 year: 1989 ident: c3cp51689j-(cit42)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.1201 – volume: 3 start-page: 2868 year: 2011 ident: c3cp51689j-(cit15)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c0nr00820f – volume: 37 start-page: 1475 year: 2002 ident: c3cp51689j-(cit39)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1023/A:1014915307738 – volume: 116 start-page: 8161 year: 2012 ident: c3cp51689j-(cit13)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp2121609 – volume: 94 start-page: 163115 year: 2009 ident: c3cp51689j-(cit44)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3126008 – volume: 21 start-page: 505202 year: 2010 ident: c3cp51689j-(cit43)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/21/50/505202 – volume: 270 start-page: 590 year: 1995 ident: c3cp51689j-(cit47)/*[position()=1] publication-title: Science doi: 10.1126/science.270.5236.590 – volume: 4 start-page: 417 year: 2012 ident: c3cp51689j-(cit7)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C1NR11307K – volume: 258 start-page: 9629 year: 2012 ident: c3cp51689j-(cit30)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.05.162 – volume: 84 start-page: 165408 year: 2011 ident: c3cp51689j-(cit49)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.165408 – volume: 82 start-page: 125416 year: 2010 ident: c3cp51689j-(cit36)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.125416 – volume: 333 start-page: 999 year: 2011 ident: c3cp51689j-(cit23)/*[position()=1] publication-title: Science doi: 10.1126/science.1208759 – volume: 23 start-page: 1188 year: 2011 ident: c3cp51689j-(cit24)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm102666r – volume: 104 start-page: 4245 year: 2010 ident: c3cp51689j-(cit45)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020730k – volume: 49 start-page: 8408 year: 2010 ident: c3cp51689j-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003485 – volume: 108 start-page: 19912 year: 2004 ident: c3cp51689j-(cit3)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp040650f – volume: 5 start-page: 5463 year: 2011 ident: c3cp51689j-(cit46)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn2006249 – volume: 22 start-page: 3634 year: 2012 ident: c3cp51689j-(cit41)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200186 – volume: 113 start-page: 7756 year: 2000 ident: c3cp51689j-(cit28)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 73 start-page: 205101 year: 2006 ident: c3cp51689j-(cit34)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.73.205101 – volume: 8 start-page: 2277 year: 2008 ident: c3cp51689j-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl800957b – volume: 49 start-page: 3200 year: 2010 ident: c3cp51689j-(cit16)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907347 – volume: 130 start-page: 124911 year: 2009 ident: c3cp51689j-(cit40)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3079096 – volume: 100 start-page: 6107 year: 1996 ident: c3cp51689j-(cit33)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp952713n – volume: 95 start-page: 232105 year: 2009 ident: c3cp51689j-(cit5)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3272008 – volume: 132 start-page: 5554 year: 2010 ident: c3cp51689j-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1002026 – volume: 45 start-page: 13244 year: 1992 ident: c3cp51689j-(cit27)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.45.13244 – volume: 21 start-page: 5430 year: 2011 ident: c3cp51689j-(cit18)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm00049g – volume: 313 start-page: 951 year: 2006 ident: c3cp51689j-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.1130681 – volume: 444 start-page: 347 year: 2006 ident: c3cp51689j-(cit4)/*[position()=1] publication-title: Nature doi: 10.1038/nature05180 – volume: 324 start-page: 1530 year: 2009 ident: c3cp51689j-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1158877 – volume: 92 start-page: 508 year: 1990 ident: c3cp51689j-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 13 start-page: 822 year: 2011 ident: c3cp51689j-(cit19)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.05.012 – volume: 12 start-page: 4624 year: 2012 ident: c3cp51689j-(cit10)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl3019164 – volume: 31 start-page: 2109 year: 1959 ident: c3cp51689j-(cit37)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac60156a007 – volume: 8 start-page: 5287 year: 2006 ident: c3cp51689j-(cit48)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b612585a – volume: 29 start-page: 225 year: 2008 ident: c3cp51689j-(cit32)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20782 – volume: 10 start-page: 3386 year: 2010 ident: c3cp51689j-(cit11)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101223k – volume: 108 start-page: 9023 year: 2004 ident: c3cp51689j-(cit20)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp049086z |
SSID | ssj0001513 |
Score | 2.5305827 |
Snippet | The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 16819 |
SubjectTerms | Adsorption Anodes Applied sciences Decoration Defects Direct energy conversion and energy accumulation Electric batteries Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology Graphene Lithium batteries Lithium-ion batteries Vacancies |
Title | Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24002442 https://www.proquest.com/docview/1434011374 https://www.proquest.com/docview/1448767443 https://www.proquest.com/docview/1671501494 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5B-wASQtyEo1oELwiZOt719YQqK1VBofTBkcKTtScEUTtqnBd-PbOHj4hSFV4sZzXarHa-Hc_MzoHQGwZKt44l2CbGfU95JoJMERVEUoVShjLMmHENfD5NThb00zJeDj02bXZJy9-LX5fmlfwPV2EM-GqyZP-Bs_2kMADvwF94AofheS0eF3A4zdUyHMuLBqgC2axBgZTKxWisrMNAuWyoUYIA6Ie2TjWIuXesbmwMa-vWa6MOQTP_vtqeBwYZ3NbfXJnIuZ0IwLOOv6LrGOfezJDzlmyst-GsKPoMsq9bK_BZ_S1Y-oLf3t9gej_0_gYnImlCAjCpfQHr8Zhr9tbL1XiEH1exyEvJaZJ5Oam6365AwB_yPCSmHKogYh0DUf5j-Gp1N_WnX6rjxXxelbNleRPtR2AtgLjbP5qVH-f9JxnUGuLSzNzSuzq1JD8c5t7RTO6s2QZ2TLvuJn83P6waUt5Dd739gI8cGO6jG6p-gG4VHRMeonMABQZQ4F1QYA8K7EGBARR4BArcaNyBAltQ4B4UGIjwCBS4B8WHR2hxPCuLk8D31AgEzcM2SLkWEvQRTpM8zpjisWYqDzmhiYyzlKSpzKROVcRB0dRAyzINJq0UVKss4RF5jPbqplZPEZZgmsZEW_WGKpEwkU8FZVwTGamp5hP0ttvPSviC86bvyc_KBj6QvBr2foJe97RrV2blUqqDHbb0pMB1c30YTtCrjk8VbLu5-2K1arYbsHAJhU8ZSelVNGC9Jyml5AqaJJ2aq_gc5nnigDCsghqNl0bPrvEPz9Ht4XC9QHvtxVa9BPW25QcevL8BFUurkQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+all+nitrogen-doped+defects+improve+the+performance+of+graphene+anode+materials+for+lithium-ion+batteries%3F&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yu%2C+Yang-Xin&rft.date=2013-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=15&rft.issue=39&rft.spage=16819&rft.epage=16827&rft_id=info:doi/10.1039%2Fc3cp51689j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |