Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?

The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption pro...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 15; no. 39; pp. 16819 - 16827
Main Author Yu, Yang-Xin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N2V2 defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N2V2 defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g(-1) in a 4 × 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries.
AbstractList The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N2V2 defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N2V2 defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g(-1) in a 4 × 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries.The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N2V2 defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N2V2 defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g(-1) in a 4 × 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries.
The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initiodensity functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N sub(2)V sub(2) defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N sub(2)V sub(2) defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g super(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g super(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g super(-1) in a 4 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries.
The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen decoration of vacancies. The results indicate that only pyridinic N2V2 defect in graphene shows a ferromagnetic spin structure with high magnetic moment and magnetic stabilization energy. Not all nitrogen-doped defects can improve the capacity of the lithium-ion batteries. The adsorption energies of a lithium atom on nitrogen-substituted graphenes are more positive, indicating that they are meta-stable and no better than the pristine graphene as anode materials of lithium-ion batteries. Nitrogen-decorated single and double vacancy defects, especially for the pyridinic N2V2 defect in graphene, can greatly improve the reversible capacity of the battery in comparison with the pristine graphene. The theoretical prediction of the reversible capacity of the battery is 1039 mA h g(-1) for the nitrogen-doped graphene material synthesized by Wu et al., which is in good agreement with the experimental data (1043 mA h g(-1)). The theoretical computations suggest that nitrogen-decorated single and double vacancy defects in graphene are the promising candidate for anode materials of lithium-ion batteries. Each nitrogen atom in the decoration can improve the reversible capacity of the battery by 63.3-124.5 mA h g(-1) in a 4 × 4 supercell of graphene. The present work provides crucial information for the development of N-doped graphene-based anode materials of lithium-ion batteries.
Author Yu, Yang-Xin
Author_xml – sequence: 1
  givenname: Yang-Xin
  surname: Yu
  fullname: Yu, Yang-Xin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27775180$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24002442$$D View this record in MEDLINE/PubMed
BookMark eNqN0k1rHSEUBmApKfne9AcUN4FSmFZHHZ1VKJekDQSySdeDo8dcw4xO1Bvov6-X3CRQCslKwee8yMs5QnshBkDoEyXfKGH9d8PMImin-vsP6JDyjjU9UXzv5S67A3SU8z0hhArK9tFBywlpOW8P0bzSAetpwsGXFO8gNDYuYLEFB6Zk7OclxUfAZQ14geRimnUwgKPDd0kvawiAdYgW8KwLJK-njCvCky9rv5kbHwMeddk-QT4_QR9dFXC6O4_R78uL29Wv5vrm59Xqx3VjeE9KI0dnrKRq5F0vlIZROA09GRnvrFCSSWmVdRLakQrhqtXKKSms4Q5UN7bsGH15yq2ff9hALsPss4Fp0gHiJg-0k1QQynv-NuVcyU5yzt5BGSeUMrlN_byjm3EGOyzJzzr9GZ6Lr-BsB3Q2enKpturzq5NSCqpIdeTJmRRzTuAG44sutdaStJ8GSobtDgyvO1BHvv4z8pz6H_wXKTmyeg
CitedBy_id crossref_primary_10_1039_C7CP02711G
crossref_primary_10_1021_acsami_0c21429
crossref_primary_10_1016_j_rinma_2024_100529
crossref_primary_10_1039_C8TC00463C
crossref_primary_10_1016_j_eml_2019_01_004
crossref_primary_10_3390_nano13071218
crossref_primary_10_1007_s00214_016_1805_0
crossref_primary_10_1039_C7RA07850A
crossref_primary_10_1021_acs_jpcc_8b10367
crossref_primary_10_1016_j_ssc_2019_113770
crossref_primary_10_1016_j_apsusc_2019_143618
crossref_primary_10_1016_j_tsf_2020_137979
crossref_primary_10_1002_er_8046
crossref_primary_10_1007_s00894_020_04404_6
crossref_primary_10_1016_j_jpowsour_2015_06_054
crossref_primary_10_1080_08927022_2023_2211170
crossref_primary_10_1039_D4CC06821A
crossref_primary_10_1088_1361_648X_ac630a
crossref_primary_10_1021_acsnano_5b02322
crossref_primary_10_1016_j_apsusc_2018_12_020
crossref_primary_10_1016_j_susc_2023_122250
crossref_primary_10_1016_j_jmgm_2020_107537
crossref_primary_10_1016_j_apsusc_2024_159770
crossref_primary_10_1039_D1NJ04096K
crossref_primary_10_1039_D3CP01485A
crossref_primary_10_1002_smll_201702181
crossref_primary_10_1088_1757_899X_541_1_012003
crossref_primary_10_1016_j_jpowsour_2018_08_058
crossref_primary_10_1021_am5050604
crossref_primary_10_1002_aenm_201402115
crossref_primary_10_1016_j_physb_2024_416756
crossref_primary_10_1016_j_ijhydene_2022_04_241
crossref_primary_10_1109_TNANO_2022_3204587
crossref_primary_10_1039_C7CP04360K
crossref_primary_10_1021_acsnano_8b05529
crossref_primary_10_1002_aenm_202002621
crossref_primary_10_1039_C8CP01949E
crossref_primary_10_1016_j_jpowsour_2015_07_074
crossref_primary_10_1103_PhysRevApplied_12_014001
crossref_primary_10_1016_j_commatsci_2023_112539
crossref_primary_10_1016_j_jallcom_2019_01_394
crossref_primary_10_1007_s10853_016_0369_7
crossref_primary_10_1016_j_apsusc_2019_143723
crossref_primary_10_1016_j_ensm_2020_02_019
crossref_primary_10_1002_cey2_257
crossref_primary_10_1021_jp5102175
crossref_primary_10_1016_j_carbon_2021_12_074
crossref_primary_10_1016_j_jallcom_2024_174673
crossref_primary_10_1063_1_4870424
crossref_primary_10_1039_D1CP01741A
crossref_primary_10_1021_acs_jpclett_3c02396
crossref_primary_10_1016_j_apmt_2017_08_013
crossref_primary_10_1080_08927022_2020_1805115
crossref_primary_10_3390_nano12081280
crossref_primary_10_1021_jp5095195
crossref_primary_10_1002_slct_201701552
crossref_primary_10_1021_acs_jpcc_1c07024
crossref_primary_10_1016_j_cplett_2019_03_062
crossref_primary_10_1016_j_est_2024_112109
crossref_primary_10_1039_D3DT02407E
crossref_primary_10_1016_j_clay_2021_106363
crossref_primary_10_1016_j_jallcom_2023_173037
crossref_primary_10_1088_1361_648X_ac360a
crossref_primary_10_1039_C5CP04666A
crossref_primary_10_1002_ente_201700809
crossref_primary_10_1016_j_jallcom_2016_10_118
crossref_primary_10_1021_acsomega_9b02208
crossref_primary_10_1088_1361_6528_ab4d0d
crossref_primary_10_1021_acs_energyfuels_4c02267
crossref_primary_10_1038_s41699_022_00287_8
crossref_primary_10_1039_C7TA05853E
crossref_primary_10_1002_wcms_1346
crossref_primary_10_1016_j_ccr_2019_05_006
crossref_primary_10_1039_D0NR02453H
crossref_primary_10_1021_cr5006217
crossref_primary_10_1021_acscatal_5b00332
crossref_primary_10_1016_j_jechem_2023_05_018
crossref_primary_10_1039_D4CP04355C
crossref_primary_10_1039_C7CP00185A
crossref_primary_10_1021_acs_jpcc_8b11261
crossref_primary_10_2174_2210681213666230911161526
crossref_primary_10_1016_j_electacta_2014_09_069
crossref_primary_10_1016_j_apsusc_2019_07_217
crossref_primary_10_1016_j_jssc_2020_121568
crossref_primary_10_1002_slct_202301496
crossref_primary_10_1149_2_1011908jes
crossref_primary_10_1016_j_jmgm_2019_08_011
crossref_primary_10_1002_admi_202201278
crossref_primary_10_1016_j_jpowsour_2018_06_022
crossref_primary_10_1039_D1RA01506K
crossref_primary_10_1016_j_jallcom_2020_157720
crossref_primary_10_1063_1_4963283
crossref_primary_10_1016_j_susc_2025_122700
crossref_primary_10_1021_nl501389h
crossref_primary_10_22226_2410_3535_2022_1_27_31
crossref_primary_10_1016_j_cplett_2018_09_051
crossref_primary_10_1021_acs_est_1c08666
crossref_primary_10_1007_s10853_016_0378_6
crossref_primary_10_1142_S179360472451038X
crossref_primary_10_1021_acsaem_0c01254
crossref_primary_10_1021_acssuschemeng_8b03327
crossref_primary_10_1039_D3RA04706G
crossref_primary_10_1016_j_commatsci_2022_111637
crossref_primary_10_1016_j_jcis_2020_08_109
crossref_primary_10_1016_j_apsusc_2021_150264
crossref_primary_10_1039_C6NR09313B
crossref_primary_10_1007_s10853_019_03586_6
crossref_primary_10_1039_C7CP07960E
crossref_primary_10_1007_s42823_021_00308_4
crossref_primary_10_1039_C8CP02257G
crossref_primary_10_1039_C9RA03235E
crossref_primary_10_1016_j_ijbiomac_2024_135804
crossref_primary_10_1039_C5NJ00888C
crossref_primary_10_1039_D1RA04046D
crossref_primary_10_1007_s00894_018_3734_4
crossref_primary_10_1016_j_heliyon_2020_e04456
crossref_primary_10_1016_j_jmgm_2020_107752
crossref_primary_10_1039_D0RA03126G
crossref_primary_10_1021_acs_nanolett_7b00038
crossref_primary_10_1002_adma_202210734
crossref_primary_10_1039_C8CP01960F
crossref_primary_10_1039_D1CP03070A
crossref_primary_10_1016_j_apsusc_2019_05_280
crossref_primary_10_1021_acsomega_0c05538
crossref_primary_10_7498_aps_66_246801
crossref_primary_10_1016_j_comptc_2024_114911
crossref_primary_10_1088_1367_2630_ac2851
crossref_primary_10_1039_C6CP06247D
crossref_primary_10_3390_catal11121547
crossref_primary_10_1016_j_cplett_2021_139236
crossref_primary_10_1021_acs_jpcc_0c11602
crossref_primary_10_1039_C7NJ00328E
crossref_primary_10_1016_j_apsusc_2019_144430
crossref_primary_10_1016_j_ensm_2018_09_001
crossref_primary_10_1021_acs_jpcc_5b10366
crossref_primary_10_1016_j_inoche_2025_114070
crossref_primary_10_1039_C4CS00141A
crossref_primary_10_1016_j_mtcomm_2019_100714
crossref_primary_10_1016_j_physleta_2017_04_022
crossref_primary_10_1016_j_est_2024_112278
crossref_primary_10_1155_2016_6375962
crossref_primary_10_7498_aps_66_086801
crossref_primary_10_1016_j_est_2023_108178
crossref_primary_10_1039_D2MA00857B
crossref_primary_10_1002_aenm_201801445
crossref_primary_10_1002_ente_202300590
crossref_primary_10_1039_C6CP08897J
crossref_primary_10_7209_tanso_2018_2
crossref_primary_10_1016_j_est_2020_101386
crossref_primary_10_1080_00268976_2022_2133751
crossref_primary_10_1134_S0036024418120385
crossref_primary_10_1016_j_ensm_2020_11_004
crossref_primary_10_1039_C6TA04350J
crossref_primary_10_1039_D1CP01194D
crossref_primary_10_1016_j_apsusc_2020_145886
crossref_primary_10_1016_j_ijhydene_2019_07_153
crossref_primary_10_1016_j_cej_2023_146180
crossref_primary_10_1021_am405557c
crossref_primary_10_1016_j_cej_2023_146181
crossref_primary_10_1038_srep27081
crossref_primary_10_1016_j_joule_2018_04_027
crossref_primary_10_1016_j_carbon_2016_06_035
crossref_primary_10_1039_C5TA05676D
crossref_primary_10_1039_D3RA04051H
crossref_primary_10_1021_acs_jpcc_5b06441
crossref_primary_10_1016_j_mtcomm_2020_101602
crossref_primary_10_1016_j_carbon_2016_05_013
crossref_primary_10_1016_j_physleta_2020_126479
crossref_primary_10_1016_j_electacta_2021_139719
crossref_primary_10_1021_acs_jpcc_8b05272
crossref_primary_10_1016_j_ensm_2021_02_019
crossref_primary_10_1103_PhysRevB_97_155428
crossref_primary_10_7498_aps_64_127301
crossref_primary_10_1016_j_carbon_2019_01_084
crossref_primary_10_1002_cphc_201800070
crossref_primary_10_1016_j_reactfunctpolym_2019_104349
crossref_primary_10_1016_j_molliq_2020_113009
crossref_primary_10_1063_1_4904032
crossref_primary_10_1016_j_ijhydene_2015_10_109
crossref_primary_10_1039_C8CP04850A
crossref_primary_10_1039_D3CP04193J
crossref_primary_10_1038_s41467_019_09274_y
crossref_primary_10_1016_j_jpowsour_2015_05_074
crossref_primary_10_1039_D2CP05451E
crossref_primary_10_1016_S1872_5805_23_60724_3
crossref_primary_10_3389_fchem_2021_670833
crossref_primary_10_1016_j_carbon_2020_07_022
crossref_primary_10_1039_C6CP06497C
crossref_primary_10_1039_D2DT00551D
crossref_primary_10_1039_C8NJ05807E
crossref_primary_10_1039_C9GC03088C
crossref_primary_10_1039_C7CP03246C
crossref_primary_10_1016_j_cej_2025_161464
crossref_primary_10_1016_j_molliq_2021_117459
crossref_primary_10_1002_batt_202300537
crossref_primary_10_1039_C8TA09817D
crossref_primary_10_1021_acs_energyfuels_3c01366
crossref_primary_10_3390_en13020312
crossref_primary_10_1039_C3EE44078H
crossref_primary_10_1016_j_jmgm_2020_107567
crossref_primary_10_1071_CH21264
crossref_primary_10_1021_acs_jpcc_6b06555
crossref_primary_10_1016_j_cej_2019_122681
crossref_primary_10_1016_j_mtener_2019_100359
crossref_primary_10_1039_D2CP02730E
crossref_primary_10_1039_c3ta12639k
crossref_primary_10_1039_C8RA01680A
crossref_primary_10_1016_j_apsusc_2015_09_163
crossref_primary_10_1016_j_apsusc_2023_156367
crossref_primary_10_1002_ente_202000361
crossref_primary_10_1016_j_jtice_2019_01_020
crossref_primary_10_1038_srep37911
crossref_primary_10_1016_j_eti_2023_103246
crossref_primary_10_1007_s00894_014_2244_2
crossref_primary_10_1016_j_apsusc_2020_145448
crossref_primary_10_1039_C8CP03537G
crossref_primary_10_1021_acsami_3c17997
crossref_primary_10_1063_5_0214668
crossref_primary_10_1039_C4TA00103F
crossref_primary_10_3390_molecules24040754
crossref_primary_10_1021_acsami_6b07390
crossref_primary_10_1016_j_cej_2022_138667
crossref_primary_10_1088_1674_1056_25_6_066102
crossref_primary_10_1021_acs_energyfuels_2c03557
crossref_primary_10_1021_acs_jpcc_1c09657
crossref_primary_10_1051_epjap_2016160059
crossref_primary_10_1016_j_est_2023_108007
crossref_primary_10_3390_app9153012
crossref_primary_10_1021_am504452a
crossref_primary_10_1016_j_cplett_2020_138241
crossref_primary_10_1016_j_apsusc_2022_154673
crossref_primary_10_1021_acs_chemmater_5b02370
crossref_primary_10_1149_1945_7111_ab8404
crossref_primary_10_1016_j_apsusc_2020_147779
crossref_primary_10_1016_j_jpcs_2020_109639
crossref_primary_10_1002_admi_201701261
crossref_primary_10_1039_C4NR00454J
crossref_primary_10_1016_j_apsusc_2020_148869
crossref_primary_10_1002_pssb_202100369
crossref_primary_10_1039_D3CP06146A
crossref_primary_10_1039_C6TA09831B
crossref_primary_10_1016_j_mtcomm_2023_107740
crossref_primary_10_1016_j_surfin_2024_105000
crossref_primary_10_1016_j_comptc_2021_113557
crossref_primary_10_1016_j_apsusc_2016_10_097
crossref_primary_10_1021_acsnano_1c09935
crossref_primary_10_1038_ncomms6261
crossref_primary_10_1002_eem2_12553
crossref_primary_10_3390_computation10030039
crossref_primary_10_1002_cnma_202200134
crossref_primary_10_1039_D1SE01779A
crossref_primary_10_1016_j_apsusc_2019_143659
crossref_primary_10_1021_acs_jpcc_6b12687
crossref_primary_10_1021_acsami_9b04861
crossref_primary_10_1039_C8NR10383F
crossref_primary_10_1063_5_0058598
crossref_primary_10_1088_1361_6528_ab6475
Cites_doi 10.1039/c2nr31357j
10.1002/adma.200901285
10.1002/anie.201002617
10.1088/0034-4885/73/5/056501
10.1021/jp304861d
10.1007/s00214-011-0961-5
10.1063/1.1740588
10.1038/srep00586
10.1038/nature11458
10.1103/PhysRevLett.62.1201
10.1039/c0nr00820f
10.1023/A:1014915307738
10.1021/jp2121609
10.1063/1.3126008
10.1088/0957-4484/21/50/505202
10.1126/science.270.5236.590
10.1039/C1NR11307K
10.1016/j.apsusc.2012.05.162
10.1103/PhysRevB.84.165408
10.1103/PhysRevB.82.125416
10.1126/science.1208759
10.1021/cm102666r
10.1021/cr020730k
10.1002/anie.201003485
10.1021/jp040650f
10.1021/nn2006249
10.1002/adfm.201200186
10.1063/1.1316015
10.1103/PhysRevB.73.205101
10.1021/nl800957b
10.1002/anie.200907347
10.1063/1.3079096
10.1021/jp952713n
10.1063/1.3272008
10.1021/ja1002026
10.1103/PhysRevB.45.13244
10.1039/c1jm00049g
10.1126/science.1130681
10.1038/nature05180
10.1126/science.1158877
10.1063/1.458452
10.1016/j.elecom.2011.05.012
10.1021/nl3019164
10.1021/ac60156a007
10.1039/b612585a
10.1002/jcc.20782
10.1021/nl101223k
10.1021/jp049086z
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7TB
7U5
8FD
FR3
L7M
DOI 10.1039/c3cp51689j
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList MEDLINE - Academic
Solid State and Superconductivity Abstracts
Solid State and Superconductivity Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1463-9084
EndPage 16827
ExternalDocumentID 24002442
27775180
10_1039_c3cp51689j
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
IQODW
NPM
7X8
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c490t-7bfcd718b46958aeb5fae90b346d587377d8df7e2b155ffcda8f875dc4fe86b23
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 10:42:25 EDT 2025
Fri Jul 11 06:21:57 EDT 2025
Fri Jul 11 04:17:40 EDT 2025
Mon Jul 21 06:01:20 EDT 2025
Mon Jul 21 09:15:25 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Tue Jul 01 02:54:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Keywords Lithium battery
Defect
Anode
Nitrogen
Graphene
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c490t-7bfcd718b46958aeb5fae90b346d587377d8df7e2b155ffcda8f875dc4fe86b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24002442
PQID 1434011374
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671501494
proquest_miscellaneous_1448767443
proquest_miscellaneous_1434011374
pubmed_primary_24002442
pascalfrancis_primary_27775180
crossref_citationtrail_10_1039_c3cp51689j
crossref_primary_10_1039_c3cp51689j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2013
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Geim (c3cp51689j-(cit2)/*[position()=1]) 2009; 324
Berger (c3cp51689j-(cit3)/*[position()=1]) 2004; 108
Delley (c3cp51689j-(cit29)/*[position()=1]) 1990; 92
Ohta (c3cp51689j-(cit6)/*[position()=1]) 2006; 313
Delley (c3cp51689j-(cit28)/*[position()=1]) 2000; 113
Yoo (c3cp51689j-(cit9)/*[position()=1]) 2008; 8
Wu (c3cp51689j-(cit31)/*[position()=1]) 2011; 130
Zhou (c3cp51689j-(cit20)/*[position()=1]) 2004; 108
Gao (c3cp51689j-(cit16)/*[position()=1]) 2010; 49
Li (c3cp51689j-(cit19)/*[position()=1]) 2011; 13
Son (c3cp51689j-(cit4)/*[position()=1]) 2006; 444
Dahn (c3cp51689j-(cit47)/*[position()=1]) 1995; 270
Ortmann (c3cp51689j-(cit34)/*[position()=1]) 2006; 73
Chung (c3cp51689j-(cit39)/*[position()=1]) 2002; 37
Qiu (c3cp51689j-(cit30)/*[position()=1]) 2012; 258
Boukhvalov (c3cp51689j-(cit7)/*[position()=1]) 2012; 4
Lee (c3cp51689j-(cit10)/*[position()=1]) 2012; 12
Rajesh (c3cp51689j-(cit40)/*[position()=1]) 2009; 130
Yang (c3cp51689j-(cit41)/*[position()=1]) 2012; 22
Nadler (c3cp51689j-(cit37)/*[position()=1]) 1959; 31
Wang (c3cp51689j-(cit18)/*[position()=1]) 2011; 21
Zhao (c3cp51689j-(cit23)/*[position()=1]) 2011; 333
Xu (c3cp51689j-(cit17)/*[position()=1]) 2012; 4
Wu (c3cp51689j-(cit43)/*[position()=1]) 2010; 21
Winter (c3cp51689j-(cit45)/*[position()=1]) 2010; 104
Panchokarla (c3cp51689j-(cit25)/*[position()=1]) 2009; 21
Inada (c3cp51689j-(cit32)/*[position()=1]) 2008; 29
Novoselov (c3cp51689j-(cit1)/*[position()=1]) 2012; 490
Persson (c3cp51689j-(cit36)/*[position()=1]) 2010; 82
Krishnan (c3cp51689j-(cit49)/*[position()=1]) 2011; 84
Botello-Mendez (c3cp51689j-(cit15)/*[position()=1]) 2011; 3
Kattel (c3cp51689j-(cit13)/*[position()=1]) 2012; 116
Yang (c3cp51689j-(cit44)/*[position()=1]) 2009; 94
Yazyev (c3cp51689j-(cit14)/*[position()=1]) 2010; 73
Gao (c3cp51689j-(cit21)/*[position()=1]) 2010; 49
Lieb (c3cp51689j-(cit42)/*[position()=1]) 1989; 62
Zhou (c3cp51689j-(cit26)/*[position()=1]) 2012; 116
Delley (c3cp51689j-(cit33)/*[position()=1]) 1996; 100
Wu (c3cp51689j-(cit12)/*[position()=1]) 2010; 132
Lv (c3cp51689j-(cit22)/*[position()=1]) 2012; 2
Wu (c3cp51689j-(cit46)/*[position()=1]) 2011; 5
Dai (c3cp51689j-(cit5)/*[position()=1]) 2009; 95
Deng (c3cp51689j-(cit24)/*[position()=1]) 2011; 23
Perdew (c3cp51689j-(cit27)/*[position()=1]) 1992; 45
Mulliken (c3cp51689j-(cit35)/*[position()=1]) 1955; 23
Antony (c3cp51689j-(cit48)/*[position()=1]) 2006; 8
Yang (c3cp51689j-(cit8)/*[position()=1]) 2010; 49
Pollak (c3cp51689j-(cit11)/*[position()=1]) 2010; 10
References_xml – volume: 4
  start-page: 5425
  year: 2012
  ident: c3cp51689j-(cit17)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr31357j
– volume: 21
  start-page: 4726
  year: 2009
  ident: c3cp51689j-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901285
– volume: 49
  start-page: 6764
  year: 2010
  ident: c3cp51689j-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201002617
– volume: 73
  start-page: 056501
  year: 2010
  ident: c3cp51689j-(cit14)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/5/056501
– volume: 116
  start-page: 21780
  year: 2012
  ident: c3cp51689j-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp304861d
– volume: 130
  start-page: 209
  year: 2011
  ident: c3cp51689j-(cit31)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-011-0961-5
– volume: 23
  start-page: 1833
  year: 1955
  ident: c3cp51689j-(cit35)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740588
– volume: 2
  start-page: 586
  year: 2012
  ident: c3cp51689j-(cit22)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00586
– volume: 490
  start-page: 192
  year: 2012
  ident: c3cp51689j-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11458
– volume: 62
  start-page: 1201
  year: 1989
  ident: c3cp51689j-(cit42)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.1201
– volume: 3
  start-page: 2868
  year: 2011
  ident: c3cp51689j-(cit15)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c0nr00820f
– volume: 37
  start-page: 1475
  year: 2002
  ident: c3cp51689j-(cit39)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1014915307738
– volume: 116
  start-page: 8161
  year: 2012
  ident: c3cp51689j-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2121609
– volume: 94
  start-page: 163115
  year: 2009
  ident: c3cp51689j-(cit44)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3126008
– volume: 21
  start-page: 505202
  year: 2010
  ident: c3cp51689j-(cit43)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/50/505202
– volume: 270
  start-page: 590
  year: 1995
  ident: c3cp51689j-(cit47)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.270.5236.590
– volume: 4
  start-page: 417
  year: 2012
  ident: c3cp51689j-(cit7)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C1NR11307K
– volume: 258
  start-page: 9629
  year: 2012
  ident: c3cp51689j-(cit30)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.05.162
– volume: 84
  start-page: 165408
  year: 2011
  ident: c3cp51689j-(cit49)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.165408
– volume: 82
  start-page: 125416
  year: 2010
  ident: c3cp51689j-(cit36)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.125416
– volume: 333
  start-page: 999
  year: 2011
  ident: c3cp51689j-(cit23)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1208759
– volume: 23
  start-page: 1188
  year: 2011
  ident: c3cp51689j-(cit24)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm102666r
– volume: 104
  start-page: 4245
  year: 2010
  ident: c3cp51689j-(cit45)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr020730k
– volume: 49
  start-page: 8408
  year: 2010
  ident: c3cp51689j-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003485
– volume: 108
  start-page: 19912
  year: 2004
  ident: c3cp51689j-(cit3)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp040650f
– volume: 5
  start-page: 5463
  year: 2011
  ident: c3cp51689j-(cit46)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn2006249
– volume: 22
  start-page: 3634
  year: 2012
  ident: c3cp51689j-(cit41)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200186
– volume: 113
  start-page: 7756
  year: 2000
  ident: c3cp51689j-(cit28)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 73
  start-page: 205101
  year: 2006
  ident: c3cp51689j-(cit34)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.73.205101
– volume: 8
  start-page: 2277
  year: 2008
  ident: c3cp51689j-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl800957b
– volume: 49
  start-page: 3200
  year: 2010
  ident: c3cp51689j-(cit16)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907347
– volume: 130
  start-page: 124911
  year: 2009
  ident: c3cp51689j-(cit40)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3079096
– volume: 100
  start-page: 6107
  year: 1996
  ident: c3cp51689j-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952713n
– volume: 95
  start-page: 232105
  year: 2009
  ident: c3cp51689j-(cit5)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3272008
– volume: 132
  start-page: 5554
  year: 2010
  ident: c3cp51689j-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1002026
– volume: 45
  start-page: 13244
  year: 1992
  ident: c3cp51689j-(cit27)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.45.13244
– volume: 21
  start-page: 5430
  year: 2011
  ident: c3cp51689j-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm00049g
– volume: 313
  start-page: 951
  year: 2006
  ident: c3cp51689j-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1130681
– volume: 444
  start-page: 347
  year: 2006
  ident: c3cp51689j-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature05180
– volume: 324
  start-page: 1530
  year: 2009
  ident: c3cp51689j-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 92
  start-page: 508
  year: 1990
  ident: c3cp51689j-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 13
  start-page: 822
  year: 2011
  ident: c3cp51689j-(cit19)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.05.012
– volume: 12
  start-page: 4624
  year: 2012
  ident: c3cp51689j-(cit10)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl3019164
– volume: 31
  start-page: 2109
  year: 1959
  ident: c3cp51689j-(cit37)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac60156a007
– volume: 8
  start-page: 5287
  year: 2006
  ident: c3cp51689j-(cit48)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b612585a
– volume: 29
  start-page: 225
  year: 2008
  ident: c3cp51689j-(cit32)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20782
– volume: 10
  start-page: 3386
  year: 2010
  ident: c3cp51689j-(cit11)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101223k
– volume: 108
  start-page: 9023
  year: 2004
  ident: c3cp51689j-(cit20)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp049086z
SSID ssj0001513
Score 2.5305827
Snippet The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 16819
SubjectTerms Adsorption
Anodes
Applied sciences
Decoration
Defects
Direct energy conversion and energy accumulation
Electric batteries
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Graphene
Lithium batteries
Lithium-ion batteries
Vacancies
Title Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
URI https://www.ncbi.nlm.nih.gov/pubmed/24002442
https://www.proquest.com/docview/1434011374
https://www.proquest.com/docview/1448767443
https://www.proquest.com/docview/1671501494
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5B-wASQtyEo1oELwiZOt719YQqK1VBofTBkcKTtScEUTtqnBd-PbOHj4hSFV4sZzXarHa-Hc_MzoHQGwZKt44l2CbGfU95JoJMERVEUoVShjLMmHENfD5NThb00zJeDj02bXZJy9-LX5fmlfwPV2EM-GqyZP-Bs_2kMADvwF94AofheS0eF3A4zdUyHMuLBqgC2axBgZTKxWisrMNAuWyoUYIA6Ie2TjWIuXesbmwMa-vWa6MOQTP_vtqeBwYZ3NbfXJnIuZ0IwLOOv6LrGOfezJDzlmyst-GsKPoMsq9bK_BZ_S1Y-oLf3t9gej_0_gYnImlCAjCpfQHr8Zhr9tbL1XiEH1exyEvJaZJ5Oam6365AwB_yPCSmHKogYh0DUf5j-Gp1N_WnX6rjxXxelbNleRPtR2AtgLjbP5qVH-f9JxnUGuLSzNzSuzq1JD8c5t7RTO6s2QZ2TLvuJn83P6waUt5Dd739gI8cGO6jG6p-gG4VHRMeonMABQZQ4F1QYA8K7EGBARR4BArcaNyBAltQ4B4UGIjwCBS4B8WHR2hxPCuLk8D31AgEzcM2SLkWEvQRTpM8zpjisWYqDzmhiYyzlKSpzKROVcRB0dRAyzINJq0UVKss4RF5jPbqplZPEZZgmsZEW_WGKpEwkU8FZVwTGamp5hP0ttvPSviC86bvyc_KBj6QvBr2foJe97RrV2blUqqDHbb0pMB1c30YTtCrjk8VbLu5-2K1arYbsHAJhU8ZSelVNGC9Jyml5AqaJJ2aq_gc5nnigDCsghqNl0bPrvEPz9Ht4XC9QHvtxVa9BPW25QcevL8BFUurkQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+all+nitrogen-doped+defects+improve+the+performance+of+graphene+anode+materials+for+lithium-ion+batteries%3F&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yu%2C+Yang-Xin&rft.date=2013-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=15&rft.issue=39&rft.spage=16819&rft.epage=16827&rft_id=info:doi/10.1039%2Fc3cp51689j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon